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Abstract  

There is a tremendous opportunity to implement sustainable supply chain 

management practices in terms of logistics, operations, and transport network in 

regional Australia. Unfortunately, this opportunity has not been investigated and there 

is a lack of academic studies in this body of knowledge. This thesis is made up by three 

related, but independent models designed to efficiently distribute products from a 

regional hub to other part of the country. This research aims to develop efficient and 

sustainable supply chain practices to deliver regional Australian products across the 

country and overseas. As the airports of most Australian capital cities are over-

crowded while many regional airports are under-utilised, the first model examines the 

ways to promote the use of regional airports. Australia is a significant food producer 

and the agricultural products are primarily produced in regional areas. In the other two 

models, we focus on the distribution of perishable products from regional Australia.  

The first model presented in Chapter 2 outlines how different government subsidy 

schemes can be used to influence airfreight distributions that favour the use of regional 

airports and promote regional economic development. The model simultaneously 

considers time-window and release-time constraints as well as the heterogeneous fleet 

for ground distribution where fuel consumption is subject to load, travel distance, 

speed and vehicle characteristics. A real-world case study in the state of Queensland, 

Australia is used to demonstrate the application of the model. The results suggest that 

the regional airport's advantages can be promoted with suitable subsidy programs and 

the logistics costs can be reduced by using the regional airport from the industry’s 

perspective. 

The second model presented in Chapter 3 examines the impacts of carbon emissions 

arising from the storage and transportation of perishable products on logistical 

decisions in the cold supply chain considering carbon tax regulation and uncertain 

demand. The problem is formulated as a two-stage stochastic programming model 

where Monte Carlo approach is used to generate scenarios. The aim of the model is to 

determine optimal replenishment policies and transportation schedules to minimise 

both operational and emissions costs. A matheuristic algorithm based on the Iterated 

Local Search (ILS) algorithm and a mixed integer programming is developed to solve 

the problem in realistic sizes. The proposed model was implemented in a real-world 



ii 

 

case study in the state of Queensland, Australia to demonstrate the application of the 

model. The results highlight that a higher emissions price does not always contribute 

to the efficiency of the cold supply chain system. 

The third model presented in Chapter 4 investigates the impacts of two different 

transport modes - road and rail - on the efficiency and sustainability of transport 

network to deliver meat and livestock from regional Queensland to large cities and 

seaports. The model is formulated as a mixed-integer linear programming model that 

considers road traffic congestions, animal welfare, quality of meat products and 

environmental impacts from fuel consumption of different transport modes. The aim 

of the model is to determine an optimal network configuration where each leg of 

journey is conducted by the most reliable, sustainable and efficient transport mode. 

The results indicate that it would be possible to significantly decrease total cost if a 

road-rail intermodal network is used. Considering animal welfare, product quality and 

traffic congestion can have a significant effect on the decisions related to transport 

mode selection.  



iii 

 

CERTIFICATION OF THESIS 

 

 

This Thesis is the work of Mahla Babagolzadeh except where otherwise 

acknowledged, with the majority of the authorship of the papers presented as a Thesis 

by Publication undertaken by the Student. The work is original and has not previously 

been submitted for any other award, except where acknowledged.    

  

  

Principal Supervisor: Associate professor Shane Zhang 

  

Associate Supervisor: Dr Anup Shrestha  

   

Associate Supervisor: Professor Alice Woodhead 

 

  

Student and supervisors signatures of endorsement are held at the University



iv 

 

Acknowledgements 

 

I would like to express my sincere gratitude to my supervisors Assoc. Prof. Shane 

Zhang, Dr Anup Shrestha and Prof. Alice Woodhead for their supervisions, their 

valuable advice and providing motivation throughout the course of my PhD studies. It 

has been a pleasure to collaborate with them. 

I would like to thank my Advisor Prof. Babak Abbasi for his invaluable support, 

encouragement, sharing his knowledge and guidance in all the time of research. I have 

been extremely fortunate to have the opportunity to learn from and collaborate with 

him. 

Special thanks and sincere gratitude must also go to faculty and staff in School of 

Management and Enterprise at University of Southern Queensland to help and support 

me during my PhD. I acknowledge Mr Bernard O'Neil for his professional 

proofreading advice.  

I would like to thank my family and friends for encouragement and motivation. Most 

of all, I would like to give my appreciation to my parents, Eshrat and Naser and my 

brothers Mahdi and Milad for their great support and love that gave me confidence to 

pursue my dreams. 

This research has been supported by an Australian Government Research Training 

Program Scholarship.



v 

 

List of publications arising 

 

• Babagolzadeh, M., Zhang, Y., Abbasi, B., Zhang, A., and Shrestha, A., 2020. 

Promoting regional airports with subsidy schemes: A case study in Australia. 

Transportation Research Part A: Policy and Practice (under review).  

 

The overall contribution of Mahla Babagolzadeh was 75% to the concept 

development, analysis, drafting and revising the final submission; Yahua 

Zhang, Babak Abbasi, Anup Shrestha and Anming Zhang contributed the 

other 25% to concept development, analysis, editing and providing important 

technical inputs. 

 

• Babagolzadeh, M., Shrestha, A., Abbasi, B., Zhang, Y., Woodhead, A. and 

Zhang, A., 2020. Sustainable cold supply chain management under demand 

uncertainty and carbon tax regulation. Transportation Research Part D: 

Transport and Environment, 80, p.102245. 

 

The overall contribution of Mahla Babagolzadeh was 75% to the concept 

development, analysis, drafting and revising the final submission; Anup 

Shrestha, Babak Abbasi, Yahua Zhang, Alice Woodhead and Anming Zhang 

contributed the other 25% to concept development, analysis, editing and 

providing important technical inputs. 

 

• Babagolzadeh, M., Zhang, Y., Abbasi, B., Zhang, A., Shrestha, A., and Yong, 

J., 2020. Sustainable intermodal meat supply chain: Moving cattle from 

outback Queensland to the Port of Brisbane. Transportation Research Part E: 

Logistics and Transportation Review (under review). 

 

The overall contribution of Mahla Babagolzadeh was 75% to the concept 

development, analysis, drafting and revising the final submission; Yahua 

Zhang, Babak Abbasi, Hang Yu, Anup Shrestha and Jianming Yong 

contributed the other 25% to concept development, analysis, editing and 

providing important technical inputs. 



vi 

 

• Babagolzadeh, M., Shrestha, A., Abbasi, B., Zhang, S., Atefi, R. and 

Woodhead, A., 2019. Sustainable Open Vehicle Routing with Release-Time 

and Time-Window: A Two-Echelon Distribution System. IFAC-

PapersOnLine, 52(13), pp.571-576. 

 

The overall contribution of Mahla Babagolzadeh was 85% to the concept 

development, analysis, drafting and revising the final submission; Anup 

Shrestha, Babak Abbasi, Shane Zhang, Reza Atefi and Alice Woodhead 

contributed the other 15% to concept development, analysis, editing and 

providing important technical inputs. 

 

• Babagolzadeh, M., Shrestha, A., Abbasi, B., Zhang, Y., and Woodhead, A., 

2018. A two-stage stochastic programming model to optimize logistical 

decisions in cold supply chain under government regulations. In 2018 AMSI 

Optimise Mathematical Innovation Conference, University of Melbourne, 18-

22 June, Melbourne, Australia. 

 

The overall contribution of Mahla Babagolzadeh was 85% to the concept 

development, analysis, drafting and revising the final submission; Anup 

Shrestha, Babak Abbasi, Yahua Zhang and Alice Woodhead contributed the 

other 15% to concept development, analysis, editing and providing important 

technical inputs. 

 

 



vii 

 

Table of contents 

Abstract .................................................................................................................................... i 

CERTIFICATION OF THESIS ........................................................................................... iii 

Acknowledgements ................................................................................................................ iv 

List of publications arising ..................................................................................................... v 

Table of contents ................................................................................................................... vii 

List of Figure ........................................................................................................................... x 

List of Tables .......................................................................................................................... xi 

Chapter 1: Introduction ........................................................................................................ 1 

1.1 Background .................................................................................................................. 1 

1.2. Motivation for the Study ............................................................................................ 2 

1.3 Rational and knowledge gap ....................................................................................... 3 

1.4. Research aim and objectives ...................................................................................... 3 

1.5 Contribution of research ............................................................................................. 6 

1.6 Thesis structure ............................................................................................................ 6 

Chapter 2: Promoting regional airports with subsidy schemes: A case study in 

Australia ................................................................................................................................. 9 

2.1 Introduction .................................................................................................................. 9 

2.2 Literature review ....................................................................................................... 11 

2.2.1 The regional air transport problem .................................................................. 11 

2.2.2 The open vehicle routing problem ..................................................................... 13 

2.2.3 Multi modal transport network ......................................................................... 15 

2.3 A framework for subsidy schemes evaluation ......................................................... 18 

2.3.1 Subsidy schemes .................................................................................................. 18 

2.3.2 Optimisation model ............................................................................................. 19 

2.3.3 Fuel consumption ................................................................................................ 21 

2.3.4 Model under subsidy scenario 1 ........................................................................ 21 

2.4 Computational results................................................................................................ 23 

2.4.1 Description of the case study .............................................................................. 23 

2.4.2 Computational experiments and analysis ......................................................... 26 

2.4.3 Sensitivity analysis .............................................................................................. 29 

2.5 Managerial insights .................................................................................................... 32 

2.6 Summary ..................................................................................................................... 33 

Chapter 3: Sustainable cold supply chain management under demand uncertainty and 

carbon tax regulation ........................................................................................................... 36 

3.1 Introduction ................................................................................................................ 36 



viii 

 

3.2 Literature review ....................................................................................................... 39 

3.3 Problem description ................................................................................................... 43 

3.3.1 Modelling approach ............................................................................................ 45 

3.3.2 Fuel consumption ................................................................................................ 48 

3.4 Mathematical Model .................................................................................................. 49 

3.4.1 Symmetry breaking constraints ......................................................................... 54 

3.4.2 Linearisation of the model .................................................................................. 54 

3.4.3 Model extension with variable speed consideration ......................................... 57 

3.5 An Iterated Local Search algorithm ......................................................................... 60 

3.5.1 Initialisation ......................................................................................................... 60 

3.5.2 Swap procedure within the same route ............................................................. 61 

3.5.3 Swap procedure between routes ........................................................................ 61 

3.5.4 𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏 −  𝑰𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏𝟏 .............................................................................. 62 

3.5.5 𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏 −  𝑰𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏𝟐 .............................................................................. 62 

3.5.6 Routes integration ............................................................................................... 62 

3.5.7 Shaking procedure .............................................................................................. 62 

3.5.8 The matheuristic algorithm ................................................................................ 64 

3.6. Computational results .............................................................................................. 65 

3.6.1 Analysing the performance of the proposed algorithm ................................... 66 

3.6.2 Monte Carlo sampling approach ....................................................................... 69 

3.6.3 Description of the case study .............................................................................. 70 

3.6.4 Numerical example and analysis ....................................................................... 74 

3.6.5 Impact of a heterogeneous fleet ......................................................................... 77 

3.6.6 Sensitivity analysis .............................................................................................. 78 

3.6.7 Managerial insights ............................................................................................. 81 

3.7 Summary ..................................................................................................................... 82 

Chapter 4: Sustainable intermodal meat supply chain: Moving cattle from outback 

Queensland to the Port of Brisbane .................................................................................... 85 

4.1 Introduction ................................................................................................................ 85 

4.2 Literature review ....................................................................................................... 87 

4.3 Problem description ................................................................................................... 90 

4.4 Optimisation model .................................................................................................... 92 

4.4.1 Mathematical model ........................................................................................... 94 

4.5 Computational results.............................................................................................. 100 

4.5.1 Description of the case study ............................................................................ 101 

4.5.2 Computational experiments and analysis ....................................................... 103 



ix 

 

4.5.3 Sensitivity analysis ............................................................................................ 105 

4.6 Conclusion ................................................................................................................ 108 

Chapter 5: Conclusions and future research directions ................................................. 110 

5.1 Promoting regional area with subsidy schemes ..................................................... 110 

5.2 Sustainable cold supply chain, under demand uncertainty and carbon emissions

 ......................................................................................................................................... 111 

5.3 Designing a sustainable intermodal meat supply chain under a carbon emissions 

regime .............................................................................................................................. 112 

5.4 Limitations of the study and possible future research directions ........................ 113 

6 References ........................................................................................................................ 116 

Appendix A: Notations used in mathematical model in Chapter 2 ............................... 131 

Appendix B: The constraints under subsidy scenario 1 ................................................. 133 

Appendix C: The mathematical model under subsidy scenario 2 ................................. 138 

Appendix D: The Modified model in Chapter 3 .............................................................. 139 



x 

 

List of Figure 

Figure 2-1:A simple schematic diagram of the proposed network ........................................ 20 

Figure 2-2: Unique view of optimal routes under the baseline scenario (HK: Hong Kong, 

SIA: Sydney International Airport, SFW: Sydney Forwarder Warehouse, MFW: Melbourne 

Forwarder Warehouse) ........................................................................................................... 27 

Figure 2-3:Unique view of optimal routes under two subsidy scenarios ............................... 28 

Figure 2-4:Impact of government subsidy limit on the total cost and cargo traffic at 

Toowoomba Airport under two subsidy scenarios................................................................. 30 

Figure 2-5:Impact of changing in subsidy rate on the total cost and cargo traffic at 

Toowoomba Airport under scenario 1 ................................................................................... 31 

Figure 2-6:Impact of changing subsidy rate on the total cost and cargo traffic at Toowoomba 

Airport under scenario 2 ........................................................................................................ 32 

Figure 3-1: A simple scheme of the proposed problem ......................................................... 45 

Figure 3-2:The initialisation procedure .................................................................................. 61 

Figure 3-3:The structure of our matheuristics algorithm ....................................................... 65 

Figure 3-4:Scenario sample stability for determining reliable scenario size ......................... 70 

Figure 3-5:The logistics network for the case study .............................................................. 70 

Figure 3-6:Emissions per 100 km depending on speed with different payload settings ........ 72 

Figure 3-7:The general and unique views of the optimal routes at the first-stage under the 

base case model ...................................................................................................................... 75 

Figure 3-8:Frequency distribution of optimal quantity in the second-stage .......................... 76 

Figure 3-9:Optimal solution construction for 23.07% of scenarios in the second-stage ....... 76 

Figure 3-10:Impact of unit emission price on the total cost and emissions ........................... 80 

Figure 3-11:Impact of distance on different components of objective function .................... 80 

Figure 3-12:Impact of vehicle speed on transportation cost and 𝐶𝑂2 emissions .................. 81 

Figure 4-1:A simple network configuration of the proposed meat supply chain ................... 91 

Figure 4-2:The general view of the network configuration in the optimal solution of the 

intermodal network. (p: production region, T: terminal, A: abattoir, DC: distribution centre 

and SP: Brisbane seaport) .................................................................................................... 104 

Figure 4-3:The impact of changing the ratio of road animal welfare reduction rate for road 

transport to the rate for rail transport on different costs and CO2 emissions. ...................... 106 

Figure 4-4:The impact of changing the unit penalty costs on different costs and the value 

involved in the quality loss costs calculation. ...................................................................... 107 



xi 

 

List of Tables 

Table 2-1:Demand, service time and the latest time of starting services ............................... 24 

Table 2-2:Definition of vehicle specific parameters .............................................................. 25 

Table 2-3:Definition of vehicle typical parameters ............................................................... 25 

Table 2-4:Optimal values of the objective functions under the baseline scenario in AUD ... 27 

Table 2-5:Optimal values of the objective functions under the baseline scenario in AUD ... 28 

Table 3-1:Main decisions at each stage ................................................................................. 46 

Table 3-2:Indices ................................................................................................................... 47 

Table 3-3:Parameters ............................................................................................................. 47 

Table 3-4:Variables ................................................................................................................ 48 

Table 3-5:Performance of the Matheuristic algorithm on small and medium size instances . 66 

Table 3-6:Performance of matheuristic algorithm on large size instances ............................ 68 

Table 3-7: Definition of vehicle specific parameters ............................................................. 71 

Table 3-8:Definition of vehicle typical parameters ............................................................... 72 

Table 3-9:Distances between nodes in the case study, in km ................................................ 73 

Table 3-10:Optimal values of the objective functions under the base case model in AUD... 74 

Table 3-11:Optimal values of the objective functions under the extended model in AUD ... 75 

Table 3-12:Impact of using a heterogeneous fleet on various costs ...................................... 78 

Table 4-1:The sets and indices for the mathematical formula ............................................... 92 

Table 4-2:The parameters for the mathematical formula. ...................................................... 93 

Table 4-3:The decision variables for the mathematical formula............................................ 94 

Table 4-4:The cattle and meat products demand and service time at each node. ................ 102 

Table 4-5:The definition of the vehicle parameters ............................................................. 102 

Table 4-6:The optimal value of the objective functions under a rail–road intermodal network 

(AUD). ................................................................................................................................. 104 

Table 4-7:The optimal value of the objective functions under the unimodal network (AUD).

 ............................................................................................................................................. 105 

Table A-1:Indices ................................................................................................................. 131 

Table A-2:Parameters .......................................................................................................... 131 

Table A-3:Variables ............................................................................................................. 132 



1 

 

Chapter 1: Introduction  

1.1 Background  

In an increasingly competitive global economic environment, a prompt response to 

the customer’s needs and cutting the operational costs along a supply chain are vital. 

In Australia the recent rises in population and congestion in metropolitan areas have 

increased operational costs and waiting times as well as business challenges to meet 

customer demands for fast and reliable deliveries in supply chains. In addition, there 

have been challenges related to environmental sustainability and green supply chain 

management has been called for and required in recent years.   

A supply chain is a system consisting of suppliers, manufacturers, distributors, 

retailers and customers in which products are transferred from a supplier to an end 

user. Management of the entire processes and practices in this system is known as 

supply chain management. The focus of supply chain management used to be on 

economic performance only. However, the recent impact in sustainability issues such 

as the environment and a drop in the quality of products have begun to permeate 

corporate thinking towards developing sustainable supply chain management. Hence, 

there has been a growing body of literature on the topic of sustainable supply chain 

management (see, for example, (Mota et al., 2015; Sheu et al., 2005)). Researchers 

have been studying the wide range of matters that can influence a sustainable supply 

chain. Using energy efficiently and keeping the quality of the product at the level 

necessary to maintain or increase customer satisfaction are two examples.  

One of the main challenges in the area of sustainability relates to carbon and other 

greenhouse gas (GHG) emissions from supply chain activities (Fichtinger et al., 2015). 

There has been growing attention in this area as result of the introduction of carbon 

tax regulation in some parts of the world (Li et al., 2017). According to a recent survey, 

the transportation sector is one of the major contributors to GHG emissions, 

accounting for 17% of Australia's total emissions (Australian Government, 2017). The 

significant growth in traffic congestion in metropolitan cities in Australia contributes 

to this. Another sustainability issue is related to the quality of the product which can 

impact on customer satisfaction. Product quality can significantly deteriorate due to 

long waiting times caused by traffic congestion and over-crowded facilities in 

metropolitan areas in Australia. Given the high freight volume and the growth in traffic 

congestion in metropolitan areas, decision makers, particularly in the three forms of 
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government in Australia, have a great interest in the potential for regional areas, which 

usually have underused capacity, to be used as distribution hubs to improve the 

efficiency and reliability of distribution along supply chains with an emphasis on 

sustainability issues. 

Australia is a significant food producer in the world and exports more than 70% of 

its agricultural production (Michael, 2018). Transporting value-added agricultural 

products along supply chains is important because of the associated high levels of 

employment, personal income and government tax revenue (Woodhead et al., 2017). 

Notwithstanding the recent political issues between Australia and China, there has 

been a steadily increasing demand for Australian agricultural products across Asia, 

especially for dairy, food and natural health products (Michael, 2018). Studies have 

proposed establishment of food clusters in Australian regional areas that are close to 

food production regions. This will improve the efficiency and reliability of supply 

chains and support regional economic development (Zhang and Woodhead, 2016). 

There would likely be positive impacts of the sustainability of the supply chains. To 

support regional areas as distribution hubs, the Australian government has introduced 

regional subsidy schemes (Zhang et al., 2017). 

Despite the important role that regional Australia could play in operational 

efficiency and reliability improvement along the supply chains, designing a sustainable 

supply chain from a regional hub to other parts of Australia has failed to attract the 

attention of scholars to any great extent. This research aims to work on this topic that 

is worthy of scholarly investigation as well as includes significant policy and practical 

implications.  

1.2. Motivation for the Study  

As a PhD student at the University of Southern Queensland (USQ) at Toowoomba 

which is located in the regional, city of Toowoomba, in Australia, it was recognized 

there was a significant effort of the Toowoomba local government (Toowoomba 

Regional Council) and USQ scholars to investigate the viability of Toowoomba as a 

distribution hub. The city is in a strategic location for the surrounding region and has 

excellent transport connectivity across Australia and key overseas locations.  

The Darling Downs region, where Toowoomba is situated, is the second largest 

agricultural production area in Australia, and the largest in Queensland and accounts 

for about a quarter of the state’s agricultural production (Zhang and Woodhead, 2016). 
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Toowoomba was also identified by Australian government agencies and industry as a 

potential agricultural distribution centre of perishable products (Zhang and Woodhead, 

2016). 

Toowoomba is 120 km west of Brisbane, the capital city of the state of Queensland, 

and is the largest non-capital inland city in Australia. It is situated at the junction of 

main national highways and is connected to the Western Rail line, providing it with a 

good opportunity to become a distribution hub. The position of Toowoomba was 

further strengthened when the Wellcamp Airport in Toowoomba was put into 

commercial freight use in November 2014 and it became a gateway for distributing 

cargo to domestic and international markets.  

Due to the location and position of Toowoomba as a regional area for both 

production and distribution of perishable products, it provided an excellent opportunity 

to embark on this research study to use decision support tools and evaluate  the 

suitability of Toowoomba as a distribution hub and how it can affect efficiency and 

sustainability of supply chains in presence of government regional schemes from 

practical and theoretical point of views. Furthermore, the strategic positioning of 

Toowoomba provides a suitable platform and motivation to design a transport network 

to distribute products from a regional area to other parts of the country in a sustainable 

way.  

1.3 Rational and knowledge gap  

This thesis examines three topics. The rational and knowledge gap of each topic is 

discussed as follows: 

Topic 1 (addressed in Chapter 2) examines how government regional subsidy 

schemes may influence the structure of cargo distribution network and logistics 

decisions. The propose research links with three strands of literature, namely, the 

regional air transport, open vehicle routing problems and multimodal transport 

network. There has been a growing body of literature on these areas since 2000 (Rezaei 

et al., 2017; Atefi et al., 2018; Kundu and Sheu, 2019; Li and Zhang, 2020). However, 

most of these studies focus on metropolitan airports and regional airports have received 

little attention. In addition, the existing literature mainly explores the effect of 

government subsidy schemes to promote a specific transport mode.  There is a lack of 

studies examining the effect of regional subsidy schemes to reduce the volume of cargo 

traffic at the increasing congested metropolitan airports. To the best of our knowledge, 
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our study is the first one that integrates logistics decisions and government regional 

subsidies for cargo distribution network.   

Topic 2 (discussed in Chapter 3) explores the impacts of carbon tax regulation and 

uncertain demand on logistics decisions in the cold supply chain. We develop an 

optimisation model based on a two-stage stochastic programming to capture the 

uncertainty of demand, accounting for a heterogenous fleet and carbon tax regulation. 

There are many studies focusing on the distribution planning in cold supply chain. 

However, only a few studies incorporate environmental impacts into the distribution 

planning in cold supply chains (Chen and Hsu, 2015; Hsiao et al., 2017; Hariga et al., 

2017; Stellingwerf et al., 2018b). Among these studies, some studies considered 

stochastic parameters in modelling in the cold supply chains. For example, Soysal et 

al. (2015) presented an integrated IRP model for distribution of a perishable product 

that contains load dependent distribution costs for evaluation of carbon emissions, 

perishability and service level constraint for satisfying stochastic demand. Firoozi and 

Ariafar (2017) developed a Lagrangian relaxation-based heuristics algorithm to solve 

a stochastic model presented for distribution of perishable products. Although these 

studies considered models for distribution perishable products in stochastic 

environment, the energy consumption of cold facilities and emissions from storage 

were largely neglected. To the best of our knowledge, no existing research has 

addressed the replenishment policy and transportation schedules in an integrated 

model for the cold supply chain sector with a consideration of demand uncertainty, 

carbon tax regulations and a heterogeneous fleet simultaneously. This research will fill 

this literature gap. 

Topic 3 (addressed in Chapter 4) examines the opportunity of expanding the use of 

an intermodal road-rail transport network for a meat supply chain. We present an 

intermodal transport network model for a meat supply chain that takes into account 

traffic congestion, animal welfare and the quality of meat products during transport 

operations in presence of a carbon tax regulation. In recent years, there has been 

growing body of literature in the area of intermodal transport network as such network 

offers an opportunity to facilitate international trade and to mitigate road congestion 

(Kumar and Anbanandam, 2020; Baykasoglu and Subulan, 2016; Sorensen et al., 

2012). Good surveys of the development of intermodal transport networks can be 

found in Bontekoning et al. (2004), Mathisen and Hanssen (2014) and Abbassi et al. 

(2018). However, studies addressing the intermodal transport problem in food supply 
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chains are still small in number. Soysal et al. (2014) proposed a linear programming 

model for a multimodal beef supply chain to minimise the economic costs and 

emissions during beef’s distribution. Abbassi et al. (2018) presented an intermodal 

transport model for agriculture products that accounts for the quality loss during 

transport operations in order to minimise total costs. Although these studies addressed 

the intermodal transport network in food supply chains, the animal welfare issue has 

been neglected, which is a key aspect to be addressed in Chapter 4.   

1.4. Research aim and objectives 

The aim of this study is twofold. First, to investigate how to improve the performance 

of supply chains in Australia by using a regional area as a distribution hub in line with 

government regional support schemes. Second, to design a distribution network to 

move products efficiently and reliably from the regional hub to other parts of the 

country under both carbon tax regulation and uncertain demand. This research 

addresses the following questions: 

RQ 1: How different government subsidy schemes can be used to influence airfreight 

distribution that favours the use of regional airports and to promote regional economic 

development? 

RQ 2: What is the effect of government regional support schemes on logistics 

decisions and economic costs?  

RQ3: What are the impacts of carbon tax regulation and the uncertainty of demand 

on logistics decisions in the supply chain with perishable products? 

RQ 4: How can the investigation of two different transport modes (road and rail) 

affect the efficiency and reliability of the transport network in transporting meat and 

livestock from regional Queensland to large cities and seaports? 

RQ 5: How can animal welfare and the quality of products affect transport mode 

selection decisions in the meat supply chain considering traffic congestion? 

These questions gave rise to the following objectives for this research: 

• To develop a mathematical model to determine the best distribution network 

under government regional support schemes. 

• To establish a model to analyse the effect of different regional support schemes 

(linear subsidy and non-linear subsidy) on logistics decision making and economic 

costs to identify the most effective scheme. 
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• To develop a stochastic model to determine cost-efficient and environment-

friendly replenishment policies and transport schedules in a cold supply chain under 

both carbon tax regulation and uncertain demand. 

• To establish a model to select the most reliable, sustainable and efficient 

transport mode to conduct each leg of the journey in a meat supply chain while 

considering animal welfare issues, the quality of the products and traffic congestion. 

1.5 Contribution of research  

As mentioned, the increasing traffic congestion in metropolitan areas in Australia 

has brought challenges for efficient and reliable deliveries in supply chains. This can 

have a significant impact on the sustainability of a supply chain. Thus, decision makers 

such as those at all levels of government and in industry have a great interest in the 

potential for regional areas with underused capacity to be distribution hubs to avoid 

the suburban heavy traffic congestion which results in inefficient, unreliable and 

unsustainable supply chains. Using hubs in regional areas will not only lead to 

improved efficiency, reliability and sustainability in a supply chain, but they can also 

help to promote regional economic development. To implement this strategy for 

effective regional schemes, it is essential to design efficient, reliable and sustainable 

distribution networks between the regional and metropolitan areas. Although an 

increased amount of research has focussed on regional areas as a result of the 

Australian government’s recent regional support schemes, few researchers have used 

decision support tools to provide quantitative evidence (most of studies in this field 

are proposals and discussion based). Also, the existing research does not focus on 

designing an efficient, reliable and sustainable distribution network between regional 

and metropolitan areas, especially in a cold supply chain. This study seeks to fill this 

gap. This research uses decision support tools to answer how government regional 

support schemes may influence freight distribution in and from regional areas and so 

promote regional economic development. It also presents models to help design an 

efficient, reliable and sustainable network for distributing products, especially 

livestock and perishable agricultural ones, from a regional area to other parts of 

Australia.   

1.6 Thesis structure  

This thesis is a composition of three models that offer solutions to answer the 

research questions listed in section 1.3 in three chapters. 
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 The first model (presented in Chapter 2) is presented to explore how the government 

regional subsidy schemes influence freight distribution decisions that favour the use 

of regional airports and promote regional economic development, with a consideration 

of the optimal ground distribution network from those airports to the consignees. The 

proposed model considers the subsidy schemes as linear and non-linear functions. The 

model simultaneously considers the time window, release time constraints and the 

heterogeneous fleet for ground distribution where fuel consumption is subject to load, 

travel distance, speed and vehicle characteristics. This model is applied to the situation 

in Australia where the metropolitan airports are operating close to their full capacity 

while the vast majority of the regional airports are underutilised.  

A case study in Australia is presented to demonstrate the application of the proposed 

framework. The results illustrate that introducing subsidies can promote the viability 

of regional airport's as a logistics hub and have a positive effect on the reduction of 

total costs. The results also suggest that the framework under a linear subsidy provides 

a better performance from the economic and delivery time perspectives. However, in 

terms of promoting a regional airport and economic growth, a non-linear subsidy is 

preferred. 

The second model (presented in Chapter 3) investigates the impact of carbon 

emissions arising from storage and transportation on logistics decisions in a cold 

supply chain under a carbon tax regulation. The model also determines the impact of 

uncertain demand on the operational decisions related to storage and transportation. 

The model is developed based on a two-stage stochastic programming to determine 

cost-efficient and sustainable replenishment policies and transport schedules in which 

energy consumption and emissions are determined by load, distance, speed and vehicle 

characteristics. Given a statistical distribution for the demand uncertainty, scenarios 

are generated using the Monte Carlo approach. Moreover, stability tests are conducted 

to make sure that the scenario size is adequate with a reliable representation of the 

demand. A matheuristic algorithm based on an Iterated Local Search algorithm and a 

mixed integer programming are used to solve the proposed problem in an efficient 

computational time. The performance of the matheuristic algorithm is analysed using 

test instances with various sizes.  

A real world case study in a regional area of Queensland is used to demonstrate the 

application of the proposed model; the area is one of the main producers of cold 
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products in Australia. The results highlight that a higher emissions price does not 

always contribute to the efficiency of the cold supply chain system.  

The third model (presented in Chapter 4) investigates how integrating different 

transport modes (road and rail) can affect the efficiency, reliability and sustainability 

of the distribution of meat products and livestock from regional Queensland to large 

cities and seaports. The proposed model simultaneously considers road traffic 

congestion, animal welfare issues, the quality of the meat products and environmental 

impacts from fuel consumption in the different transport modes. The aim of the model 

is to determine an optimal transport network where each leg of the journey is 

conducted by the most efficient, reliable and sustainable transport mode. The cost 

function comprises transport, animal welfare reduction, quality loss and emissions 

costs. 

To evaluate the performance of the model, a real world case study is used to illustrate 

how the proposed model could help decision makers to develop a sustainable, reliable 

and cost-efficient intermodal transport network in a meat supply chain. The proposed 

model is implemented in a case study in Queensland which has the largest beef cattle 

herd in Australia. The results illustrate that it would be possible to decrease the total 

cost significantly if a road–rail intermodal network is used in conjunction with a 

unimodal network in the meat supply chain. The results indicate that using road–rail 

intermodal network for long distances can provide a better performance in terms of 

animal welfare and the quality of the products. 

Finally, Chapter 5 discusses the research findings and demonstrates the contribution 

of this research to the academic literature. This chapter also offers recommendation 

for future research in this area and implications of research to policy and practice. 

. 
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Chapter 2: Promoting regional airports with subsidy 

schemes: A case study in Australia 
 

2.1 Introduction  

As the largest island nation which is far from the dense business centres and markets 

such as China and the US, airfreight has become increasingly important for Australia 

(Hamal, 2011). The airfreight sector is one of the largest dollar value contributors to 

Australia’s international trade: AUD 1 in every AUD 5 of Australia’s imports and 

exports are transported by air (Adrian et al., 2019). Worldwide, airfreight accounts for 

36% of the value of global trade annually (Feng et al., 2015), which makes it a vital 

component in global supply chains (Tan and Tsui, 2017). According to (Boeing, 2014), 

the market for airfreight is likely to grow at a rate of 4.2% per year throughout the 

world. An increase in the demand for fast deliveries is one of the main drivers of this 

growth (Li et al., 2016). Most airfreight is transported in the cargo hold of passenger 

aircrafts and some airlines operate a dedicated fleet of freight (Zhang and Zhang, 2002; 

Hong and Zhang, 2010). With major international airports becoming increasingly 

congested, it is difficult for them to accommodate more all-cargo carriers. The 

congestion problem in metropolitan airports also leads to increased operational costs 

and longer waiting times before the freight can be released to clients. Thus, decision 

makers such as governments and airport managements have a great interest in shifting 

significant volumes of airfreight to regional airports. This has motivated us to do this 

research. 

In recent years there has been a high demand in Asia for Australian agricultural 

products, especially for dairy, food and natural health products. There have been 

proposals for food clusters to be established in Australian regional cities close to food 

production areas (Zhang and Woodhead, 2016). Therefore, the three levels of 

government in Australia are keen to develop regional airports as cargo distribution 

hubs which can assist in increasing operational efficiencies in cargo distribution 

system. In contrast to the high airfreight volumes at metropolitan airports, the current 

low volumes at regional airports are not adequate to support the high costs of both 

maintenance and upgrading infrastructure (Zhang et al., 2017; Donehue and Baker, 

2012). Almost 50% of the regional airports in Australia operate at a loss each year and 

have to rely on subsidies from their local government. To support regional airports, 
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the Australian government has introduced regional subsidy schemes. However, they 

have not stopped regional airports from losing services in recent years (Zhang et al., 

2017). 

The airfreight network is a multi-echelon one, from the shippers who supply the 

cargo to consignees through to airports and freight forwarders (Derigs et al., 2009). 

The shipper is the supplier of the freight; the airports are the depots that receive the 

cargo from the shipper, store the pelletised cargo in terminals and place them on pallets 

for distribution to the freight forwarders; and the forwarders are responsible for 

delivering the cargo to the consignees (Leung et al., 2009). The consignee is the last 

to receive the shipment and then distributes the goods to its clients and customers. 

Companies involved in cargo distribution usually deals with third parties for transport 

operations which can be cost-effective to ship cargo as vehicles do not need to return 

their starting points at the end of the route. In other words, cargo companies do not 

(explicitly) pay for vehicles return trip. We refer to this situation as the open vehicle 

routing problem. In the open vehicle routing problem, a solution contains a set of 

Hamiltonian paths connected to the depots instead of Hamiltonian cycles existing in 

the vehicle routing problem. 

Shifting cargo traffic from metropolitan airports to regional airports, would 

substantially reduce the length of time that cargo is held at an airport. However, the 

ground transport time may increase as most consignees are located at a distance from 

regional airports. Therefore, an efficient ground transport system is needed. This 

research attempts to answer how government subsidy schemes may influence 

airfreight distribution through regional airports to reduce the volume of cargo traffic 

at metropolitan airports, with a consideration of the optimal performance of 

distributing cargo from the airport to the consignees. 

This paper evaluates the effect of different subsidy schemes on network structure 

and logistics decisions for cargo distribution. Specifically, we propose a mixed integer 

linear programming model for open vehicle routing problem that accounts for the time-

window and release-time constraints under subsidy schemes to support regional areas. 

The proposed model considers subsidy schemes as linear and non-linear functions. In 

the proposed model a heterogeneous fleet is used for downstream distribution, and fuel 

consumption is determined by the load, speed, distance and vehicle characteristics. 

Release-time refers to the time at which the cargo becomes ready for downstream 

distribution, and it is influenced by the airfreight traffic volume. This model is applied 
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to the situation in Australia where the metropolitan airports are operating close to their 

full capacity while the vast majority of the regional airports are underutilised.  

The proposed model can help make decisions to minimise operational cost, including 

air transport costs, ground transport costs and penalty cost as a result of time-window 

violations, in presence of regional subsidy schemes. To the best of our knowledge, 

research integrating logistics decisions and government subsidies for airfreight 

distribution is rare, and so this research can generate significant policy implications 

for promoting the use of regional airports by the transport industry. 

This research reveals that the introduction of subsidy schemes provides more 

benefits in reducing the total costs from the perspective of the industries involved in 

the cargo distribution. The results indicate that the framework under subsidy scenario 

2 can provide a better performance in terms of costs and delivery time as compared to 

that of under subsidy scenario 1. Moreover, we observed that increasing the volume of 

cargo traffic at a regional airport under subsidy scenario 1 is almost linear with an 

increase in the government subsidy budget cap, while it increases at different rates 

under subsidy scenario 2. Therefore, policy makers can seek advantages from the 

proposed framework to determine an appropriate government subsidy budget cap and 

subsidy rates. 

The remainder of this chapter is structured as follows. Section 2.2 reviews the 

literature relevant to this research. In Section 2.3, we present a framework to examine 

the regional subsidy schemes. Section 2.4 provides a description of the case study for 

which the model was implemented, and the results obtained. Sensitivity analyses on 

subsidy values and managerial implications are also presented in Section 2.4. In 

section 2.5, we present managerial insights and policy implications. Section 2.6 

provides conclusions and is followed by appendices of supporting material. 

2.2 Literature review 

The proposed framework in this research links with three strands of literature, 

namely, the regional air transport, open vehicle routing problems, Multi modal 

transport network. We review recent papers relevant to these three problems in sub-

sections 2.2.1, 2.2.2 and 2.2.3 respectively.  

2.2.1 The regional air transport problem 

Air transport enables nations to access global markets and supply chains in a reliable 

and cost-efficient manner. Thus, effective air transport services in today's fast-cycle 

logistics era can greatly improve a region's connectivity and thereby give businesses 
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in that region a competitive advantage (Zhu et al., 2019b). Unfortunately, compared 

with the numerous studies dedicated to aviation activities in metropolitan areas, 

research on regional airports and regional air transport services is sparse (Zhang et al., 

2017). Graham and Guyer (2000) argue that the UK aviation policy focuses on 

capacity shortages at large airports in southeast England and that issues affecting 

regional airports such as sustainability and pro-competition policy receive little 

attention. As the performance of regional airport is affected by the decisions of airlines, 

in many countries the government provides some financial incentive to encourage 

airlines to serve regional airports. 

Humphreys and Francis (2002) studied the UK regional aviation market and found 

that the pattern of regional airport utilisation is dependent on decisions by airlines. 

Therefore, it is important to take into account the interest of all stakeholders when 

formulating airport planning and regulatory policies. Donehue and Baker (2012) 

identify challenges faced by regional airports in Australia, which mainly stem from 

the interrelating factors of infrastructure costs, the high cost of maintenance and 

security infrastructure upgrades. Baker and Donnet (2012) examined the relationship 

between regional economic growth and regional air transport services and found a 

significant bi-directional relationship between them. They suggested that public 

financial support such as subsidy schemes should be in place to ensure that the level 

of services is maintained in Australia's regional areas. Yuen et al. (2017) provided an 

analytical framework to capture the competition (and cooperation) between gateway 

and hinterland (regional) airports. They found that the introduction of a regional cargo 

airport is likely to lead to an improvement in the aggregate welfare of the gateway and 

the hinterland. 

