

IV EXPO DE INVESTIGACIÓN DE INGENIERÍA CIVIL

TEMA: RESILIENCIA, SOSTENIBILIDAD E INNOVACIÓN

Evaluación de las técnicas de vegetación como método para la estabilización de taludes

Alumnos: Jara Castillo, Adrián; Mas Gusukuma, José Carlos; Morales Alfaro, César Sebastián; Pérez Luna, Pablo. **Profesor:** Madrid Argomedo, Manuel Ricardo.

Asignatura: Mecánica de Suelos I | | Sección: 502 | | Semestre: 2020-1

1.PLANTEAMIENTO DEL PROBLEMA

Una deficiente estabilización de taludes suele provocar deslizamientos superficiales que generan daños en infraestructura y geomorfología, afectando al bioma y a la población. Ante ello, se propone un método alternativo para la estabilización de taludes que es el uso de vegetación, este se utiliza por su capacidad de solucionar problemas de erosión, reptación y en ocasiones fallas globales. Por lo cual, surge la pregunta ¿qué tipo de vegetación es la más viable para lograr la estabilización?

2. OBJETIVOS

- Describir los criterios de vegetación para l estabilización de taludes.
- Analizar cómo actúa la vegetación en los taludes.
- Identificar la importancia de la vegetación en la estabilidad de taludes.

3. METODOLOGÍA

La presente investigación es de tipo descriptivo, en el cual, se ha comparado dos casos de estabilización con éxito empleando la Pinus Radiata D, Eucalyptus Globulus y Vetiver en taludes arenosos con clima cálido. Asimismo, se describen sus criterios de uso y los parámetros que son influenciados por la vegetación.

4. DESARROLLO DEL TEMA

4.1 Criterios para la selección de especies vegetales

Dependen de una serie de variables para maximizar las propiedades mecánicas y asegurar la durabilidad en el talud.

	Contenido de sales.			
Naturaleza del terreno	Tipo de pH.			
	Contenido de nutrientes.			
	Inclinación del estrato.			
	Estratificación del suelo.			
Clima de la zona	Temperatura.			
	Humedad de la zona.			
	Bioclima de la zona.			
	Especies pioneras.			
Criterios fitosociológicos	Plantas competidoras.			
	Plantas ruderales.			
	Plantas tolerantes.			
	Erosión superficial.			
Criterios	Estabilización de			
Biotécnicos	movimientos de masa.			

			_
Tabla 1 . Criterios	para selección de	plantas. Paz et al.	(2009).

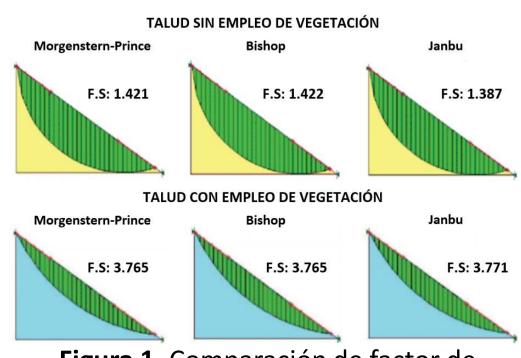
4.2 Influencia de la vegetación en la estabilidad

Factores generados por la	La vegetación no solo cumple un				
vegetación de un talud	factor visual en obras, mejorando				
mento de la resistencia mecánica	el paisaje; sino que también				
l terreno.					
esiones de poros del terreno.	cumple un papel estabilizador de				
sistencia a las fuerzas del viento	los taludes, mejorando las				
osión).	propiedades del suelo. Schmidt				
stencia de un estrato orgánico.	(2001) presenta algunos factores				
ola 2 Factores generados	(2001) preserved algaries ractores				

Tabla 2. Factores generados por la vegetación de un talud. Schmidt (2001).

del talud que mejoran con la vegetación (Tabla 2).

4.3 Experiencias de aplicación del método


• <u>Dunas de Reñaca, Chile</u>: Se empleó la Pinus Radiata D y Eucalyptus Globulus como un reforzamiento que aumenta la resistencia al corte de los suelos. Al analizar el F.S estático tanto en corto y largo plazo se obtuvo resultados de 1.4 y 1.5 respectivamente. Este aumento se debe al desarrollo de las raíces con una mayor adherencia al suelo.