To support small and remote communities, the Australian government introduced 

the Air Services Australia Enroute Charges Payment Scheme, which offers subsidies 

to air operators that provide aeromedical services to these areas (Zhang et al., 2017). 

The Chinese government has had a subsidy program on regional routes and uses a fee 

collected from all passengers for airport construction (now the Civil Aviation 

Development Fund), although the amount is relatively small. To develop itself into an 

airport city, Zhengzhou, a city in central China, provides financial subsidies and 

incentives to airlines for setting up at Zhengzhou Airport and operating new routes. 

Logistics firms conducting business at Zhengzhou Airport such as importing and 

distributing cargo also receive subsidies from the government (Zhang and Woodhead, 
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2016). Sometimes the manufactured goods are even trucked for more than 10 hours 

from South China to Zhengzhou Airport because of the subsidy incentives, which has 

ensured a high freight load factor for flights out of Zhengzhou Airport. 

Some researchers have studied airport selection and fleet routing problems. Gardiner 

et al. (2005) conducted a survey to identify the factors that influence the airfreight 

companies' decisions on airport selection. They found that airport charges, financial 

incentives and customes' clearance times were among the significant factors 

influencing the freight operators' decisions. Yan et al. (2006) presented a mixed integer 

programming model to solve the problems of airport selection, fleet routing and 

timetable setting in order to maximise profits for airfreight. They found that effective 

cargo transfers not only reduce operating costs but also increase profitability. 

Chao and Yu (2013) assessed airfreight competitiveness at major Asia-Pacific 

airports. They considered internal factors (e.g., airport facilities, charges and opening 

hours) and economic development (e.g., annual cargo growth and cargo volumes) in 

their evaluation. The results indicate that Changi Airport is the most competitive 

airport in terms of airport facilities and operations, while Hong Kong has the number 

one ranked airport in terms of airfreight capacity and economic development (see also 

Zhang (2003), for an in-depth analysis of Hong Kong's competitiveness in air cargo in 

the context of Asia-Pacific airports). Rezaei et al. (2017) used a multi-criteria tool to 

determine the optimal strategy for planning freight shipment from outstations to hub 

airports with a consideration of the cost, loading time and quality. They found that 

vehicles costs and freight handling tariffs are the main factors in determining the 

optimal freight bundling configuration. Customers today have become more 

demanding for fast delivery and prefer to obtain the right goods at the right time. One 

of few studies to consider the freight forwarding companies' optimisation problem is 

that by Archetti and Peirano (2020). Again, much of the research discussed here 

focuses on metropolitan airports and little attention has been given to airfreight 

operations at regional airports. This research aims to fill this gap. 

2.2.2 The open vehicle routing problem 

When a regional airport is used, the freight needs to be transported to the clients in 

various locations and often at some distance from the airport. Thus, the open vehicle 

routing problem (OVRP) arises. OVRP is a variant of the vehicle routing problem 

(VRP) (Dantzig and Ramser, 1959), in which vehicles do not return to the starting 
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node. Schrage (1981) was a pioneer in introducing the idea of open routes in VRP, 

which was defined as OVRP by Sariklis and Powell (2000). 

There are a number of heuristic methods used to solve OVRP including simulated 

annealing (Tarantilis et al., 2004), ant colony optimisation (Li et al., 2009), 

neighbourhood-based search (Şevkli and Güler, 2017), particle swarm optimisation 

(MirHassani and Abolghasemi, 2011), genetic and evolutionary computing (Yu et al., 

2011) and the tailored iterated local search algorithm (Atefi et al., 2018). However, in 

these approaches, it should be noted that most of these approaches only addressed a 

simple variation of OVRP without considering the time-window constraints. 

The time-window constraints bring more complexity to the modelling of OVRP (Xia 

and Fu, 2019). Repoussis et al. (2007) presented a model for OVRP with time-window 

constraints (OVRPTW) and developed a route-construction insertion-based sequential 

approach to find a good quality solution. Brandão (2018) developed a local search 

algorithm for solving the OVRPTW in an efficient computational time. Another 

variation of VRP relevant to this research is the vehicle routing problem with release 

date (VRPRD), which is how soon can an order be dispatched from the depot after it 

is released. The challenge in this is that the release-time has a significant impact on 

the travel time and is negatively associated with customer satisfaction. The delivery 

time may be longer than is desired given the release-time.  

Archetti et al. (2015) and Reyes et al. (2018) are among the few researchers to study 

the complexity of VRPRD. Archetti et al. (2015) addressed this problem when special 

topologies were considered for the distribution network. The network can be a star 

structure when the depot is at the centre of the distribution area or a line structure when 

the customers are located along a road. The authors considered two scenarios. The total 

distance travelled in a given delivery deadline was minimised in the first problem, 

while the second problem focused on minimising the total distribution time. Reyes et 

al. (2018) addressed the complexity of VRPRD where the delivery to each customer 

was only allowed in a window between the release-time and the distribution deadline. 

Their model ensures that the completion time of the last route and the distance travelled 

were minimised simultaneously. 

Cattaruzza et al. (2016) addressed a multi-trip VRP which accounted for hard time-

window and release-time constraints. They developed a hybrid genetic algorithm using 

Solomon's instances (Solomon, 1987) to evaluate the proposed algorithm. Shelbourne 

et al. (2017) investigated a VRP that considers release-time and due date constraints 
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with the aim of minimising transport costs and high customer service level, represented 

by total weighted delivery tardiness and total travel distance. Although these studies 

considered release-time constraints in the VRP models, the fuel consumption in the 

transportation was largely neglected. Nor did they take into account the subsidisation 

policy and its impact on route configurations. Moreover, these models only focused 

on a single transport model, i.e., ground distribution.  

2.2.3 Multi modal transport network 

Multi modal transport is defined as shipment of cargo from shipper to consignee 

using two or more transport modes such as air, rail, road and waterways (Hayuth, 

1987). Multi modal transport has become an interesting area of research due to 

globalisation and growth of international trade (Abbassi et al., 2019; Baykasoglu and 

Subulan, 2016). There has been a wide range of applications for multi modal transport 

including the import/export of freight (Baykasoglu and Subulan, 2016), the shipment 

of hazardous material (Assadipour et al., 2016) and passenger movement (Zhu et al., 

2019b). Good reviews on multi modal transport network can be found in Bontekoning 

et al. (2004) and SteadieSeifi et al. (2014). 

Arnold et al. (2004) developed an integer linear programming model to find an 

optimal location for rail/road terminals for freight transport. The model was applied to 

the rail/road transport system in Iberian Peninsula. The results demonstrated that the 

modal shares of the goods are subject to the variation of rail cost. Resat and Turkay 

(2015) developed a bi-objective optimisation model accounting for time dependent 

traffic congestion constraints to design a reliable transport network by integrating 

different transport modes. Baykasoglu and Subulan (2016) presented a mixed-integer 

programming model for multi mode sustainable load planning problem that accounts 

for transport mode selection, outsourcing and load allocation decisions 

simultaneously. The model seeks to determine the optimal import and export load flow 

with an aim of minimising economic costs and 𝐶𝑂2emission and maximising customer 

satisfaction. 

Abbassi et al. (2019) presented three robust optimisation models for multi modal 

transport network to capture uncertainties of using costs of terminals, capacities of 

terminals and transport costs. They developed a hybrid algorithm based on a 

population-based simulated annealing and exact approach to solve the model. Kelle et 

al. (2019) proposed a simulation model to measure the benefits of mode changes and 

to evaluate the trade-off between environmental goals and other performance 
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measures. The results indicated that changing transport mode from road to rail can 

provide better environmental performance. It should be noted that these studies 

addressed multi modal transport network, however, they mainly focus more on rail, 

waterways and road. 

Chang (2008) proposed a bi-objective optimisation model accounting time-window 

to identify the best route for shipments on an international multi modal network. They 

developed a heuristic algorithm based on relaxation and decomposition techniques to 

solve the model. The results indicated that if transport cost is of major concern, 

waterway is the desirable transportation mode, while air is the preferred transport 

mode in terms of travel time. Cho et al. (2012) designed a dynamic programming 

algorithm for bi-objective multi modal routing problem to find the optimal solution 

considering every possible modality (rail, air, waterway and road). A real case study 

related to shipment from Busan to Rotterdam was used to evaluate the efficiency of 

the algorithm. Etemadnia et al. (2015) proposed a mixed integer linear programming 

model to find the optimal facilities location within fruit and vegetable supply chain 

system for efficient transfer of food where they examined the multi modal (road and 

air) transport system. The results can help policy makers to identify whether the current 

network connecting producers and customers is optimal or not and to find the potential 

opportunity for future investment in transport infrastructure. 

Archetti and Peirano (2020) presented a mixed integer linear programming model 

for air transport freight forwarder service problem in international multi modal 

transport network. The model seeks to select the best options over the wide offer of 

transport services for international transport with an aim of minimising the total costs. 

Huang et al. (2020) proposed a model to help airfreight forwarders make an optimal 

routing and consolidation decisions in air-road multi modal transport network. They 

designed an approximate algorithm based on Lagrangian Relaxation to solve the 

model. The performance of the algorithm was examined using different text problem 

in terms of problem scale. These studies addressed road-air multi modal transport 

network, however the effect of subsidy schemes towards efficiency improvement of 

transport network was largely neglected. 

Some multi modal research have analysed the effect of subsidy schemes on the 

development multi modal transport network (Yin et al., 2020). Santos et al. (2015) 

proposed a mixed integer programming model to examine the impact of three freight 

transport policies on promoting rail-road multi modal transport Belgium. The model 
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seeks to determine the optimal location of rail-road terminals and optimal allocation 

of freight flows between modes with an aim of minimising transport costs from 

shippers perspective. The results indicated that subsidies are critical to the success of 

multi modal transport in Belgium. Larranaga et al. (2017) addressed the logistics 

manager's preference for freight transport services in Brazil using a stated preference 

analysis of freight mode choice (road, rail and waterways) and presented sustainable 

policies that could increase the competitiveness of the region. The results suggested 

that increasing the reliability of intermodal alternatives is more effective in 

encouraging intermodality than cost reduction. 

Kundu and Sheu (2019) presented a competition model based on the game-theory to 

examine the effects of subsidy on shippers' mode preferences and switching behaviour 

from maritime to rail mode. The results indicated that offering subsidies based on 

shipper types seems to be the best response strategy to increase the use of rail-road. Li 

and Zhang (2020) proposed the model for jointly optimising railway freight prices and 

operation plan in the presence of government subsidy for rail operators. The results 

indicate that combining the use of dynamic pricing with subsidy scheme for rail 

operator can reduce 𝐶𝑂2 emissions by up to 26.12%. It should be noted that although 

these studies considered the effects of government subsidy schemes to promote a 

certain transport mode particularly rail, none of them have taken into account any 

regional subsidy scheme towards shifting cargo traffic from metropolitan to regional 

area. 

The following aspects distinguish this paper from previous studies. First, we consider 

a multi-modal transport system, including airfreight and ground distribution, using an 

open vehicle routing optimisation model to solve the airfreight distribution problem in 

the presence of regional subsidy schemes. Second, we explore the impact of different 

regional financial support schemes on the structure of the transport network and the 

cargo flows in the network. In sum, our model seeks to minimise airfreight costs, 

ground distribution costs and penalties as a result of time-window violations at the 

consignees’ locations. The real-world case study presented in this paper can generate 

significant insights for policy makers to design appropriate regional subsidy schemes 

to achieve reduction in cargo traffic at metropolitan areas without substantially 

increasing compliance costs for the cargo industries. 
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2.3 A framework for subsidy schemes evaluation 

Some governments across the world have launched regional subsidy schemes to 

encourage industries to use regional areas as distribution hubs with the dual aims of 

reducing cargo traffic volumes in metropolitan cities and developing regional areas. 

To examine the impact of different subsidy schemes on logistics decisions and 

economic costs, we propose a framework comprising an optimisation model and 

sensitivity analysis. First, we explain the different subsidy schemes that support 

regional areas. Second, we evaluate the implementation of subsidy schemes and 

investigate their effect on logistics decisions and economic costs. Finally, we conduct 

sensitivity analyses on the government subsidy limit and the subsidy value to 

determine the best value which can lead to the most benefits for the prospective 

industries and the economic development of the regional area. 

2.3.1 Subsidy schemes 

In this research, we consider different subsidy schemes to support the airfreight and 

ground transport industries in regional areas. We present the subsidies as forms of 

linear and multiple breakpoint functions. They are the most popular subsidy functions 

used in the existing literature (Lu and Shao, 2016; Liu et al., 2019; Chen et al., 2019). 

The subsidy rates are treated as exogenous in this study because in reality once 

approved, they would not be changed in the short run given that government 

expenditures are constrained by the annual budget. We assume a subsidy rate of (𝜗𝑉  ) 

per kilogram of cargo distributed from a regional area by vehicles. We also assume a 

subsidy value for plane flights as follows: 1) a subsidy value for flights landing at a 

regional area expressed as a linear function with a subsidy rate of (𝜗𝐹  ) per kilogram 

of cargo; 2) a subsidy value for flights based on a multiple breakpoint function. The 

multiple breakpoint subsidy function 𝑔ℎ(𝑜𝑚) is formulated as follows:  

𝑔ℎ(𝑜𝑚) =

{
 

 
𝜗1 + 𝑟1(𝑜𝑚 − 𝐿1),                          𝐿1 ≤ 𝑜𝑚 ≤ 𝑈1
𝜗2 + 𝑟2(𝑜𝑚 − 𝐿2),                𝐿2 = 𝑈1 ≤ 𝑜𝑚 ≤ 𝑈2

⋮                                                                       
𝜗ℎ + 𝑟ℎ(𝑜𝑚 − 𝐿ℎ),          𝐿ℎ = 𝑈(ℎ−1) ≤ 𝑜𝑚 ≤ 𝑈ℎ

 (2.1) 

where 𝑟𝑖 is the slope (subsidy rate) when the quantity of cargo carried by a flight is 

between 𝐿𝑖 and 𝑈𝑖, and h means that there are h line segments in 𝑔ℎ(𝑜𝑚). The slope 

of the function is assumed to gradually decrease by the cargo flow as it is logical from 

the perspective of a government which has a limited budget. A baseline scenario and 

two subsidy scenarios are summarised as follows: 
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• Baseline: no subsidy for vehicles dispatched from a regional area, and no 

subsidy for flights landing in this area.  

• Scenario 1: the implementation of a linear subsidy function for vehicles 

dispatched from a regional area, and the implementation of a linear subsidy function 

for flights landing at a regional area. 

• Scenario 2: the implementation of a linear subsidy function for vehicles 

dispatched from a regional area, and the implementation of a multiple breakpoint 

subsidy function for flights landing at a regional area. 

2.3.2 Optimisation model 

In this section we present an optimisation model to evaluate the effect of different 

subsidy scenarios on the network structure and the economic costs. Our research 

focuses on an airfreight distribution problem which incorporates the choice of the best 

options within the various route configurations in the presence of subsidy schemes to 

minimise costs and adhere to delivery times. The research considers international 

airfreight distribution in which cargo is shipped from an origin airport to destination 

airports (regional or metropolitan) and then distributed to consignees through 

forwarder warehouses. Minimum load (minload) and maximum load (maxload) are 

assumed for the aircraft. Once the cargo is at the destination airports, it is stored in 

cargo terminals and pelletised before being released for delivery to the forwarders’ 

warehouses. As these operations are time consuming and depend on the volume of 

cargo traffic at the airports, we define a release-time (𝑅𝐴𝑖) at each airport i. The cargo 

then has to be transported to the forwarders’ warehouses. 

A forwarders warehouse is the point where the cargo is held temporarily for customs 

clearance and tagging and sorting for the consignees. A release-time (𝑅𝐹 ) is assumed 

for each forwarder warehouse. Heterogeneous vehicles with a maximum capacity (𝐶𝐾) 

are assumed for ground distribution from destination airports to consignees. In the 

proposed model the vehicles do not return to the beginning points as a result of an 

outsourcing strategy. The transportation cost comprises a fixed cost component (𝐹𝐾) 

when the vehicle is used and a variable cost component that is a function of travel 

distance, load, speed and vehicle characteristics. Each consignee i is served by only 

one vehicle and split delivery is not allowed. The cycle of planning is assumed to be 

equal to the maximum number of flights (TM) required between the originating and 

destination airports. 
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Each consignee j has a certain demand (𝑄𝑗 ) which needs to be delivered during a 

soft time-window indicated by [𝐸𝑖, 𝑇𝑖]. Due to the fact that each consignee is assumed 

to be a distribution centre with limited resources, including manpower, unloading 

cargo at a consignee’s location needs to be prearranged and conducted during the 

window period. Therefore, if a vehicle arrives at the consignee’s location before 𝐸𝑖, it 

needs to wait. However, late arrival at the consignee’s location, say after 𝑇𝑖, is 

penalised by (π). The aim of the model is to determine the optimal routes and cargo 

volume flow in each route in order to minimise the operational costs and to respect 

delivery times. A simple configuration of the proposed network is shown in Figure 2-

1. 

 

Figure 2-1:A simple schematic diagram of the proposed network 

The proposed problem is defined as a directed graph 𝐺 =  (휈, 𝐸), where 휈 is the set 

of nodes and 𝐸 is the set of arcs. The set of nodes comprises 0 representing an origin 

airport, 𝑁𝐴 represents the set of destination airports at metropolitan (𝑁𝐴1) and regional 

(𝑁𝐴2) areas (𝑁𝐴 ∈ 𝑁𝐴1 ∪ 𝑁𝐴2), 𝑁𝐹 represents the set of forwarder warehouses, and 𝑁𝐶 

is the set of consignees, ν ∈ 𝑁𝐴 ∪ 𝑁𝐹 ∪ 𝑁𝐶 ∪ {0}. The arc set E represents the available 

links between nodes. In the proposed model we define an origin route as a vehicle 
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starting from a destination airport, finishing its trip either at a forwarder’s warehouse 

or at its last consignee location. A sub-route starts from a forwarder’s warehouse which 

has been visited by an origin route, visits a set of consignees and ends at its last 

consignee location. We consider 𝑁𝑇 as total number of nodes and {𝑁𝑇 + 1} as a 

dummy point for modelling purposes. Without loss of generality, we assume that we 

have access to an unlimited number of heavy and medium duty vehicles for ground 

distribution. The notations used to develop the mathematical formulation are defined 

in Appendix A (see Tables A-1, A-2 and A-3). 

2.3.3 Fuel consumption 

We utilise the same method as Bektaş and Laporte (2011) and Babagolzadeh et al. 

(2020) to estimate fuel consumption of the vehicle 𝐹𝐶𝑘. The fuel consumption over 

distance 𝐷𝑖𝑗 at a constant speed can be estimated as follows: 

𝐹𝐶𝑘 = 𝛤(
휇𝜅𝐷𝑖𝑗

𝑠𝑝𝑒𝑒𝑑
+ 𝛽𝜅𝐷𝑖𝑗(𝑠𝑝𝑒𝑒𝑑)

2 + (𝑊𝜅 + 𝑇𝑊𝜅)𝛾𝐷𝑖𝑗 (2.2) 

where 𝛤 =  𝜏 /𝜙𝜓, 휇𝑘 = 𝛷𝑘𝑁𝑘휄𝑘, 𝛾 =  1/(1000휁𝜔)(𝐺 𝑠𝑖𝑛 휃 +  𝐺𝐶𝑒 𝑐𝑜𝑠 휃), 𝛽𝑘= 

(0.5𝐶𝑑𝑘ρ𝐴𝑘)/(1000ζω). (𝑊𝑘 + 𝑇𝑊𝑘) denotes the total vehicle weight (kg), including 

the sum of curb weight and payload. Expression (2.2) comprises three terms: the first 

term is called the engine-module which is linear with travel time; the second term is 

called the speed-module in which the speed takes a quadratic form; and the last term 

is referred to as the weight-module which is independent of the vehicle speed. 

2.3.4 Model under subsidy scenario 1 

In this section the subsidy rate per kilogram of cargo 𝜗𝐹is assumed to calculate the 

subsidy value granted for a flight landing at a regional airport. The proposed model 

(𝑧𝐿) is defined as follows: 

min 𝑧𝐿 = 𝐴𝑇𝐶 − 𝑇𝑆𝐼 + 𝐺𝑇𝐶 + 𝑃𝐶 (2.3) 

Expression (2.3) refers to the objective function which comprises four parts: air 

transport cost (ATC), total subsidy income (TSI), ground transportation cost (GTC) 

and penalty cost (PC). These parts are discussed as follows:  

Air transport cost  

The air transport cost (ATC) includes the landing costs and the variable costs of 

operating the aircraft and are presented as follows: 

𝐴𝑇𝐶 =∑ ∑ (∑ ∑𝑓𝑖𝑗𝜅𝑚𝐶𝐿𝑖 + 𝐷0𝑖𝐴𝑦𝑖𝑚
𝜅𝑗∈𝑁𝐹

)

𝑖∈𝑁𝐴𝑚

 (2.3.i) 
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The first part of function (2.3.i) presents the landing cost at the destination airports 

and the second part of the function computes the variable cost (fuel cost) of the aircraft.  

Total subsidy income  

The total subsidy income is the minimum of both the total subsidy value granted by 

the government for cargo distribution and the government subsidy limit. In the 

proposed model 𝑧𝐿 , we consider a subsidy value for a flight as a linear function with a 

subsidy rate per kilogram of cargo 𝜗𝐹. The total subsidy income is linked to the subsidy 

scenario 1 and the government subsidy limit by constraints (2.45) and (2.46). The total 

subsidy income is formulated as follows: 

𝑇𝑆𝐼 = 𝑚𝑠 (2.3.ii) 

Ground transport cost 

The ground transport cost (𝐺𝑇𝐶) comprises the vehicles’ fixed costs, the vehicles’ 

variable costs (fuel cost) and the driver costs. It is formulated as follows: 

𝐺𝑇𝐶 =∑∑(∑ ∑ 𝐹𝜅𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐹𝑖∈𝑁𝐴𝜅𝑚

+ 𝜙𝐹𝛤 ∑ ∑ 𝑥𝑖𝑗𝜅𝑚𝐷𝑖𝑗(
휇𝜅
𝑆𝑅
+𝑊𝜅𝛾 + 𝛽𝜅𝑆𝑅

2)

𝑗∈𝑁𝐹∪𝑁𝐶,𝑗≠𝑖𝑖∈𝑁𝐴∪𝑁𝐹∪𝑁𝐶

) + 

∑∑(∑ ∑ 𝐹𝜅𝑧𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶𝑖∈𝑁𝐹

+ 𝜙𝐹𝛤 ∑ ∑ 𝑧𝑖𝑗𝜅𝑚𝐷𝑖𝑗 (
휇𝜅
𝑆𝑅
+𝑊𝜅𝛾 + 𝛽𝜅𝑆𝑅

2)

𝑗∈𝑁𝐶,𝑗≠𝑖𝑖∈𝑁𝐹∪𝑁𝐶

)

𝜅𝑚

+ 

+𝜙𝐹𝛤∑∑ ∑ ∑ 𝑎𝑣𝑖𝑗𝜅𝑚𝛾

𝑗∈𝑁𝐹∪𝑁𝐶,𝑗≠𝑖𝑖∈𝑁𝐴∪𝑁𝐹∪𝑁𝐶𝜅𝑚

+∑∑(𝑤𝑐𝜅𝑚
𝑜 + 𝑤𝑐𝜅𝑚

𝑠 )

𝜅𝑚

 

(2.3.iii) 

Parts 1 and 2 in function (2.3.iii) represent the vehicles’ fixed costs and the variable 

costs (fuel cost) of the vehicles on their origin routes. Parts 3 and 4 of function (2.3.iii) 

compute a vehicles’ fixed cost and the variable costs (fuel cost) of the vehicles on sub-

routes. Part 5 of function (2.3.iii) considers a vehicle’s load in the transportation costs 

on routes. The last part of function (2.3.iii) is related to driver costs. In this function 

the variable cost is dependent on speed, load, travel distance and the vehicle’s 

characteristics. Note that transportation costs are linked to the vehicle’s load by 

auxiliary variables 𝑎𝑣𝑖𝑗𝑘𝑚 and constraint set (2.47).  

The driver salary costs on the origin routes are linked to the departure time of 

vehicles from the last node of the origin routes and the departure time of the vehicles 

from a destination airport by constraint set (2.48). The driver salary costs are linked to 

the departure time of vehicles from the last node of sub-routes and the departure time 
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of the vehicles from the first node of sub-routes (the forwarder’s warehouse) by 

constraint set (2.49). Note that the departure time of a vehicle from the dummy point 

is equal to the departure time of the vehicle from the last node on its trip. 

Penalty cost  

The penalty cost (PC) is considered in the proposed model when the time-window 

constraint is violated at each consignee’s location. It is modelled as follows: 

𝑃𝐶 = ∑ 𝑝𝑖
𝑖∈𝑁𝐶

 (2.3.iv) 

Each consignee i must be visited during a soft time-window indicated by [𝐸𝑖 , 𝑇𝑖]. A 

penalty applies if a vehicle arrives at consignee’s location after 𝑇𝑖 . The penalty cost is 

calculated at a consignee’s location by constraint set (2.44).  

The constraints are explained and discussed in Appendix B. 

Similarly, we construct a model (𝑧𝐵) assuming that the subsidy is treated as a 

multiple breakpoint function for airfreight arriving at a regional airport. The objective 

of model (𝑧𝐵) is the same as model (𝑧𝐿). However, we add new constraints to model 

(𝑧𝐵). The details of model (𝑧𝐵) are presented in Appendix C. 

2.4 Computational results 

The aim of this section is threefold: 1) to demonstrate the application of the models 

formulated in Section 2.3 using a real-world case study in Australia; 2) to explore the 

impact of introducing different regional subsidy scenarios on operational decisions; 

and 3) to conduct sensitivity analyses on some parameters. We used a real-world case 

study related to importing airfreight to Australia due to the high volume of cargo and 

the high operation costs at metropolitan airports in this country. The case study 

description is presented in Section 2.4.1. Section 2.4.2 presents the results of 

implementing the framework proposed in the real-world case study under the different 

subsidy scenarios. The sensitivity analyses on the government subsidy limit and 

subsidy value are conducted in Section 2.4.3. 

2.4.1 Description of the case study 

The use of decision support tools for minimising the operational costs and the 

waiting times for cargo at metropolitan airports in Australia can be justified due to the 

high volume of airfreight at those airports and the long queues for cargo handling too. 

Our research is motivated by a new strategy adopted by the Australian government to 

use regional airports, which usually have underused capacity as distribution hubs, in 
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order to reduce the operational costs and the waiting times for cargo at metropolitan 

airports and to develop regional areas. 

In this study we use a regional international airport, officially known as the Brisbane 

West Wellcamp Airport (BWWA) (hereafter referred to as the Toowoomba Airport) 

as an example. This airport is located in Toowoomba in Queensland, the largest non-

capital inland city in Australia. Toowoomba Airport was put into commercial use in 

November 2014 as a gateway for importing cargo from China to Australia in order to 

reduce the operational costs and the high volume of cargo at Sydney’s international 

airport. Toowoomba is 120 km west of Brisbane, the capital city of Queensland. 

Toowoomba was identified by Australian agencies and transport industry as a major 

hub for importing and exporting freight due to its strategic location and excellent 

transport connectivity (Zhang and Woodhead, 2016). We examine how regional 

subsidy schemes can promote the use of this regional airport.  

China is Australia’s largest trading partner. Cathy Cargo Pacific operates regular 

cargo flights between Hong Kong and Toowoomba, so we consider Hong Kong as the 

main shipper. We assume Sydney’s international airport and Toowoomba Airport are 

the importing hubs in our model. The cargo is first stored in the airport cargo terminals 

before it is released to forwarders for distributions. For illustration purposes, we 

consider a real-world distribution network containing four consignees who are located 

in three mainland capital cities, namely Sydney, Melbourne and Brisbane. 

The distance between the nodes is calculated using Google Maps. Table 2-1 reports 

the demand of each consignee (𝑄𝑗), service time (𝑆𝑇𝑖) at each node and the latest time 

of starting services at each consignee’s location 𝑇𝑖. The time-window violation cost is 

assumed to be AUD 0.03/s at each consignee’s location. The release-times at Sydney 

International Airport and Toowoomba Airport are assumed to be 6 hours and 2 hours, 

respectively. As customs clearance and tagging operations are completed in the 

forwarder’s warehouses, we assume a release-time of 1.5 hours at the forwarder’s 

warehouse. 

Table 2-1:Demand, service time and the latest time of starting services 

Parameters 
Consignees 

1 2 3 4 

Demand (𝑄𝑖) 𝑘𝑔 6500 7500 9000 8500 

Service time (𝑆𝑇𝑖) s 1950 2250 27000 2550 

The latest time of starting services 𝑇𝑖 68000 105000 100000 107000 
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We assume a Boeing 747 aircraft is used for the movement of cargo from Hong Kong 

to Australia, and we consider its minimum capacity (Minload) to be 15 tons and its 

maximum capacity (Maxload) to be 90 tons. As we test the framework provided in 

Section 3 for the small real-world example, we assume a one-third use of the aircraft’s 

capacity, i.e., Minload = 5 tons and Maxload = 30 tons. Consequently, in this example 

we consider the total aircraft fuel cost to be 30% of the air transportation cost. The fuel 

cost for this aircraft is assumed to be AUD 6/km: a Boeing 747 consumes 12 L/km 

while 1L of jet fuel is costed at AUD 0.50 (Administration, 2019).  The landing costs 

at Sydney International Airport and at Toowoomba Airport are assumed to be AUD 20 

and AUD12 per tons of cargo, respectively, based on our discussion with air transport 

industry professionals. The flight time from Hong Kong to Sydney International 

Airport and to Toowoomba Airport are assumed to be 9 hours and 32 minutes and 9 

hours, respectively. A heterogeneous vehicle fleet is assumed to be used for cargo 

distribution from the airports. We consider an unlimited number of two different 

vehicle types – heavy and medium duty – for the distribution operation. As the data 

regarding the characteristics of vehicles are not available, the parameters used to 

calculate the fuel cost of each type of vehicle are taken from previous research and are 

summarised in Tables 2-2 and 2-3. The average speed is assumed to be 80 km/h for 

both types of vehicles. 

Table 2-2:Definition of vehicle specific parameters 

Notation Description  Medi

um duty 

Heavy 

duty 

𝑊𝜅 Curb weight 6328 14000 

𝐶𝜅 The capacity of vehicle 17000 24000 

𝐹𝜅 Fixed cost of vehicle 97.53 154.43 

𝛷𝜅 Engine friction factor 0.2 0.15 

𝑁𝜅 Engine speed 36.67 30 

휄𝜅 Engine displacement 6.9 10.5 

𝐶𝑑𝜅 Coefficient of aerodynamics drag 0.7 0.9 

𝐴𝜅 Frontal surface area 8 10 

Source: Koç et al. (2014) and Cheng et al., (2017),1 Pound(£)=1.63 AUD dollars (04 Oct 2019) 

 

Table 2-3:Definition of vehicle typical parameters 

Notation Description  Value 

τ Fuel-to-air mass ratio 1 

G Gravitational constant 9.81 

𝜌 Air density 1.2041 

𝐶𝑒 Coefficient of rolling resistance 0.01 

ω Efficiency parameter for diesel engines 0.45 
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𝜙𝐹 Unit fuel cost 1.46 

φ Heating value of a typical diesel fuel 44 

ψ Conversion factor 737 

ζ Vehicle drive train efficiency 0.45 

𝐹𝑑 Driver salary 0.0055 

Source: Koç et al. (2014) and Cheng et al. (2017) 

 

As the data related to subsidy schemes are not available in Australia, we use subsidy 

rates offered by Zhengzhou Airport in China for cargo distribution. One of the 

authors visited Zhengzhou Airport and acquired the first-hand freight subsidy 

information which is applied in our case study. The subsidy rate per kilogram of 

cargo distributed from Toowoomba Airport to the forwarder’s warehouse by vehicles 

is assumed to be 𝜗𝑉 = AUD 0.09 based on the case of  Zhengzhou Airport. We also 

assume that the government subsidy limit is AUD 20,000. In the first scenario, we 

assume a linear subsidy function for flights landing at the Toowoomba Airport with 

a subsidy rate of 𝜗𝐹  = AUD 0.55/kg. However, under the second scenario we 

consider a multiple breakpoint subsidy function with two segments: flights with 

cargo load ranges of 22,000 kg or higher and of 15,000 - 22,000 kg. The data related 

to this function is summarised as follows: 

𝑔ℎ(𝑜𝑚) = {
6000 + 1.286(𝑜𝑚 − 15000),    15000 ≤ 𝑜𝑚 ≤ 22000

15000 + 1(𝑜𝑚 − 22000),          22000 ≤ 𝑜𝑚 ≤ 30000
 

(2.4) 

2.4.2 Computational experiments and analysis 

In this section an application of the framework proposed in Section 2.3 is presented 

by implementing the framework for the data of real-world example provided in Section 

2.4.1.  

We use the exact method to explore the effect of introduction of different regional 

subsidy schemes on logistics decisions in airfreight distribution. We attempt to show 

how the introduction of regional subsidy schemes can change cargo volumes at the 

regional level. To do so, we used a commercial optimisation solver (Cplex) which is 

based on branch and cut algorithms. All experiments were coded on an Intel i7 CPU 

with a 3.6 GHz processor and 16 GB RAM.  

We focus on the following key performance indicators: (i) air transportation costs 

that consist of landing costs and the aircraft’s fuel cost; (ii) subsidy incomes that 

include the subsidy achieved from landing flights at the regional airport and the 

subsidy granted for vehicles dispatched from the regional airport; (iii) ground 
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transportation costs that consist of fixed costs, fuel costs and driver costs; and (iv) 

penalty costs as a result of time-window violations. The results are used to compare 

the effect of two different subsidy scenarios to identify the most effective scenarios. 

We also present the results of the framework under the baseline scenario and compare 

this with the two subsidy scenarios to investigate the effect of introducing subsidies on 

the network structure. Finally, sensitivity analyses are performed on the government 

subsidy limit and the subsidy value to determine the best value which can lead to a 

better performance of the proposed framework. 

We report the optimal network structure and the optimal values of the objective 

functions under the baseline scenario in Table 2-4 and Figure 2-2, respectively. Two 

aircraft are used to transport cargo from Hong Kong to Australia in the optimal 

solution, which means that there are two planning cycles (𝑚 = 2). The optimal 

solution under the baseline scenario includes an origin route and a sub-route which are 

traversed by heavy and medium duty vehicles, respectively, in the first planning cycle 

and which contains an origin route that uses a medium duty vehicle to distribute cargo 

in the second planning cycle. In the first planning cycle of the optimal solution the 

capacity utilisation of the heavy duty vehicle is 100% at the beginning of the origin 

route, but it decreases to 70.83% after visiting the forwarder’s warehouse. The capacity 

utilisation of the medium duty vehicle is 38.23% on the sub-route in the first planning 

cycle and is 44.11% on the origin route in the second planning cycle. As can be 

observed from the results, the metropolitan airport is selected as the only distribution 

hub under the baseline scenario and this choice can easily meet the time-window 

requirement with less ground transportation needed. 

Table 2-4:Optimal values of the objective functions under the baseline scenario in AUD 

Air transportation Ground transportation 
Penalty 

costs 

Subsidy 

incomes 

Total 

costs Fuel cost 
Landing 

cost 

Fuel 

cost 

Fixed 

cost 
Driver cost 

26535.60 630 2146 349.49 706.21 104.16 0 30471.46 

 

 

Figure 2-2: Unique view of optimal routes under the baseline scenario (HK: Hong Kong, SIA: Sydney 

International Airport, SFW: Sydney Forwarder Warehouse, MFW: Melbourne Forwarder Warehouse) 
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To evaluate the behaviour of the framework under the two subsidy scenarios 

presented in Section 2.3.1, we implemented the framework under the two scenarios for 

the real-world example and compared the results of these scenarios together and with 

those obtained from the baseline scenario. The optimal configuration of the network 

and the optimal values of objective function of the model under two subsidy scenarios 

are reported in Table 2-5 and Figure 2-3, respectively. 

 

 

Table 2-5:Optimal values of the objective functions under the baseline scenario in AUD 
 Air transportation  Ground transportation  Penalty 

costs  

Subsi

dy 

incomes 

Total 

costs Fuel cost  Landing 

cost 

Fuel cost  Fixed 

cost  

Driver 

cost 

Subsidy scenario 1 24724.80 378 4024.52 349.49 1087.57 5457.38 20000 16021.76 

Subsidy scenario 2 25630.20 430 3924.55 349.49 1128.49 4091.93 20000 15554.66 

 

 

(a) Subsidy scenario 1              (b) Subsidy scenario 2 

Figure 2-3:Unique view of optimal routes under two subsidy scenarios 

As can be seen from the results, the regional airport is selected as the only 

distribution hub under subsidy scenario 1, while a combination of the regional and 

metropolitan airports is used for distributing cargo under subsidy scenario 2. The 

regional airport is still the main distribution hub under subsidy scenario 2 as a 

significant volume of cargo is sent to this airport for distribution. Tables 2-4 and 2-5 

demonstrate that introducing subsidy schemes provides more benefits in reducing the 

total costs from the perspective of the industries involved in the cargo distribution. 

Compared to the baseline scenario, the introduction of subsidies in scenarios 1 and 2 

can decrease the total operating cost by 47.42% and 48.95%, respectively. Under 

subsidy scenarios 1 and 2 the air transportation costs, including the aircraft’s fuel costs 

and landing costs, decrease by 7.59% and 4.07%, respectively, compared with those 

in the baseline scenario, while the ground transportation costs and the penalty costs 

increase significantly in both subsidy scenarios. 
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The results suggest that subsidy scenario 2 is more desirable from the economics and 

delivery time points of view. However, subsidy scenario 1 is preferred for reducing 

the volume of cargo traffic at the metropolitan airport and increasing it at the regional 

airport.  It can be seen that subsidy scenario 1 can reduce air transportation costs by 

almost 3.67% compared with that obtained under subsidy scenario 2. However, it leads 

to 1.09% higher ground transportation costs. In summary, although all of the cost 

savings come at the cost of government subsidies, if the goals are to develop regional 

economies and to increase regional airport connectivity, then subsidy scenario 1 can 

generate a more desirable outcome as the regional airport is selected as only 

distribution hub.  

2.4.3 Sensitivity analysis 

This section analyses the impact of changing parameters on the total cost, subsidy 

income and volume of cargo traffic at metropolitan and regional airports in Australia. 

We perform sensitivity analyses with changes in the government subsidy limit and 

the subsidy values. 