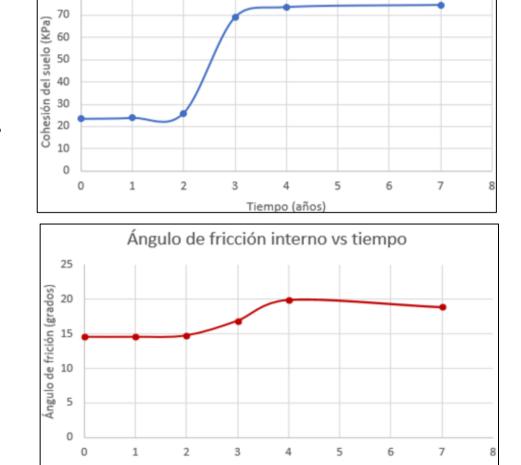
Corto Plazo			Largo Plazo					
Sector Perfi	Porfil	Talud	F.S	Sector	Sector	Perfil	Talud	F.S
	reiiii	medio (°)	Estático		tor Periii	medio (°)	Estático	
Talud	1	33	1.412	Talud	1	33	1.504	
	2	39	1.332		2	39	1.471	
	3	34	1.405		3	34	1.503	

Tabla 3. Factores de seguridad. Sanhueza (2012)

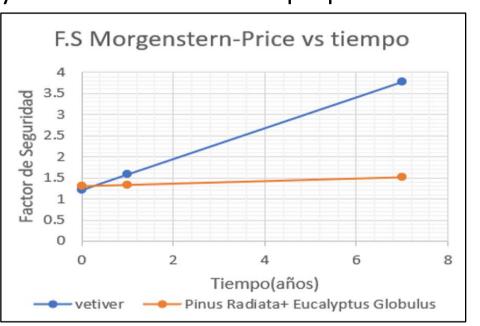
• <u>Santana dos Montes:</u> En este caso se analiza la estabilidad de los taludes de dos zonas, una sin ningún tipo de plantación y la otra con una plantación de hierba Vetiver, analizada a los 1, 2, 3, 4 y 7 años de crecimiento.

Los resultados obtenidos muestran que el factor de seguridad del talud con hierba Vetiver alcanzó un aumento de 167% en comparación con un talud sin vegetación.

Figura 1. Comparación de factor de seguridad en taludes. Rufino (2012).


RESUMEN

El presente trabajo se enfoca en el uso de la vegetación como método alternativo para la estabilización de taludes. Para esto, es importante tener un criterio acerca de la selección de especies vegetales y el método de plantación a utilizar en una zona. Asimismo, se comparan 3 tipos de plantas: Vetiver, Pinus Radiata D y Eucalyptus globulus, tomando como referencia dos investigaciones realizadas a taludes basados en los factores de seguridad. La Vetiver muestra los mejores resultados con respecto al F.S y se observa un incremento diferencial de la cohesión a los 2 años de plantación acompañado del crecimiento del ángulo de fricción.


5. RESULTADOS

Al realizar la comparación entre los tres tipos de vegetación, la hierba Vetiver resulta ser la mejor por su versatilidad, adaptación y su gran incremento del F.S. Al observar cómo se desarrolla, a 4 entre 2 años de plantación, se obtiene los mejores incrementos, tanto en el ángulo de fricción (5.1°) como en la cohesión (47.6 kPa). Esto se debe a un crecimiento de las raíces en el suelo y el cambio en la presión de poros

Figura 3. Cambios del F.S en el tiempo. Elaboración propia

Figura 2. Cambios de ángulo de fricción y cohesión. Elaboración propia.

6. CONCLUSIONES

- Es fundamental considerar el tipo de suelo, inclinación del talud, factores climáticos, fitosociológicos y biotécnicos para un desarrollo optimo de la especie vegetal y una correcta adherencia de las raíces.
- La hierba Vetiver es de las plantas más recomendadas para estabilizar taludes debido a su gran versatilidad, fácil colocación y por su potente sistema radicular mejora las propiedades del suelo, logrando estabilizar el talud.
- La vegetación crea un estrato suelo-raíz que mejora la estabilidad del talud por aumento de la cohesión, disminución de presión de poros y resistencia a la erosión.

7. REFERENCIAS BIBLIOGRÁFICAS