2.4.3.1 Impact of changes in the government subsidy limit under the two subsidy 

scenarios 

In this section we investigate the effect of changes in the government subsidy limit 

on the total cost and the volume of cargo traffic at the regional airport. According to 

the results, the reduction in the total cost is driven exclusively by granting subsidies 

and partially offset by a decrease in air transportation costs. Figure 2-4 indicates that 

an increase in the government subsidy limit can lead to a reduction in the total cost 

and an increase in the volume of cargo traffic at a regional airport to the point where 

the government subsidy limit is relaxed (i.e., Budget>20160 under scenario 1 and 

Budget>20250 under scenario 2 in our example) and thereafter further changes in 

this parameter do not impact on the optimal solution. 
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Figure 2-4:Impact of government subsidy limit on the total cost and cargo traffic at Toowoomba Airport under 

two subsidy scenarios 

As can be seen from Figure 2-4, if there is no opportunity to introduce regional 

subsidies (Budget=0) then the transport industry would incur the maximum of the total 

cost for cargo distribution. In our example, with the increase of the government 

subsidy limit from AUD 0 to AUD 4000, subsidy scenario 1 provides a better result 

from the total cost reduction perspective. It can lead to further reduction in total costs 

of 308.17% compared with that obtained under subsidy scenario 2. However, in terms 

of the volume of cargo traffic, much more cargo is shifted to the regional airport under 

subsidy scenario 2. Thus, changes in the government subsidy limit can lead to a 

reduction of 23.8% and 47.6% in the volume of cargo traffic at the metropolitan airport 

under subsidy scenarios 1 and 2, respectively. 

It can be observed that extending the government subsidy limit from AUD 4000 to 

AUD 12000 under subsidy scenario 2 can lead to an increase in subsidy income of 

169.3%, but it does not have a significant effect in shifting the cargo traffic from the 

metropolitan airport to the regional airport. That is, only 15.1% of the volume of cargo 

traffic would be shifted to the regional airport. Further increases in the government 

subsidy limit, say, from AUD 12000 to AUD 20000 can decrease total costs by 30.08% 

and 33.5% under subsidy scenarios 1 and 2, respectively. It can also lead to an increase 

of 42.85% cargo traffic at the regional airport under subsidy scenario 2, while the 

increase in cargo traffic is 80% under subsidy scenario 1 

2.4.3.2 Impact of changes in subsidy rate under subsidy scenario 1 

This section analyses the impact of subsidy value changes on the total cost and the 

volume of cargo traffic at the regional airport under subsidy scenario 1. Figure 2-5 
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indicates that overall the total cost trend experiences a decreasing pattern with the 

increase in the value of the subsidy rate under scenario 1, while the volume of cargo 

traffic at Toowoomba Airport does not change linearly. If subsidy scheme was not 

considered for the regional area (subsidy value = 0), Toowoomba Airport would not 

be selected as a distribution hub as the industries involved in cargo distribution 

would incur the maximum level of the total cost. The results also indicate that a 

continued increase in the subsidy rate does not always lead to an increased volume of 

cargo traffic at Toowoomba Airport due to the government subsidy limit.  

 

Figure 2-5:Impact of changing in subsidy rate on the total cost and cargo traffic at Toowoomba Airport under 

scenario 1 

As can be seen from Figure 2.5, the increase of the subsidy rate from AUD 0 to AUD 

0.25 per kilogram decreases the total cost by 16.9% and a considerable growth in cargo 

traffic is achieved at Toowoomba Airport. A further increase in the subsidy rate from 

AUD 0.25 to AUD 0.55 per kilogram does not lead to additional growth in the traffic 

at Toowoomba Airport. It can only provide a significant reduction in the total cost by 

36.7%. It can be observed that with the continued increase of subsidy rate from AUD 

0.55 to AUD 1 per kilogram decreases the volume of cargo traffic at Toowoomba 

Airport by 44.44% because of the constraint of the government subsidy limit, while 

the total cost decreases by only 6.9%.  

2.4.3.3 The impact of changes in the subsidy rate under subsidy scenario 2 

In terms of the total cost and the volume of cargo traffic at the regional airport, the 

results of the sensitivity analysis on the value of the subsidy rate under subsidy 

scenario 2 are reported in Figure 2-6. With a reduction of 60% to 80% in the subsidy 

rate in the multiple breakpoint function, the volume of cargo traffic at Toowoomba 

Airport remains unchanged (at the maximum level), but it leads to an increase of 1.82% 
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in the total cost as a result of the decrease in the subsidy value granted by the 

government. Decreasing the subsidy rate from 40% to 60% results in a considerable 

growth in the volume of cargo traffic at the regional airport, with only a 4.79% increase 

in the total cost.  

 

Figure 2-6:Impact of changing subsidy rate on the total cost and cargo traffic at Toowoomba Airport under 

scenario 2 

As can be seen from the results, decreasing the subsidy rates by up to 40% does not 

have any impact on the volume of cargo traffic at the regional airport, while it can lead 

to an increase in the total cost by 29.4% . In contrast to the significant impact of 

reducing subsidy rates on the total cost, an increase in subsidy rates in this case does 

not lead to a considerable improvement in the volume of cargo traffic and the total 

cost. For instance, an increase in the subsidy rate of up to 40% can lead to a less than 

2.2% improvement in the total cost, while it decreases the volume of cargo traffic at 

Toowoomba Airport by around 10%. As can be observed, a further increase in the 

subsidy rate of up to 80% does not lead to additional operational modifications towards 

system improvements as a result of the government subsidy limit. The results suggest 

that, in this case, lower subsidy rates are more beneficial in terms of increasing the 

volume of cargo traffic at Toowoomba Airport and of decreasing the government’s 

expense in granting the subsidies. However, it would not be a cost-efficient decision 

from the perspective of the industries involved in distributing the cargo. 

2.5 Managerial insights  

The proposed framework in this research provides valuable insights into the possible 

solutions to the congestion problem at metropolitan airports and underutilisation 

problem at regional airports. Specifically, this research can help policy makers to 
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design proper regional subsidy schemes that can be used to shift cargo traffic from 

metropolitan airports to regional airports without significantly increasing economic 

costs for cargo industries. As subsidy schemes will also impose a financial burden on 

the government, the effectiveness of subsidy schemes must be evaluated with 

assistance of the framework proposed in this research before implementation. 

The results obtained from the case study demonstrate that the cargo industries might 

be willing to use the regional airport as a distribution hub in the presence of regional 

subsidy schemes. This can lead to significant reduction in the volume of cargo traffic 

at the metropolitan airport and increasing in the efficiency of cargo distribution. The 

introduction of regional subsidy schemes can reduce total cost from the prospective of 

cargo industries. For example, in our case study, the introduction of subsidy schemes 

can reduce the operation costs by up to 48.98% for cargo industries compared with the 

situation without subsidies. 

A regional subsidy scheme cannot be an optimal for all purposes. In our case study, 

we observed that the introduction of regional subsidy scheme in the form of non-linear 

function is more desirable from economic costs and delivery time perspectives. 

However, regional subsidy scheme under linear function can generate a more desirable 

outcome if our goals are to reduce the volume of cargo traffic at the metropolitan 

airport and to promote the regional airport. Therefore, it is critical to evaluate the 

effectiveness of the subsidy schemes for the intended goals before they are 

implemented. 

The results indicated that increasing the volume of cargo traffic at a regional airport 

under subsidy scenario 1 is almost linear with an increase in the government subsidy 

budget cap, while it increases at different rates under subsidy scenario 2. Hence, it is 

important for policy makers to determine an appropriate government subsidy budget 

cap in such a way that it can motivate cargo industries to use regional airport without 

imposing an excessive financial burden on the government. 

2.6 Summary  

Since the airfreight sector is one of the largest value contributors to Australia’s 

international trade, the major metropolitan airports in Australia have become 

increasingly congested resulting in substantial increases in operational costs and 

waiting times at these airports. As such, decisions that focus on shifting a considerable 

volume of airfreight traffic to regional airports are significant considerations for airport 

management and all levels of government in Australia. Shifting airfreight traffic from 
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metropolitan airports will not only reduce the length of time that cargo is held at 

airports, but it can also help to promote regional airports, which should result in 

regional economic development. Hence, to encourage the industries involved in cargo 

distribution to use regional airports as distribution hubs, the Australian government 

has introduced subsidy schemes. Using regional airports as distribution hubs through 

the subsidy schemes results in increased efficiency at metropolitan airports and 

promotes regional airports, but it may lead to an increase in ground transportation costs 

and the time required because most of the consignees are located closer to metropolitan 

areas. 

This chapter has presented a mixed integer linear programming model that accounts 

for the time-window and release-time constraints. The model seeks to explore how 

different government subsidy schemes influence freight distribution that favours the 

use of regional airports and promotes regional economic development, with a 

consideration of the optimal ground distribution network from those airports to the 

consignees. The proposed model considers subsidy schemes as linear and non-linear 

functions. The model simultaneously considers the government subsidy limit and the 

heterogeneous fleet for ground distribution where fuel consumption is subject to load, 

travel distance, speed and vehicle characteristics. The aim of the model is to minimise 

airfreight costs, ground transportation costs and penalty costs as a result of time-

window violations. 

To evaluate the performance of the proposed framework, a real-world case study in 

Australia was investigated to demonstrate how the proposed model could be used as a 

decision support tool to assist policy makers to develop optimal subsidy schemes. The 

computational experiments illustrated that metropolitan airports can be used as 

distribution hubs without introducing any subsidy schemes as this choice needs less 

ground transportation to distribute the cargo to the consignees. We observed that it 

would be possible to decrease airfreight costs by 7.59% and 4.07% by introducing the 

subsidy scenarios 1 and 2, respectively. However, this can lead to a significant increase 

in ground transportation costs and penalty costs. The results indicated that subsidy 

scenario 1 has a better performance in shifting cargo traffic from a metropolitan airport 

to a regional airport, while subsidy scenario 2 is recommended in terms of cost 

efficiency and delivery time 

We conducted sensitivity analyses on the government subsidy limit and the subsidy 

values to provide meaningful insights for policy makers to make the best decisions to 
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improve the efficiency of cargo distribution. We observed that increasing the volume 

of cargo traffic at a regional airport under subsidy scenario 1 is almost linear with an 

increase in the government subsidy limit, while it increases at different rates under 

subsidy scenario 2. Therefore, policy makers can seek advantages from the proposed 

framework to determine an appropriate government subsidy limit. Our analysis on the 

subsidy rate identified that an increase in the subsidy rates does not always result in a 

considerable improvement because of the government subsidy limit. Moreover, our 

experiments indicated that a reduction of about 54% and 60% in the subsidy rates in 

scenarios 1 and 2 would provide better performances, respectively, in terms of 

increasing the volume of cargo traffic at a regional airport and in promoting regional 

economic development. This finding may have significant value for policy makers 

who may be introducing airfreight subsidy schemes. 
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Chapter 3: Sustainable cold supply chain management 

under demand uncertainty and carbon tax regulation 
 

3.1 Introduction  

Increasing human awareness of environmental impacts has encouraged researchers 

to make greater efforts toward improving sustainability during the operations of supply 

chain (Zhu et al., 2008). As a result, there has been a growing body of literature on the 

area of sustainable supply chain management since 2000 (see, for example, Mota et al. 

(2015); Sheu et al. (2005)). Researchers have been working on a wide range of topics 

that can influence sustainable supply chain. The efficient use of energy and 

environmental impact are two examples. These issues are also of great concerns to 

many supply chain participants and operators. One of the main challenges in the area 

of environmental sustainability relates to carbon and other greenhouse gases (GHG) 

emissions from supply chain activities. According to a recent survey, transportation 

and storage are main drivers of environmental issues in supply chains (Fichtinger et 

al., 2015). 

The transportation sector is one of the major contributors to the GHG emissions. 

GHG emissions from this sector accounted for 27% of total US emissions in 2013 

(United States Environmental Protection Agency, 2014) and 17% of Australia's total 

emissions (Australian Government, 2017). In Australia, transport costs are very high 

as a result of the long distances between widely spread production and consumption 

points in the country. The fuel cost accounts for 30% of the total costs during long 

distance road freight transport in Australia (MacGowan, 2010). Given the high freight 

volume and road length in Australia, government and industry have agreed on the need 

to manage the transportation sector efficiently to reduce energy consumption and 

consequently emissions (Australian Government, 2019). Since the transport sector 

plays a major role in generating GHG emissions, many countries often incorporate this 

sector in their sustainability initiatives in order to achieve emissions goals (Estrada-

Flores, 2011; Zhang et al., 2004) 

The handling, storing and transporting temperature-sensitive products involve 

consumption of large amount of energy and thus contribute to the increase in GHG 

emissions. Temperature-sensitive products are perishable products, that require cold 

facilities to maintain freshness and usability. Cold facilities, especially refrigeration, 
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use a large amount of energy and therefore have significant environmental impacts 

(Gwanpua et al., 2015). The energy consumption of cold supply chains accounted for 

around 30% of total world energy consumption (Kayfeci et al., 2013). Refrigeration 

contributed to 15% of the electricity consumed worldwide (Coulomb, 2008). Cold 

storage has been recognized as one of the top 10 processes in the UK cold supply chain 

for energy saving potential (James et al., 2009). It is estimated that refrigeration uses 

around 178 petajoule of energy in the Australian cold supply chain, costing around 

AUD 2.6 billion each year (Jutsen et al., 2017). Jutsen et al. (2017) reported even a 1% 

reduction in refrigeration energy consumption in both stationary and truck 

refrigeration in the Australian cold supply chain can lead to around AUD 25 million 

reduction in annual energy cost in the cold supply chain. Saving this amount of energy 

can lead to a reduction in GHG emissions by 180,000 tonnes, which is worth more 

than AUD 2.1 millions (Jutsen et al., 2017). 

Sustainability of supply chain cannot be substantiated without the help of proper 

incentives and public policies (Sheu, 2008, 2011). As a response to this challenge, 

legislations on minimising carbon emissions from firms' operations have been 

developed by many governments around the world (Mohammed et al., 2017). The 

carbon tax policy is a cost-effective way to curb carbon emissions which is highly 

recommended by many researchers and economists (Li et al., 2017; Oreskes, 2011; 

Zhang and Baranzini, 2004). Under carbon tax regulations, firms are charged a tax rate 

for a unit of carbon emitted (Rezaee et al., 2017). The main practical advantages of 

using carbon tax regulation over alternative emission regulations include: it may be 

more beneficial from the perspective of uncertainty (Wittneben, 2009; Zakeri et al., 

2015); it is quicker to implement with less negative impact on economic growth (Lu 

et al., 2010) and needs lesser administration in its implementation (Ma et al., 2018); 

and it can also be modified easily when new information becomes available (Pearce, 

1991). The carbon tax does not only benefit the environment but also all participants 

in the cold supply chain as a result of the reduction in high-cost energy consumption 

(Hariga et al., 2017; Tsai et al., 2017). 

This chapter investigates the impacts of carbon emissions arising from storage and 

transportation in the cold supply chain in the presence of carbon tax regulation. The 

study also considers the impact of uncertain demand on the operational decisions 

associated with storage and transportation. We develop an optimisation model based 

on a two-stage stochastic programming to determine cost-efficient and environment-
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friendly replenishment policies and transportation schedules in which energy 

consumption and emissions are determined by load, distance, speed and vehicle 

characteristics. We present a matheuristic algorithm based on an Iterated Local Search 

algorithm and a mixed integer programming to solve the model in efficient 

computational time. The proposed model is also evaluated using a real-world case 

study in Queensland, Australia since the road length and high energy consumption of 

the cold supply chains are the two major challenging issues in this region. 

The proposed model can help make decisions to minimise operational costs, 

including holding costs, transportation costs, energy costs and shortage costs as well 

as emission costs, taking into account the carbon tax regulation, uncertain demand and 

a heterogeneous fleet. To the best of our knowledge, no existing research has addressed 

replenishment policy and transportation schedules in an integrated model in a cold 

supply chain that considers demand uncertainty, carbon tax regulations and a 

heterogeneous fleet. 

This research reveals that a heterogeneous fleet comprising light duty and medium 

duty vehicles1 can provide a better balance between cost and emissions as compared 

to a homogeneous fleet, either light duty or medium duty vehicles. Moreover, we 

observed that carbon price plays a significant role in the successful implementation of 

carbon tax regulations. Therefore, it is critical for policy makers to determine an 

appropriate carbon price in such a way that the environmental improvement can be 

achieved without compromising economy. 

The remainder of this chapter is organised as follows. In Section 3.2, the literature 

relevant for this research is reviewed. Section 3.3 presents a description of our model 

and assumptions. In Section 3.4, we formulate the proposed problem as a two-stage 

stochastic programming model. Section 3.5 presents the proposed matheuristic 

algorithm. The evaluation of the matheuristic algorithm, practical context and case 

study data are presented in Section 3.6. We also conduct sensitivity analyses and 

discuss findings and managerial implications in Section 3.6. Finally, Section 3.7 

contains concluding remarks.  

 
1 In this research, two types of vehicle including light and medium duties vehicles were used for product 

distributions. The light duty vehicle has 258 units capacity with 3500 kg curb weight, while the medium duty one 

has 508 units capacity with 6550 kg curb weight (see Table 7) 
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3.2 Literature review 

Recent research on cold supply chains concentrates on the effect of sustainability 

decisions on the performance of cold supply chains. James and James (2010) 

conducted a survey on cold supply chains to examine their impacts on climate change. 

The authors estimated that about 50% of total energy consumption in the food industry 

is related to cold facilities. Soysal et al. (2012) reviewed quantitative models in 

sustainable food logistics management. It has been found that apart from a few studies 

(.e.g Akkerman et al. (2009); Oglethorpe (2010)), there is a lack of advanced 

quantitative models that study sustainable food logistics management. Xu et al. (2015) 

reviewed the methods to reduce the carbon footprint at each stage of a food system 

from the perspective of technical, consumption behavior and environmental policies. 

They reported that improving management techniques and adopting advanced 

technologies are critical for every stage of a good food system. Carbon emissions can 

be substantially reduced with proper process control of carbon emissions and process 

optimisation. 

Bozorgi et al. (2014) presented a new inventory model for a cold product with a 

capacitated refrigerated unit for both holding and transportation. The authors provided 

an excellent analysis of the trade-off between the objective functions, and found that 

the emissions function is more sensitive to deviation from optimality than the cost 

function. This model was extended in Bozorgi (2016) by introducing multiple types of 

cold product items and considering the compatibility of the items for sharing storage 

and transportation units. Distribution planning is one of the main activities in cold 

supply chains. Hu et al. (2017) addressed the problem of scheduling distribution of 

fresh products in a refrigerated vehicle and proposed a mixed integer programming 

model to reduce total transportation cost including routing, time penalty, cargo damage 

and refrigeration costs. Zhang and Chen (2014) presented an optimisation model 

involving delivering a variety of frozen products with the aim of achieving minimum 

delivery costs. They modified a genetic algorithm to solve the model and considered 

inside and outside temperatures to calculate refrigeration costs during the 

transportation process. However, the contribution of environmental impacts towards 

sustainability improvement of the cold supply chain was neglected in both these 

studies. 

Some cold supply chain research incorporates environmental impacts into the 

distribution planning of cold items in cold supply chains. For example, Chen and Hsu 



40 

 

(2015) compared two transportation systems - namely; traditional multi-vehicle 

distribution and multi-temperature joint distribution, and their environmental impacts 

arising from energy consumption and refrigerant leakages during the transportation 

process. Soysal et al. (2014) proposed a multi-objective linear programming model for 

the beef logistics network problem considering both logistics cost and the total amount 

of emissions. In this study, an 𝜖-constraint approach was used as a solution method. 

Hsiao et al. (2017) formulated a cold supply chain distribution model with the aim of 

determining a distribution plan to fulfill customer requirements for preferred food 

quality levels at the lowest distribution cost including emissions costs caused by 

vehicles. An algorithm based on adapted biogeograph-based optimisation was 

developed to solve the model in their study. Stellingwerf et al. (2018a) presented an 

optimisation model for a load dependent vehicle routing problem to minimise 

emissions in a temperature-controlled transportation system. The authors found that 

considering emissions generated by refrigeration in road transportation can lead to 

different routes and speeds compared with the traditional vehicle routing problem. 

Stellingwerf et al. (2018b) formulated an IRP model to examine the economic and 

environmental benefits of cooperation in a temperature-controlled supply chain. The 

authors found that vendor managed inventory (VMI) cooperation can lead to further 

cost and emissions savings. These studies addressed the environmental impact into the 

distribution scheduling in the cold supply chain without considering environmental 

regulations.  

As a result of increasing awareness regarding environmental impacts and the need 

for adapting to changes in environmental regulations, a recent focus has been 

established in supply chain management literature to incorporate carbon emissions 

regulations. Marufuzzaman et al. (2014a) presented a bi-objective optimisation model 

accounting for economic and environmental considerations to identify location and 

planning decisions, simultaneously, in a biodiesel supply chain. They explored the 

impact of different carbon emissions regulations in the performance of the supply 

chain. Palak et al. (2014) extended a variation of the classical economic lot sizing 

model to analyse the impact of carbon emissions regulations on replenishment and 

transportation mode selection decisions. The results indicate that the buyer has 

tendency to use local suppliers to reduce costs-related carbon emissions as a result of 

tighter carbon emissions regulations. Park et al. (2015) focused on the last-mile 

distribution network design and investigated how carbon tax affects the supply chain 
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structure and social welfare. The authors found that a change in carbon cost has a 

greater effect on supply chain structures when market competition is more intense. 

These studies investigated the impact of different carbon emissions regulations on the 

performance of the supply chains without considering perishable products and their 

requirements. Hariga et al. (2017) addressed the lot sizing and transporting problem 

for a single cold product in a three-echelon cold supply chain comprising a plant, a 

distribution center and a retailer. These authors proposed a mathematical optimisation 

model and considered the impacts of carbon emissions resulting from transportation 

and storage activities of a cold product in a deterministic environment under carbon 

tax regulations. There was no consideration for parameters uncertainty as relevant in 

practice in these studies. 

The uncertain nature of parameters adds more complexity to the system, even in the 

traditional supply chain management. Yu et al. (2012) presented a stochastic model 

for an inventory-routing problem (IRP) with split delivery in which unsatisfied 

demands due to the lack of stock influence the customer service level. The model was 

formulated as an approximate stochastic IRP where initial uncertain demands are 

transformed into deterministic demands. Solyalı et al. (2012) used a robust mixed-

integer programming for IRP in which the probability distribution of uncertain 

demands of customers was not specified. Marufuzzaman et al. (2014b) presented a 

two-stage stochastic programming model to manage biodiesel supply chain that 

accounts for the impact of various carbon emissions regulations and uncertainties on 

the supply chain decisions. The authors used Lagrangian relaxation method within L-

shaped algorithm to solve the model and added valid cuts to improve the algorithm 

performance. Cardona-Valdés et al. (2014) presented a bi-objective stochastic 

programming model to design a two-echelon production-distribution network under 

uncertain demand. The authors developed a tabu search within the framework of multi-

objective adaptive memory programming to solve the proposed model. Bertazzi et al. 

(2015) adopted a stochastic dynamic programming for an IRP in which the supplier 

has a limited production capacity and deliveries are conducted using transportation 

procurement to satisfy uncertain demands. Mohajeri and Fallah (2016) presented an 

optimisation model for closed-loop supply chain that accounts for carbon emissions 

constraints, uncertain demand and return rate. The authors developed a fuzzy 

programming to capture the uncertain nature of parameters. It should be noted that 
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these studies only considered non-perishable products (i.e. perishable products were 

not included in their modelling). 

Stochastic parameters bring more complexity in modelling supply chain problems 

for perishable/cold items. Acknowledging that the design of a distribution network for 

perishable inventory is different and more challenging than for non-perishables, 

Firoozi and Ariafar (2017) proposed a stochastic distribution network model for 

perishable products using a Lagrangian relaxation-based heuristics algorithm to solve 

the model. The model considers uncertain demand and deals with the uncertainty of 

product lifetime by defining worst-case scenarios. Soysal et al. (2015) proposed an 

IRP model for a single perishable product that contains load dependent distribution 

costs for evaluation of carbon emissions, perishability and service level constraint for 

satisfying stochastic demand. They implemented the model for fresh tomato 

distribution and the results indicated that the integrated model could help achieve cost 

savings without compromising the service quality. Soysal et al. (2018) presented an 

IRP model with demand uncertainty, which addressed carbon emissions arising from 

distribution of perishable products, in order to analyse the benefit of horizontal 

collaboration related to perishability, energy consumption and logistics cost. Although 

these studies considered perishable products in a stochastic environment, the energy 

consumption of cold facilities and emissions from storage were not considered. 

Galal and El-Kilany (2016) and Saif and Elhedhli (2016) are two of the few studies 

that simultaneously address the issues of uncertain demand, energy consumption and 

emissions of cold supply chains. Galal and El-Kilany (2016) presented a simulation 

model of cold inventory replenishment policy that considers economic and 

environmental aspects of changing the order quantity in the food supply chain. Their 

results indicate that reducing the order quantities can lead to a decrease in costs and 

emissions without sacrificing the service levels. The authors also considered demand 

and lead time uncertainty in their model. Saif and Elhedhli (2016) examined the cold 

supply chain design problem with a simulation approach and considered the economic 

and environmental effects. Their model aims to minimise the capacity, inventory and 

transportation costs and at the same time assumes stochastic demand. The authors 

show that it is possible to reduce the global warming effect of cold supply chains 

without incurring a large increase in cost. However, these studies did not take into 

account carbon regulation, nor examined its impact on cold supply chain operational 

decisions. 
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The research by Hariga et al. (2017) might be the most relevant study to our research 

in terms of research objectives and scope. They presented an optimisation model for 

cold supply chain management aiming to minimise both operation costs and emissions 

costs. However, their model operates in a deterministic environment while we consider 

the uncertain nature of demand, hence a two-stage stochastic programming model is 

developed. In Hariga et al. (2017), vehicles were assumed to be homogeneous, while 

in this study we consider heterogeneous vehicles, which is more realistic. The model 

proposed by Hariga et al. (2017) assumes a one-to-one distribution network, while our 

research uses a one-to-many distribution network, which is more realistic and 

challenging in finding the optimal route and ways to integrate retailers into vehicle 

routes. 

The main scientific contribution of this chapter is the development of an integrated 

optimisation model for the cold supply chain considering demand uncertainty under 

carbon tax regulations, which is an under-researched area in the existing supply chain 

literature. The computationally efficient matheuristic algorithm provided in this 

research, based on an Iterated Local Search and mixed integer programming, is useful 

for researchers examining similar issues. The real-world case study presented in this 

chapter can generate significant policy implications in terms of designing appropriate 

carbon tax policies to achieve emissions reductions without substantially increasing 

compliance costs for cold supply chain participants. 

3.3 Problem description  

The main objective of this research is to develop an optimisation model for 

sustainable cold supply chain management with a consideration of demand 

uncertainty. Our research focuses on a cold supply chain in which a central supplier 

serves a set of retailers, under uncertain demand over a finite planning horizon. 

Heterogeneous vehicles are assumed to be dispatched from the supplier, visit the 

retailers and return to the supplier on the same day. Each retailer is served by only one 

vehicle in each period, split delivery is not allowed. The transportation costs2 comprise 

 
2 Decisions related to determining the optimal number of vehicles required in the distribution system toward 

reducing vehicles idling costs are interesting from the management perspective. Such decisions are strategic 

decisions which are often made at the initial planning stage, well ahead of the operational stage, which is the focus 

of this study. Furthermore, in the operational decisions planning considered in this study, we did not consider the 

vehicle idling costs as the vehicle idling costs are much less than the costs associated with operating the vehicles. 

Indeed, the distribution system incurs different costs such as fixed vehicle cost, fuel cost and emissions cost when 

using the vehicles which far outweigh the vehicle idling costs. 



44 

 

the fixed cost component when the vehicle is used, and the variable cost component 

that is a function of travel distance, load, speed and vehicle characteristics. 

We assume that the supplier has a limited quantity available cold product (Q) at each 

period. The storage cost for both supplier (𝐻𝑆) and retailers (𝐻𝑅) are associated with 

storing a unit of cold product to maintain the quality of the product at the desired level. 

Carbon emissions from the transportation operation as well as the storage operations 

at the supplier and retailers are incorporated into the proposed model. We regard 

shortage as a lost sale. In order to minimise lost sales, a penalty per unit (𝜋𝜅)  is applied 

whenever the quantity of product delivered is less than the actual demand. The supplier 

needs to decide on the quantities delivered to the retailers before realisation of the 

uncertain demand. At the end of the period, the actual demand of retailers is revealed 

and then shortage or inventory levels in the retailers and cold facilities requirements 

will be specified accordingly. At the beginning of the next period, considered the 

realised demand, the next quantities delivered to the retailers and consequently suitable 

vehicle types and vehicle routes must be determined. We also assume that the cold 

supply chain operates under the carbon tax regulation. Before formulating the 

proposed model, we state the following assumptions: 

• here are K types of refrigeration vehicles with a maximum capacity (𝑂𝜅) at the 

supplier to distribute cold products to a set of retailers. The number of available 

vehicles (휂𝜅)  for each type is limited. 

• Retailer demand is assumed to be stochastic and follows a statistical 

distribution. 

• All shipments happen at the beginning of each period. The vehicles depart the 

supplier at the beginning of each period and return to the supplier after visiting retailers 

within the same period, which is normally takes several hours3 . 

• The quantity of products delivered to a retailer is determined such that the 

maximum inventory capacity in the retailer is not exceeded. 

• The number of refrigerators required to maintain cold products at the supplier 

and retailers is determined by the remaining inventory after satisfying the demand at 

each period. Each retailer is assumed to be a central distributor which serves sub-

 
3 In this research, our focus is on a distribution system in which the distribution time is less than a day. With the 

support of an effective cold supply chain and new technology, the perishable products will have a longer shelf-

life, which is usually a few weeks or more. Compared with the extended shelf-life, the distribution time is 

relatively small, which is ignored in this research. However, if the distribution involves an area that takes a longer 

time, the distribution time should be considered 
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retailers immediately after receiving the products. Hence, only the excess quantities 

from the daily demand are sent to the storage that needs a refrigeration system in our 

modelling at each retailer at each period and will be used in the next period. 

The optimisation model seeks to determine the optimal configuration of the routes 

and vehicle types, the quantity of cold product to be delivered to retailers, and the 

number of refrigerators used for storage under uncertain demand and carbon tax 

regulation in order to minimise the operation costs and lost sale cost as well as the 

costs of emissions. The model aims to capture the trade-off between cost and 

emissions. The configuration of the proposed problem in our study is depicted in 

Figure 3-1. The scheme illustrates a cold supply chain including a supplier that 

distributes a cold product to a number of retailers. As can be seen from Figure 3-1, 

both the supplier and retailers are responsible for the growth of environmental impacts, 

especially carbon emissions, as a result of energy consumption of different logistical 

operations, transportation and inventory, along the chain. 

3.3.1 Modelling approach  

As we focus on cold products that have variable demand, projecting the demand may 

not be accurate for the long-term period. The demand forecasting for such types of 

products could be much more accurate for the short-term period (Sazvar et al., 2014). 

Our modelling framework contains only two stages, but each stage can encompass one 

or more than one period depending on the nature of the problem. This is similar to 

Sazvar et al. (2014); Mirzapour Al-e hashem et al. (2017) in which two periods are 

used and considered sufficient for illustration purposes. 

 

Figure 3-1: A simple scheme of the proposed problem 

In the two-stage stochastic programming model, the decision variables are 

categorised into two stages. The stage changes when the information related to the 
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actual demand is updated with newly available data represented by the scenarios. In 

our modelling, the first-stage decision variables are decisions that are not affected by 

the scenarios and must be made prior to the realisation of uncertainty at the first period, 

and are referred to as “here and now” decisions. It means that these decision variables 

are made based on existing information and would be fixed after being made under all 

scenarios. For the proposed problem, the first-stage decisions contain decisions that 

the supplier makes at the beginning of the first period without having exact information 

related to the actual demand. However, the second-stage decision variables depend on 

the scenarios, also known as “wait and see” decisions, and must be made after the 

uncertain parameters (demand value) are revealed. It means that these decision 

variables are changed based on each scenario. In our model, the second-stage decision 

variables constitute decisions that the supplier and retailers make after unveiling the 

demand based on each scenario. The main decisions relevant to each stage in our 

modelling are summarised in Table 3-1. 

In our modelling, we calculate the operational costs related to the first-stage 

separately from those associated with the second-stage. Hence, some costs are 

computed twice. The objective functions aim to minimise the costs related to the first-

stage decisions and expected costs of the second-stage decisions. 

Table 3-1:Main decisions at each stage 

First-stage decisions Second-stage decisions 

Optimal quantity delivered to each retailer in 

the first period 

Optimal quantity delivered to each retailer in 

the second period under each scenario 

Optimal number of refrigeration systems that 

requires to be turned on at the supplier based on 

the remaining inventory in the first period 

Optimal number of refrigeration systems that 

requires to be turned on at the supplier based on 

the remaining inventory in the second period 

under each scenario 

The optimal route for distribution of products 

in the first period 

The optimal route for distribution of products 

in the second period under each scenario 

Optimal speed of vehicles when traveling on 

arc (i, j) in the first period (related to extended 

model, Section 3.4.3) 

Optimal speed of vehicles when traveling on 

arc (i, j) in the second period under each scenario 

(related to extended model, Section 3.4.3) 

Optimal selection vehicle type for distribution 

of products on each route in the first period 

Optimal selection of vehicle type for 

distribution of products on each route in the 

second period under each scenario 

 Optimal number of refrigeration systems that 

requires to be turned on at each retailer based on 
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the remaining inventory in each period under 

each scenario 

The problem is considered as a complete graph 𝐺 = (𝜐, 𝐸), where 𝜐 = {0,1, . . . , 𝑁} 

is the set of nodes and E is the arc set. The set of nodes comprises 0 representing the 

supplier, and N representing the total number of retailers. Arcs also present the 

available roads between nodes. The notations used in the chapter to develop the 

mathematical model are summarised in Tables 3-2, 3-3 and 3-4. We use Greek letters 

and upper-case letters to represent parameters, while lower-case letters are used to 

denote variables. 

Table 3-2:Indices 
ξ Index of scenario, 휉 = 1,… , 𝛯  

κ Index of transportation type, 휅 = 1,… , 𝐾 

t Index of time period, 𝑡 = 1,2 

n, χ Index of retailer, 𝑛, 𝜒 = 1,… ,𝑁 

i, j Index of node including supplier and retailers, 𝑖, 𝑗 ∈ 𝜐 = {0,… ,𝑁} 

m Index of the number of vehicles available for type κ at supplier, 𝑚 =

1,… , 휂𝜅 

r Index of speed level, 𝑟 = 1,… , 𝛬 

 

Table 3-3:Parameters 
Q Available quantity of product at the supplier in each period 

𝐻𝑅 Unit cost of holding inventory at retailers per period 

𝐻𝑆 Unit cost of holding inventory at the supplier per period 

ϒ Maximum inventory capacity at retailers 

휂𝜅 Total number of vehicles available for type κ at the supplier 

𝑂𝜅 Capacity of vehicle type κ 

𝐷𝑖𝑗 The distance from node i to j 

𝑆𝑖𝑗  The speed of vehicles on arc (i,j) 

𝑆𝑟 Speed of vehicles at level r (related to the extended model) 

𝜙𝐹 Fuel cost per liter 

𝐹𝜅 Fixed cost of vehicle type κ 

𝜎 Fuel conversion factor (g/s to L/s) 

𝐶𝑅 Capacity of refrigerator at retailers 

𝐶𝑆 Capacity of refrigerator at the supplier 

𝜙𝐸 Electricity cost per kWh 

𝐸𝑅 Energy consumption of refrigeration system at retailers (kWh/day) 

𝐸𝑅 Energy consumption of refrigeration system at the supplier (kWh/day) 

𝛿 The amount of carbon emissions for 1 kWh energy generation (kg/kWh) 

Γ Technical parameter 

𝛷𝜅 Engine friction factor of vehicle type κ (kJ/rev/L) 

𝑁𝜅 Engine speed of vehicle type κ (rev/s) 
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휄𝜅 Engine displacement of vehicle type κ (L) 

τ Fuel-to-air mass ratio 

ψ Conversion factor from (g/s) to (L/s) 

휁𝜅 Vehicle drive train efficiency 

ω Efficiency parameter for diesel engines 

g Gravitational constant (m/s2) 

θ Road angle 

𝐶𝑒 Coefficient of rolling resistance 

𝐶𝑑𝜅 Coefficient of aerodynamics drag 

𝜌 Air density (kg/m3) 

𝐴𝜅 Frontal surface area (m2) 

𝑊𝜅 Curb weight of vehicle type κ (kg) 

𝜗 Weight of each unit of product 

𝐿𝜅 Total payload of vehicle type κ (kg) 

φ Heating value of a typical diesel fuel (kj/g) 

π Lost sale cost per unit at retailer 

𝐷𝑛(휉) Forecasted demand at retailer n at each period under scenario ξ 

휇 Unit 𝐶𝑂2 emissions price (AU$/kg) 

𝑃(휉) Probability of scenario $\xi$ 

M A large number 

휀 A small number 

3.3.2 Fuel consumption  

We utilise the same approach as Barth and Boriboonsomsin (2009) and Bektaş and 

Laporte (2011) to estimate fuel consumption based on the comprehensive emissions 

model of Barth et al. (2005). The fuel consumption 𝐺𝜅of vehicle type κ over distance 

𝐷𝑖𝑗at a speed of S can be calculated as follows: 

𝐺𝑘 = 𝛤(
𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆
+ (𝑊𝜅 + 𝐿𝜅)𝛾𝜅𝛼𝐷𝑖𝑗 + 𝛽𝜅𝛾𝜅𝐷𝑖𝑗𝑆

2) (3.1) 

Where 𝛤 = 𝜏 𝜑𝜓⁄ , 𝛾𝜅 = 1 (1000휁𝜅𝜔)⁄ , 𝛼 = 𝑔𝑠𝑖𝑛휃 + 𝑔𝐶𝑒𝑐𝑜𝑠휃, 𝛽𝜅 = 0.5𝐶𝑑𝜅𝜌𝐴𝜅. 

(𝑊𝜅 + 𝐿𝜅) denotes the total vehicle weight (kg), including the sum of curb weight and 

pay load. Expression (3.1) comprises three terms: the first term is called the engine 

module which is linear with travel time; the second term is referred to as the weight 

module which is independent of the vehicle speed; and the last term is called the speed 

module in which the speed is taken a quadratic form. 

 

Table 3-4:Variables 

𝑖𝑅𝑛𝑡(휉) Inventory level in retailer $n$ at the end of period t under scenario ξ 

𝑖𝑆
𝑓
 Inventory level in the supplier in the first period 

𝑖𝑆
𝑠(휉) Inventory level in the supplier at end of second period under scenario ξ 

𝑠𝑛𝑡(휉) Amount of shortage in retailer $n$ at end of period t under scenario ξ 
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𝑓𝑖𝜅𝑚
𝑓

 Product flow entered to node i by 𝑚𝑡ℎvehicle of type κ in the first period 

𝑓𝑖𝜅𝑚
𝑓
(휉) Product flow entered to node i by 𝑚𝑡ℎvehicle of κ in the second period, under scenario ξ 

𝑞𝑛
𝑓
 Quantity of product delivered to retailer n in the first period 

𝑞𝑛
𝑠(휉) Quantity of product delivered to retailer n in second period under scenario ξ 

𝑥𝑖𝑗𝜅𝑚
𝑓

 1 if arc (i,j) is visited by 𝑚𝑡ℎ vehicle of type κ in the first period; ∅ otherwise 

𝑥𝑖𝑗𝜅𝑚
𝑠 (휉) 1 if arc (i,j) is visited by 𝑚𝑡ℎ vehicle of type κ in the second period under scenario 휉; ∅ 

otherwise 

𝑠𝑖𝑗𝜅𝑚
𝑓

 Speed of 𝑚𝑡ℎ vehicle of type κ when traveling on arc (i,j) in the first period 

𝑠𝑖𝑗𝜅𝑚
𝑠 (휉) Speed of 𝑚𝑡ℎ vehicle of type κ when traveling on arc (i,j) in the second period under scenario 

휉 

𝑔𝑖𝑗𝜅𝑚
𝑓𝑟

 1 if 𝑚𝑡ℎ vehicle of type κ travels from i to j at speed level r in the first period; ∅ otherwise 

𝑔𝑖𝑗𝜅𝑚
𝑓𝑟

(휉) 1 if 𝑚𝑡ℎ vehicle of type κ travels from i to j at speed level r in the second period under 

scenarios 휉; ∅otherwise 

𝑦𝑖𝑗𝜅𝑚
𝑓

 Auxiliary variable linked fuel cost to vehicles' load at the first period 

𝑦𝑖𝑗𝜅𝑚
𝑠 (휉) Auxiliary variable inked fuel cost to vehicles' load at the second period under scenario 휉 

𝑎𝑣𝑛𝑡(휉) Auxiliary variable using for linearization in each period under scenario 휉 

𝑢𝑆
𝑓
 Auxiliary variable using for linearization in the first period 

𝑢𝑆
𝑠(휉) Auxiliary variable using for linearization in the second period under scenario 휉 

𝑢𝑅𝑛𝑡(휉) Auxiliary variable using for linearization in each period under scenario 휉 

𝑧𝑛𝜅𝑚
𝑓

 Auxiliary variable using for linearization in the first period 

𝑧𝑛𝜅𝑚
𝑠 (휉) Auxiliary variable using for linearization in the second period under scenario 휉 

3.4 Mathematical Model 

We propose a mathematical model, denoted by base case model (z), based on a 

two-stage stochastic programming as follows: 

𝑀𝑖𝑛 𝑧 = 𝑆𝐶 + 𝑇𝐶 + 𝐿𝐶 + 𝐸𝐶 (3.2) 

Expression (3.2) refers to the objective function which comprises four costs: 

storage costs (SC), transportation costs (TC), lost sale cost (LS) and carbon emissions 

costs (EC). These costs are discussed as follows: 

Storage costs 

The storage costs (SC) include holding cost and energy cost of refrigeration units 

and are presented as follows: 

𝑆𝐶 = 𝐻𝑆𝑖𝑆
𝑓
+ 𝜙𝐸 ⌈

𝑖𝑆
𝑓

𝐶𝑆
⌉ 𝐸𝑆

+∑𝑃(휉) (𝐻𝑆𝑖𝑆
𝑠(휉) + 𝜙𝐸 ⌈

𝑖𝑆
𝑠(휉)

𝐶𝑆
⌉ 𝐸𝑆

𝜉

+∑∑(𝐻𝑅𝑖𝑅𝑛𝑡(휉) + 𝜙𝐸 ⌈
𝑖𝑅𝑛𝑡(휉)

𝐶𝑅
⌉ 𝐸𝑅)

𝑛𝑡

) 

(3.2.i) 
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Where ⌈. ⌉ refers to ceiling function. The first two parts in the function (3.2.i) are the 

holding cost, and energy cost consumed by refrigeration units at the supplier in the 

first period, respectively, which are not dependent on scenarios (first-stage decision 

variables). The remain parts of the function (3.2.i) are associated with the expected 

value of the second-stage costs. The expected holding cost and energy cost in the 

supplier under scenario 휉 in the second period are represented by parts 3 and 4, 

respectively. Parts 5 and 6 represent the respective expected holding cost and energy 

cost consumed by refrigeration units at retailers under scenario 휉 in each period. 

Transportation costs 

The transportation costs (TC) comprise vehicles' fixed cost and variable cost (fuel 

cost) and are formulated as follows: 

𝑇𝐶 =∑∑(∑𝐹𝜅𝑥0𝑛𝜅𝑚
𝑓

𝑛𝑚𝜅

+ 𝜙𝐹𝛤( ∑
𝑥𝑖𝑗𝜅𝑚
𝑓

𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑖𝑗
+𝑊𝜅𝑥𝑖𝑗𝜅𝑚

𝑓
𝛾𝜅𝛼𝐷𝑖𝑗

𝑖,𝑖,𝑖≠𝑗

+ 𝑥𝑖𝑗𝜅𝑚
𝑓

𝛽𝜅 𝛾𝜅𝐷𝑖𝑗𝑆𝑖𝑗
2 + 𝑦𝑖𝑗𝜅𝑚

𝑓
𝛾𝜅𝛼)) + 

∑𝑃(휉)(∑∑(∑𝐹𝜅𝑥0𝑛𝜅𝑚
𝑠 (휉)

𝑛𝑚𝜅𝜉

+ 𝜙𝐹𝛤( ∑
𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑖𝑗
+𝑊𝜅𝑥𝑖𝑗𝜅𝑚

𝑠 (휉)𝛾𝜅𝛼𝐷𝑖𝑗
𝑖,𝑖,𝑖≠𝑗

+ 𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛽𝜅𝛾𝜅𝐷𝑖𝑗𝑆𝑖𝑗

2 + 𝑦𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼))) 

(3.2.ii) 

Parts 1 and 2 in the function (3.2.ii) present vehicles' fixed cost and variable cost 

(fuel cost) at the first period, respectively, which are not subject to uncertainty. The 

remain parts of the function (3.2.ii) are used to compute the expected value of the 

second-stage costs. The expected vehicles' fixed cost and variable cost under scenario 

ξ at the second period are computed separately by parts 3 and 4. In this function, the 

variable cost is dependent on speed, load, travel distance and vehicle’s characteristics. 

Note that transportation costs are linked to the vehicles' load by auxiliary variables 

𝑦𝑖𝑗𝜅𝑚
𝑓

, 𝑦𝑖𝑗𝜅𝑚
𝑠 (휉) and constraints (3.33) - (3.34). 

Lost sale cost 
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The lost sale cost (LC) is subject to uncertainty. In other words, the lost sale cost 

(LC) is specified after the uncertain demands are revealed at the first period. The lost 

sale cost (LC) is modelled as follows: 

𝐿𝐶 =∑𝑃(휉)∑∑𝜋𝑠𝑛𝑡(휉)

𝑛𝑡𝜉

 (3.2.iii) 

The function (3.2.iii) represents the expected lost sale cost incurred by the retailers 

due to its inability to meet uncertain demand at the second-stage. The lost sale cost 

under scenario ξ is calculated by multiplying the total amount of lost sale by the unit 

lost sale cost. 

Carbon emissions costs  

The carbon emissions costs (EC) comprise the amount of carbon emissions from 

transportation and storage processes. The total amount of carbon emissions is 

computed by multiplying the total amount of energy consumption in transportation 

and storage processes, with carbon emissions coefficients and emissions price. 

𝐸𝐶 = 휇((𝛤∑∑ ∑
𝑥𝑖𝑗𝜅𝑚
𝑓

𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑖𝑗
+𝑊𝜅𝑥𝑖𝑗𝜅𝑚

𝑓
𝛾𝜅𝛼𝐷𝑖𝑗 + 𝑥𝑖𝑗𝜅𝑚

𝑓
𝛽𝜅𝛾𝜅𝐷𝑖𝑗𝑆𝑖𝑗

2

𝑖,𝑖,𝑖≠𝑗𝑚𝜅

+ 𝑦𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼) × 𝜎 + ⌈
𝑖𝑆
𝑓

𝐶𝑆
⌉ 𝐸𝑆 × 𝛿)+ 

휇∑𝑃(휉)((𝛤∑∑ ∑
𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑖𝑗
+𝑊𝜅𝑥𝑖𝑗𝜅𝑚

𝑠 (휉)𝛾𝜅𝛼𝐷𝑖𝑗
𝑖,𝑖,𝑖≠𝑗𝑚𝜅𝜉

+ 𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛽𝜅𝛾𝜅𝐷𝑖𝑗𝑆𝑖𝑗

2 + 𝑦𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼)) × 𝜎

+ (⌈
𝑖𝑆
𝑠(휉)

𝐶𝑆
⌉ 𝐸𝑆 +∑∑⌈

𝑖𝑅𝑛𝑡(휉)

𝐶𝑅
⌉ 𝐸𝑅

𝑛𝑡

) × 𝛿) 

(3.2.iv) 

Where ⌈. ⌉ refers to ceiling function. Parts 1 and 2 in the function (3.2.iv) represent 

the carbon emissions costs arising from transportation and storage at the first period, 

respectively, which is not affected by scenarios. The remaining parts in expression 

(3.2.iv) represent expected carbon emissions cost arising from transportation and 

storage under all possible scenarios. 

S.t. 

𝑖𝑆
𝑓
= 𝑄 −∑𝑞𝑛

𝑓

𝑛

  (3.3) 
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𝑖𝑆
𝑠(휉) = 𝑖𝑆

𝑓
+ 𝑄 −∑𝑞𝑛

𝑠(휉)

𝑛

 ∀휉 (3.4) 

𝑖𝑅𝑛1(휉) = 𝑞𝑛
𝑓
− 𝐷𝑛(휉) + 𝑠𝑛1(휉) ∀𝑛, 휉 (3.5) 

𝑖𝑅𝑛𝑡(휉) = 𝑖𝑅𝑛(𝑡 − 1)휉 + 𝑞𝑛𝑠(휉) − 𝐷𝑛휉 + 𝑠𝑛𝑡(휉) ∀𝑛, 휉, 𝑡 ≥ 2 (3.6) 

𝑖𝑅𝑛𝑡(휉) ≤ ϒ ∀𝑛, 휉, 𝑡 (3.7) 

Constraints (3.3) - (3.7) relate to the inventory decisions. In particular, constraints 

(3.3) - (3.6) are inventory balances at the supplier and retailers at the end of each period 

respectively. Constraint set (3.7) ensures that the remaining inventory of each retailer 

at the end of each period does not exceed its maximum storage capacity. 

𝑞𝑛
𝑠(휉) ≤∑∑𝑥𝑗𝑛𝜅𝑚

𝑓
ϒ

𝜅𝑗

 ∀𝑛 (3.8) 

𝑞𝑛
𝑠(휉) ≤∑∑𝑥𝑗𝑛𝜅𝑚

𝑠 (휉) × (𝐷𝑛(휉) + ϒ)

𝜅𝑗

 ∀𝑛, 휉 (3.9) 

𝑞𝑛
𝑠(휉) ≤ 𝐷𝑛(휉) + ϒ − 𝑖𝑅𝑛(𝑡−1)(휉) ∀𝑛, 휉, 𝑡 ≥ 2 (3.10) 

Constraints (3.8) - (3.9) indicate that if a retailer $n$ is not visited by vehicle type κ, 

the quantity of product delivered to the retailer n by vehicle type κ is zero. Constraint 

set (3.10) indicates that the cold product is delivered to a retailer as long as the 

inventory does not exceed maximum inventory capacity at each period. 

∑𝑥0𝑛𝜅𝑚
𝑓

≤ 1

𝑛

 ∀휅,𝑚 (3.11) 

∑𝑥0𝑛𝜅𝑚
𝑠 (휉) ≤ 1

𝑛

 ∀휅,𝑚, 휉 (3.12) 

∑∑∑𝑥𝑖𝑛𝜅𝑚
𝑓

𝑚𝜅𝑖

≤ 1 ∀𝑛 (3.13) 

∑∑∑𝑥𝑖𝑛𝜅𝑚
𝑠

𝑚𝜅

(휉)

𝑖

≤ 1 ∀𝑛, 휉 (3.14) 

Constraints (3.11) - (3.14) associate with the routing decisions. In particular, 

constraints (3.11) - (3.12) denote that each vehicle departs from the supplier at most 

once per period to visit retailers. Constraints (3.13) - (3.14) represent that each retailer 

is visited at most once at each period by only one vehicle, split delivery is not allowed. 

∑𝑥𝑖𝑛𝜅𝑚
𝑓

𝑖

−∑𝑥𝑛𝑖𝜅𝑚
𝑓

𝑖

= 0 ∀𝑛, 휅,𝑚 (3.15) 

∑𝑥𝑖𝑛𝜅𝑚
𝑠 (휉)

𝑖

−∑𝑥𝑛𝑖𝜅𝑚
𝑠 (휉)

𝑖

= 0 ∀𝑛, 휅,𝑚, 휉 (3.16) 

𝑀∑𝑥0𝑛𝜅𝑚
𝑓

𝑛

−∑∑𝑥𝑛𝑗𝜅𝑚
𝑓

𝑗𝑛

≥ 0 ∀휅,𝑚 (3.17) 

𝑀∑𝑥0𝑛𝜅𝑚
𝑠 (휉)

𝑛

−∑∑𝑥𝑛𝑗𝜅𝑚
𝑠 (휉)

𝑗𝑛

≥ 0 ∀휅,𝑚, 휉 (3.18) 
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Constraints (3.15) - (3.16) ensure that the incoming arcs must be equal to departing 

arcs at each node and related to subtour elimination. Constraints (3.17) - (3.18) ensure 

that retailers can be visited by a vehicle when the vehicle departs from the supplier. 

𝑓𝑛𝜅𝑚
𝑓

≤ 𝑂𝜅∑𝑥𝑖𝑛𝜅𝑚
𝑓

𝑖

 ∀𝑛, 휅,𝑚 (3.19) 

𝑓𝑛𝜅𝑚
𝑠 (휉) ≤ 𝑂𝜅∑𝑥𝑖𝑛𝜅𝑚

𝑠

𝑖

(휉) ∀𝑛, 휅,𝑚, 휉 (3.20) 

∑∑𝑓0𝜅𝑚
𝑓

𝑚𝜅

= 0  (3.21) 

∑∑𝑓0𝜅𝑚
𝑠

𝑚𝜅

(휉) = 0 ∀ 휉 (3.22) 

Constraints (3.19) - (3.22) indicate the product's flow balance. In particular, 

constraints (3.19) - (3.20) confirm that the vehicle's capacity is respected.  Constraints 

(3.21) - (3.22) ensure that vehicles are empty when returning to the supplier.  

𝑓𝑛𝜅𝑚
𝑓

≥∑∑𝑥𝑖𝜒𝜅𝑚
𝑓

𝜒𝑖

× 𝑞𝜒
𝑓
−𝑀(1 − 𝑥0𝑛𝜅𝑚

𝑓
) ∀𝑛, 휅,𝑚 (3.23) 

𝑓𝑛𝜅𝑚
𝑓

≤∑∑𝑥𝑖𝜒𝜅𝑚
𝑓

𝜒𝑖

× 𝑞𝜒
𝑓
+𝑀(1 − 𝑥0𝑛𝜅𝑚

𝑓
) ∀𝑛, 휅,𝑚 (3.24) 

𝑓𝑛𝜅𝑚
𝑠 (휉) ≥∑∑𝑥𝑖𝜒𝜅𝑚

𝑠 (휉)

𝜒𝑖

× 𝑞𝜒
𝑠(휉) − 𝑀(1 − 𝑥0𝑛𝜅𝑚

𝑠 (휉)) ∀𝑛, 휅,𝑚, 휉 (3.25) 

𝑓𝑛𝜅𝑚
𝑠 (휉) ≤∑∑𝑥𝑖𝜒𝜅𝑚

𝑠 (휉)

𝜒𝑖

× 𝑞𝜒
𝑠(휉) + 𝑀(1 − 𝑥0𝑛𝜅𝑚

𝑠 (휉)) ∀𝑛, 휅,𝑚, 휉 (3.26) 

𝑓𝑛𝜅𝑚
𝑓

≤ 𝑀∑𝑥𝑖𝑛𝜅𝑚
𝑓

𝑖

 ∀𝑛, 휅,𝑚 (3.27) 

𝑓𝑛𝜅𝑚
𝑠 (휉) ≤ 𝑀∑𝑥𝑖𝑛𝜅𝑚

𝑠 (휉)

𝑖

 ∀𝑛, 휅,𝑚, 휉 (3.28) 

Constraints (3.23) - (3.26) determine the total load when a vehicle departs from the 

supplier. Constraints (3.27) - (3.28) set the product's flow entering to a retailer as a 

non-zero value if there is a link to the retailer. 

𝑓𝑛𝜅𝑚
𝑓

− 𝑓𝑗𝜅𝑚
𝑓

≤ 𝑞𝑛
𝑓
+𝑀(1 − 𝑥𝑛𝑗𝜅𝑚

𝑓
) ∀𝑛, 𝑗, 휅,𝑚 (3.29) 

𝑓𝑛𝜅𝑚
𝑓

− 𝑓𝑗𝜅𝑚
𝑓

≥ 𝑞𝑛
𝑓
−𝑀(1 − 𝑥𝑛𝑗𝜅𝑚

𝑓
) ∀𝑛, 𝑗, 휅,𝑚 (3.30) 

𝑓𝑛𝜅𝑚
𝑠 (휉) − 𝑓𝑗𝜅𝑚

𝑠 (휉) ≤ 𝑞𝑛
𝑠(휉) + 𝑀(1 − 𝑥𝑛𝑗𝜅𝑚

𝑠 (휉)) ∀𝑛, 𝑗, 휅,𝑚, 휉 (3.31) 

𝑓𝑛𝜅𝑚
𝑠 (휉) − 𝑓𝑗𝜅𝑚

𝑠 (휉) ≥ 𝑞𝑛
𝑠(휉) − 𝑀(1 − 𝑥𝑛𝑗𝜅𝑚

𝑠 (휉)) ∀𝑛, 𝑗, 휅,𝑚, 휉 (3.32) 

𝑦𝑛𝜅𝑚
𝑓

≥ 𝑓𝑛𝜅𝑚
𝑓

× 𝐷𝑖𝑛 −𝑀(1 − 𝑥𝑖𝑛𝜅𝑚
𝑓

) ∀𝑖, 𝑛, 휅,𝑚 (3.33) 

𝑦𝑛𝜅𝑚
𝑠 (휉) ≥ 𝑓𝑛𝜅𝑚

𝑠 (휉) × 𝐷𝑖𝑛 −𝑀(1 − 𝑥𝑖𝑛𝜅𝑚
𝑠 (휉)) ∀𝑖, 𝑛, 휅,𝑚, 휉 (3.34) 

Constraints (3.29) - (3.32) decrease product's flow on a route after visiting a retailer 

by its demand. By (3.33) - (3.34) transportation cost is dependent on product's flow on 

a route.  
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𝑖𝑅𝑛𝑡(휉) × 𝑠𝑛𝑡(휉) = 0 ∀𝑛, 𝑡, 휉 (3.35) 

𝑥𝑖𝑖𝜅𝑚
𝑓

= 𝑥𝑖𝑖𝜅𝑚
𝑠 (휉) = 0 ∀𝑖, 𝑛, 휅,𝑚, 휉 (3.36) 

𝑖𝑆
𝑓
, 𝑖𝑆
𝑠(휉), 𝑓𝑖𝜅𝑚

𝑓
, 𝑓𝑖𝜅𝑚

𝑠 (휉), 𝑞𝑛
𝑓
, 𝑞𝑛
𝑠(휉) ≥ 0 ∀𝑖, 𝑛, 휅,𝑚, 휉 (3.37) 

𝑖𝑅𝑛𝑡(휉), 𝑠𝑛𝑡(휉) ≥ 0 ∀𝑛, 𝑡, 휉 (3.38) 

𝑥𝑖𝑗𝜅𝑚
𝑓

, 𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)  ∈ {0,1}  (3.39) 

Constraint set (3.35) represents that 𝑖𝑛𝑡(휉) and 𝑠𝑛𝑡(휉) cannot take positive values 

simultaneously. Constraint set (3.36) indicates the impossible arcs and constraints 

(3.37) - (3.39) define the types of decision variables.  

3.4.1 Symmetry breaking constraints 

In this section, we add symmetry breaking constraints as valid inequalities to 

strengthen the modelling and tighten the feasible solution regions, which will result in 

the acceleration of the convergence to an optimal solution. The symmetry breaking 

constraints for each type of vehicle are defined as follows: 

∑𝑥0𝑛𝜅𝑚
𝑓

𝑛

≤∑𝑥0𝑛𝜅(𝑚−1)
𝑓

𝑛

 ∀휅,𝑚 = 2,… , 휂𝜅 (3.40) 

∑𝑥0𝑛𝜅𝑚
𝑠

𝑛

(휉) ≤∑𝑥0𝑛𝜅(𝑚−1)
𝑠 (휉)

𝑛

 ∀휅, 휉 , 𝑚

= 2,… , 휂𝜅 

(3.41) 

∑𝑥𝑛𝑗𝜅𝑚
𝑓

𝑛

≤∑∑𝑥𝑛𝑖𝜅(𝑚−1)
𝑓

𝑖≤𝑗𝑛

 ∀𝑖, 휅,𝑚 = 2,… , 휂𝜅 (3.42) 

∑𝑥𝑛𝑗𝜅𝑚
𝑠

𝑛

(휉) ≤∑∑𝑥𝑛𝑖𝜅(𝑚−1)
𝑠 (휉)

𝑖≤𝑗𝑛

 ∀𝑖, 휅,𝑚

= 2,… , 휂𝜅 , 휉 

(3.43) 

Constraints (3.40) - (3.41) ensure that the 𝑚𝑡ℎvehicle of type κ cannot leave the 

supplier if vehicle (𝑚 − 1)𝑡ℎof the same type is not used. This symmetry breaking 

rule is applied for the retailer nodes by constraints (3.42) - (3.43). These constraints 

imply that if a retailer n is visited by 𝑚𝑡ℎ vehicle type κ in period t, then (𝑚 − 1)𝑡ℎ 

vehicle of the same type must serve a retailer with an index smaller than n in the same 

period. These constraints have been derived from the valid inequalities used for the 

capacitated vehicle routing problem in Fischetti et al. (1995) and the plant location 

problem in Albareda-Sambola et al. (2011). These constraints are also used in Coelho 

and Laporte (2013). 

3.4.2 Linearisation of the model 

The proposed base case model (z) contains several nonlinear expressions. We utilise 

linearisation techniques to develop an equivalent linear mathematical model and to 

achieve optimal solutions. To linearise constraint (3.35), we define a binary variable 

𝑎𝑣𝑛𝑡(휉) and constraints (3.44) - (3.45). 𝑎𝑣𝑛𝑡(휉) = 1 if 𝑖𝑅𝑛𝑡(휉)is equal to zero; 
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𝑎𝑣𝑛𝑡(휉) = 0 if 𝑠𝑛𝑡(휉) is equal to zero for the 𝑛𝑡ℎ retailer at each period under each 

scenario 휉. 

𝑠𝑛𝑡(휉) ≤ 𝑀𝑎𝑣𝑛𝑡(휉) ∀𝑛, 𝑡, 휉 (3.44) 

𝑖𝑅𝑛𝑡(휉) ≤ 𝑀(1 − 𝑎𝑣𝑛𝑡(휉)) ∀𝑛, 𝑡, 휉 (3.45) 

There are a number of non-linear terms in the objective function related to the 

number of refrigeration units used for storing cold products at the supplier and 

retailers. In order to formulate these terms as a linear expression, we define integer 

variables 𝑢𝑆
𝑓
, 𝑢𝑆

𝑠(휉) and 𝑢𝑅𝑛𝑡
𝑠 (휉) in constraints (3.46), (3.49) and (3.52), respectively, 

and constraints (3.47) - (3.48), (3.50) - (3.51) and (3.53) - (3.54) as follows: 

𝑢𝑆
𝑓
= ⌈

𝑖𝑆
𝑓

𝐶𝑆
⌉ 

 (3.46) 

𝑢𝑆
𝑓
≥
𝑖𝑆
𝑓

𝐶𝑆
 

 (3.47) 

𝑢𝑆
𝑓
≤
𝑖𝑆
𝑓

𝐶𝑆
+ 1 − 휀 

 (3.48) 

𝑢𝑆
𝑠(휉) = ⌈

𝑖𝑆
𝑠(휉)

𝐶𝑆
⌉ 

 (3.49) 

𝑢𝑆
𝑠(휉) ≥

𝑖𝑆
𝑠(휉)

𝐶𝑆
 

∀휉 (3.50) 

𝑢𝑆
𝑠(휉) ≤

𝑖𝑆
𝑠(휉)

𝐶𝑆
+ 1 − 휀 

∀휉 (3.51) 

𝑢𝑅𝑛𝑡(휉) = ⌈
𝑖𝑅𝑛𝑡(휉)

𝐶𝑅
⌉ 

 (3.52) 

𝑢𝑅𝑛𝑡(휉) ≥
𝑖𝑅𝑛𝑡(휉)

𝐶𝑅
 

∀𝑛, 𝑡, 휉 (3.53) 

𝑢𝑅𝑛𝑡(휉) ≤
𝑖𝑅𝑛𝑡(휉)

𝐶𝑅
+ 1 − 휀 

 (3.54) 

We convert the nonlinear constraints (3.23) - (3.26) to linear expressions with the 

help of non-negative variables, 𝑧𝑛𝜅𝑚
𝑓

 and 𝑧𝑛𝜅𝑚
𝑠 (휉), and add constraints (3.55) - (3.62). 

𝑧𝑛𝜅𝑚
𝑓

≤ 𝑞𝑛
𝑓
+𝑀(1 − ∑ 𝑥𝑗𝑛𝜅𝑚

𝑓

𝑗∈𝜐\{0}

) ∀𝑛, 휅,𝑚 (3.55) 

𝑧𝑛𝜅𝑚
𝑓

≥ 𝑞𝑛
𝑓
−𝑀(1 − ∑ 𝑥𝑗𝑛𝜅𝑚

𝑓

𝑗∈𝜐\{0}

) ∀𝑛, 휅,𝑚 (3.56) 

𝑓𝑛𝜅𝑚
𝑓

≥∑𝑧𝜒𝜅𝑚
𝑓

𝜒

−𝑀(1 − 𝑥0𝑛𝜅𝑚
𝑓

) ∀𝑛, 휅,𝑚 (3.57) 

𝑓𝑛𝜅𝑚
𝑓

≤∑𝑧𝜒𝜅𝑚
𝑓

𝜒

+𝑀(1 − 𝑥0𝑛𝜅𝑚
𝑓

) ∀𝑛, 휅,𝑚 (3.58) 

𝑧𝑛𝜅𝑚
𝑠 (휉) ≤ 𝑞𝑛

𝑠(휉) + 𝑀(1 − ∑ 𝑥𝑗𝑛𝜅𝑚
𝑠 (휉)

𝑗∈𝜐\{0}

) ∀𝑛, 휅,𝑚, 휉 (3.59) 
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𝑧𝑛𝜅𝑚
𝑠 (휉) ≥ 𝑞𝑛

𝑠(휉) − 𝑀(1 − ∑ 𝑥𝑗𝑛𝜅𝑚
𝑠 (휉)

𝑗∈𝜐\{0}

) ∀𝑛, 휅,𝑚, 휉 (3.60) 

𝑓𝑛𝜅𝑚
𝑠 (휉) ≥∑𝑧𝜒𝜅𝑚

𝑠 (휉)

𝜒

−𝑀(1 − 𝑥0𝑛𝜅𝑚
𝑠 (휉)) ∀𝑛, 휅,𝑚, 휉 (3.61) 

𝑓𝑛𝜅𝑚
𝑠 (휉) ≤∑𝑧𝜒𝜅𝑚

𝑠 (휉)

𝜒

+𝑀(1 − 𝑥0𝑛𝜅𝑚
𝑠 (휉)) ∀𝑛, 휅,𝑚, 휉 (3.62) 

Finally, the linear equivalent of the proposed base case model (z) is rewritten as 

follows: 

min 𝑧 =  𝐻𝑆𝑖𝑆
𝑓
+ 𝜙𝐸𝑢𝑆

𝑓
𝐸𝑆

+∑𝑃(휉) (𝐻𝑆𝑖𝑆
𝑠(휉) + 𝜙𝐸𝑢𝑆

𝑠(휉)𝐸𝑆
𝜉

+ ∑∑(𝐻𝑅𝑖𝑅𝑛𝑡(휉) + 𝜙𝐸𝑢𝑅𝑛𝑡(휉)𝐸𝑅)

𝑛𝑡

) +  

(3.63.i) 

∑∑(∑𝐹𝜅𝑥0𝑛𝜅𝑚
𝑓

𝑛𝑚𝜅

+ 𝜙𝐹𝛤( ∑
𝑥𝑖𝑗𝜅𝑚
𝑓

𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑖𝑗
+𝑊𝜅𝑥𝑖𝑗𝜅𝑚

𝑓
𝛾𝜅𝛼𝐷𝑖𝑗 + 𝑥𝑖𝑗𝜅𝑚

𝑓
𝛽𝜅

𝑖,𝑖,𝑖≠𝑗

𝛾𝜅𝐷𝑖𝑗𝑆𝑖𝑗
2

+ 𝑦𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼)) + 

∑𝑃(휉)(∑∑(∑𝐹𝜅𝑥0𝑛𝜅𝑚
𝑠 (휉)

𝑛𝑚𝜅𝜉

+ 𝜙𝐹𝛤( ∑
𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑖𝑗
+𝑊𝜅𝑥𝑖𝑗𝜅𝑚

𝑠 (휉)𝛾𝜅𝛼𝐷𝑖𝑗
𝑖,𝑖,𝑖≠𝑗

+ 𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛽𝜅𝛾𝜅𝐷𝑖𝑗𝑆𝑖𝑗

2 + 𝑦𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼))) + 

(3.63.ii) 

∑𝑃(휉)∑∑𝜋𝑠𝑛𝑡(휉)

𝑛𝑡𝜉

 

 

(3.63.iii) 

휇 ((𝛤∑∑ ∑
𝑥𝑖𝑗𝜅𝑚
𝑓

𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑖𝑗
+𝑊𝜅𝑥𝑖𝑗𝜅𝑚

𝑓
𝛾𝜅𝛼𝐷𝑖𝑗 + 𝑥𝑖𝑗𝜅𝑚

𝑓
𝛽𝜅𝛾𝜅𝐷𝑖𝑗𝑆𝑖𝑗

2

𝑖,𝑖,𝑖≠𝑗𝑚𝜅

+ 𝑦𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼) × 𝜎 + 𝑢𝑆
𝑓
𝐸𝑆 × 𝛿) + 

(3.63.iv) 
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휇∑𝑃(휉)((𝛤∑∑ ∑
𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑖𝑗
+𝑊𝜅𝑥𝑖𝑗𝜅𝑚

𝑠 (휉)𝛾𝜅𝛼𝐷𝑖𝑗
𝑖,𝑖,𝑖≠𝑗𝑚𝜅𝜉

+ 𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛽𝜅𝛾𝜅𝐷𝑖𝑗𝑆𝑖𝑗

2 + 𝑦𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼)) × 𝜎

+ (𝑢𝑆
𝑠(휉)𝐸𝑆 +∑∑𝑢𝑅𝑛𝑡(휉)𝐸𝑅

𝑛𝑡

) × 𝛿) 

Subject to: 

Constraints (3.3) - (3.22), (3.27) - (3.34), (3.36) - (3.45), (3.47) - (3.48), (3.50) - 

(3.51) and (3.53) - (3.62).  

3.4.3 Model extension with variable speed consideration 

In this section, we modify the proposed base case model (z) and consider speed as a 

decision variable, denoted by 𝑧𝑣. Let 𝑠𝑖𝑗𝜅𝑚
𝑓

and 𝑠𝑖𝑗𝜅𝑚
𝑠 (휉) be the speeds of 𝑚𝑡ℎvehicle 

type κ when traveling from node i to node j at the first and second stages, respectively. 

The mathematical model is then rewritten as follows: 

min 𝑧 =  𝐻𝑆𝑖𝑆
𝑓
+ 𝜙𝐸𝑢𝑆

𝑓
𝐸𝑆

+∑𝑃(휉) (𝐻𝑆𝑖𝑆
𝑠(휉) + 𝜙𝐸𝑢𝑆

𝑠(휉)𝐸𝑆
𝜉

+ ∑∑(𝐻𝑅𝑖𝑅𝑛𝑡(휉) + 𝜙𝐸𝑢𝑅𝑛𝑡(휉)𝐸𝑅)

𝑛𝑡

) 

(3.64.i) 

+∑∑(∑𝐹𝜅𝑥0𝑛𝜅𝑚
𝑓

𝑛𝑚𝜅

+ 𝜙𝐹𝛤( ∑
𝑥𝑖𝑗𝜅𝑚
𝑓

𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑠𝑖𝑗𝜅𝑚
𝑓

+𝑊𝜅𝑥𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼𝐷𝑖𝑗
𝑖,𝑖,𝑖≠𝑗

+ 𝑥𝑖𝑗𝜅𝑚
𝑓

𝛽𝜅 𝛾𝜅𝐷𝑖𝑗(𝑠𝑖𝑗𝜅𝑚
𝑓

)2 + 𝑦𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼)) + 

∑𝑃(휉)(∑∑(∑𝐹𝜅𝑥0𝑛𝜅𝑚
𝑠 (휉)

𝑛𝑚𝜅𝜉

+ 𝜙𝐹𝛤( ∑
𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑠𝑖𝑗𝜅𝑚
𝑠 (휉)

+𝑊𝜅𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼𝐷𝑖𝑗

𝑖,𝑖,𝑖≠𝑗

+ 𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛽𝜅𝛾𝜅𝐷𝑖𝑗(𝑠𝑖𝑗𝜅𝑚

𝑠 (휉))2 + 𝑦𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼))) + 

 

(3.64.ii) 
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∑𝑃(휉)∑∑𝜋𝑠𝑛𝑡(휉)

𝑛𝑡𝜉

 (3.64.iii) 

휇 ((𝛤∑∑ ∑
𝑥𝑖𝑗𝜅𝑚
𝑓

𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑠𝑖𝑗𝜅𝑚
𝑓

+𝑊𝜅𝑥𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼𝐷𝑖𝑗 + 𝑥𝑖𝑗𝜅𝑚
𝑓

𝛽𝜅𝛾𝜅𝐷𝑖𝑗(𝑠𝑖𝑗𝜅𝑚
𝑓

)2

𝑖,𝑖,𝑖≠𝑗𝑚𝜅

+ 𝑦𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼) × 𝜎 + 𝑢𝑆
𝑓
𝐸𝑆 × 𝛿)+ 

휇∑𝑃(휉)((𝛤∑∑ ∑
𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑠𝑖𝑗𝜅𝑚
𝑠 (휉)

+𝑊𝜅𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼𝐷𝑖𝑗

𝑖,𝑖,𝑖≠𝑗𝑚𝜅𝜉

+ 𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛽𝜅𝛾𝜅𝐷𝑖𝑗(𝑠𝑖𝑗𝜅𝑚

𝑠 (휉))2 + 𝑦𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼)) × 𝜎

+ (𝑢𝑆
𝑠(휉)𝐸𝑆 +∑∑𝑢𝑅𝑛𝑡(휉)𝐸𝑅

𝑛𝑡

) × 𝛿) 

(3.64.iv) 

Subject to: 

Constraints (3.3) - (3.22), (3.27) - (3.34), (3.36) - (3.45), (3.47) - (3.48), (3.50) - 

(3.51) and (3.53) - (3.62). The objective function of the extended model 𝑧𝑣 contains 

non-linear terms. To linearize these terms, the linearisation approach presented by 

Bektas and Laporte (2011) is used. We consider a set (Λ) associated with different 

speed levels, r, at which vehicles can travel on arc (i,j) with respect to a speed standard, 

𝑆𝑟 ≤ 𝑆. We then define 𝑔𝑖𝑗𝜅𝑚
𝑓𝑟

and 𝑔𝑖𝑗𝜅𝑚
𝑠𝑟 (휉)as auxiliary variables and link them with 

𝑥𝑖𝑗𝜅𝑚
𝑓

and 𝑥𝑖𝑗𝜅𝑚
𝑠 (휉) through the following expressions. 

∑𝑔𝑖𝑗𝜅𝑚
𝑓𝑟

=

𝑟

𝑥𝑖𝑗𝜅𝑚
𝑓

 ∀𝑖, 𝑗, 휅,𝑚 (3.65) 

∑𝑔𝑖𝑗𝜅𝑚
𝑠𝑟 (휉) =

𝑟

𝑥𝑖𝑗𝜅𝑚
𝑠 (휉) ∀𝑖, 𝑗, 휅,𝑚, 휉 (3.66) 

The extended linearised model 𝑧𝑣 is presented as follows: 

min 𝑧 =  𝐻𝑆𝑖𝑆
𝑓
+ 𝜙𝐸𝑢𝑆

𝑓
𝐸𝑆

+∑𝑃(휉) (𝐻𝑆𝑖𝑆
𝑠(휉) + 𝜙𝐸𝑢𝑆

𝑠(휉)𝐸𝑆
𝜉

+ ∑∑(𝐻𝑅𝑖𝑅𝑛𝑡(휉) + 𝜙𝐸𝑢𝑅𝑛𝑡(휉)𝐸𝑅)

𝑛𝑡

) 

(3.67.i) 
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+∑∑(∑𝐹𝜅𝑥0𝑛𝜅𝑚
𝑓

𝑛𝑚𝜅

+ 𝜙𝐹𝛤 ∑ (∑
𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑟
𝑔𝑖𝑗𝜅𝑚
𝑓𝑟

𝑟

+𝑊𝜅𝑥𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼𝐷𝑖𝑗
𝑖,𝑖,𝑖≠𝑗

+∑𝑔𝑖𝑗𝜅𝑚
𝑓𝑟

𝑟

𝛽𝜅 𝛾𝜅𝐷𝑖𝑗(𝑆
𝑟)2 + 𝑦𝑖𝑗𝜅𝑚

𝑓
𝛾𝜅𝛼)) + 

∑𝑃(휉)(∑∑(∑𝐹𝜅𝑥0𝑛𝜅𝑚
𝑠 (휉)

𝑛𝑚𝜅𝜉

+ 𝜙𝐹𝛤 ∑ (∑
𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑟
𝑔𝑖𝑗𝜅𝑚
𝑠𝑟 (휉)

𝑟

+𝑊𝜅𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼𝐷𝑖𝑗

𝑖,𝑖,𝑖≠𝑗

+∑𝑔𝑖𝑗𝜅𝑚
𝑠𝑟 (휉)

𝑟

𝛽𝜅𝛾𝜅𝐷𝑖𝑗(𝑆
𝑟)2 + 𝑦𝑖𝑗𝜅𝑚

𝑠 (휉)𝛾𝜅𝛼))) + 

(3.67.ii) 

∑𝑃(휉)∑∑𝜋𝑠𝑛𝑡(휉)

𝑛𝑡𝜉

 

 

(3.67.iii) 

휇 (𝛤∑∑ ∑ (∑
𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑟
𝑔𝑖𝑗𝜅𝑚
𝑓𝑟

𝑟

+𝑊𝜅𝑥𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼𝐷𝑖𝑗
𝑖,𝑖,𝑖≠𝑗𝑚𝜅

+∑𝑔𝑖𝑗𝜅𝑚
𝑓𝑟

𝑟

𝛽𝜅𝛾𝜅𝐷𝑖𝑗(𝑠𝑖𝑗𝜅𝑚
𝑓

)2 + 𝑦𝑖𝑗𝜅𝑚
𝑓

𝛾𝜅𝛼 × 𝜎 + 𝑢𝑆
𝑓
𝐸𝑆 × 𝛿) + 

휇∑𝑃(휉)(𝛤∑∑ ∑ (∑
𝛷𝜅𝑁𝜅휄𝜅𝐷𝑖𝑗

𝑆𝑟
𝑔𝑖𝑗𝜅𝑚
𝑠𝑟 (휉)

𝑟

+𝑊𝜅𝑥𝑖𝑗𝜅𝑚
𝑠 (휉)𝛾𝜅𝛼𝐷𝑖𝑗

𝑖,𝑖,𝑖≠𝑗𝑚𝜅𝜉

+∑𝑔𝑖𝑗𝜅𝑚
𝑠𝑟 (휉)

𝑟

𝛽𝜅𝛾𝜅𝐷𝑖𝑗(𝑆
𝑟)2 + 𝑦𝑖𝑗𝜅𝑚

𝑠 (휉)𝛾𝜅𝛼) × 𝜎

+ (𝑢𝑆
𝑠(휉)𝐸𝑆 +∑∑𝑢𝑅𝑛𝑡(휉)𝐸𝑅

𝑛𝑡

) × 𝛿) 

(3.67.iv) 

Subject to: 

Constraints (3.3) – (3.22), (3.27) – (3.34), (3.36) – (3.45), (3.47) – (3.48), (3.50) – 

(3.51) and (53) – (62) and (65) – (66).  

The deterministic version of the model is a variant of the vehicle routing problem 

which is known as NP-hard (Coelho et al., 2012; Dabia et al., 2013). Therefore, our 

model is an NP-hard problem. In our model, a typical instance of the base case (z) had 

63,612 constraints and 23,778 variables including 7,158 integer variable decisions, 

meaning that the optimisation solver (Cplex) is not able to obtain an optimal solution 

in a reasonable running time. This is confirmed in Section 3.6.1 where the majority of 
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the test instances could not reach optimal values. Therefore, the matheuristic algorithm 

was also developed in this chapter to obtain good quality solutions in a reasonable 

computational time. 

3.5 An Iterated Local Search algorithm 

In this section, we present a matheuristic algorithm based on an Iterated Local Search 

(ILS) algorithm and a mixed integer programming for the proposed problem. The ILS 

method is an extension of the classical local search that includes shaking procedure as 

a diversification mechanism (Sabar and Kendall, 2015). ILS is a single solution based 

method that searches in the neighbourhood of the local optimum found by local search 

to generate a new solution instead of restarting completely from another initial solution 

(Cuervo et al., 2014). Although simple, ILS has been an effective method in solving 

optimisation problems (Costa et al., 2012; Cuervo et al., 2014; Vansteenwegen et al., 

2009). We were also motivated to use the ILS algorithm by the fact that its framework 

is very adaptable as we intended to combine it with a mixed integer programming to 

present matheuristic. We first discuss the main components of this algorithm in 

Sections 3.5.1 – 3.5.7, and the outline of the matheuristic algorithm is provided in 

Section 3.5.8. The efficiency of the algorithm is demonstrated using multiple test 

instances in Section 3.6.1. 

3.5.1 Initialisation 

The initialisation procedure is composed of three phases and is presented in 

Algorithm 1 (Figure 3-2). In the first phase, we only focus on constructing routes 

simply to serve the retailers. We relax the heterogeneous fleet assumption and assume 

that each retailer is visited by a single route using the medium duty vehicle, 휂2 = 𝑁. 

In other words, a retailer i is served with vehicle 휅𝑖, 휅 = 2 and 𝑖 = 1, . . . , 𝑁. Then, in 

the second phase, we use a modified model presented in Section 3.4 (model z) in which 

the routing variables are fixed and considered as the parameters of the model (see 

Appendix D). The modified model is solved using Cplex to determine the quantity 

delivered to the retailers. In the third phase, routes are re-built to serve retailers with 

heterogeneous fleet. This phase focuses on routing decisions and uses the delivered 

quantities obtained from the second phase as input parameters. In this phase, the first 

retailer is randomly selected and assigned with a vehicle with a consideration of the 

vehicle's capacity. Then a next retailer will be randomly selected and inserted into the 

best position in the route. If no feasible insertion can be found, the retailer is assigned 
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with a next available vehicle. The procedure is repeated until all retailers have been 

assigned with available vehicles. 

 

Figure 3-2:The initialisation procedure 

3.5.2 Swap procedure within the same route 

In this procedure, a classical swap procedure is implemented under a best 

improvement strategy. This procedure seeks to improve the solution's cost by 

exchanging the positions of the retailers visited in the same route. Let 𝑛1be the number 

of visited retailers on route κ. The procedure starts from retailer i, 𝑖 < 𝑛1, and exchange 

its positions with another retailer j, 𝑗 < 𝑛1,. All possible exchanges are evaluated for 

retailer i, and then the best one is implemented. This procedure is repeated for all 

retailers over all routes. The search is stopped whenever the swapping offers no 

additional improvement. 

3.5.3 Swap procedure between routes 

This procedure follows the classical swap procedure which is executed under a best 

improvement strategy. In this procedure customer i from route 휅1exchange with 

customer j from route 휅2 considering the vehicles' capacity. The procedure generates 

all possible combinations of i and j between each pair of routes, and the best feasible 

one is implemented. In contrast to the previous swap procedure, this procedure may 

provide unfeasible solutions due to the vehicles' capacity. The procedure stops when 

no additional improvement is found. 
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3.5.4 𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏 −  𝑰𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏𝟏 

The aim of this procedure is to improve the solution by re-positioning the retailers 

on route κ. This procedure extracts a visited retailer from its location on route κ and 

re-insert it into the first best position on the route that leads to an improvement in the 

solution quality by decreasing the visiting cost. If an extracted retailer cannot provide 

any improvement by inserting in any new position, it is reverted to its original position 

and a new retailer is evaluated. The procedure is repeated until no improvement is 

found. During this procedure, the sequence of the visited retailers may change on each 

route. 

3.5.5 𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏 −  𝑰𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏𝟐 

The goal of this procedure is to improve the solution by re-positioning retailers on 

another existing route or building a new route. This procedure follows the same idea 

of the 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 −  𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛1 procedure with a difference that the extracted retailer 

is inserted into the best feasible position on an existing route or assigned to an empty 

vehicle with a consideration of the vehicle's capacity. In this procedure, if the re-

positioning of the extracted retailer cannot lead to any improvement in the solution 

quality, it is inserted back to its original position and a new retailer is evaluated. This 

procedure may provide unfeasible solutions due to the vehicles' capacity. The 

procedure stops when no additional improvement is found. 

3.5.6 Routes integration 

The goal of this procedure is to improve the solution by best utilising the vehicles' 

capacity through routes integration. We categorise the solution into the sets that 

include two or three routes in each period. As an example, suppose that we have three 

routes (휅1, 휅2and 휅3), to serve the retailers at the first period. This procedure creates 

sets including all possible combinations of two or three routes, i.e., (휅1, 휅2), (휅1, 휅3), 

(휅2, 휅3) and (휅1, 휅2, 휅3). Then the procedure explores the possibility of the routes 

integration within each set. In other words, if the total quantity delivered to retailers 

visited in each set is less than the maximum vehicle capacity, the routes integration 

will be feasible. In this procedure, all possible integration are evaluated and then the 

best one is implemented. The procedure is repeated until no improvement is found. 

3.5.7 Shaking procedure 

To abstain stopping at local optimum, we present two shaking procedures as follows: 

Shaking1: Let 𝑆1 be all sub-solutions including the sub-solution of the first period 

and the sub-solutions of Ξ scenarios in the second period, 𝑆1 = {0,1, … , 𝛯} where 0 
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represents the sub-solution of the first period and the rest of them represent the sub-

solutions of scenarios in the second period. The procedure starts with 𝑆1 = 0 and 

removes the corresponding sub-solution, i.e., the procedure destroys the routes in the 

sub-solution. Then we use a modified model to re-build new routes for the 

corresponding period or scenario and update the quantity delivered to retailers. In the 

modified model, we use the model presented in Section 3.4 (model z) in which all 

routing variables, except routing variables related to the corresponding period or 

scenario, are fixed as parameters. We solve then the modified model using Cplex to 

re-build an optimal sub-solution for the targeted period or scenarios, and update the 

quantity delivered to retailers in the whole solution. The procedure is repeated until 

𝑆1 ≤ 𝛯. If the best solution is improved during this procedure, the procedure starts 

again from 𝑆1 = 0. Hence, the number of times that this procedure is repeated is not 

constant in algorithm iterations. 

Shaking1: A retailer is randomly selected and extracted from the solution, from all 

sub-solutions in the first and second periods. The solution is updated after extracting 

the selected retailer and is called solution1. We use a modified model to re-insert the 

selected retailer in the best position, i.e., the position with the minimum extra insertion 

cost, on routes in solution1. The modified model uses the model presented in Section 

3.4 (model z) in which the values of routing variables not related to the selected retailer 

(e.g, 𝑥𝑖𝑗𝜅𝑚
𝑓

, 𝑖, 𝑗 ≠ the selected retailer) and not included in solution1 are set to zero. 

However, the values of other routing variables are determined by the modified model. 

We illustrate this with an example in which there are 3 retailers serving by two routes. 

First a retailer is selected randomly (say, retailer 2) and extracted from the solution. 

Suppose that the solution includes the following routes 휅1 = (0,1,2,0), and 휅2 =

(0,3,0). As a result of the extraction, solution1 includes the following routes 휅1 =

(0,1,0), and 휅2 = (0,3,0). Second, the modified model is used to re-insert retailer 2 in 

the best position on the routes in solution1. To do so, the following routing variables, 

𝑥13𝜅1, 𝑥31𝜅1, 𝑥13𝜅2and 𝑥31𝜅2are set to zero in the modified model. Then, the modified 

model is solved using Cplex to determine the optimal position of the selected retailer 

on the routes to build new routes accordingly. The quantity delivered to retailers are 

also updated in the whole solution. 
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3.5.8 The matheuristic algorithm 

This section describes the matheuristic algorithm that we have developed based on 

an Iterated Local Search and a mixed integer programming to solve the proposed 

problem. Matheuristics are a kind of heuristic methods that make use of a mathematical 

programming model inside a heuristics framework to obtain a good quality solution 

(Bertazzi et al., 2016). They have been successfully implemented in different 

optimisation problems (e.g., Hemmati et al. (2016); Fonseca et al. (2018); Ghiami et 

al. (2019)). 

The pseudocode of the proposed algorithm is presented in Algorithm 2 (Figure 3-3). 

The algorithm starts from an initial solution generated by using the initialisation 

procedure in Section 3.5.1 (lines 1-4 in Algorithm 2). Then the algorithm is executed 

repeatedly to improve the initial solution by randomly selected a shaking procedure 

from Section 3.5.7 followed by local search procedures presented in Sections 3.5.2 – 

3.5.6 (lines 5-21 in Algorithm 2). In each iteration, if the initial solution is improved, 

it is updated (lines 14-20 in Algorithm 2). The algorithm stops after a number of 

consecutive repetitions (Iter) without improvement or the time limitation is met. 
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Figure 3-3:The structure of our matheuristics algorithm 

3.6. Computational results 

The aim of this section is fourfold: 1) to evaluate the efficiency of the matheuristic 

algorithm, 2) to demonstrate the application of the model formulated in Section 3.4 

using a real-world case study, 3) to analyse the impact of using heterogeneous fleet on 

economic and environmental aspects, 4) to conduct sensitivity analyses for some 

parameters and provide managerial insights in order to make cost-effective and 

environment-friendly decisions. We use a real-world case study in the state of 

Queensland in Australia to evaluate our proposed model from a practical aspect due to 

the long distances between production and consumers’ sites and high energy 

consumption of cold supply chain operations in this region (Jutsen et al., 2017; 

MacGowan, 2010; Tasman, 2004). We evaluate the performance of the matheuristic 

algorithm using test instances in multiple sizes in Section 3.6.1. Due to the uncertain 

nature of demand, Monte Carlo sampling approach is used to generate a suitable 

scenario size to evaluate the model from a practical perspective in Section 3.6.2. The 
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case description and numerical experiments are presented in Sections 3.6.3 and 3.6.4, 

respectively. Section 3.6.5 presents the impact of using heterogeneous fleet on the 

economic and emissions costs. The sensitivity analyses for parameters are conducted 

in Section 3.6.6. Finally, managerial insights are presented in Section 3.6.7. 

3.6.1 Analysing the performance of the proposed algorithm 

In this section, we perform computational tests to evaluate the efficiency of the 

proposed algorithm. We generate test instances with multiple sizes using real data of 

the case study presented in Section 3.6.3. We compare the performance of the proposed 

algorithm with results obtained from commercial optimization solver (Cplex) within 

time limit of 7200 s per instance. The proposed algorithm presented in Section 3.5.8 

was implemented in Visual Studio C++ and Cplex 12.3 was used to solve the modified 

mathematical models within the algorithm. All experiments were coded on an Intel i7 

CPU with a 3.6 GHz processor and 16 GB RAM. Before presenting the results of 

algorithm, the main parameter of the algorithm (Iter) was carefully tuned as it impacts 

on the quality of the solution and computational time. To tune Iter, one-third of the 

instances of various sizes have been selected as the test instances. Without loss of 

generality, we assume different values for Iter (e.g., 50, 100, 150 and 200). Then, the 

algorithm was run ten times for each value on the test instances. The results revealed 

that the best value for Iter is 100 measured by the average optimality gap and CPU 

time. This experiment indicated that changing Iter from 100 to 150 or 200 leads to an 

increase in the run time with no significant improvement in the quality of the solution. 

To evaluate the proposed algorithm, 40 instances in small and medium sizes were 

generated using real data of the case study. Each instance is labeled “Data-s-n” where 

“s” represents the total number of scenarios and “n” the total number of retailers. Table 

3-5 summarises the results for 40 instances containing up to 65 scenarios and 6 

retailers. The column labeled “Cplex”, gives the best solution obtained using 

commercial optimisation solver (Cplex). The proposed algorithm was run ten times 

for each instance and the results are reported in the last five columns including average 

solution, standard deviation, best solution, worst solution and average running time for 

each instance. 

Table 3-5:Performance of the Matheuristic algorithm on small and medium size instances 

Ins. Cplex 

Matheuristic 

Ave. 

solution 

Standard 

deviation 

Best 

solution 

Worst 

solution 

Ave. time 

(s) 

Data-5-3 2111.88* 2,111.88 0 2,111.88 2,111.88 9.33 
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Data-5-4 3271.05* 3271.05 0 3271.05 3271.05 16.50 

Data-5-5 4,635.14 4,635.14 0 4,635.14 4,635.14 37.44 

Data-5-6 13,282.59 13,282.59 0 13,282.59 13,282.59 200.00 

Data-10-3 2,173.24* 2,173.24 0 2,173.24 2,173.24 11.70 

Data-10-4 3,193.60 3,193.60 0 3,193.60 3,193.60 31.97 

Data-10-5 4,713.39 4,713.39 0 4,713.39 4,713.39 68.41 

Data-10-6 13,033.29 13,028.37 0 13,028.37 13,028.37 251.75 

Data-15-3 2,380.98 2,365.81 7.97 2,361.87 2,380.90 17.41 

Data-15-4 3,353.71 3,353.71 0 3,353.71 3,353.71 41.47 

Data-15-5 4811.80 4,809.16 1.44 4,807.60 4,811.80 88.24 

Data-15-6 12,887.92 12,885.29 0.60 12,885.1 12,887.01 341.73 

Data-20-3 2,520.65 2,390.57 9.95 2,379.00 2,398.28 24.18 

Data-20-4 3,432.47 3,432.47 0 3,432.47 3,432.47 65.86 

Data-20-5 4,821.73 4,817.57 2.11 4,815.63 4,820.53 125.07 

Data-20-6 12,996.58 12,981.15 1.52 12,980.43 12,984.00 522.67 

Ave. 5,851.25 5,840.31 1.48 5,839.07 5,842.38 115.86 

Data-40-3 2,771.37 2,455.15 27.24 2,455.15 2,546.85 59.09 

Data-40-4 3,544.32 3,450.29 7.88 3,444.05 3,461.22 169.50 

Data-40-5 5,003.01 4,939.88 4.63 4,935.74 4,947.64 308.62 

Data-40-6 13,191.22 12,951.17 2.10 12,948.68 12,955.92 1,059.66 

Data-45-3 2,769.37 2,441.56 9.90 2,434.75 2,457.09 74.69 

Data-45-4 3,473.07 3,387.15 3.64 3,384.62 3,395.48 204.38 

Data-45-5 4,890.88 4,889.15 1.02 4,888.33 4,890.88 414.31 

Data-45-6 12,870.60 12,709.80 3.73 12,706.30 12,715.87 1,204.58 

Data-50-3 2,787.34 2,490.80 20.20 2,481.85 2,545.71 91.15 

Data-50-4 3,541.63 3,458.72 4.54 3,452.03 3,466.88 212.57 

Data-50-5 4,950.26 4,947.80 1.48 4,946.58 4,949.75 448.00 

Data-50-6 12,941.92 12,799.11 3.10 12,795.64 12,803.52 1,502.79 

Data-55-3 2,734.09 2,478.84 27.34 2,461.22 2,551.99 86.49 

Data-55-4 3,515.23 3,440.98 4.31 3,434.62 3,448.03 237.12 

Data-55-5 4,920.91 4,916.20 1.63 4,913.81 4,918.37 509.91 

Data-55-6 13,309.93 12,761.47 5.11 12,757.56 12,771.15 2,120.22 

Data-60-3 2,790.10 2,546.03 10.36 2,527.99 2,563.98 106.75 

Data-60-4 3,599.88 3,517.16 4.59 3,512.39 3,527.19 306.40 

Data-60-5 4,980.57 4,976.57 2.10 4,974.39 4,980.29 561.70 

Data-60-6 13,260.34 12,812.17 2.40 12,808.97 12,815.39 2,220.89 

Data-65-3 3,478.42 3,243.66 13.73 3,236.99 3,269.76 116.34 

Data-65-4 4,642.97 4,549.68 4.11 4,543.43 4,555.15 296.28 

Data-65-5 6,755.82 6,751.29 1.88 6,747.89 6,753.42 585.66 

Data-65-6 13,042.71 12,818.46 2.03 12,817.61 12,823.88 2,338.37 

Ave. 6,240.25 6,073.01 7.04 6,067.11 6,088.15 634.81 

Global 

Ave. 
6,084.65 5979.93 4.82 5,975.89 5,989.84 427.23 

* The obtained solutions are optimal. 
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In Table 3-5, the running times for Cplex are not reported as the time limit of 7200 

s has been reached for most of the instances. On these instances, Cplex is able to prove 

optimality for only 3 of the 40 instances within the time limit. As can be seen from 

Table 3-5, in 31 instances the matheuristic algorithm, on average, generated better 

solutions than Cplex. In 9 instances, the two approaches produced the same solutions. 

In general, the matheuristic algorithm was able to find a good solution faster than 

Cplex. The results show that the performance of the matheuristic algorithm is more 

robust as the standard deviation of solutions across ten runs is smaller than the standard 

deviation from average solution and that found by Cplex. We also generated 12 larger 

instances containing up to 65 scenarios and 10 customers. Table 3-6 summarises the 

results for the larger instances. For these 12 instances the performance of the proposed 

matheuristic algorithm is superior to that of Cplex. The algorithm leads to 54.33% 

improvement, on average, in the best solution obtained by Cplex. The performance of 

the solution is also stable on the larger instances as the standard deviation of average 

solution and that found by Cplex is greater than the standard deviation of solutions 

found by the matheuristic algorithm across ten runs. As can be observed from the 

results, increasing in the size of the problem may not always lead to an increase in the 

running time of the algorithm, as its structure is governed by a randomness mechanism. 

Moreover, in the proposed algorithm, the number of times which shaking1 is repeated 

may be different in algorithm iterations for each instance, as 𝑆1re-starts from zero if 

the procedure leads to an improvement in the best solution. 

Table 3-6:Performance of matheuristic algorithm on large size instances 

Ins. Cplex 

Matheuristic 

Ave. 

solution 

Standard 

deviation 

Best 

solution 

Worst 

solution 

Ave. time 

(s) 

Data-50-8 9,413.85 8790.81 11.51 8,782.11 8,822.40 3,913.31 

Data-50-9 15,119.22 8,989.58 11.66 8,976.13 9,010.64 4,083.79 

Data-50-10 23,736.23 9,932.10 106.45 9,864.97 10,199.41 3,980.58 

Data-55-8 9,694.77 8,790.64 3.65 8,783.21 8,795.98 4,319.59 

Data-55-9 10,676.35 8,973.51 6.06 8,964.66 8,981.01 4,591.06 

Data-55-10 18,583.32 9,933.97 115.93 9,883.42 10,255.86 4,604.49 

Data-60-8 13,066.86 8,814.18 4.67 8,808.31 8,820.55 5,225.99 

Data-60-9 19,176.27 9,040.19 17.07 9,015.97 9,064.02 5,002.93 

Data-60-10 25,634.95 9,912.50 27.65 9,850.64 9,942.13 4,803.97 

Data-65-8 15640.86 11,818.85 37.88 11,776.51 11,865.91 5,447.67 

Data-65-9 12,689.18 8,968.68 7.60 8,953.26 8,984.14 5,587.15 

Data-65-10 80,167.28 11,843.2 235.70 11,530.39 12,119.36 5,604.32 

Ave. 21,133.26 9,650.69 48.82 9,599.13 9,738.45 4,763.74 
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3.6.2 Monte Carlo sampling approach 

Using a scenario-based approach to deal with uncertainty in an optimisation model 

generates a significant challenge due to the need to select an appropriate scenario 

sample size to balance the effort between optimisations and estimation. Due to demand 

uncertainty and the variability in solutions, it is crucial to determine the size of the 

scenario to absorb these variabilities and to avoid time-consuming computations. In 

this chapter, a Monte Carlo sampling approach is applied to cope with demand 

uncertainty. This method is suitable to solve a model involving attributes such as 

expectations and probabilities that cannot be valued exactly (Homem-de-Mello & 

Bayraksan, 2014). 

Once a statistical distribution is defined for the demand, various scenario sample 

sizes can be generated using a Monte Carlo sampling approach. The in-sample and 

out-of-sample stability and computational efforts are executed to identify a desirable 

scenario sample size. The in-sample stability measures the variability of the objective 

function among different scenarios in the same scenario sample size. The out-of-

sample stability considers the variability of objective function observed among various 

independent scenario sample sizes (Kaut and Wallace, 2007; Dillon et al., 2017).  

We created a simple instance, considering the proposed base case model (z) in 

Section 3.4 and the most parameter values used in Section 3.6.3 to perform the stability 

of the tests. In order to conduct tests, we generated the sample sizes of 16 scenarios, 

ranging from 5 to 80 with an increment of 5. For each scenario, 20 replications were 

performed. Figure 3-4 illustrates the average and the standard deviation of the optimal 

objective function for all replications, and the average and standard deviation of the 

optimal objective function for each scenario within a given size. As can be observed 

from both plots, the average and standard deviation of the objective function 

converged after 65 scenarios. Hence, we can conclude that choosing 65 scenarios is 

reasonable in terms of stability measurements. 
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(a) Out-of-sample stability      (b) In-sample stability  

Figure 3-4:Scenario sample stability for determining reliable scenario size 

3.6.3 Description of the case study 

The need for Australia to use decision support tools for minimising operational and 

emissions costs simultaneously can be justified due to the geographical dispersion and 

subsequent road length as well as energy consumption of transportation and storages 

in the Australian cold supply chain. We apply the proposed model in Section 3.4 to a 

real-world case study for distributing perishable products from the region of 

Toowoomba (an agricultural region in the state of Queensland in Australia) to the 

retailers in its surrounding areas. 

Toowoomba is 120 km west of Brisbane, the capital city of the state of Queensland 

and the largest non-capital inland city in Australia. Toowoomba is situated at the 

junction of main national highways. Toowoomba was identified by Australian 

government agencies and industry as a potential agricultural distribution centre of 

perishable products due to its strategic location, and excellent transport connectivity 

(Zhang and Woodhead, 2016). Therefore, we used Toowoomba as the supplier in our 

research that distributes a single type of cold item to retailers. We assume surrounding 

cities/towns: namely, Brisbane, Gold Coast, Sunshine Coast, Ipswich, Warwick and 

Beaudesert as retailers in our research. The logistics network consisting of the 

locations of supplier and retailers is presented in Figure 3-5. 

 

(a) Australia              (b) The selected region 

Figure 3-5:The logistics network for the case study 
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We also assume that heterogeneous vehicles are used to distribute the cold product 

from the supplier to all retailers. We consider two different vehicle types, light and 

medium duty vehicles. As the data regarding the characteristics of vehicles are not 

available, the parameters used to calculate the fuel cost of each type of vehicle are 

taken from previous research and are summarised in Tables 3-7 and 3-8. It should be 

noted that, these data are associated with normal (unrefrigerated) vehicles. 

Refrigerated vehicles consume more energy consumption and have higher carbon 

emissions because of extra fuel requirements for cooling (Stellingwerf et al., 2018a). 

The data associated with the exact fuel consumption of refrigerated vehicles cannot be 

computed easily as it is influenced by several factors such as temperature. For the sake 

of simplicity, we increase the fuel consumption by 20% to account for the further fuel 

consumption required by refrigeration vehicles. 

We considered speed as a fixed parameter over all routes in our real-world case study 

as we focused on rural distribution across the State of Queensland, Australia which 

has similar road conditions. The cold supply chain participants should normally 

observe the speed limits set by the government. Speed limits are enforced by laws, and 

clearly indicated in traffic signs across roads. We set a speed parameter in such a way 

that satisfies all speed standards across the roads in our case study. While factors such 

as traffic conditions and disasters may also impact the speed of vehicles, these 

problems are rare in the case study considered. It is, therefore, logical and sufficient to 

consider speed as a fixed parameter in our case study. We used a big-M to create some 

constraints in our modelling. The value of the M can impact on the performance of the 

model. The value of M has been determined in such a way that could cover the relevant 

constraints and was set tomax {𝑁,max{𝑂𝜅 × 𝐷𝑖𝑛} , max{𝐷𝑛(휉), ϒ}. Based on our case 

study data, the M value was taken as max{𝑂𝜅 × 𝐷𝑖𝑛}. 

Table 3-7: Definition of vehicle specific parameters 
Notation Description  Light duty Medium duty 

𝑊𝜅 Curb weight 3500 6550 

𝑂𝜅 The capacity of vehicle 2580 (258 unit) 5080 (508 units) 

𝐹𝜅 Fixed cost of vehicle 74.19 106.62 

𝛷𝜅 Engine friction factor 0.25 0.2 

𝑁𝜅 Engine speed 38.34 33 

휄𝜅 Engine displacement 2.77 5 

𝐶𝑑𝜅 Coefficient of aerodynamics drag 0.6 0.7 

𝐴𝜅 Frontal surface area 7 9 

Source: Koc et al. (2014) and Cheng et al. (2017) 
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Table 3-8:Definition of vehicle typical parameters 

Notation Description  Value 

τ Fuel-to-air mass ratio 1 

g Gravitational constant (m/s2) 9.81 

𝜌 Air density (kg/m3) 1.2041 

𝐶𝑒 Coefficient of rolling resistance 0.01 

ω Efficiency parameter for diesel engines 0.45 

𝜙𝐹 Unit fuel cost (AU$/L) 1.46 

휇 Unit 𝐶𝑂2emissions price (AU$/kg) 0.44 

𝜎 𝐶𝑂2 emitted by unit fuel consumption (kg/L) 2.669 

𝜑 Heating value of a typical diesel fuel (kJ/g) 44 

𝑆 Speed (km/h) 60 

ψ Conversion factor (g/s to L/s) 737 

휁𝜅 Vehicle drive train efficiency  0.4 

The emissions (in kg per 100 km) generated by the two types of refrigerated vehicles 

are shown in Figure 3-6. Figure 3-6 demonstrates the impacts of two important factors, 

travel speed and payload, on the emissions. It can be seen that refrigerated vehicles 

generate high emissions in low speed values as a result of inefficiency in fuel 

consumption. The amount of emissions decreases with the increase in speed until a 

certain level, after which it goes up again with the increase in speed because of the 

aerodynamic drag. Figure 3-6 also shows the impact of payload on the resulting 

emissions. 

 

Figure 3-6:Emissions per 100 km depending on speed with different payload settings 

In our models, we take vehicle load, speed and distance travelled into account when 

calculating associated fuel cost. For the distance measure, we considered the centre of 

Toowoomba as the supplier point. We also aggregated retailers in each city/town and 

considered the centre of each city/town as the retailer point. The distance between 
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nodes is then estimated using Google Maps and given in Table 3-9. The proposed 

model is a general model which is not limited to any special statistical distribution as 

a distribution function is only used to generate demand scenarios. The realistic data 

presenting the daily demand of the retailers for a cold product was generated by a 

Poisson distribution, in accordance with Schmidt and Nahmias (1985), Berk and 

Gürler (2008), and Olsson and Tydesjö (2010). As the demand of each city/town 

differs significantly, we use different mean values to generate retailer point's demand. 

In this study, the scenario size was determined using Monte Carlo sampling approach 

presented in Section 3.6.2. As discussed above, a sample of 65 scenarios was used. 

Table 3-9:Distances between nodes in the case study, in km 
 T W I BD GC SC B 

Toowoomba (T) 0 - - - - - - 

Warwick (W) 83.8 0 - - - - - 

Ipswich (I) 89.6 118 0 - - - - 

Beaudesert (BD) 160 122 68.4 0 - - - 

Gold Coast (GC) 175 177 92.9 55.3 0 - - 

Sunshine Coast (SC) 219 259 146 175 177 0 - 

Brisbane (B) 121 158 44.5 70 71.9 105 0 

A unit cold product refers to a packaging unit, which could be a box or a pallet. It is 

assumed that one packaging has 𝜗 = 10 kg weight and occupies a volumetric space of 

volume= 0.15 m3. At the supplier end, medium sized refrigeration units are used with 

a storage capacity of 20 m3each (or equivalently 𝐶𝑆=133 units of the cold item). We 

consider a refrigeration system with single stage recuperating compressors and 

evaporative condensers for storing a cold item at both the supplier and retailers. The 

energy consumption of such refrigeration system type is 57.6 kWh/year/ m3 (James 

and James, 2010). 

Hence, the total energy consumed by each refrigeration unit at the supplier is 

57.6 ×  20 = 1152 kWh/year (or equivalently 𝐸𝑆 = 3.156 kWh/d. At a retailer, a 

smaller size of the same type refrigeration units is utilised with a storage capacity of 

10 m3 each (or equivalently 𝐶𝑅=66 units of the cold item). Hence, in the same way, the 

energy consumption by one refrigeration unit at a retailer is 57.6 ×  10 = 576 

kWh/year (or equivalently 𝐸𝑅 = 1.58 kWh/d). 

Since the energy cost varies across the level of consumption and countries, we 

assume the cost to be AUD 0.0928 per kWh. The total carbon emissions per 1 kWh of 

energy consumption by each refrigeration unit is assumed to be  6.895 × 10−4 

tons/kWh  (or equivalently 𝛿 = 6.895 × 10−7 kg/kWh) (Hariga et al., 2017). The 
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available quantity of cold product at the supplier facility was assumed to be Q=1200 

units in each period and we also assume that the maximum storage capacity at a retailer 

is ϒ=200 units. The holding cost at the supplier and a retailer are assumed to be 𝐻𝑆 =

𝐴𝑈𝐷10 and 𝐻𝑅 = 𝐴𝑈𝐷15 per packaging unit of cold product per day respectively. 

We consider shortage as lost sales and its cost is set to be 𝜋 = 𝐴𝑈𝐷100per packaging 

unit of cold product. 

3.6.4 Numerical example and analysis 

In this study, we explore the trade-off between logistics operational costs and 

emissions in the cold supply chain and the benefits of accounting for carbon tax 

regulation and using a heterogeneous fleet on the proposed framework. We focused on 

the following KPIs: (i) emissions costs that consist of emissions from transportation 

and inventory, (ii) storage costs that consist of holding and refrigeration costs, (iii) 

transportation costs that include fixed and fuel costs, (iv) cost of lost sales, and (v) 

total cost. In order to evaluate the effects of the parameters on the KPIs, sensitivity 

analyses were performed for the carbon price, distance and vehicle speed. In addition, 

the benefits of applying heterogeneous vehicles were examined. 

We report the optimal configurations of the first-stage decision variables and optimal 

expected values of the objective functions of the base case model (z) in Figure 3-7 and 

Table 3-10, respectively. The optimal solution of the first-stage includes three routes: 

the first route includes Toowoomba, Warwick and Toowoomba; the second one 

includes Toowoomba, Ipswich, Beaudesert, Gold Coast and Toowoomba; and the third 

route visits Toowoomba, Brisbane, Sunshine Coast and Toowoomba. Light duty 

vehicle is used in the first route, while the other two routes are traversed by medium 

duty vehicles. Vehicles' capacity utilisation is 57.36%, 98.03% and 78.34% in the first, 

second and third routes at the first-stage, respectively. 

Table 3-10:Optimal values of the objective functions under the base case model in AUD 
Inventory cost Transportation cost Emissions cost Lost sale cost Total cost 

7980.15 1741.42 978.53 2117.50 12817.61 
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(a) The general view of optimal routes  

 

 

(b) Unique view of optimal routes 

Figure 3-7:The general and unique views of the optimal routes at the first-stage under the base case model 

To evaluate the behaviour of the extended model 𝑧𝑣we implemented it in the case 

study and compared the results with those obtained from the base case model (z). The 

optimal configuration of the first-stage is similar to that obtained by the base case 

model; however the optimal expected values of the objective functions are lower. It 

appears that better economic and environmental results can be achieved with flexible 

speed. The optimal expected values of the objective functions of the extended model 

are summarised in Table 3-11. 

Table 3-11:Optimal values of the objective functions under the extended model in AUD 
Inventory cost Transportation cost Emissions cost Lost sale cost Total cost 

7995.26 1578.72 848.46 2105.18 12527.62 

As can be observed from the results, the vehicles tend to travel at the lowest speed 

level, 40 km/h, to reduce transportation costs and emissions costs as a result of a 

reduction in fuel consumption. The total emissions generated, and the total cost 

decreased by around 13.29% and 2.26%, respectively, compared to the results obtained 

under the fixed speed. 

Figure 3-8 presents the frequency of the optimal quantities delivered to each 

city/town under 65 scenarios in the second-stage. It can be seen that in the second-
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stage, in 35.38% of the scenarios the amount of quantities delivered to Warwick is in 

the range of 80-100 pack of cold item, and in 12.3% of the cases it is more than its λ; 

in 40% of the scenarios the amount of quantities delivered to Ipswich falls within the 

range of 110-140 pack of cold item, and in 16.9% of the cases is more than its λ; for 

Beaudesert, in 56.9% of the scenarios the amount of quantities delivered is less than 

80, and in 80% is less than its λ; in 37% of the scenarios the amount of quantities 

delivered to Gold Coast falls in the range 170-200 pack of cold item, and 26.1% of the 

cases is more than its λ; in more than half of the scenarios the amount of quantities 

delivered to Sunshine Coast and Brisbane falls in the range 130-160 and 210-240 pack 

of cold items, respectively, and in 12.3% and 40% of the cases it is more than their λs 

respectively. The optimal solution of the second-stage includes 26 various routes under 

65 scenarios. Figure 3-9 indicates that in the 23.07% of the scenarios, the optimal 

solution construction in the second-stage includes two routes which are traversed by 

medium duty vehicles. 

 

 

Figure 3-8:Frequency distribution of optimal quantity in the second-stage 

 

Figure 3-9:Optimal solution construction for 23.07% of scenarios in the second-stage 
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In our case study, as the cold supply chain participants had access to refrigeration 

systems greater than their requirements, providing additional refrigeration systems is 

not a significant issue. However, energy consumption of these refrigeration systems is 

still a substantial problem. Despite the fact that the number of refrigeration system is 

high enough to satisfy the requirements of each participant of the chain, different fixed 

costs for refrigeration systems at the supplier and retailers are assumed to explore the 

impact of the fixed cost of refrigeration systems on the total cost of the chain. The 

fixed cost of refrigeration systems at the supplier and retailers are assumed to be 

AUD1500/year (or equivalently 𝐹𝑆 = 𝐴𝑈𝐷4.1/𝑑𝑎𝑦) and AUD1000/year (or 

equivalently 𝐹𝑅 = 𝐴𝑈𝐷2.74/𝑑𝑎𝑦), respectively. It contains the cost of having an 

additional refrigeration system, including its installation. Adding the fixed cost of 

refrigeration systems into the base case model would increase the total cost by 1.26%. 

3.6.5 Impact of a heterogeneous fleet 

In this section, we analyse the benefits of applying a heterogeneous fleet to optimise 

the total cost under the base case model over a homogeneous one. We have conducted 

experiments by using a heterogeneous fleet (i.e. both light and medium duty vehicles) 

and a single unique vehicle type (i.e. only light or medium duty vehicle). Table 3.12 

represents the result from the comparisons. In Table 3.12, the “Gap” refers to the 

differences, in percentage, between the status in which a heterogeneous fleet is used 

and that when a single unique vehicle type is used. Table 3.12 demonstrates that using 

a heterogeneous fleet renders more benefits in reducing both economic and emissions 

costs. Compared to the case where a single unique vehicle type is used, the use of 

heterogeneous vehicles can decrease the total cost by almost 2.28% and 1.88%, 

respectively. Using a heterogeneous fleet can also reduce the emissions cost by about 

4.90% and 9.43% compared with the cases where only light duty or medium duty 

vehicle is used. 

The results suggest when a homogeneous fleet is used, it is desirable to use the 

medium duty vehicles from the economic point of view, however, in terms of 

environmental impacts, the light duty vehicles are preferred. Under the travel distance 

objective, the results imply that using medium duty vehicles is preferable as this can 

be led to the minimisation of the average distance travelled. In Table 3-12, we also 

present the range of capacity utilisation of the vehicle fleet for both heterogeneous and 

homogeneous cases. The average capacity utilisation in the first stage reaches a 
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maximum level of 81.07% when only the light duty vehicle is used, while it reaches a 

minimum level of 68.5% when only the medium duty vehicle is used. 

Table 3-12:Impact of using a heterogeneous fleet on various costs 
 Heterogeneous 

fleet 

Only light 

duty 

Only medium 

duty 

Only light 

duty 

GAP (%) 

Only medium 

duty 

GAP (%) 

Inventory cost (AUD) 7980.15 7988.86 7980.15 -0.11 0.00 

Transportation cost (AUD) 1741.42 1963.20 1884.78 -11.30 -7.61 

Lost sale cost (AUD) 2117.5 2135.98 2117.50 -0.87 0.00 

Emissions cost (AU) 978.53 1028.93 1080.46 -4.90 -9.43 

Total cost (AUD) 12817.61 13116.97 13062.89 -2.28 -1.88 

Range of capacity utilisation 

in the First-stage (%) 
57.36-98.03 74.4-99.22 29.13-99.6 - - 

Average loading rate in the 

first-stage (%) 
77.91 81.07 68.50 - - 

Average total travel distance 1017.72 1434.88 1000.68 - - 

3.6.6 Sensitivity analysis 

This section analyses the impact of changing parameters on the costs and 

𝐶𝑂2emissions with the base case model (z) used as a benchmark. Sensitivity analyses 

are conducted with changes in unit emission price, distance and vehicle speed. 

3.6.6.1 Impact of changes in unit emissions price 

This section analyses the impact of unit emissions price on total cost and 

𝐶𝑂2emissions. Figure 3-10 indicates that overall the emissions trend experiences a 

reduction pattern with the increase in the unit emissions price, while the total cost 

increases steadily. If there were no carbon tax regulation (unit emission price=0), the 

system would emit the maximum emissions. However, increasing the unit emissions 

price does not always lead to an environmental improvement as carbon emissions 

reductions involve substantial economic costs. For instance, with an increase in the 

unit emissions price from 0.88 (AUD/kg 𝐶𝑂2) to 2.2 (AUD/kg 𝐶𝑂2), the emissions 

level remains almost unchanged, but the total cost increases from AUD13,789.51 to 

AUD 16,717.12. 

In our case, the reduction in carbon emissions can be achieved through decreases in 

the number of active refrigeration systems, reduced fuel consumption along the cold 

supply chain or increased investments in cleaner technologies. Unfortunately, the 

reduction of active refrigeration systems by one participant can lead to increased sales 

losses or result in an increased demand for the refrigeration and storage services 

operated by other participants of the chain. In the latter case, the transportation cost 

would increase. On the other hand, the reduction of transportation emissions may be 
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achieved by using more light duty vehicles. However, using more light duty vehicles 

will not always be the best solution as it may increase the distance travelled and the 

fixed cost due to the increase in transportation frequency. It should also be noted that 

there is also a limitation of the number of available light duty vehicles in our case. 

As can be seen from Figure 3-10, when the unit emissions price increases from 0 to 

0.88 (AUD/kg 𝐶𝑂2), the model suggests that there will be a considerable decrease in 

carbon emissions. However, the extended ranges of the unit emissions prices from 0.88 

(AUD/kg 𝐶𝑂2) to 2.2 (AUD/kg 𝐶𝑂2) do not lead to additional operational 

modifications as any further modifications toward generating lower-emissions are 

likely to incur a substantial increase in relevant operational costs. Similar findings have 

been reported in the literature on traditional supply chains (see, Zakeri et al. (2015); 

Cheng et al. (2017)). Therefore, it appears to be true that a higher carbon price may 

not always lead to lower carbon emissions in many instances, not just specifically for 

this case study. 

Further increases in the unit emissions prices, say, from 2.2 (AUD/kg 𝐶𝑂2) to 2.64 

(AUD/kg 𝐶𝑂2), can lead to a reduction of about only 0.13% in the emissions level. 

However, it has a higher impact on the total cost. That is, the total cost would increase 

by about 5.8%. Therefore, to design an optimal carbon tax policy, it is critical to 

determine the appropriate tax range in which companies are able to decrease emissions 

without incurring a significant increase in the total cost. 

In 2012 the Australian government introduced carbon tax regulations to address 

increasing emissions that are believed to be associated with the global warming and 

climate change problems. However, it was repealed in 2014 by the Liberal 

Government with the excuse that the carbon tax brought high costs to Australian 

companies and households and was ineffective in reducing emissions. The findings of 

this research suggest that it is possible for Australian policy-makers to set an 

appropriate carbon price range to achieve environmental improvements without 

imposing a significant cost on companies and households. 
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Figure 3-10:Impact of unit emission price on the total cost and emissions 

3.6.6.2 Impact of changes in distance 

In this section, we examined the effect of an increase in distances on the costs. Figure 

3-11 indicates the trend of different components of the objective function with an 

increase in the distance. As can be seen, a higher travel distance does not have any 

effect on inventory cost and shortage cost. However, it can lead to an increase in 

transportation costs and emissions costs and, therefore, the total costs. This is not 

surprising since distance is one of the main factors affecting fuel consumption and 

consequently emissions. 

 

Figure 3-11:Impact of distance on different components of objective function 

3.6.6.3 Impact of changes in vehicle speed 

Figure 3-12 depicts the impact of changing the vehicle speed on transportation costs 

and 𝐶𝑂2 emissions. The curves are U-shaped, implying that a very low speed does not 

always lead to a reduction in transportation cost and emissions due to the inefficient 

usage of fuel. The transportation cost and 𝐶𝑂2emissions actually decrease when the 

speed increases from 20 km/h to 30 km/h. However, further increases in the vehicle 
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speed can lead to higher transportation costs and consequently emissions as speed is 

one of the main factors impacting on fuel consumption in our model. Similar findings 

have been reported in the literature on traditional supply chains (see, e.g. Eshtehadi et 

al. (2017)) 

 

Figure 3-12:Impact of vehicle speed on transportation cost and 𝐶𝑂2 emissions 

3.6.7 Managerial insights 

In cold supply chain sector, managing storage and distribution of cold products are 

important due to the high level of energy consumed and consequently emissions 

generated. Thus, we presented an integrated optimisation model that aims to identify 

cost-efficient and environmentally-friendly inventory and routing decisions in the cold 

supply chain. To evaluate the proposed model, a real-world case study was used. The 

results obtained from the case study demonstrate that using a heterogeneous fleet is 

more beneficial from an economic and sustainability perspectives than using a 

homogeneous fleet. Our case study showed that using a homogeneous fleet with only 

light duty vehicles leads to higher transportation costs and emissions costs. This is 

largely due to the increased transportation frequency and travel distance. In contrast, 

when medium duty vehicles are used, total vehicle weight is the main factor that drives 

up transportation cost and relevant emissions costs. 

These observations suggest the following managerial insights. As the energy 

consumption and emissions from transportation operation of cold products are high 

and sensitive to load and distance, company managers involved in the cold supply 

chain should use decision support tools to carefully assess the type of vehicles used 

and the number of vehicles for each type. 

Moreover, the proposed framework in this study can assist the cold supply chain 

participants to optimise the energy consumption of unique processes across the chain. 
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For example, the cold supply chain participants are able to circumvent the difficulties 

of the restrictive energy policy in Australia which often imposes excessive costs on 

the participants involved in the cold supply chain as a result of the energy-intensive 

nature of this sector. 

Another insight from this research is that emissions improvement is not always 

achieved by increasing the carbon price. In our case study, with the increase in the unit 

emissions price from zero, the model modified operations towards the lower-emissions 

configuration that leads to considerable decrease in the emissions costs. However, with 

the continued increase of unit emissions price, the amount of generated carbon 

emissions was almost constant as any further operational modifications to reduce 

carbon emissions caused further increase in operational costs.  

As there has been widespread public debate over the reintroduction of carbon tax in 

Australia, our sensitivity analysis on carbon price can help the policy makers to make 

more informed decisions. For example, they can carefully set appropriate price of 

carbon in order to achieve the environmental goal without significantly damaging the 

short-term economic growth. 

3.7 Summary 

Since cold supply chain operations are energy-intensive resulting in substantial 

increase in 𝐶𝑂2 emissions, adopting sustainable decisions that focus on reducing 

emissions along cold supply chains is a significant consideration for companies and 

governments. This chapter proposed a two-stage stochastic programming model to 

formulate IRP that aims at supporting logistics decisions in the cold supply chain. The 

proposed model simultaneously considers uncertain demand, which was represented 

by a set of discrete scenarios, environmental impacts and a heterogeneous fleet where 

fuel consumption and emissions depend on load, travel distance, speed and vehicle 

characteristics. To reflect the increasing concern of companies towards the 

introduction of carbon emissions regulations, the model was also modified to consider 

the carbon tax regulation. The option of using a two-stage stochastic programming to 

model the problem guarantees the flexibility and reliability of the proposed framework 

in terms of being able to adapt itself to real-world applications. 

We developed a matheuristic algorithm based on Iterated Local Search algorithm 

and a mixed integer programming to solve the proposed problem in an efficient 

computational time. The performance of the matheuristic algorithm was analysed 
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using test instances with various sizes. The results showed that the performance of the 

matheuristic algorithm was robust and better than Cplex. 

In order to evaluate the performance of the model, we used a real-world case study 

to indicate how the proposed model could assist decisions-makers to develop cost-

efficient and environment-friendly replenishment policies and transportation 

scheduling in the cold supply chain. We implemented the proposed framework for the 

case study in the state of Queensland in Australia since it is one of the main producers 

of various cold products. Participants involved in cold supply chains in this area face 

more challenges as a result of geographical dispersion of suppliers and consumers, and 

high energy consumption of cold supply chain operations. Given a statistical 

distribution for the demand uncertainty, scenarios were generated using the Monte 

Carlo approach. Moreover, stability tests were conducted to make sure that the 

scenario size was adequate with reliable representation of the demand. 

The computational experiments indicated that the optimal solution includes the 

combination of different vehicle duties. We observed that it would be possible to 

increase average vehicles’ capacity utilisation from 77.91% to around 84.64 %, on 

average, at the first-stage by removing a third retailer (e.g. Beaudesert) and by adding 

into the first route. However, this does not lead to optimal solution in terms of cost-

efficiency and sustainability-based KPIs, as the energy consumption and consequently 

emissions from cold supply chain operations are highly influenced by load and 

distance. 

We conducted several analyses to provide meaningful insights for practice that could 

improve sustainability of the cold supply chain. We observed that using a 

heterogeneous fleet can generate further potential benefits including cost saving and 

sustainability improvement than using a homogeneous fleet in the cold supply chain. 

Therefore, transport managers can use the proposed framework as a decision support 

tool to control and reduce the environmental impact of transportation operations. 

Moreover, our experiments on unit emissions price identified that a higher emissions 

price does not always result in environmental improvement. This finding may have 

significant value to policy makers, when developing and implementing carbon 

emissions regulations. 

Future research can extend the proposed model in several ways. Interested 

researchers can consider multi-cold products that need various temperature ranges for 

storage as a future research area. Incorporating benefits of cold products to customers 
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and hence changing the objective function from cost minimisation to net benefit 

maximisation would be a natural extension of this research. Considering other 

parameters of the model to be stochastic would be another interesting area for future 

research.  This study did not consider other exact methods or algorithms, which 

constitutes a limitation. Future studies can address this issue by developing an exact 

method such as Dantzig-Wolfe and comparing the results with those produced by the 

Cplex and matheuristic algorithm, which would add value to the literature. Finally, 

exploring the impact of alternative emissions regulations on cold supply chain 

operational decisions would be a potential direction for future studies.
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Chapter 4: Sustainable intermodal meat supply chain: 

Moving cattle from outback Queensland to the Port of 

Brisbane 
 

4.1 Introduction  

Australia is a significant food producer and exports more than 70% of its agricultural 

production (Michael, 2018). It has a strong track record in producing clean and high 

quality food products. In the state of Queensland alone the agricultural sector creates 

more than $15 billion of value each year. In recent years there has been a high demand 

for Australian agricultural products from Asia. Queensland’s south-east region is well 

positioned to take advantage of this growing demand and is set to become a major food 

bowl for Asia given the extensive range of agricultural commodities this region 

produces, including grain, beef, cotton, eggs and horticultural products (Michael, 

2018). 

However, agricultural production in Queensland is spread widely as the area of this 

state is 1.85 million km2. Livestock travels long distances from remote locations to 

slaughtering and processing facilities near large cities and then to the Port of Brisbane 

for export (Woodhead et al., 2016). Rail was the main mode of long-haul transport in 

Queensland previously, but in the past decade there has been a decline in the use of 

rail and road transport has become the dominant mode for long-distance transportation. 

This is because trucks have the advantage of providing a more flexible service in terms 

of scheduling, route and size of load (Woodhead et al., 2016). With the roads becoming 

increasingly congested, the Queensland government has expressed an intention to 

expand the share of transport by rail by reviving the Queensland Western Rail System, 

thereby increasing regional connectivity and freight market access. 

An awareness of environmental issues in food supply chains has been growing 

(Validi et al., 2014). One of the great challenges in the sustainability of supply chains 

is the high energy consumption, particularly in transportation and storage (Change, 

2007; Fichtinger et al., 2015). Road transport is one of the energy intensive and, 

consequently, high pollution transport modes (Sörensen et al., 2012). Road transport 

alone accounts for 71% of the CO2 emissions generated by the transport sector in the 

European Union (International Union for Road-Rail Combined Transport, 2009). Fuel 

cost accounts for 30% of the total costs in long-distance road transport in Australia 
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(MacGowan, 2010). With the increase in freight demand in recent years, traffic 

congestion has been a serious issue and road freight has become an unsustainable 

transport mode (Resat and Turkay, 2019). Hence there is a need to reduce the use of 

road transport and increase the use of other transport modes to improve the efficiency 

of agricultural product supply chains.  

An intermodal transport network is a promising strategy to achieve this goal as it 

offers opportunities to reduce transport costs and to mitigate road congestion and 

environmental impacts (Kumar and Anbanandam, 2020; Baykasoglu and Subulan, 

2016; Sorensen et al., 2012) As noted by de Miranda Pinto et al. (2018), an intermodal 

transport network is less energy intensive and more sustainable than a unimodal 

transport network. The most common intermodal transport network is road–rail with 

links to seaports. This is the leading cost-effective and environmentally friendly supply 

chain. de Miranda Pinto et al. (2018) reported that intermodal road-rail operations can 

generate 77.4% fewer emissions and 43.48% more energy efficiency than the 

unimodal network relying on road transport only.  

Promoting the sustainability of supply chains needs to be supported by government 

policies (Sheu, 2008, 2011). Policy makers have introduced incentives and regulations 

to reduce emissions from supply chain operations (Mohammed et al., 2017). A carbon 

tax policy can be an effective tool leading to the restructuring of the transport network 

from unimodal to intermodal operations to improve sustainability (Li et al., 2017; 

Oreskes, 2011; Zhang and Baranzini, 2004). It has more advantages than other options 

from a practical perspective: it is easier to implement (Lu et al., 2010) and it can be 

modified quickly once information is updated (Pearce, 1991). 

The transport of livestock and meat products is one of the main contributors to CO2 

emissions in the meat supply chain (Soysal et al., 2014). The stress caused by transport 

may adversely affect animal welfare and cause economic losses. Meat supply chains 

face challenges to the quality of the livestock, final products and prices through an 

increase in delivery time in road transport due to traffic congestion and a decline in the 

animals’ welfare during transportation (Peeters et al., 2008; Gregory and Grandin, 

2007). Therefore, it is important to consider animal welfare, the quality of meat 

products and environmental impact in managing a meat supply chain. This research 

aims to develop an intermodal transport model for a meat supply chain considering 

traffic congestion, animal welfare and the quality of meat products during transport 

operations under a carbon tax policy. We analyse how these factors can affect transport 
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mode selection decisions using a case in Queensland which involves cattle and 

associated meat products being sent to the Brisbane seaport for export. The results 

obtained from the case study can help decision makers to design a transport network 

appropriate for achieving economic and environmental goals. 

The remainder of this chapter is organised as follows. In Section 4.2, the literature 

relevant for this research is reviewed. Section 4.3 presents a description of our model 

and assumptions. In Section 4.4, we formulate the proposed problem as a mixed integer 

programming model. Section 4.5 provides a description of the case study for which 

the model was implemented, and the results obtained. Sensitivity analyses on some 

parameters and managerial implications are also presented in Section 4.5.3. Section 

4.6 contains concluding remarks.  

4.2 Literature review  

This section reviews literature on the topics of intermodal logistics, a carbon-

efficient intermodal network, an intermodal network considering traffic conditions, 

and an intermodal network considering the quality of the product. 

In today’s competitive economic environment an efficient transport network is 

crucial for a country or region to attract tourists, investment and increased international 

trade (Zhu et al., 2019b; Kumar and Anbanandam, 2020). As reported by Bühler and 

Jochem (2008) and Kumar and Anbanandam (2020), intermodal transport is one of the 

strategies with promise to achieve this. An intermodal transport network uses a 

combination of different transport modes such as rail, road and maritime to distribute 

products along supply chains (Abbassi et al., 2018). There has been a wide range of 

applications for intermodal transport networks, including the import/export of freight 

(Baykasoglu and Subulan, 2016), the shipment of hazardous material (Assadipour et 

al., 2016) and passenger movement (Kang et al., 2015; Zhu et al., 2019a). Good 

surveys of the development of intermodal transport networks can be found in 

Bontekoning et al. (2004) and Mathisen and Hanssen (2014). 

Arnold et al. (2004) presented an integer linear model to find the best location for 

rail-road terminals for freight transport. Limbourg and Jourquin (2009) presented a 

heuristics model based on a P-median problem and the multimodal assignment 

problem to solve the intermodal hub location problem in Europe. Ishfaq and Sox 

(2011) developed a hub location model based on a P-hub median approach to design a 

road-rail intermodal network that accounts for model connectivity costs and service 

time requirement. The Lagrangian relaxation approach and a tabu search algorithm are 
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used to solve the model for instances up to 100 nodes. Abbassi et al. (2019) developed 

a robust optimisation model for a road-maritime intermodal network to capture the 

uncertainty of terminals’ capacities and transport costs. 

As CO2 emissions from transport networks are one of the main contributors to 

climate change (Demir et al., 2015), some researchers incorporate environmental 

impacts into their intermodal transport network models. Bauer et al. (2010) proposed 

an integer linear programming model to address the environmental impacts in 

intermodal transport networks and used the case of a rail network in Eastern Europe to 

evaluate their model. Qu et al. (2016) presented a model to explore the effect of 

environmental considerations and intermodal transfers on an intermodal network 

design. Their results show that the proposed intermodal transport network provides a 

better performance than the unimodal network. Demir et al. (2016) presented a 

stochastic optimisation model to design a ‘green’ intermodal transport network in the 

presence of uncertainty. They used a sample average approximation method to capture 

the uncertainty related to travel time and demand. The results indicate that demand 

uncertainty has less impact on the optimal solution than travel time uncertainty.  

Baykasoğlu and Subulan (2016) presented an optimisation model to address 

transport mode selection, outsourcing and load allocation decisions in the international 

intermodal road-maritime-rail network in Turkey. The main focus of the model was to 

determine the optimal import and export load flow with an aim of minimising costs, 

transit time and environmental impact. However, these studies incorporated 

environmental impacts into intermodal network design without considering the design 

of proper carbon policy. Hoen et al. (2014) examined the effect of carbon emissions 

policies on transport mode selection decisions in the presence of uncertain demand. 

Their results demonstrate that even though considerable carbon emissions reduction 

can be gained by shifting to a different mode, the final decisions are subject to non-

monetary and policy considerations. Wang et al. (2015) presented a two-stage 

Stackelberg gaming model to analyse the effect of carbon taxes on transport mode 

selection and social welfare. Their results illustrate that social welfare improvement 

by imposing carbon taxes depends on the social cost of the carbon emissions and the 

carbon tax rate. However, the challenges presented through traffic issues are not 

addressed in these studies. 

Traffic congestion not only leads to a longer delivery time and the associated 

customer dissatisfaction, but it also contributes to higher energy consumption and 
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environmental pollution (Resat and Turkay, 2019). Thus, it is important to consider 

traffic congestion in studying transport mode selection problems. Parola and 

Sciomachen (2005) developed a simulation model to analyse the impact of traffic 

growth at a seaport on the land infrastructure and to determine the level of congestion 

at the truck gates and the degree of saturation of railway lines. Mishra and Welch 

(2012) presented a model using vehicle emission pricing as an emissions reduction 

strategy in the intermodal transport network. The results show that the emissions level 

depends on traffic conditions. Resat and Turkay (2015) presented a mixed integer 

linear optimisation model that accounts for time-dependent traffic congestion 

constraints to design a reliable road-maritime-rail intermodal network to increase 

transport safety by decreasing traffic congestion. They used an 휀-constraints method 

to solve the model with real data from the Marmara region of Turkey. 

Lin and Chen (2017) used a simulation-based multimodel traffic assignment model 

to estimate the traffic volumes generated by a planned special event. Kelle et al. (2019) 

presented a simulation model accounting for traffic congestion to explore the benefit 

of mode changes and to evaluate the trade-off between environmental goals and other 

performance measures such as reliability. They concluded that better environmental 

performance would be achieved by switching freight from road to rail transport and 

that this switch would also mitigate road congestion. Resat and Turkay (2019) 

proposed a bi-objective optimisation model accounting for time-window and traffic 

congestion constraints to analyse the cost and environmental impact of the intermodal 

transport network. The results demonstrate the importance of the ports, railway 

stations and transhipment centres in helping companies to make their additional 

investment decisions. 

As different transport modes lead to different delivery times which can have different 

impacts on the quality of products, there is a need to consider a quality measurement 

in the intermodal transport problem in food supply chains to avoid additional costs. 

Soysal et al. (2014) presented a multi-objective linear programming model for a 

multimodal beef supply chain to minimise the total costs and emissions for the beef’s 

distribution. The model was solved by an 휀-constraints method using a real life 

international beef supply chain in Brazil. However, they do not address the loss of 

quality during the transport process. Abbassi et al. (2018) developed a bi-objective 

optimisation model to design an intermodal transport network for agriculture products 

in order to minimise total costs and delivery time. They used the data of distributing 
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agricultural products from Morocco to Europe to evaluate the model. They addressed 

the problem of quality loss during transport operations by considering a constraint that 

does not allow total transport time to exceed the lifetime of the product. However, 

rarely has animal welfare been addressed in the transport mode selection literature, and 

this is a key aspect to be considered in our research. In addition, we will also consider 

the effect of a carbon tax policy on transport network selection decisions. 

4.3 Problem description  

In this research we develop an optimisation model for a rail-road intermodal network 

for managing the meat supply chain with consideration for animal welfare and traffic 

congestion constraints under a carbon tax policy. Our research focuses on a multi 

echelon supply chain that comprises production regions, terminals, abattoirs, seaports 

and distribution centres as destination points. Cattle are transported from production 

regions to abattoirs for slaughtering and then directly to the seaports for exporting. Or, 

after slaughtering and processing, meat products are transported to the seaports for 

exporting or to distribution centres for domestic consumption. Two transport modes – 

road and rail – are used for carrying cattle from the production regions to the abattoirs 

or seaports and for meat products from abattoirs to the seaports or distribution centres. 

Terminals are multimodal network nodes that link the road and rail networks, and 

animals and meat products are offloaded and uploaded here. 

We assume 40-foot cattle trailers are used for transporting the cattle from the 

production regions to the abattoirs and seaports. Transporting the meat products 

between the abattoirs and the final destinations (seaports and distribution centres) uses 

40-foot normal tailers. In the intermodal network, when trailers arrive at terminal 

points the trailers will be directly transferred from the trucks to trains. The capacity of 

a train is assumed to be 𝐶𝑡 trailers. A transit time 𝑇is assumed at each terminal for 

changing from one transport mode to the other. Transporting animals can have an 

impact on the animals’ welfare and, consequently, on the quality of the meat products, 

so we consider an animal welfare reduction coefficient for each transport mode. 

The carbon emissions from the operations of the different transport modes are 

incorporated in the proposed model. We consider a threshold for meat products 

distributed from the abattoir to the seaport or distribution centre. Hence, the quality 

loss is assumed if meat products arrive at a destination point later than the expected 

threshold. We also consider that the intermodal meat supply chain operates under a 

carbon tax policy. The transport cost comprises two components – the fixed cost when 
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a transport mode is used and the variable cost. The following assumptions are applied 

in formulating the proposed problem: 

• Demand at the final destination is assumed to be constant and known in 

advance.  

• Each destination node can be visited by only one vehicle and split delivery is 

not allowed.  

• There is a threshold (𝑇𝑠) for shipping meat products from the abattoir to the 

final destination node considering the meat’s shelf life. Hence, quality loss (𝜋) is 

assumed if meat products arrive at the destination point later than the expected 

threshold.  

• Shortage is not allowed.  

• 40-foot cattle trailers and 40-foot normal trailers are used for cattle and meat 

products transports, respectively, in either the unimodal or intermodal network.  

• A train with a maximum capacity of 𝐶𝑡 trailers is used for transporting cattle 

and meat products between terminals in the intermodal network.  

• We assume a constant speed for the train, while different speeds are considered 

for vehicles because of the traffic congestion. 

The optimisation model seeks to select an effective transport mode and to determine 

the quantity of cattle and meat products to be shipped through the unimodal and 

intermodal network that accounts for traffic congestion, meat travel time constraints 

under a carbon tax policy in order to minimise transport costs, quality loss costs, 

animal welfare reduction costs and emissions costs. A simple network configuration 

of the meat supply chain is depicted in Figure 4-1. The figure illustrates a meat supply 

chain in which products can be shipped by unimodal or intermodal transport at each 

stage. 

 

Figure 4-1:A simple network configuration of the proposed meat supply chain 
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4.4 Optimisation model 

In this section a mixed-integer linear programming model is developed for the 

intermodal transport problem in the meat supply chain. The objective function aims to 

minimise transport costs, quality loss costs, animal welfare reduction costs and 

emissions costs. The model is evaluated using data from a real world case study of a 

meat supply chain in Queensland. We examine the opportunities for expanding the use 

of rail to ship cattle and meat products to the Brisbane seaport for export and to 

distribution centres in Brisbane for domestic consumption. 

The model considers traffic congestion for road transport and its impact on fuel and 

emissions costs. We utilise the same approach as Resat and Turkay (2019) and 

Franceschetti et al. (2013) to simulate traffic congestion in the proposed model. 

Following these studies, the planning horizon is divided into three time intervals: free 

flow (m=1), a transient period which is a mixture of free flow and congestion (m=2) 

and traffic congestion (m=3). The vehicles are assumed to start their travel at the 

maximum speed level which is equal to speed limit of roads in the free flow interval, 

i.,e, there is no traffic on the roads. After (Λ) unit of the time a driver applies the break 

and the vehicle travels at a minimum speed level due to traffic congestions on the 

roads.  

The proposed intermodal problem is defined as a graph 𝐺 =  (𝑉, 𝐴), where 𝑉 is the 

set of nodes and 𝐴 is the set of arcs. In 𝑉, 𝑁𝐹 represents the set of production regions, 

𝑁𝑇 the set of terminals, 𝑁𝐴  the set of abattoirs, 𝑁𝐷𝐶 the set of distribution centres and 

𝑁𝑃 the set of seaports – 𝑉 = 𝑁𝐹 ∪ 𝑁𝑇 ∪ 𝑁𝐴 ∪ 𝑁𝐷𝐶 ∪ 𝑁𝑃. The arc set 𝐴 represents the 

links available between the nodes. The cattle and meat products can be shipped through 

either the unimodal or intermodal network using terminals from the production regions 

to the abattoirs/seaports or from the abattoirs to the distribution centres/seaports. We 

consider 𝑁𝑆 as total number of nodes and {𝑁𝑆 + 1} as a dummy point for modelling 

purposes. Without loss of generality, we assume that we have access to an unlimited 

number of cattle trailers and normal tailers for distribution in the meat supply chain. 

The notation used to develop a mathematical formulation is defined in Tables 4-1, 

4-2 and 4-3. We use Greek and upper case letters to represent the parameters, while 

lower case letters are used to denote the variables. 

Table 4-1:The sets and indices for the mathematical formula 

𝑖, 𝑗, 𝑛 
Index of nodes, including production regions, terminals, 

abattoirs, destination points, 𝑖, 𝑗 ∈ 𝑉 ∪ {𝑁𝑆 + 1} 
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k ,l Index of trailers 

𝑁𝐹 Set of production region nodes 

𝑁𝑇 Set of terminal nodes 

𝑁𝐴 Set of abattoir nodes 

𝑁𝐷𝐶  Set of distribution centre nodes 

𝑁𝑃 Set of seaport nodes 

𝑚 Index of time interval, 𝑚 = 1,… ,3 

 

Table 4-2:The parameters for the mathematical formula. 
𝑊𝑐 Average carcass weight of one cattle (kg) 

𝑊 Average cattle weight (kg)  

𝐷𝑖𝑗 Distance from node i to j 

𝐷𝑚𝑖 Demand for meat at destination point i 

𝐷𝑙𝑖 Demand for cattle at seaport i 

𝐶𝑡 Capacity of train in trailers 

𝐶𝑐 Capacity of cattle trailers (head of cattle) 

𝐶𝑛 Capacity of normal trailers used for shipping meat products (ton) 

𝑆𝑡 Train speed  

𝑆𝑚 Vehicle speed in time interval m  

𝑇 Transit time at terminals for changing the transport mode 

𝑆𝑡𝑖 Service time at node i 

𝑇𝑠 Expected threshold for distribution of meat products  

𝐵𝑖𝑗𝑚 Time at which the time interval m changes to (m+1) 

휃𝑖𝑗𝑚 Technical parameter to calculate travel time  

휂𝑖𝑗𝑚 Travel time at time interval m  

𝛿 Carbon price (AUD/kg) 

π 
Unit penalty cost if there is a delay in transport resulting in 

quality loss (AUD/kg)  

𝜗𝑡 Animal welfare reduction coefficient per km by train (head/km) 

𝜗𝑣 
Animal welfare reduction coefficient per km by vehicle 

(head/km) 

𝐶𝑎𝑝𝑖 Cattle supply capacity of a production region i 

𝜎 𝐶𝑂2 emitted by unit fuel consumption (𝑘𝑔 = 𝐿) 

𝐹𝑐 Fixed cost of cattle trailers 

𝐹𝑝 Fixed cost of normal trailers 

𝐹𝑡 Fixed cost of train  

𝑈𝑡 Fuel consumption rate of train per km with a unit of load (kg) 

𝑃𝑓 Fuel price 

휆 Technical parameter to calculate vehicles fuel consumption  

𝛼 Technical parameter to calculate vehicles fuel consumption 

𝛾 Technical parameter to calculate vehicles fuel consumption 

𝛽 Technical parameter to calculate vehicles fuel consumption 

휇 Curb-weight (kg) 
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𝑁𝑒 Engine speed (rev/s) 

𝛷 Engine friction factor (kJ/rev/l) 

휄 Engine displacement (l) 

휁 Time at which the transient period is finished 

 

Table 4-3:The decision variables for the mathematical formula. 
𝑥𝑖𝑗𝑘 1 If vehicle k is used for cattle transport on arc (i,j); otherwise 0 

𝑥𝑖𝑗𝑘
′  1 If vehicle k is used for meat transport on arc (i,j); otherwise 0 

𝑦𝑖𝑘 
1 If cattle are transferred from production region i to the corresponding 

terminal using vehicle k; otherwise 0  

𝑦𝑖𝑘
′  

1 If cattle are shipped through the unimodal network from production 

region i to the abattoirs/seaport using vehicle k; otherwise 0  

𝑧𝑖𝑘 
1 If meat products are transferred from the abattoir in region i to the 

corresponding terminal using vehicle k; otherwise 0  

𝑧𝑖𝑘
′  

1 If meat products are shipped through the unimodal network from the 

abattoir in region i to destination nodes using vehicle k; otherwise 0 

𝑓𝑖𝑗𝑘 Quantity of cattle (head) transported on arc (i,j) using vehicle k 

𝑓𝑖𝑗𝑘
′  Quantity of meat products (kg) transported on arc (i,j) using vehicle k 

𝑠𝑖𝑗𝑘𝑚 
1 If cattle trailer k departs node i toward node j in time interval m; 

otherwise 0 

𝑠𝑖𝑗𝑘𝑚
′  1 If normal trailer k departs node i to j in time interval m; otherwise 0 

𝑢𝑗 Starting time of train carrying cattle trailers from terminal j  

𝑢𝑗
′  Starting time of train carrying normal trailers from terminal j  

𝑡𝑗𝑘 Arrival time of cattle trailer k at node j 

𝑡𝑗𝑘
′  Arrival time of normal trailer k at node j 

𝑤𝑖𝑗𝑘𝑚 Starting time of cattle trailer k on arc (i,j) in time module m 

𝑤𝑖𝑗𝑘𝑚
′  Starting time of normal trailer k on arc (i,j) in time module m  

𝑙𝑞𝑗 Auxiliary variable using in quality loss cost  

4.4.1 Mathematical model 

A mathematical formulation for the proposed problem is as follows: 

𝑚𝑖𝑛𝑧 = 𝑇𝐶 + 𝑄𝐶 +𝑊𝐶 + 𝐸𝐶 (4.1) 

Expression (4.1) refers to the objective function which includes four costs: 

transport costs (TC), quality loss costs (QC), animal welfare reduction costs (WC) 

and emissions costs (EC). These costs are defined below. 

Transport costs 

Transport costs (TC) are defined as follows: 

𝑇𝐶 = 𝐹𝐶𝑣 + 𝐹𝐶𝑡 + 𝑉𝐶𝑣 + 𝑉𝐶𝑡 (4.2) 
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The transport costs include the fixed costs of vehicles (𝐹𝐶𝑣), the fixed costs of 

trains (𝐹𝐶𝑡), the fuel costs of vehicles (𝑉𝐶𝑣) and the fuel costs of trains (𝑉𝐶𝑡). These 

costs are formulated as follows: 

𝐹𝐶𝑣 =∑(∑ ∑ 𝐹𝑐𝑥𝑖𝑗𝑘
𝑗∈𝑁𝑇∪𝑁𝐴∪𝑁𝑃,𝑖≠𝑗𝑖∈𝑁𝐹

+ ∑ ∑ 𝐹𝑐𝑥𝑖𝑗𝑘
𝑗∈𝑁𝐴∪𝑁𝑃,𝑖≠𝑗𝑖∈𝑁𝑇𝑘

+ ∑ ∑ 𝐹𝑝𝑥𝑖𝑗𝑘
′

𝑗∈𝑁𝑇∪𝑁𝐷𝐶∪𝑁𝑃𝑖∈𝑁𝐴

+ ∑ ∑ 𝐹𝑝𝑥𝑖𝑗𝑘
′

𝑗∈𝑁𝐷𝐶∪𝑁𝑃𝑖∈𝑁𝑇

) 

(4.3) 

The first two parts of function (4.3) represent the fixed costs related to the cattle 

trailers and the remaining parts compute the fixed costs of using normal trailers.  

The fixed costs of using trains are presented by function (4.4).  

𝐹𝐶𝑡 =∑∑ ∑ 𝐹𝑡(𝑥𝑖𝑗𝑘 + 𝑥𝑖𝑗𝑘
′ )

𝑗∈𝑁𝑇𝑖∈𝑁𝑇𝑘

 (4.4) 

We use the same approach as Bektas and Laporte (2011) and Franceschetti et al. 

(2013) to calculate the fuel consumption of vehicles as a function of load and travel 

speed. The fuel costs of vehicles are formulated as follows: 

𝑉𝐶𝑣 = 𝑃𝑓𝑉𝑣 (4.5) 

Function (4.5) represents the fuel costs of vehicles in which 𝑉𝑣 refers to the fuel 

consumption of vehicles. It comprises three components: the enginemodule which is 

linear with travel time; the speed module, which is quadratic in vehicle speed; the 

weightmodule which is independent of the vehicle speed and travel time. The fuel 

consumption is defined as follows: 

𝑉𝑣 =  

∑∑∑∑휆𝜙

𝑚𝑗𝑖𝑘

(휃𝑖𝑗𝑚(𝑤𝑖𝑗𝑘𝑚 + 𝑤𝑖𝑗𝑘𝑚
′ ) + 휂𝑖𝑗𝑚(𝑠𝑖𝑗𝑘𝑚 + 𝑠𝑖𝑗𝑘𝑚

′ )) (4.5. 𝑖) 

∑∑∑ ∑ 휆𝛤(𝑆𝑚)
3 × (휃𝑖𝑗𝑚(𝑤𝑖𝑗𝑘𝑚 + 𝑤𝑖𝑗𝑘𝑚

′ ) + 휂𝑖𝑗𝑚(𝑠𝑖𝑗𝑘𝑚 + 𝑠𝑖𝑗𝑘𝑚
′ ))

𝑚=1,3𝑗𝑖𝑘

 (4.5. 𝑖𝑖) 

∑∑∑휆

𝑗𝑖𝑘

 𝛤(𝑆2)
3(휁(𝑠𝑖𝑗𝑘2 + 𝑠𝑖𝑗𝑘2

′ ) − 𝑤𝑖𝑗𝑘2 −𝑤𝑖𝑗𝑘2
′ ) (4.5. 𝑖𝑖𝑖) 

∑∑∑휆

𝑗𝑖𝑘

 𝛤(𝑆3)
3 (𝑤𝑖𝑗𝑘2 +𝑤𝑖𝑗𝑘2

′ + 휃𝑖𝑗2(𝑤𝑖𝑗𝑘2 + 𝑤𝑖𝑗𝑘2
′ ) + 휂𝑖𝑗2(𝑠𝑖𝑗𝑘2 + 𝑠𝑖𝑗𝑘2

′ )

− 휁(𝑠𝑖𝑗𝑘2 + 𝑠𝑖𝑗𝑘2
′ )) 

(4.5. 𝑖𝑣) 

∑∑∑휆

𝑗𝑖𝑘

𝛾𝛼𝐷𝑖𝑗(휇(𝑥𝑖𝑗𝑘 + 𝑥𝑖𝑗𝑘
′ ) + 𝑓𝑖𝑗𝑘 ∗ 𝑊 + 𝑓𝑖𝑗𝑘

′ ) (4.5. 𝑣) 

Where 𝜙 = 𝛷𝑁𝑒휄 and = 𝛾𝛽, 휆 = 𝜏 𝜑𝜓⁄ , 𝛾 = 1 (1000𝜒𝜔),⁄  𝛽 = 0.5𝐶𝑑𝜌𝐴 and 𝛼 =

𝑔𝑠𝑖𝑛휃 + 𝑔𝐶𝑒𝑐𝑜𝑠휃 which are taken from Franceschetti et al. (2013). Function (4.5.i) 

calculates the fuel consumption generated by enginemodule. Functions (4.5.ii)-(4.5.iv) 
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compute the fuel consumption generated by the speedmodule. The fuel consumption 

related to the speedmodule in all congestion and free flow intervals is presented by 

function (4.5.ii), while functions (4.5.iii) and (4.5.iv) compute the fuel consumption 

generated by the speedmodule in the transient interval. Fuel consumption is linked to 

the vehicles’ load by the weightmodule in function (4.5.v). The fuel consumption of 

the trains is represented by function (4.6). 

𝑉𝐶𝑡 = 𝑃𝑓∑∑ ∑ 𝐷𝑖𝑗𝑈
𝑡(𝑊𝑓𝑖𝑗𝑘 + 𝑓𝑖𝑗𝑘

′ ) 

𝑗∈𝑁𝑇𝑖∈𝑁𝑇𝑘

 (4.6) 

Quality loss costs 

Quality loss cost (QC) is considered in the proposed model when a threshold 

considered for meat distribution is violated, and is modelled as follows: 

𝑄𝐶 = 𝜋 ∑ 𝑙𝑞𝑗
𝑗∈𝑁𝐷𝐶∪𝑁𝑃

 𝐷𝑚𝑗     
(4.7) 

The distribution of meat products must be completed before a threshold is reached. 

A penalty applies as result of quality loss of meat products if the products are 

distributed to their final destinations later than the threshold. The quality loss cost is 

computed at each final destination by constraint set (4.52) (see below). 

Animal welfare reduction costs 

Animal welfare reduction costs (WC) comprise the animal welfare reduction cost 

during the road and rail transport, and is defined as follows: 

𝑊𝐶 = ∑ ∑ ∑𝑓𝑖𝑗𝑘 × 𝐷𝑖𝑗 × 𝜗
𝑣

𝑘𝑗∈𝑁𝐴∪𝑁𝑃,𝑖≠𝑗𝑖∈𝑁𝐹∪𝑁𝑇∪𝑁𝑃

+ ∑ ∑ ∑𝑓𝑖𝑗𝑘 × 𝐷𝑖𝑗 × 𝜗
𝑣

𝑘𝑗∈𝑁𝑇𝑖∈𝑁𝐹

+ ∑ ∑ ∑𝑓𝑖𝑗𝑘 ∗ 𝐷𝑖𝑗 ∗ 𝜗
𝑡

𝑘𝑗∈𝑁𝑇,𝑖≠𝑗𝑖∈𝑁𝑇

 

(4.8) 

As we are focusing on cattle transport as a part of the proposed supply chain, we 

consider animal welfare reduction cost due to the negative impact of travel time on 

animal welfare which has a direct impact on the quality of the meat products. Parts 1 

and 2 in function (4.8) represent the animal welfare reduction cost incurred by road 

transport and the last part computes it for transport by rail.  

Emission costs  

Emissions costs (EC) include the carbon emissions arising from the road and rail 

transport. The total carbon emissions costs are calculated by multiplying the amount 

of energy consumption during transportation by the carbon emissions coefficients and 

the carbon price. 
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𝐸𝐶 = 𝛿 × 𝜎 × (𝑉𝑣 +∑∑ ∑ 𝑈𝑡𝐷𝑖𝑗(𝑊 ∗ 𝑓𝑖𝑗𝑘 + 𝑓𝑖𝑗𝑘
′ ) 

𝑗∈𝑁𝑇𝑖∈𝑁𝑇𝑘

) 

(4.9) 

The first part in function (4.9) computes the emission cost induced by road 

transport and the second part computes it for transport by rail. 

The constraints of the proposed model are as follows:  

∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑁𝑇

= 𝑦𝑖𝑘 ∀𝑖 ∈ 𝑁𝐹 , ∀𝑘 (4.10) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑁𝑇𝑖∈𝑁𝐹

= ∑ 𝑦𝑖𝑘
𝑖∈𝑁𝐹

 ∀𝑘 (4.11) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑁𝑇𝑖∈𝑁𝑇

≤ 𝐶𝑡 ∀𝑘 (4.12) 

∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑁𝐴∪𝑁𝑃

= 𝑦𝑖𝑘
′  ∀𝑖 ∈ 𝑁𝐹 , ∀𝑘 (4.13) 

∑(𝑦𝑖𝑘
′ + 𝑦𝑖𝑘)

𝑖∈𝑁𝐹

≤ 1 
∀𝑘 (4.14) 

∑ 𝑥𝑖𝑗𝑘
′

𝑗∈𝑁𝑇

= 𝑧𝑖𝑘 ∀𝑖 ∈ 𝑁𝐴, ∀𝑘 (4.15) 

∑ ∑ 𝑥𝑖𝑗𝑘
′

𝑗∈𝑁𝑇𝑖∈𝑁𝐴

= ∑ 𝑧𝑖𝑘
𝑖∈𝑁𝐴

 ∀𝑘 (4.16) 

∑ ∑ 𝑥𝑖𝑗𝑘
′

𝑗∈𝑁𝑇𝑖∈𝑁𝑇

≤ 𝐶𝑡 ∀𝑘 (4.17) 

∑ 𝑥𝑖𝑗𝑘
′

𝑗∈𝑁𝐷𝐶∪𝑁𝑃
= 𝑧𝑖𝑘

′    ∀𝑖 ∈ 𝑁𝐴, ∀𝑘 (4.18) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝑗∈𝑁𝑃𝑖∈𝑁𝐹∪𝑇

+ ∑ 𝑧𝑖𝑘
𝑖∈𝑁𝐴

+ ∑ 𝑧𝑖𝑘
′

𝑖∈𝑁𝐴

≤ 1 ∀𝑘 (4.19) 

∑ 𝑥𝑖𝑗𝑘
𝑖∈𝑁𝐹∪𝑁𝑃,𝑖≠𝑗

− ∑ 𝑥𝑗𝑖𝑘
𝑗∈𝑁𝑃∪{𝑁𝑆+1},𝑖≠𝑗 

= 0 ∀𝑗 ∈ 𝑁𝑃 , ∀𝑘 (4.20) 

∑ 𝑥𝑖𝑗𝑘
′

𝑖∈𝑁𝑇∪𝑁𝐴∪𝑁𝐷𝐶∪𝑁𝑃,𝑖≠𝑗

− ∑ 𝑥𝑗𝑖𝑘
′

𝑖∈𝑁𝐷𝐶∪𝑁𝑃∪{𝑁𝑆+1},𝑖≠𝑗

= 0 ∀𝑗 ∈ 𝑁𝑃 , ∀𝑘 (4.21) 

∑ 𝑥𝑖𝑗𝑘
′

𝑖∈𝑁𝑇∪𝑁𝐴∪𝑁𝐷𝐶∪𝑁𝑃,𝑖≠𝑗

− ∑ 𝑥𝑗𝑖𝑘
′

𝑖∈𝑁𝐷𝐶∪𝑁𝑃∪{𝑁𝑆+1},𝑖≠𝑗

= 0 ∀𝑗 ∈ 𝑁𝐷𝐶 , 𝑘 (4.22) 

∑ ∑𝑓𝑖𝑗𝑘
𝑘𝑗∈𝑁𝑇∪𝑁𝐴∪𝑁𝑃

= 𝐶𝑎𝑝𝑖 
∀𝑖 ∈ 𝑁𝐹 (4.23) 

𝑓𝑖𝑗𝑘 ≤ 𝐶𝑐 × 𝑥𝑖𝑗𝑘 
∀𝑖 ∈ 𝑁𝐹 ∪ 𝑁𝑇 , ∀𝑗

∈ 𝑉/𝑁𝐷𝐶 , 𝑘 

(4.24) 

𝑓𝑖𝑗𝑘
′ ≤ 𝐶𝑛 × 𝑥𝑖𝑗𝑘

′  
∀𝑖 ∈ 𝑉/𝑁𝐹 , ∀𝑗

∈ 𝑉/𝑁𝐹 ∪ {𝑁𝑆 + 1}, 𝑘 

(4.25) 

∑ 𝑓𝑖𝑗𝑘
𝑖∈𝑁𝐹∪𝑁𝑇,𝑖≠𝑗

− ∑ 𝑓𝑗𝑖𝑘
𝑖∈𝑁𝑇∪𝑁𝐴∪𝑁𝑃,𝑖≠𝑗

= 0 𝑗 ∈ 𝑁𝑇 , ∀𝑘 (4.26) 
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∑ 𝑓𝑖𝑗𝑘
′

𝑖∈𝑁𝐴∪𝑁𝑇,𝑖≠𝑗

− ∑ 𝑓𝑗𝑖𝑘
′

𝑖∈𝑁𝐷𝐶∪𝑁𝑇∪𝑁𝑃,𝑖≠𝑗

= 0 ∀𝑗 ∈ 𝑁𝑇 , ∀𝑘 (4.27) 

∑ ∑𝑓𝑗𝑖𝑘
′

𝑘𝑖∈𝑁𝑇∪𝑁𝐷𝐶∪𝑁𝑃

= 𝑊𝑐 ∗ ∑ ∑𝑓𝑖𝑗𝑘
𝑘𝑖∈𝑁𝐹∪𝑁𝑇

 ∀𝑗 ∈ 𝑁𝐴 (4.28) 

∑ ∑𝑓𝑖𝑗𝑘
′

𝑘𝑖∈𝑁𝑇∪𝑁𝐴∪𝑁𝐷𝐶∪𝑁𝑃,𝑖≠𝑗

− ∑ ∑𝑓𝑗𝑖𝑘
′

𝑘𝑖∈𝑁𝐷𝐶∪𝑁𝑃∪{𝑁𝑆+1},𝑖≠𝑗

= 𝐷𝑚𝑗 
∀𝑗 ∈ 𝑁𝐷𝐶 , ∀𝑘 (4.29) 

∑ ∑𝑓𝑖𝑗𝑘
′

𝑘𝑖∈𝑁𝑇∪𝑁𝐴∪𝑁𝐷𝐶∪𝑁𝑃,𝑖≠𝑗

− ∑ ∑𝑓𝑗𝑖𝑘
′

𝑘𝑖∈𝑁𝐷𝐶∪𝑁𝑃∪{𝑁𝑆+1},𝑖≠𝑗

= 𝐷𝑚𝑗 
∀𝑗 ∈ 𝑁𝑃 , ∀𝑘 (4.30) 

∑ ∑𝑓𝑖𝑗𝑘
𝑘𝑖∈𝑁𝐹∪𝑁𝑇

− ∑ ∑𝑓𝑗𝑖𝑘
𝑘𝑖∈𝑁𝑃∪{𝑁𝑆+1}

= 𝐷𝑙𝑗 
∀𝑗 ∈ 𝑁𝑃 , ∀𝑘 (4.31) 

∑∑(𝑓𝑖{𝑁𝑆+1}𝑘
′ + 𝑓𝑖{𝑁𝑆+1}𝑘)

𝑖∈𝑉𝑘

= 0  (4.32) 

∑𝑠𝑖𝑗𝑘𝑚
𝑚

= 𝑥𝑖𝑗𝑘 

∀𝑖 ∈ 𝑁𝐹 ∪ 𝑁𝑇 ∪ 𝑁𝑃 , 

𝑗 ∈ 𝑁𝑇 ∪ 𝑁𝐴 ∪ 𝑁𝑃 , 𝑖

≠ 𝑗, ∀𝑘 

(4.33) 

∑𝑠𝑖𝑗𝑘𝑚
′

𝑚

= 𝑥𝑖𝑗𝑘
′  

∀𝑖 ∈ 𝑉/𝑁𝐹 , 𝑖 ≠ 𝑗, ∀𝑘 

𝑗 ∈ 𝑉 ∪ {𝑁𝑆 + 1}/𝑁𝐹

∪ 𝑁𝐴, 

(4.34) 

𝑠𝑖𝑗𝑘𝑚 ∗ 𝐵𝑖𝑗𝑚−1 −𝑀(1 − 𝑠𝑖𝑗𝑘𝑚) ≤ 𝑡𝑖𝑘 + 𝑆𝑡𝑖

≤ 𝑠𝑖𝑗𝑘𝑚 ∗ 𝐵𝑖𝑗𝑚 +𝑀(1 − 𝑠𝑖𝑗𝑘𝑚) 

∀𝑖 ∈ 𝑁𝐹 ∪ 𝑁𝑇 ∪ 𝑁𝑃 , 

𝑗

∈ 𝑁𝑇 ∪ 𝑁𝐴 ∪ 𝑁𝑃 , ∀𝑘,𝑚 

(4.35) 

𝑠𝑖𝑗𝑘𝑚
′ ∗ 𝐵𝑖𝑗𝑚−1 −𝑀(1 − 𝑠𝑖𝑗𝑘𝑚

′ ) ≤ 𝑡𝑖𝑘
′ + 𝑆𝑡𝑖

≤ 𝑠𝑖𝑗𝑘𝑚
′ ∗ 𝐵𝑖𝑗𝑚 +𝑀(1 − 𝑠𝑖𝑗𝑘𝑚

′ ) 

∀𝑖 ∈ 𝑉/𝑁𝐹, ∀𝑘,𝑚 

𝑗 ∈ 𝑉 ∪ {𝑁𝑆 + 1}/𝑁𝐹

∪ 𝑁𝐴 

(4.36) 

𝑡𝑗𝑘 ≥ 𝑡𝑖𝑘 + 𝑆𝑡𝑖 −𝑀 ∗ (1 − 𝑥𝑖𝑗𝑘) 

∀𝑖 ∈ 𝑁𝐹 ∪ 𝑁𝑇 ∪ 𝑁𝑃 

𝑗 ∈ 𝑁𝑇 ∪ 𝑁𝐴 ∪ 𝑁𝑃 , 𝑖

≠ 𝑗, ∀𝑘 

(4.37) 

𝑡𝑗𝑘
′ ≥ 𝑡𝑖𝑘

′ + 𝑆𝑡𝑖 −𝑀 ∗ (1 − 𝑥𝑖𝑗𝑘
′ ) 

∀𝑖 ∈ 𝑉/𝑁𝐹 

𝑗 ∈ 𝑉/𝑁𝐹 ∪ 𝑁𝐴, 𝑖

≠ 𝑗, ∀𝑘 

(4.38) 

𝑡𝑗𝑘 ≥ (휃𝑖𝑗𝑚 + 1)𝑡𝑖𝑘 + 𝑆𝑡𝑖 + 휂𝑖𝑗𝑚 ∗ 𝑠𝑖𝑗𝑘𝑚 −𝑀 ∗ (1 − 𝑠𝑖𝑗𝑘𝑚) 

∀𝑖

∈ 𝑁𝐹 ∪ 𝑁𝑇 ∪ 𝑁𝑃 , ∀𝑘,𝑚 

𝑗

∈ 𝑁𝑇 ∪ 𝑁𝐴 ∪ 𝑁𝑃

∪ {𝑁𝑆 + 1} 

(4.39) 

𝑡𝑗𝑘
′ ≥ (휃𝑖𝑗𝑚 + 1)𝑡𝑖𝑘

′ + 𝑆𝑡𝑖 + 휂𝑖𝑗𝑚 ∗ 𝑠𝑖𝑗𝑘𝑚
′ −𝑀 ∗ (1 − 𝑠𝑖𝑗𝑘𝑚

′ ) 

∀𝑖 ∈ 𝑉/𝑁𝐹 , ∀𝑘,𝑚 

𝑗

∈ 𝑁𝑇 ∪ 𝑁𝑃 ∪ 𝑁𝐷𝐶

∪ {𝑁𝑆 + 1} 

(4.40) 
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𝑢𝑗 ≥ 𝑡𝑗𝑘 + 𝑇 −𝑀 ∗ (1 −∑𝑥𝑖𝑗𝑘
𝑖∈𝐹

) 𝑗 ∈ 𝑁𝑇 , ∀𝑘 (4.41) 

𝑢𝑗
′ ≥ 𝑡𝑗𝑘

′ + 𝑇 −𝑀 ∗ (1 −∑𝑥𝑖𝑗𝑘
′

𝑖∈𝐴

) 𝑗 ∈ 𝑁𝑇 , ∀𝑘 (4.42) 

𝑡𝑗𝑘 ≥ 𝑢𝑖 + 𝐷𝑖𝑗/𝑆
𝑡 −𝑀 ∗ (1 − 𝑥𝑖𝑗𝑘) 

𝑖 ∈ 𝑁𝑇 , 𝑗 ∈ 𝑁𝑇 , 𝑖

≠ 𝑗, ∀𝑘 

(4.43) 

𝑡𝑗𝑘
′ ≥ 𝑢𝑖

′ + 𝐷𝑖𝑗/𝑆
𝑡 −𝑀 ∗ (1 − 𝑥𝑖𝑗𝑘

′ ) 
𝑖 ∈ 𝑁𝑇 , 𝑗 ∈ 𝑁𝑇 , 𝑖

≠ 𝑗, ∀𝑘 

(4.44) 

𝑡𝑗𝑘 ≤ 𝑀 ∑ 𝑥𝑖𝑗𝑘
𝑖∈𝑁𝐹∪𝑁𝑇∪𝑁𝑃

 ∀𝑗 ∈ 𝑁𝐴 ∪ 𝑁𝑇 ∪ 𝑁𝑃 , ∀𝑘 (4.45) 

𝑡𝑗𝑘
′ ≤ 𝑀 ∑ 𝑥𝑗𝑖𝑘

′

𝑖∈𝑉/𝑁𝐹

 ∀𝑗 ∈ 𝑉/𝑁𝐹 , ∀𝑘 (4.46) 

𝑡𝑗𝑘
′ ≥ 𝑡𝑗𝑙 −𝑀 (1 − ∑ 𝑥𝑗𝑖𝑘

′

𝑖∈𝑁𝑇∪𝑁𝑃∪𝑁𝐷𝐶

) ∀𝑗 ∈ 𝑁𝐴, 𝑘, 𝑙 ∈ 𝐾 (4.47) 

𝑤𝑖𝑗𝑘𝑚 ≥ 𝑡𝑖𝑘 + 𝑆𝑡𝑖 −𝑀 ∗ (1 − 𝑠𝑖𝑗𝑘𝑚) 

𝑖 ∈ 𝑉/𝑁𝐴 ∪ 𝑁𝐷𝐶 , 

𝑗 ∈ 𝑁𝑇 ∪ 𝑁𝐴 ∪ 𝑁𝑝, 𝑖

≠ 𝑗, ∀𝑘,𝑚 

(4.48) 

𝑤𝑖𝑗𝑘𝑚
′ ≥ 𝑡𝑖𝑘

′ + 𝑆𝑡𝑖 −𝑀 ∗ (1 − 𝑠𝑖𝑗𝑘𝑚
′ ) 

𝑖 ∈ 𝑉/𝑁𝐹 , 

𝑗 ∈ 𝑁𝑇 ∪ 𝑁𝐷𝐶 ∪ 𝑁𝑃 , 𝑖

≠ 𝑗, ∀𝑘,𝑚 

(4.49) 

𝑙𝑞𝑗 ≥ (𝑡𝑗𝑘
′ − 𝑡𝑖𝑘

′ − 𝑆𝑡𝑖 − 𝑇
𝑠) − 𝑀 ∗ (1 − ∑ 𝑥𝑖𝑛𝑘

′

𝑛∈𝑉/𝑁𝐹∪𝑁𝐴

) 𝑖 ∈ 𝑁𝐴, 𝑗

∈ 𝑁𝑃 ∪ 𝑁𝐷𝐶 , ∀𝑘 

(4.50) 

𝑥𝑖𝑗𝑘
′ , 𝑠𝑖𝑗𝑘𝑚

′ , 𝑥𝑖𝑗𝑘 , 𝑠𝑖𝑗𝑘𝑚, 𝑦𝑖𝑘, 𝑦𝑖𝑘
′ , 𝑧𝑖𝑘, 𝑧𝑖𝑘

′ ∈ {0,1} ∀𝑖, 𝑗, 𝑘,𝑚 (4.51) 

𝑓𝑖𝑗𝑘 , 𝑓𝑖𝑗𝑘
′ , 𝑢𝑗 , 𝑢𝑗

′, 𝑡𝑗𝑘, 𝑡𝑗𝑘
′ , 𝑙𝑞𝑗 , 𝑤𝑖𝑗𝑘𝑚, 𝑤𝑖𝑗𝑘𝑚

′ ≥ 0  ∀𝑖, 𝑗, 𝑘,𝑚 (4.52) 

Constraints (4.10) and (4.11) ensure that the intermodal link is used for cattle 

distribution if the 𝑦𝑖𝑘 variable is non-zero. Constraint (4.12) satisfies the capacity limit 

of a train. Constraint (4.13) ensures that the unimodal link is used to distribute cattle 

if the 𝑦𝑖𝑘
′  variable is non-zero. Constraint (4.14) ensures that each vehicle can be used 

either in a unimodal or intermodal link to transport cattle from the production regions. 

Constraints (4.15) and (4.16) denote that the intermodal link is used for meat 

distribution from abattoirs to destination nodes if the 𝑧𝑖𝑘 variable is non-zero. 

Constraint (4.17) confirms that the train’s capacity is satisfied when it is used for the 

distribution of meat products. Constraint (4.18) indicates that the unimodal link is used 

for meat product distribution if there is no link from an abattoir to a terminal. 

Constraint (4.19) notes that each vehicle at a destination point can depart from the 

abattoir for meat distribution or from a production region for cattle transport. 
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Constraints (4.20) - (4.22) guarantee the connectivity on routes. The number of cattle 

available at each production region is satisfied by constraint (4.23). 

Constraints (4.24) and (4.25) guarantee that if there is no link between two nodes, 

the product flow is equal to zero. Constraints (4.26) and (4.27) link the product flow 

leaving a terminal to the product flow that entered the terminal. Constraint (4.28) 

balances the cattle flow entering an abattoir with the meat products that leave the 

abattoir. Constraint (4.29) decreases the flow of meat products on a route after visiting 

a distribution centre by its demand. Constraints (4.30) and (4.31) ensure that the 

quantity of cattle and meat products entering a seaport is equal to the demand for 

exporting them. By (4.32) we ensure that vehicles are empty when arriving at the 

dummy point. Constraints (4.33) and (4.34) ensure that each travelling on each arc (i, 

j) can be placed is at most in one time interval. The time interval at which vehicle k 

travels from node i to node j is determined by (4.35) and (4.36). Constraints (4.37) and 

(4.38) compute the starting time of vehicle k on arc (i,j ). 

Constraints (4.39) and (4.40) are used to compute the arrival time at node j which is 

visited immediately after node i in the unimodal link due to traffic congestion at the 

corresponding time interval m. The departure time of a train is determined by (4.41) 

and (4.42). Constraints (4.43) and (4.44) determine the arrival time at terminal j which 

is visited immediately after terminal i in the intermodal link. Constraints (4.45) and 

(4.46) indicate that the arrival time at node j is equal to zero if there is no link entering 

the node j. Constraint (4.47) links the decision variables 𝑡𝑗𝑘
′  with the decision 

variables 𝑡𝑗𝑙. Constraints (4.48) and (4.49) compute the starting time of vehicle k on 

arc (i,j). A delay as a result of threshold violation at a meat distribution point is 

determined by (4.50). Constraints (4.51) and (4.52) define the types of decision 

variables. 

4.5 Computational results  

The aim of this section is twofold: 1) to demonstrate the application of the models 

formulated in Section 4.5 using a real world case study involving a meat supply chain 

in Queensland; and 2) to conduct a sensitivity analysis on some of the parameters and 

explore their impact on the cattle and meat products distribution network to make good 

efficiency and environmentally friendly decisions. 
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4.5.1 Description of the case study 

The need for Australia to use an intermodal network for reducing transport costs, 

emissions costs and animal welfare costs can be justified because of the increasing 

traffic congestion on roads and the negative impact of road transport on animal 

welfare. We use a real world case study to evaluate the proposed model from a 

practical perspective. The case study involves a meat supply chain in Queensland, 

which is responsible for the distribution of cattle and meat products from production 

regions to destination nodes for export or domestic consumption. In this research we 

examine the opportunities of expanding the use of an intermodal road–rail transport 

network in western Queensland. As the number of cattle in Queensland is more than 

in any other state or territory in Australia, using rail could improve the efficiency and 

reliability of the meat supply chain in this area. In addition, the meat industry shares 

key roads with other sectors of Australian agriculture and so by using rail transport the 

meat industry may help to improve the road freight network for other agricultural 

sectors (Fraser, 2017).  

Cattle were traditionally loaded on rail transport at two major collection points, 

Quilpie and Morven, in in this part of Queensland. Hence, we assume these two areas 

as the production regions for our research. We also consider an abattoir for 

slaughtering and meat processing which is close to the Toowoomba region. The vast 

majority of Queensland’s cattle and meat products are exported through the Brisbane 

seaport. So, we use the Port of Brisbane as the destination node for the export of cattle 

and meat products in the proposed model. We also assume two distribution centres in 

Brisbane as the destination nodes for the meat products for domestic consumption. In 

this research, cattle and meat products can be shipped between the production regions, 

the abattoir and the destination nodes using either unimodal or rail–road networks. 

Hence, we assume three terminals near rail stations as the transfer points for the 

transport modes in the intermodal network. Terminal 1 is used for the distribution of 

cattle from the production regions to the abattoir and Brisbane seaport, terminal 2 is 

linked to the abattoir for the distribution of cattle and meat products and terminal 3 is 

used to distribute cattle and meat products to the destination nodes (the distribution 

centres and Brisbane seaport). 

We assume a supply capacity of 50 and 55 heads at the production regions closest to 

Quilpie and Morven, respectively. We consider the average weight of the cattle to be 

1000 kg. The average carcass weight depends on different factors such as fat tissues, 
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muscle score and so on. However, we assume the average carcass weight to be 60% of 

the cattle’s weight. Service time is considered at each node which is defined transit 

time at We also assume a transit time of 30 minutes at each terminal for changing the 

transport mode, which includes loading, unloading and waiting times. In this research, 

we are focusing on the distribution of meat products, which have a limited shelf life, 

from the abattoir to the destination nodes. Thus, the travel time, which is dependent on 

road traffic condition, may impact on the quality of the meat products and, 

consequently, their final selling price. To avoid these issues and to keep the quality of 

the meat products at the desired level, we assume the threshold 𝑇𝑠to be 3
1

2
 hours for 

the distribution of the meat products from the abattoir to the destination nodes. The 

penalty cost of AUD0.005/s is applied for each kilogram of meat products distributed 

after 𝑇𝑠 at each destination node. Table 4-4 summarises the cattle and meat products 

demand and the service times at the production regions, abattoir and destination nodes.  

 

Table 4-4:The cattle and meat products demand and service time at each node. 

Parameters  P1  P2 A DC 1 DC 2 
Brisbane 

seaport 

Cattle demand (head)  – – – – – 30 

Meat products (ton) – – – 10 15 20 

Service time (minutes) 30 40 40 15 15 30 

 Note: P = production region; A = abattoir; DC = distribution centre. 

The distance between the nodes is estimated using Google Maps. We assume the 40-

foot cattle trailer with a capacity of 30 heads is used for cattle distribution from the 

production regions to the abattoir and Brisbane seaport, and the 40-foot normal trailer 

with a capacity of 30 tons for transporting the meat products from the abattoir to the 

distribution centres and the Brisbane seaport. As we test the model for the small real 

world example, we assume a train with a capacity of four trailers for cattle and meat 

products distribution. The fixed cost of using the cattle trailer and the normal trailer 

are assumed to be AUD150 and AUD130, respectively. We also assume a fixed cost 

of shipping each cattle or meat products trailer using a train to be AUD300. The 

parameters used to calculate the fuel costs of the vehicles are taken from previous 

research and are summarised in Table 4-5. 

Table 4-5:The definition of the vehicle parameters 
Notations Description Typical value 

휇 Curb weight  6350 
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𝑁𝑒 Engine speed (rev/s) 33 

𝛷 Engine friction factor (kJ/rev/l) 0.2 

휄 Engine displacement (L) 5 

τ Fuel-to-air mass ratio 1 

φ Heating value of a typical diesel fuel (kJ/g) 44 

ψ Conversion factor (g/l) 737 

χ Vehicle drive train efficiency 0.4 

ω Efficiency parameter for diesel engines 0.45 

g Gravitational constant (m/s2) 9.81 

𝐶𝑒 Coefficient of rolling resistance 0.01 

𝐶𝑑 Coefficient of aerodynamic drag 0.7 

ρ Air density (kg/m3) 1.2041 

A Frontal surface area (m2) 9 

휃 Road angle 0 

𝑃𝑓 Fuel price (AUD/L) 1.6 

𝛿 Unit CO2 emissions price (AUD/kg) 1.16 

Sources: Cachon (2014), Demir et al. (2012), Babagolzadeh et al. (2020) 

 

We assume the speed level to be 80 km/h and 40 km/h for vehicles in the free flow 

interval (m=1) and the traffic congestion interval (m=3), respectively. A constant 

speed level of 80 km/h is considered for the train. We assume the fuel consumption 

rate for the train to be 0.00002/kg/km.  

4.5.2 Computational experiments and analysis 

In this section we present an application of the proposed model by implementing the 

model for the data of the real world example provided in section 4.5.1. 

We use the exact method to analyse the effect of using intermodal transport. We 

intend to show how an intermodal transport network can improve efficiency, reliability 

and economic costs considering the traffic conditions, animal welfare issues and a 

carbon tax policy. To do so, we use the commercial optimisation solver (Cplex) which 

is based on a branch and cut algorithm. All experiments were coded on an Intel i7 CPU 

with a 3.6 GHz processor and 16 GB RAM. 

We focused on the following key performance indicators: (i) transportation costs that 

include fixed and fuel costs of a rail–road intermodal transport network; (ii) quality 

loss costs as a result of a meat threshold distribution violation; (iii) animal welfare 

reduction costs that consists of those costs during road and rail transport; and (iv) 

emission costs arising from fuel consumption on a rail–road network. The results are 

used to compare the unimodal and intermodal networks to identify the most effective 

network when considering animal welfare issues, traffic conditions and a carbon tax 
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policy. Finally, sensitivity analyses are conducted on the animal welfare reduction 

costs and on the unit penalty costs to demonstrate the effect of their changes on the 

economic costs and the network configuration. 

We report the optimal network configuration and the optimal values of the objective 

functions when the rail–road intermodal network is considered in Table 4-6 and Figure 

4-2, respectively. The optimal solution uses mostly vehicles for transporting cattle 

from the production regions to the abattoir because that occurs mostly in the regional 

area which does not have heavy traffic congestion. However, the model uses a train to 

distribute meat products from the abattoir to urban areas and vehicles for distribution 

in the urban areas because of traffic congestion. As can be seen from the results, 

shipment consolidation is not applied in the meat products’ distribution due to the 

penalty imposed when vehicles arrive at the destination nodes after the threshold level 

for meat distribution is reached. A train is used for transporting cattle from a 

production region to the Brisbane seaport because it consumes less fuel and reduces 

animal welfare issues over the long distance. Using a vehicle to transport cattle from 

a production region direct to the Brisbane seaport would increase the animal welfare 

reduction costs by 10.5% while decreasing transport costs and emission costs by 9.18% 

and 1.53%, respectively, as a result of a reduction in the fixed cost of vehicles and the 

travel distance in our example. 

Table 4-6:The optimal value of the objective functions under a rail–road intermodal network (AUD). 
Transport 

costs 

Quality loss 

costs 

Animal welfare 

reduction costs 

Emission 

costs 
Total cost 

5336.9 6209.99 9379.5 5027.41 25953.8 

 

 

Figure 4-2:The general view of the network configuration in the optimal solution of the intermodal network. (p: 

production region, T: terminal, A: abattoir, DC: distribution centre and SP: Brisbane seaport) 

To evaluate the behaviour of the rail–road intermodal model, we implement the 

proposed model for the real world example while considering only the unimodal 

network and comparing those results with those obtained from the rail–road intermodal 
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network. The optimal values of the objective functions obtained from the unimodal 

network are reported in Table 4-7. 

Table 4-7:The optimal value of the objective functions under the unimodal network (AUD). 
Transport 

costs 

Quality loss 

costs 

Animal welfare 

reduction costs 

Emission 

costs 
Total cost 

3570.52 13500 10363.5 4976.54 32410.56 

 

As can be seen from the results, transport costs decrease by around 33% which is 

driven exclusively by a reduction in the fixed cost of vehicles. Emission costs reduce 

by only 1% due to a reduction in the travel distance. However, using only a unimodal 

network can increase animal welfare reduction costs and quality loss costs by 10.5% 

and 117.39%, respectively, which leads to increasing the total cost by 24.87%. The 

results suggest that the rail–road intermodal network is more desirable from the 

economic and animal welfare points of view. However, the unimodal network is 

preferred for reducing fuel consumption and, consequently, emissions from the 

transport operations as the cattle and meat products need to travel additional distances 

to reach terminals in the intermodal network.  

As the Australian government plans to develop a new train line and construct 

terminals, the findings of this research suggest that it is possible for the government to 

reduce the cattle and meat products distribution costs and help the participants in the 

meat supply chain by constructing the terminals closer to the main production regions 

and the abattoir to reduce vehicle usage and/or the vehicle travel distance. 

4.5.3 Sensitivity analysis 

In this section we analyse the impact of the parameter changes on the economic costs 

and the network configuration in the proposed meat supply chain. We also explore 

how changing the parameters may impact on transport mode selection decisions. A 

sensitivity analysis is conducted on the differences between the coefficients of the 

animal welfare reduction costs and the unit penalty costs. 

4.5.3.1 Impact of changes in the ratio of road animal welfare reduction costs to the rate 

for rail 

In this section we examine the effect of changing the ratio of the rate of animal 

welfare reduction costs for road transport to the rate for rail transport on various 

economic costs and CO2 emissions. 
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Figure 4-3:The impact of changing the ratio of road animal welfare reduction rate for road transport to the rate 

for rail transport on different costs and CO2 emissions. 

As can be seen from Figure 4-3, increasing the ratio of animal welfare reduction rate 

for road transport to the rate for rail transport from 0.6 to 1.5 does not lead to any 

significant changes in transport costs and emissions costs as the network configuration 

does not change and the model uses the unimodal network to transport cattle. However, 

it can lead to an increase in animal welfare reduction costs and the total cost by about 

126% and 28.7%, respectively. 

A further increase in the ratio, say, from 1.5 to 1.8 can change the configuration of 

the model when using the intermodal network. It results in a considerable growth in 

emissions costs and transport costs by about 6.2% and 28.3%, respectively, as a result 

of increases in the travel distance and the fixed cost of vehicles, but only a 2.7% 

increase in the total cost. However, it provides a reduction of about 11.8% in animal 

welfare costs.  

It can be observed that the continued increase of the ratio from 1.8 to 2.4 does not 

lead to any changes in the network configuration, transport costs and emissions costs. 

It would increase total costs by 5.7% as a result of increasing animal welfare reduction 

costs in the intermodal network. Therefore, it is important to measure the animal 

welfare reduction coefficient and to consider it when selecting the most suitable 

transport mode and network configuration. 

4.5.3.2 Impact of the changes in unit penalty costs 

In this section the sensitivity analysis is conducted on the unit penalty costs to 

explore its impact on economic costs, the value which is used to calculate quality loss 

costs (delay multiplied by the load) and to determine the transport network 

configuration. Figure 4-4 depicts the impact of changes in the unit penalty costs on the 
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transport costs, total cost and quality loss costs. As can be observed from the results, 

if the penalty was not considered for meat products delivery later than the expected 

threshold, the unimodal transport network is preferred for meat distribution as it leads 

to the minimum economic costs as a result of the reduced travel distance, and a smaller 

number of vehicles required. It also leads to the maximum value involved in quality 

loss costs as a result of traffic congestion. It also allows the model to consolidate 

shipments where possible. 

 

Figure 4-4:The impact of changing the unit penalty costs on different costs and the value involved in the quality 

loss costs calculation. 

In our case, it appears that an increase in unit penalty costs, say, from 0 to AUD0.002 

can increase the total cost and transport costs by about 21% and 25.9%, respectively, 

by using the road–rail intermodal network for part of the meat products distribution as 

this results in longer travel distances and requires more vehicles. However, it has a 

higher effect on the value involved in calculating the quality loss costs. That is, the 

value involved in calculating the quality loss costs decreases by about 54.5% as a result 

of avoiding traffic congestion in some legs of the journey by using the road–rail 

intermodal network. 

As can be seen from the results, the extended range of the unit penalty costs from 

AUD0.002 to AUD0.003 can lead to using the road–rail intermodal network only for 

meat product distribution to avoid a massive increase in quality loss costs as a result 

of road traffic congestion. It can lead to about a 11.3% reduction in the value of the 

quality loss costs, while the total cost and transport costs increase by about 8.6% and 

6%, respectively. 

As can be observed from Figure 4.4, further increases in unit penalty costs cannot 

lead to any changes in transport costs and the value of quality loss costs. It only has a 

direct impact on the total cost. The findings of this research suggest that, in this case, 
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a road–rail intermodal network is more beneficial in terms of reducing quality loss 

costs because heavy road traffic congestion in some legs of the journey may be 

avoided. However, it would not be a cost-efficient transport network in terms of 

transport costs and the emissions generated because of the significantly increased 

travel distances and the number of vehicles required.  

4.6 Conclusion   

The recent rise in traffic congestion in Australia, due to substantial increases in 

productivity in different sectors resulting in growing demands for freight transport, has 

increased delivery time significantly and has brought challenges in satisfying the 

growing demand for high quality products. Australia is one of the world’s main meat 

producers. The quality of its meat products can also be influenced by animal welfare 

issues during transportation. To respond to these challenges and to improve the 

reliability and efficiency of the transport network, it is important to integrate different 

transport modes when managing the supply chain. 

This chapter proposes an optimisation model to explore the impact of using a road–

rail intermodal transport network on economic costs and animal welfare reduction 

costs in a meat supply chain. The proposed model simultaneously considers road 

traffic congestion, animal welfare, the quality of meat products and the environmental 

impact from fuel consumption in different transport modes. It considers the expected 

threshold for meat products distribution in relation to the quality of those products. 

The aim of the model is to minimise transport costs, animal welfare reduction costs, 

quality loss costs and emissions costs. 

To evaluate the performance of the model, a real world case study is used to illustrate 

how the proposed model could help decision makers to develop a reliable and cost-

efficient intermodal transport network in a meat supply chain. The model is 

investigated through a case study in Queensland, the Australian state with the largest 

beef cattle herd in the country (42% of the national herd). 

We observe that it would be possible to decrease the total cost by about 24.87% if a 

road–rail intermodal network is used along with a unimodal network in the meat 

supply chain in south-eastern Queensland. The results indicate that using a road–rail 

intermodal network for long distances can provide a better performance in terms of 

animal welfare issues and the quality of the products. Using only a unimodal network 

can increase animal welfare reduction costs and quality loss costs by 10.5% and 

117.39%, respectively, compared with road-rail intermodal transport network. 
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However, a unimodal network is recommended in our example in terms of transport 

costs and, consequently, emissions costs as using an intermodal network leads to 

significant increases in travel distances and the number of vehicles required. 

We conduct sensitivity analyses on the ratio of animal welfare reduction rate in road 

transport to the rate for rail transport and unit penalty costs to provide meaningful 

insights for decision makers to make the best decisions relating to transport mode 

selection decisions in each part of the meat supply chain in order to improve the 

reliability and efficiency of the entire chain. We observe that the road–rail intermodal 

network would benefit more if animal welfare issues were prioritised. Therefore, it is 

important for decision makers to consider animal welfare, which influences the quality 

of the meat products, when making transport mode selection decisions. Moreover, our 

experiments on unit penalty costs identified that higher unit penalty costs lead to using 

an intermodal network to avoid heavy road traffic congestion with the resultant delays 

in distribution and consequent increases in quality loss costs. These findings can help 

the decision makers and meat supply chain participants to make more informed 

decisions in planning and developing transport networks and logistics facilities. If 

needed, our model can be easily modified and extended for a wider application with 

other transport modes and objectives included.  
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Chapter 5: Conclusions and future research directions 
The research undertaken for this thesis developed three models to apply to the 

efficient, reliable and sustainable distribution of products from regional areas in 

Australia to other parts of country. The proposed models can be used to help decision 

makers to make operational and strategic planning decisions. The contributions of this 

thesis to the research area are: 

• It has developed an optimisation model to examine the effects of introducing 

government regional support schemes on distribution networks in regional areas in 

Australia and on their economic development.  

• It has evaluated the implementation of a linear and a non-linear subsidy scheme 

and compared their effect on logistics decisions and economic costs to identify the 

more effective scheme.  

• It has developed a two-stage stochastic programming model to determine 

optimal replenishment policies and transportation schedules for distributing perishable 

products from a regional area to cities and towns under a carbon tax policy. In addition, 

a matheuristic algorithm based on the Iterated Local Search algorithm and mixed 

integer programming was developed to solve the problems in realistic sizes. 

• It has developed a mathematical model to explore opportunities of expanding 

the road–rail intermodal transport network for transporting meat products and 

livestock from regional Queensland to cities, towns and a seaport while taking into 

consideration animal welfare issues, the quality of the products, traffic congestion and 

a carbon tax regime. 

The following section reviews the problems addressed in this research, the solution 

methodologies and the main results. In addition, possible directions for future research 

for each model are discussed.  

5.1 Promoting regional area with subsidy schemes 

Chapter 2 explored how government subsidy schemes can influence a freight 

distribution model that favours the use of regional airports in promoting regional 

economic development, while taking into account the optimal ground distribution 

network from those airports to the consignees. The proposed model considered subsidy 

schemes as linear and multiple breakpoint functions. The model simultaneously 

considered the government subsidy limit and the heterogeneous fleet for ground 

distribution where fuel consumption is subject to load, travel distance, speed and 
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vehicle characteristics. The aim of the model was to minimise airfreight costs, ground 

transportation costs and penalty costs resulting from time-window violations. 

A real world case study in Australia was used to demonstrate the application of the 

proposed framework. The computational experiments illustrated that metropolitan 

airports can be used as distribution hubs without a subsidy scheme as this option 

requires less ground transportation to distribute the cargo to the consignees. We 

observed that it would be possible to decrease airfreight costs significantly in two 

subsidy scenarios. However, that can lead to a significant increase in ground 

transportation costs and penalty costs. The results indicated that subsidy scenario 1 has 

a better performance in shifting cargo traffic from a metropolitan airport to a regional 

airport, while subsidy scenario 2 is recommended in terms of cost efficiency and 

delivery time.  

Our analysis on the subsidy rate identified that an increase in subsidy rates does not 

always result in a considerable improvement in cargo volume in the regional area in 

the presence of the government subsidy limit. The results suggest that, in this case, 

lower subsidy rates are more beneficial in terms of increasing the volume of cargo 

traffic at Toowoomba Airport and of decreasing the government’s expense in granting 

the subsidies. However, it would not be a cost-efficient decision from the perspective 

of the industries involved in distributing the cargo. 

5.2 Sustainable cold supply chain, under demand uncertainty and 

carbon emissions 

Chapter 3 described the development of an integrated optimisation model for the 

cold supply chain that is responsible for the distribution of perishable food products 

from a regional area to cities and towns. The model formulated was a two-stage 

stochastic programming model to cope with uncertain demand which was represented 

by a set of discrete scenarios using the Monte Carlo approach. To reflect the increasing 

likelihood of the introduction of carbon emissions regulations, the model was also 

modified to consider possible carbon tax regulations. The proposed model used a 

heterogeneous fleet for product distribution. The optimisation model seeks to 

determine the optimal configuration of the routes and vehicle types, the quantity of 

perishable product to be delivered to retailers, the number of refrigerators used for 

storage in order to minimise the operation costs and lost sale cost, and the costs of 

emissions. The model aims to capture the trade-off between costs and emissions. As 
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the model is an NP-hard problem and the optimization solver (Cplex) was not able to 

obtain an optimal solution in a reasonable running time, a matheuristic algorithm was 

developed to obtain good quality solutions in a reasonable computational time.  

The distribution of perishable products from one of the largest agricultural areas in 

Australia is used as a case study to demonstrate the application of the model. The 

results indicated that using a heterogeneous fleet in the cold supply chain can generate 

potential benefits, including cost saving and sustainability improvement, than if using 

a homogeneous fleet. Our analysis illustrated that under the travel distance objective, 

the results imply that using medium duty vehicles is preferable as this can lead to the 

minimisation of the average distance travelled. Therefore, transport managers can use 

the proposed framework as a decision support tool to control and reduce the 

environmental impact of transportation operations.  

Our experiments on emissions price also identified that a higher emissions price does 

not always result in environmental improvement. This finding may be of significant 

value to policy makers when they are developing and implementing carbon emissions 

regulations.  

5.3 Designing a sustainable intermodal meat supply chain under a 

carbon emissions regime 

Chapter 4 presented a mathematical model within the context of a rail-road 

intermodal network for a meat supply chain, taking into account the expected 

distribution threshold, animal welfare issues and traffic congestion constraints under 

carbon tax regime. The research focused on a multi-echelon supply chain comprising 

production regions, terminals, abattoirs, seaports and distribution centres as the 

destinations. The model selected an effective transport mode and determined the 

quantity of livestock and meat products to be shipped through the unimodal and 

intermodal links in order to minimise transport costs, quality loss costs, animal welfare 

reduction costs and emissions costs. The model was implemented for a case study in 

Queensland, Australia. The results suggested that the rail–road intermodal network is 

more desirable from the economic and animal welfare points of view. However, the 

unimodal network was preferred for reducing fuel consumption and, consequently, 

emissions from the transport operations as the livestock and meat products need to 

travel additional distances to reach the terminals in the intermodal network.  
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Our analysis indicated that rail–road intermodal network would be the more 

beneficial if animal welfare issues are prioritised. Therefore, it is important for 

decision makers to consider animal welfare, which also influences the quality of the 

meat products, when making transport mode selection decisions. Moreover, 

experiments on unit penalty costs identified that a higher unit penalty cost led to using 

the intermodal network to avoid heavy road traffic congestion which results in delays 

in product distribution and, consequently, increased quality loss costs. 

As the Australian government plans to develop a new train line to the regional area 

in the case study, which will include new terminals, the findings of this research 

suggest that it is possible for the government to assist in reducing livestock and meat 

distribution costs by constructing terminals closer to the main production regions and 

the abattoirs in order to reduce vehicle usage or the vehicle travel distance in the meat 

supply chain. This research can motivate participants in the meat supply chain to invest 

in facility development close to the train terminals in order to facilitate the shipment 

of livestock and meat products using trains. 

5.4 Limitations of the study and possible future research directions 

This research investigated a regional distribution network in a situation where the 

metropolitan cities in Australia are overcrowded and it demonstrated the potential for 

incorporating sustainability indicators such as energy use, carbon and GHG emissions, 

product quality and animal welfare in three proposed logistics decision support 

models. While the study has achieved its objectives, there are some limitations which 

can provide possible future research opportunities.  

The model examined in Chapter 2 considered the effect of only two subsidy schemes, 

which rely on linear and multiple breakpoint functions, on logistics decisions and 

economic costs. Examining the effects of alternative subsidy schemes on cargo 

distribution decisions and the promotion of regional economic development would be 

an interesting line of research in the future. Research on this topic would provide useful 

insights to help decision makers identify the most effective scheme to manage the 

supply chain. To reflect the increasing awareness of decision makers about 

environmental impacts, the emissions arising from air transport and ground transport 

would be considered so that the proposed model could focus more on improving 

sustainability. The focus of our model is on transport decisions. However, considering 

other logistics decisions such as facility location would be another potential direction 

for future studies. The model considered a constant release time at the facilities. But it 
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can be varied according to the availability of human resources, equipment and the 

volume of cargo. Therefore, it would be interesting to consider the release time as an 

uncertain parameter. The model was applied to small real world example. Larger case 

studies, which are more relevant in practice, will lead to time-consuming computations 

which may reduce the practical applicability of the proposed model. Developing 

approaches to appropriate solutions, therefore, would be essential to handle such large 

case studies.  

The model in Chapter 3 assumed the distribution of a single cold product. However, 

considering the distribution of a number of cold products may have greater 

applicability in the current competitive global economic environment. Therefore, 

researchers may be interested in considering several cold products that need various 

temperature ranges for storage as a future research area. Incorporating the benefits of 

cold products to customers and, therefore, changing the objective function from cost 

minimisation to net benefit maximisation would be a natural extension of this research. 

The model relies on a stochastic environment by taking only demand uncertainty into 

account. Other parameters such as travel time, which can be influenced by traffic 

congestion, and supply can be subject to uncertainties in practice as well. Therefore, a 

direction for future research would be to extend the model to consider uncertainty in 

other parameters which are not always predictable in practice. However, this extension 

of the model can add greater complexity and may increase computational times. The 

proposed model was modified to incorporate a carbon tax regulation because it has 

different practical advantages. However, exploring the impact of alternative emissions 

regulations on cold supply chain operational decisions would be another possibility for 

future studies. 

Chapter 4 presented a model which relies on a completely deterministic environment. 

However, parameters such as travel time, service time at facilities and demand are 

subject to uncertainty in practice. Therefore, modifying the model to cope with some 

parameters’ uncertainty would be another potential direction for future research. The 

present research was restricted to using information relating to diesel trains because of 

the limitation of data availability. To generalise the proposed model, future research 

should consider electric trains in the model as these may increase the cost efficiency 

and sustainability of the model. The model focuses on logistics decisions related to the 

transport network configuration. It would be another line of enquiry for future research 

on strategic decisions to consider facility location in the model and to investigate the 
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construction of new terminals. The case study in this chapter can be regarded as of 

small size. Extending the size of the case study to something closer to the reality may 

increase computational times. But to retain the practical applicability of the proposed 

model in that situation, an effective approach should be developed to solve the model 

in reasonable computational time as this would add value to the literature. The model 

does not consider consolidation at a train terminal. Therefore, it would be interesting 

to consider the capability of consolidation at train terminals in future research.
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Appendix A: Notations used in mathematical model in 

Chapter 2 

In this appendix we present the notations used in the mathematical model 

formulation provided in Section 2.3. We use Greek letters and upper-case letters to 

present the parameters, while lower case letters are used to define the variables. 

Table A-1:Indices 
κ, l Index of the number of vehicles, 휅, 𝑙 = 1, . . . , 𝐾 

i, j  Index of node, 𝑖, 𝑗 ∈ 𝑣 ∪ {𝑁𝑇 + 1} 

m Index of cycle, 𝑚 = 1, . . . , 𝑇𝑀 

h Index of segments in breakpoint subsidy function, ℎ =

1, . . . , 𝐻 

 

Table A-2:Parameters 
𝐶𝐿𝑖 Landing cost per tonne at a destination airport i 

A  Air transportation cost per km (fuel cost) 

𝜗𝑉 Subsidy value granted per kg of cargo distributed from a regional area to other areas 

𝜗𝐹 Subsidy rate granted per kg of a flight load if it is landing at a regional airport 

𝜗ℎ Subsidy value used at multiple breakpoint subsidy function 

𝐷𝑖𝑗 The distance from node i to j 

𝐶𝜅 Capacity of vehicle κ 

𝐹𝜅 Fixed cost of vehicle κ 

𝐹𝑑 Driver wage (AUD/s) 

𝐹𝑇𝑖 Flight time from origin airport to destination airport i 

𝑆𝑇𝑖 Service time at node i 

휂𝜅 Fuel cost per litre  (AUD/L) 

𝑄𝑗 Demand of consignee j (kg) 

𝑅𝐴𝑖 Release-time at a destination airport i 

𝑅𝐹 Release-time at a forwarder’s warehouse 

𝐿ℎ Minimum quantity of cargo required the ℎ𝑡ℎsegment of subsidy function is granted 

𝑈ℎ Maximum quantity of cargo required the ℎ𝑡ℎ segment of subsidy function is granted 

Minload  Minimum load of a flight at cycle m 

Maxload Maximum load of a flight at cycle m 

π Penalty cost per unit of time for late services at each consignee (AUD/s) 

𝑇𝑖 Latest time of starting services at consignee i (s) 

Ω loading/unloading time per kg cargo 

Γ Technical parameter 

𝛷𝜅 Engine friction factor of vehicle κ (kJ/rev/L) 

𝑁𝜅 Engine speed of vehicle κ (rev/s) 

휄𝜅 Engine displacement of vehicle κ (L) 

𝐶𝑑𝜅 Coefficient of aerodynamics drag of vehicle κ 

𝜌 Air density (kg/m3) 

𝐴𝜅 Frontal surface area of vehicle κ (m2) 
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ζ Vehicle drive train efficiency 

ω Efficiency parameter for diesel engines 

G Gravitational constant (m/s2) 

θ Road angle 

𝐶𝑒 Coefficient of rolling resistance 

𝑊𝜅 Curb weight of vehicle κ (kg) 

𝑇𝑊𝜅 Total payload of vehicle κ (kg) 

𝑆𝑅 Average speed of vehicle on origin routes (m/s) 

Budget Maximum available budget for granting subsidy for regional areas 

M A large number 

 

Table A-2:Variables 

𝑦𝑖𝑚 1 if there is a flight from the origin airport to a destination airport i at cycle m; 0 

otherwise 

𝑥𝑖𝑗𝜅𝑚 1 if  휅𝑡ℎvehicle is used to distribute cargoes on arc (i,j) at cycle m on origin route; 0 

otherwise 

𝑧𝑖𝑗𝜅𝑚 1 If 휅𝑡ℎ vehicle is used to distribute cargoes on arc (i,j) at cycle m where 

 𝑖 ∈ 𝑁𝐹 ∪ 𝑁𝐶  is a forwarder warehouse or follows it 

 𝑗 ∈  𝑁𝐶follows a forwarder warehouse 

𝑓𝑖𝑗𝜅𝑚 Cargo flow carried by 휅𝑡ℎ vehicle at cycle m when travel from node i to j 

𝑜𝑚 Flight load at cycle m 

𝑠ℎ𝑚 1 if subsidy is located in ℎ𝑡ℎ segment of breakpoint subsidy function at cycle m; 0 

otherwise 

𝑡𝑖𝜅𝑚 Departure time from node i by vehicle κ in cycle m 

𝑝𝑖 Penalty cost at consignee i as a result of time-window violation 

𝑑𝑡𝑚 Departure time of an airplane from the origin airport at cycle m 

𝑤𝑐𝜅𝑚
𝑜  Driver salary cost of vehicle κ in cycle m on origin routes 

𝑤𝑐𝜅𝑚
𝑠  Driver salary cost of vehicle κ in cycle m on sub-routes 

𝑎𝑣𝑖𝑗𝜅𝑚 Auxiliary variable linked fuel cost to vehicle’s load 

𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑚 Auxiliary variable using for linearization of subsidy value granted for a flight at each 

cycle m 

ms Auxiliary variable using for linearization of total subsidy value granted by government 

𝑔ℎ(𝑜𝑚) Multiple breakpoint subsidy function 
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Appendix B: The constraints under subsidy scenario 1 

In this appendix we explain the constraints of the mathematical model formulation 

provided in Section 2.3.4.  

S.t. 

∑ 𝑦𝑖𝑚 ≤ 1

𝑖∈𝑁𝐴

 ∀𝑚 (2.5) 

∑ 𝑦𝑖(𝑚+1) ≤ ∑ 𝑦𝑖𝑚
𝑖∈𝑁𝐴𝑖∈𝑁𝐴

 ∀𝑚 (2.6) 

∑ 𝑦𝑖𝑚 ≤ 𝑜𝑚
𝑖∈𝑁𝐴

 ∀𝑚 (2.7) 

𝑥𝑖𝑗𝜅𝑚 ≤ 𝑦𝑖𝑚 ∀𝑖 ∈ 𝑁𝐴, 

 𝑗 ∈ 𝑁𝐹 , 휅,𝑚 

(2.8) 

∑ ∑ 𝑥𝑖𝑗𝜅𝑚 + ∑ ∑ 𝑧𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶∪{𝑁𝑇+1}𝑖∈𝑁𝐹𝑗∈𝑁𝐹𝑖∈𝑁𝐴

≤ 1 ∀휅,𝑚 (2.9) 

∑ 𝑥𝑖𝑗𝜅𝑚 −

𝑗∈𝑁𝐶∪{𝑁𝑇+1}

∑ 𝑥𝑗𝑖𝜅𝑚
𝑗∈𝑁𝐹∪𝑁𝐶

= 0 ∀𝑖 ∈ 𝑁𝐶 , 휅,𝑚 (2.10) 

∑ 𝑧𝑖𝑗𝜅𝑚 −

𝑗∈𝑁𝐶∪{𝑁𝑇+1}

∑ 𝑧𝑗𝑖𝜅𝑚
𝑗∈𝑁𝐹∪𝑁𝐶

= 0 ∀𝑖 ∈ 𝑁𝐶 , 휅,𝑚 (2.11) 

∑ 𝑥𝑖𝑗𝜅𝑚 −

𝑗∈𝑁𝐶∪{𝑁𝑇+1}

∑ 𝑥𝑗𝑖𝜅𝑚
𝑗∈𝑁𝐴

= 0 ∀𝑖 ∈ 𝑁𝐹 , 휅,𝑚 (2.12) 

∑ 𝑥𝑗𝑖𝜅𝑚 ≤

𝑗∈𝑁𝐴

∑ ∑ 𝑧𝑖𝑗𝑙𝑚 +

𝑗∈𝑁𝐶𝑙,𝑙≠𝜅

∑ 𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶

 ∀𝑖 ∈ 𝑁𝐹 , 휅,𝑚 (2.13) 

∑ ∑ 𝑧𝑖𝑗𝑙𝑚
𝑗∈𝑁𝐶

≤ 𝑀∑ ∑ 𝑥𝑗𝑖𝜅𝑚
𝑗∈𝑁𝐴𝜅𝑙,𝑙≠𝜅

 ∀𝑖 ∈ 𝑁𝐹 , 𝑚 (2.14) 

∑∑ ∑ 𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶∪{𝑁𝑇+1}𝜅𝑚

+∑∑ ∑ 𝑧𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶∪{𝑁𝑇+1}𝜅𝑚

= 1 ∀𝑖 ∈ 𝑁𝐶 (2.15) 

∑ ∑ 𝑧𝑖𝑗𝜅𝑚 + ∑ 𝑧𝑗{𝑁𝑇+1}𝜅𝑚
𝑗∈𝑁𝐶𝑗∈𝑁𝐶𝑖∈𝑁𝐹

= 0 ∀휅,𝑚 (2.16) 

∑ ∑ 𝑥𝑖𝑗𝜅𝑚 + ∑ 𝑥𝑗{𝑁𝑇+1}𝜅𝑚
𝑗∈𝑁𝐹∪𝑁𝐶𝑗∈𝑁𝐹𝑖∈𝑁𝐴

= 0 ∀휅,𝑚 (2.17) 

Constraints (2.5) - (2.17) are related to routing decisions which are based on vehicle 

routing problems (Tasan and Gen, 2012; Naji-Azimi and Salari, 2013; Wang et al., 

2017). We have modified constraints (2.9) and (2.13) - (2.15) to link the routing 

variables on the origin routes (𝑥𝑖𝑗𝜅𝑚) with the routing variables on the sub-routes 

(𝑧𝑖𝑗𝜅𝑚). Despite the flow conservation constraints in classical vehicle routing 

problems, we consider incoming arcs may be less than departing arcs at the forwarders’ 

warehouses by modifying constraints (2.13) as a result of creating sub-routes. 

Constraint set (2.5) enforces that there is at most one route from the origin airport to a 
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destination airport at cycle $m$. Constraints (2.6) ensure that a flight cannot leave the 

origin airport at cycle (m+1) if there is no flight from the origin airport at cycle m. 

Constraints (2.7) ensure that there is no route from the origin airport to the destination 

airport if a flight load is zero at cycle m. Constraints (2.8) indicate that vehicles depart 

from a destination airport to forwarders’ warehouses only if a flight has landed at that 

airport at cycle $m$. Constraints (2.9) indicate that each vehicle can be used on either 

an origin route or a sub-route. Constraints (2.10) and (2.11) ensure that the incoming 

arcs must be equal to the departing arcs at each consignee’s location. Constraints (2.12) 

ensure that the incoming arcs are equal to the departing arcs at each forwarder’s 

warehouse on the origin routes. Constraints (2.13) and (2.14) link the arcs before and 

after the forwarder’s warehouse point. By constraints (2.15) we ensure that each 

consignee is visited by either an origin route or a sub-route. Constrains (2.16) and 

(2.17) guarantee the connectivity on sub-routes and origin routes. 

𝑓𝑖𝑗𝜅𝑚 ≤ 𝐶𝜅(𝑥𝑖𝑗𝜅𝑚 + 𝑧𝑖𝑗𝜅𝑚) ∀𝑖 ∈ 𝑁𝐴 ∪ 𝑁𝐹 ∪ 𝑁𝐶 

∀𝑖 ∈ 𝑁𝐹 ∪ 𝑁𝐶 , 휅,𝑚 

(2.18) 

∑ ∑ ∑ 𝑓𝑖𝑗𝜅𝑚 = 𝑜𝑚
𝑗∈𝑁𝐹𝑖∈𝑁𝐴𝜅

 ∀𝑚 (2.19) 

𝑜𝑚 ≥ 𝑀𝑖𝑛𝑙𝑜𝑎𝑑 × ∑ 𝑦𝑖𝑚
𝑖∈𝑁𝐴

 ∀𝑚 (2.20) 

𝑜𝑚 ≤ 𝑀𝑎𝑥𝑙𝑜𝑎𝑑 × ∑ 𝑦𝑖𝑚
𝑖∈𝑁𝐴

 ∀𝑚 (2.21) 

∑ ∑ 𝑓𝑖𝑗𝜅𝑚
𝑖∈𝑁𝐴𝜅

−∑∑ 𝑓𝑗𝑖𝜅𝑚
𝑖∈𝑁𝐶𝜅

= 0 ∀𝑗 ∈ 𝑁𝐹 , 𝑚 (2.22) 

∑ 𝑓𝑖𝑗𝜅𝑚
𝑖∈𝑁𝐹∪𝑁𝐶

− ∑ 𝑓𝑗𝑖𝜅𝑚
𝑖∈𝑁𝐶∪{𝑁𝑇+1}

= 𝑄𝑗 ∑ (𝑥𝑖𝑗𝜅𝑚 + 𝑧𝑖𝑗𝜅𝑚)

𝑖∈𝑁𝐹∪𝑁𝐶

 

∀𝑗 ∈ 𝑁𝐶 , 휅,𝑚 (2.23) 

∑∑ ∑ 𝑓𝑖{𝑁𝑇+1}𝜅𝑚
𝑖∈𝑁𝐹∪𝑁𝐶

= 0

𝜅𝑚

  (2.24) 

Constraints (2.18) - (2.24) indicate the product flow balances which are based on the 

capacitated vehicle routing problem (Wang et al., 2017; Soysal et al., 2015). 

Constraints (2.18) confirm that vehicles’ capacity is respected. Constraints (2.19) 

ensure that the total cargo flow from a destination airport to the forwarders’ 

warehouses is limited to a flight load entering the airport at cycle m. Constraints (2.20) 

and (2.21) confirm that the minimum load and maximum load of a flight are respected 

in each cycle m. Constraints (2.22) ensure that the cargo flow entering a forwarder’s 
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warehouse is equal to the cargo flow from the forwarder’s warehouse at each cycle m. 

Constraints (2.23) decrease the cargo flow on a route after visiting a consignee by its 

demand. By constraints (2.24) we ensure that vehicles are empty when arriving at the 

dummy point. 

𝑑𝑡𝑚 ≤ 𝑑𝑡(𝑚+1) +𝑀(1 − ∑ 𝑦𝑖(𝑚+1)
𝑖∈𝑁𝐴

) ∀ 𝑚 (2.25) 

𝑑𝑡𝑚 ≤  𝑀 ∑ 𝑦𝑖𝑚
𝑖∈𝑁𝐴

 ∀ 𝑚 (2.26) 

𝑡𝑖𝜅𝑚 ≤ 𝑀 ∑ 𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐹

 ∀ 𝑖 ∈ 𝑁𝐴, 휅,𝑚 (2.27) 

𝑡𝑖𝜅𝑚 ≤ 𝑀( ∑ 𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶∪{𝑁𝑇+1}

+ ∑ 𝑧𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶

) ∀ 𝑖 ∈ 𝑁𝐹 , 휅,𝑚 (2.28) 

𝑡𝑖𝜅𝑚 ≤ 𝑀 ∗ ( ∑ 𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶∪{𝑁𝑇+1}

+ ∑ 𝑧𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶∪{𝑁𝑇+1}

) ∀ 𝑖 ∈ 𝑁𝐶 , 휅,𝑚 (2.29) 

𝑡𝑖𝜅𝑚 ≥ 𝑑𝑡𝑚 + 𝐹𝑇𝑖 + 𝑅𝐴𝑖 −𝑀(1 − 𝑦𝑖𝑚) − 𝑀(1 − ∑ 𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐹

) ∀ 𝑖 ∈ 𝑁𝐴, 휅,𝑚 (2.30) 

𝑡𝑖𝜅𝑚 ≤ 𝑑𝑡𝑚 + 𝐹𝑇𝑖 + 𝑅𝐴𝑖 +𝑀(1 − 𝑦𝑖𝑚) + 𝑀(1 − ∑ 𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐹

) ∀ 𝑖 ∈ 𝑁𝐴, 휅,𝑚 (2.31) 

𝑡𝑗𝜅𝑚 ≥ 𝑡𝑖𝜅𝑚 +
𝐷𝑖𝑗

𝑆𝑅
⁄ −𝑀(1 − 𝑥𝑖𝑗𝜅𝑚) + 𝑅𝐹 ∀ 𝑖 ∈ 𝑁𝐴, 𝑗 ∈ 𝑁𝐹 , 휅,𝑚 (2.32) 

𝑡𝑗𝜅𝑚 ≤ 𝑡𝑖𝜅𝑚 +
𝐷𝑖𝑗

𝑆𝑅
⁄ +𝑀(1 − 𝑥𝑖𝑗𝜅𝑚) + 𝑅𝐹 ∀ 𝑖 ∈ 𝑁𝐴, 𝑗 ∈ 𝑁𝐹 , 휅,𝑚 (2.33) 

𝑡𝑗𝜅𝑚 ≥ 𝑡𝑖𝜅𝑚 +
𝐷𝑖𝑗

𝑆𝑅
⁄ −𝑀(1 − 𝑥𝑖𝑗𝜅𝑚) + 𝑆𝑇𝑗 ∀ 𝑖 ∈ 𝑁𝐹 , 𝑗 ∈ 𝑁𝐶 , 휅,𝑚 (2.34) 

𝑡𝑗𝜅𝑚 ≤ 𝑡𝑖𝜅𝑚 +
𝐷𝑖𝑗

𝑆𝑅
⁄ +𝑀(1 − 𝑥𝑖𝑗𝜅𝑚) + 𝑆𝑇𝑗 ∀ 𝑖 ∈ 𝑁𝐹 , 𝑗 ∈ 𝑁𝐶 , 휅,𝑚 (2.35) 

𝑡𝑗𝜅𝑚 ≥ 𝑡𝑖𝜅𝑚 +
𝐷𝑖𝑗

𝑆𝑅
−𝑀(1 − 𝑥𝑖𝑗𝜅𝑚) + 𝑆𝑇𝑗 ∀ 𝑖 ∈ 𝑁𝐶 , 𝑗 ∈ 𝑁𝐶 , 휅,𝑚 (2.36) 

𝑡𝑗𝜅𝑚 ≤ 𝑡𝑖𝜅𝑚 +
𝐷𝑖𝑗

𝑆𝑅
+𝑀(1 − 𝑥𝑖𝑗𝜅𝑚) + 𝑆𝑇𝑗 ∀ 𝑖 ∈ 𝑁𝐶 , 𝑗 ∈ 𝑁𝐶 , 휅,𝑚 (2.37) 

𝑡{𝑁𝑇+1}𝜅𝑚 ≥ 𝑡𝑖𝜅𝑚 −𝑀(1 − 𝑥𝑖{𝑁𝑇+1}𝜅𝑚) ∀ 𝑖 ∈ 𝑁𝐹 ∪ 𝑁𝐶 , , 휅,𝑚 (2.38) 

𝑡𝑖𝑙𝑚 ≥ 𝑡𝑖𝜅𝑚 −𝑀(1 − ∑ 𝑧𝑖𝑗𝑙𝑚
𝑗∈𝑁𝐶

) −𝑀(1 − ∑ 𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶∪{𝑁𝑇+1}

) ∀ 𝑖 ∈ 𝑁𝐹 , 𝑙, 𝑙 ≠ 휅, 휅,𝑚 (2.39) 

𝑡𝑖𝑙𝑚 ≤ 𝑡𝑖𝜅𝑚 +𝑀(1 − ∑ 𝑧𝑖𝑗𝑙𝑚
𝑗∈𝑁𝐶

) +𝑀(1 − ∑ 𝑥𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶∪{𝑁𝑇+1}

) ∀ 𝑖 ∈ 𝑁𝐹 , 𝑙, 𝑙 ≠ 휅, 휅,𝑚 (2.40) 

𝑡𝑗𝜅𝑚 ≥ 𝑡𝑖𝜅𝑚 +
𝐷𝑖𝑗

𝑆𝑅
−𝑀(1 − 𝑧𝑖𝑗𝜅𝑚) + 𝑆𝑇𝑖 

∀ 𝑖 ∈ 𝑁𝐹 ∪ 𝑁𝐶 , 𝑗

∈ 𝑁𝐶 , 휅,𝑚 
(2.41) 

𝑡𝑗𝜅𝑚 ≤ 𝑡𝑖𝜅𝑚 +
𝐷𝑖𝑗

𝑆𝑅
+𝑀(1 − 𝑧𝑖𝑗𝜅𝑚) + 𝑆𝑇𝑖 

∀ 𝑖 ∈ 𝑁𝐹 ∪ 𝑁𝐶 , 𝑗

∈ 𝑁𝐶 , 휅,𝑚 
(2.42) 
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𝑡{𝑁𝑇+1}𝜅𝑚 ≥ 𝑡𝑖𝜅𝑚 −𝑀(1 − 𝑧𝑖{𝑁𝑇+1}𝜅𝑚) ∀ 𝑖 ∈ 𝑁𝐶 , 휅,𝑚 (2.43) 

𝑝𝑖 ≥ 𝜋(∑∑𝑡𝑖𝜅𝑚
𝜅𝑚

− 𝑆𝑇𝑖 − 𝑇𝑖) ∀ 𝑖 ∈ 𝑁𝐶 (2.44) 

 

Constraints (2.25) - (2.44) are related to the time-windows and guarantee the 

feasibility of a time schedule for each vehicle based on the vehicle routing problem 

with time-windows (Cordeau et al., 2007; Kritikos and Ioannou, 2010; Li et al., 2016). 

Constraint set (2.25) ensures that a flight at the 𝑚𝑡ℎcycle cannot depart from the origin 

airport later than a flight at the (𝑚 + 1)𝑡ℎ cycle.  Constraints (2.26) set 𝑑𝑡𝑚 as a non-

zero value if there is a route between the origin airport and the destination airport. 

Constraints (2.27) - (2.29) set the 𝑡𝑗𝜅𝑚 related to node j as a non-zero value if the node 

is visited by vehicle κ. Constraints (2.30) and (2.31) determine the departure time from 

a destination airport by vehicle κ at cycle m. Constraints (2.32) and (2.33) compute the 

departure time from a forwarder’s warehouse visited by vehicle κ an origin route. 

Constraints (2.34) and (2.35) compute the departure time from a consignee visited 

immediately after a forwarder’s warehouse by vehicle κ on an origin route. The 

departure time from other consignees visited by vehicle κ on origin routes is computed 

by constraints (2.36) and (2.37). Constraints (2.38) compute the departure time from 

the dummy point on an origin route which is equal to the departure time at the last 

node visited by vehicle κ on the origin route. Constraints (2.39) and (2.40) compute 

the departure time from a consignee visited immediately after a forwarder’s warehouse 

by a sub-route. The departure time from other consignees visited by sub-routes is 

computed by constraints (2.41) and (2.42). Constraints (2.43) compute the departure 

time from the dummy point on a sub-route which is equal to the departure time from 

the last consignee visited on the sub-route. The penalty cost as a result of a time-

window violation at each consignee’s location is determined by constraints (2.44). 

𝑚𝑠 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡  (2.45) 

𝑚𝑠 ≤∑∑ ∑ ∑ 𝑓𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐹𝑖∈𝑁𝐴2𝜅𝑚

(𝜗𝐹 + 𝜗𝑉)  (2.46) 

𝑎𝑣𝑖𝑗𝜅𝑚 ≥ 𝑓𝑖𝑗𝜅𝑚𝐷𝑖𝑗 −𝑀(1 − 𝑥𝑖𝑗𝜅𝑚 − 𝑧𝑖𝑗𝜅𝑚) 

∀ 𝑖

∈ 𝑁𝐴 ∪ 𝑁𝐹 ∪ 𝑁𝐶 , 

𝑗

∈ 𝑁𝐹 ∪ 𝑁𝐶 , 𝑚, 휅 

(2.47) 
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𝑤𝑐𝜅𝑚
𝑜 ≥ 𝐹𝑑(𝑡{𝑁𝑇+1}𝜅𝑚 − ∑ 𝑡𝑖𝜅𝑚

𝑖∈𝑁𝐴

− ∑ 𝑥𝑗{𝑁𝑇+1}𝜅𝑚
𝑗∈𝑁𝐹

× 𝑅𝐹𝑗

+ 2𝛺 ∑ ∑ 𝑓𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐹𝑖∈𝑁𝐴

+ 𝛺 ∑ ∑ 𝑓𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶𝑖∈𝑁𝐹

)

+𝑀 ∑ 𝑥𝑖{𝑁𝑇+1}𝜅𝑚
𝑖∈𝑁𝐹

−𝑀(1

− ∑ 𝑥𝑖{𝑁𝑇+1}𝜅𝑚
𝑖∈𝑁𝐶

) 

∀𝑘,𝑚 (2.48) 

𝑤𝑐𝑘𝑚
𝑠 ≥ 𝐹𝑑(𝑡{𝑁𝑇+1}𝜅𝑚 − ∑ 𝑡𝑖𝜅𝑚

𝑖∈𝑁𝐹

+ 𝛺 ∑ ∑ 𝑓𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐶𝑖∈𝑁𝐹

)

−𝑀(1 − ∑ 𝑧𝑖{𝑁𝑇+1}𝜅𝑚
𝑖∈𝑁𝐶

) 

∀𝑘,𝑚 (2.49) 

𝑦𝑖𝑚, 𝑥𝑖𝑗𝜅𝑚, 𝑧𝑖𝑗𝜅𝑚, ∈ (0,1) ∀ 𝑖, 𝑗, 𝑖 ≠ 𝑗, 휅,𝑚 (2.50) 

𝑓𝑖𝑗𝜅𝑚, 𝑡𝑖𝜅𝑚, 𝑝𝑖 , 𝑎𝑣𝑖𝑗𝜅𝑚, 𝑑𝑡𝑚, 𝑜𝑚 ≥ 0 ∀ 𝑖, 𝑗, 휅,𝑚 (2.51) 

The total subsidy income is determined based on the government subsidy limit and 

the subsidy values granted for flights and vehicles at the regional airport under subsidy 

scenario 1 by constraints (2.45) and (2.46). Constraints (2.47) link the transportation 

cost to the cargo flow on a route. Constraints (2.48) and (2.49) compute the driver cost 

on the origin routes and sub-routes, respectively. Constraints (2.50) and (2.51) define 

the types of decision variables.
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Appendix C: The mathematical model under subsidy 

scenario 2 

This appendix presents the model in which the subsidy is considered as a multiple 

breakpoint function. 

min 𝑧𝐵 = 𝐴𝑇𝐶 − 𝑇𝑆𝐼 + 𝐺𝑇𝐶 + 𝑃𝐶 (2.52) 

Subject to: 

∑𝑠ℎ𝑚
ℎ

= ∑ 𝑦𝑖𝑚
𝑖∈𝑁𝐴2

 ∀𝑚 (2.53) 

𝐿ℎ −𝑀(1 − 𝑠ℎ𝑚) ≤ 𝑜𝑚 ∀𝑚, ℎ (2.54) 

𝑜𝑚 ≤ 𝑈ℎ +𝑀(1 − 𝑠ℎ𝑚) ∀𝑚, ℎ (2.55) 

𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑚 ≤ 𝑔ℎ(𝑜𝑚) + 𝑀(1 − 𝑠ℎ𝑚) ∀𝑚, ℎ (2.56) 

𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑚 ≥ 𝑔ℎ(𝑜𝑚) − 𝑀(1 − 𝑠ℎ𝑚) ∀𝑚, ℎ (2.57) 

𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑚 ≤ 𝑀∑𝑠ℎ𝑚
ℎ

 ∀𝑚 (2.58) 

𝑚𝑠 ≤∑(

𝑚

𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑚 +∑ ∑ ∑ 𝑓𝑖𝑗𝜅𝑚
𝑗∈𝑁𝐹𝑖∈𝑁𝐴2𝜅

𝜗𝑉  (2.59) 

𝑠ℎ𝑚 ∈ {0,1} ∀𝑚, ℎ (2.60) 

And Constraints (2.5) – (2.45) and (2.47)- (2.51). 

Constraints (2.53) ensure that if a flight arrives at a regional area, the subsidy value 

granted for the flight is set a non-zero value. Constraints (2.54) and (2.55) link flight 

load with the multiple breakpoint subsidy function. Constraints (2.56) and (2.57) 

determine the subsidy value granted for a flight based on the multiple breakpoint 

subsidy function. Constraints (2.58) link the 𝑠𝑢𝑏𝑠𝑖𝑑𝑒𝑚with the 𝑠ℎ𝑚variables. The total 

subsidy value granted by the government in the regional area under subsidy scenario 

2 is determined by constraints (2.59). Constraints (2.60) define the types of decision 

variables.
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Appendix D: The Modified model in Chapter 3 

In this appendix the modified model used in the second phase of initialisation 

procedure is presented to determine quantity delivered to the retailers. 

min 𝑧𝑚 = 𝐻𝑆𝑖𝑆
𝑓
+ 𝜙𝐸𝑢𝑆

𝑓
𝐸𝑆 

+∑𝑃(휉) (𝐻𝑆𝑖𝑆
𝑠(휉) + 𝜙𝐸𝑢𝑆

𝑠(휉)𝐸𝑆 + ∑∑(𝐻𝑅𝑖𝑅𝑛𝑡(휉) + 𝜙𝐸𝑢𝑅𝑛𝑡(휉)𝐸𝑅)

𝑛𝑡

)

𝜉

+ 

𝜙𝐹𝛤∑(𝐷0𝑛𝑞𝑛
𝑓

𝑛

𝛾2𝛼) +∑𝑃(휉)(𝜙𝐹𝛤∑(𝐷0𝑛𝑞𝑛
𝑠(휉)

𝑛

𝛾2𝛼)) +

𝜉

 

∑𝑃(휉)∑∑𝜋𝑠𝑛𝑡(휉)

𝑛𝑡

+

𝜉

 

휇 (𝛤∑(𝐷0𝑛𝑞𝑛
𝑓

𝑛

𝛾2𝛼) × 𝜎 + 𝑢𝑆
𝑓
𝐸𝑆 × 𝛿

+∑𝑃(휉) (𝛤∑(𝐷0𝑛𝑞𝑛
𝑠(휉)

𝑛

𝛾2𝛼) × 𝜎 + (𝑢𝑆
𝑠(휉)𝐸𝑆

𝜉

+∑∑𝑢𝑅𝑛𝑡(휉)𝐸𝑅
𝑛𝑡

) × 𝛿)) 

(3.68) 

Subject to: 

𝑖𝑆
𝑓
= 𝑄 −∑𝑞𝑛

𝑓

𝑛

  (3.69) 

𝑖𝑆
𝑠(휉) = 𝑖𝑆

𝑓
+ 𝑄 −∑𝑞𝑛

𝑠(휉)

𝑛

 ∀휉 (3.70) 

𝑖𝑅𝑛1(휉) = 𝑞𝑛
𝑓
− 𝐷𝑛(휉) + 𝑠𝑛1(휉) ∀𝑛, 휉 (3.71) 

𝑖𝑅𝑛𝑡(휉) = 𝑖𝑅𝑛(𝑡 − 1)휉 + 𝑞𝑛𝑠(휉) − 𝐷𝑛휉 + 𝑠𝑛𝑡(휉) ∀𝑛, 휉, 𝑡 ≥ 2 (3.72) 

𝑖𝑅𝑛1(휉) ≤ ϒ ∀𝑛, 휉, 𝑡 (3.73) 

𝑞𝑛
𝑠(휉) + 𝑖𝑅𝑛1(휉) ≥ 𝐷𝑛(휉) + ϒ ∀𝑛, 휉 (3.74) 

𝑢𝑆
𝑓
≥
𝑖𝑆
𝑓

𝐶𝑆
  (3.75) 

𝑢𝑆
𝑓
≤
𝑖𝑆
𝑓

𝐶𝑆
+ 1 − 휀  (3.76) 

𝑢𝑆
𝑠(휉) ≥

𝑖𝑆
𝑠(휉)

𝐶𝑆
 ∀휉 (3.77) 

𝑢𝑆
𝑠(휉) ≤

𝑖𝑆
𝑠(휉)

𝐶𝑆
+ 1 − 휀 ∀휉 (3.78) 

𝑢𝑅𝑛𝑡(휉) ≥
𝑖𝑅𝑛𝑡(휉)

𝐶𝑅
 ∀𝑛, 𝑡, 휉 (3.79) 

𝑢𝑅𝑛𝑡(휉) ≤
𝑖𝑅𝑛𝑡(휉)

𝐶𝑅
+ 1 − 휀 ∀𝑛, 𝑡, 휉 (3.80) 

𝑖𝑆
𝑓
, 𝑖𝑆
𝑠(휉), 𝑞𝑛

𝑓
, 𝑞𝑛

𝑠(휉), 𝑢𝑆
𝑓
, 𝑢𝑆

𝑠(휉) ≥ 0 ∀𝑛, 휉 (3.81) 
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𝑖𝑅𝑛𝑡(휉), 𝑠𝑛𝑡(휉), 𝑢𝑅𝑛𝑡(휉) ∀𝑛, 𝑡, 휉 (3.82) 

 

 


