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An RST Control Design Based on Interval Technique for

Piezomicropositoning Systems with Rate-Dependent Hysteresis

Nonlinearities

Micky Rakotondrabe1 and Mohammad Al Janaideh2

Abstract—We propose a feedforward-feedback con-
trol of piezomicropositioing systems devoted to pre-
cise positioning over different operating conditions.
Such systems exhibit rate-dependent hysteresis non-
linearities and badly damped oscillations character-
istics. First, we introduce a rate-dependent Prandtl-
Ishlinskii (RDPI) inverse model for feeforward com-
pensation of hysteresis. This yields to compensation
that can be characterized by an uncertain linear model
with disturbances. To model the uncertainties, we
suggest to use intervals then we propose a new interval
design for a RST structured feedback controller. The
proposed design method permits to satisfy prescribed
performances. Simulation and experiments on a piezo-
electric tube actuator are carried out and demonstrate
the efficiency of the proposed control design.

I. Introduction

Piezoelectric actuators are one of the most used ac-
tuators to develop precise positioning systems and to
develop systems working at small scales. This recognition
is thanks to the very interesting resolution (down to
nanometer), the high bandwidth (up to tens of kHz), the
high force density, and the low consumption they can of-
fer [1]. In addition to that, piezoelectric actuators can be
easily integrated as they are powered electrically. For in-
stance, piezoelectric actuators are used in microrobotics
for micromanipulation and microassembly applications
[2] and in microscopes for fast images scanning [3].

Despite the above interesting properties of piezoelec-
tric actuators, they are known to exhibit nonlinearities
(hysteresis, creep) and badly damped oscillations in their
responses. These compromise their overall performances
during the positioning tasks and could even compromise
the stability if in a closed-loop control scheme. Many
studies have therefore been reported regarding the con-
trol and the attenuation of these phenomena, including
feedforward scheme, feedback, and feedforward-feedback
control schemes. Feedforward is particularly of great in-
terest in applications where using sensors is not possible
due to the lack of space. In counterpart, feedforward
is very sensitive to modeling uncertainties and to ex-
ternal dirturbances. On the other hand, feedback and
feedforward-feedback can offer robustness against model
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uncertainties additionally to specified performances sat-
isfaction. Over feedback control, feedforward-feedback is
able to furnish supplementary performances that feed-
back alone would not be able to give [4]. In this paper, we
suggest the design of a feedforward-feedback control for
piezoelectric actuators. The feedforward is to compensate
for the rate-dependent hysteresis of the actuators and the
additional feedback is to ensure performances robustness
and to reject possible disturbances.

There are numerous studies regarding the modeling
of hysteresis in piezoelectric actuators but few of them
are extended to feedforward control. The latters include:
the Bouc-Wen approach [5], the Preisach approach [6],
and the Prandtl-Ishlinskii approach [7], [8], [9]. In the
Prandtl-Ishlinskii approach, the rate-dependent Prandtl-
Ishlinskii (RDPI) model is particularly able to approxi-
mate the hysteresis with shape changing versus the rate
and versus the frequency of the driving input. In fact,
much below the resonance frequency of many piezoelec-
tric actuators, the hysteresis is observed to be yet rate-
dependent. Taking into account such rate-dependency is
essential in order to reduce modeling uncertainties and
thus to increase the efficiency of a feedforward control
scheme. This paper introduces first a RDPI model and
its inverse to compensate for rate-dependent hysteresis in
piezoelectric actuators. The compensation yields a linear
model augmented with a bounded error that we will
consider as an input disturbance. Then, the feedforward
scheme is augmented with a feedback controller in order
to ensure robustly certain prescribed performances. To
that aim, a new design of the RST controller on the
basis of interval techniques is proposed. The proposed
RST controller is able to ensure a priori specified perfor-
mances despite uncertain parameters in the linear model
which we bound with interval numbers and despite input
disturbance.

Interval techniques received many attention in states
and parameters estimation [10], in robotics control [11]
and in robustness analysis [12]. Regarding feedback con-
trollers for interval systems, various techniques have
been studied: interval PID structure [13], interval state-
feedback structure [14], interval H∞ technique [15], or
interval controller based on performances inclusion de-
sign [16]. An advantage of writing uncertain parameters
with interval numbers is the modeling simplicity. The
controllers design itself is generally a combination of the



classical control tools with interval techniques. Relative
to the above cited interval controllers design and the
interval RST in [17], we propose a new RST controller
that does not require solving inversion problem, which is
therefore simpler.

II. RDPI feedforward controller

First the rate-dependent Prandtl-Ishlinskii (RDPI)
model is reminded in this section. Then, the inverse
of the model is given. Such inverse model is generally
employed as feedforward controller, or compensator, for
an actuator that exhibits a rate-dependent hysteresis.
Finally, the error of compensation is reminded when the
RDPI inverse model is not the exact inverse.

A. The model

Let 0 = t0 < t1 < · · · < tm be a partition of the
interval [0, T ] such that vr is monotone (nondecreasing
or nonincreasing) in each interval [ti−1, ti], i = 1, . . . ,m.
A RDPI hysteresis model Φ̂ that approximates a real
hysteresis Φ with input vr(t) and output v(t) is defined
as a superposition of nh weighted rate-dependent play
operators such that [7]

v(t) = Φ̂[u](t) = c0vr(t) +

nh∑

j=1

cjψzj(t)∆(zj(t)), (1)

where c0 and cj are the weights, zj(t) = αj + β|v̇r(t)|,
ψzj(t)[vr](t) is the rate-dependent play operator, and
∆(zj(t)) represents the distance between the dynamic
thresholds. In this model, we have ∆(zj(t)) = α. Each
play operator ψzj(t), with j = 1, · · · , nh, is characterized
by a dynamic threshold zj(t) and is described for t ∈
]ti, ti−1] with ηj(t) = ψzj(t) as

ηj(t) = max{vr(t)− zj(t),min{vr(t) + zj(t), η(ti−1)}},
(2)

where zj(u̇(t)) = αj+β|u̇(t)|, where α and β are positive
constant, and v(0) = max{u(0) − rj(0),min{u(0) +
rj(0), 0}}. The fact that the play operator ψrj(u̇(t))

that composes the model Φ̂ have dynamic thresholds
makes this latter rate-dependent. The identification of
the RDPI model parameters is obatined using the shape
function of the measured hysteresis loops [7].

B. The inverse model

The inverse of the RDPI model Φ̂ is denoted Φ̂−1 and
is called RDPI inverse model in the sequel. Its input is
vr(t) and the output is u(t). The RDPI inverse model
Φ̂−1 and the RDPI model Φ̂ have the same structure
and are geometrically symmetrical. The shape function
of inverse RDPI model is Φ̂−1. Hence, the output of the
inverse RDPI model u(t) = Φ̂−1can be expressed as

u(t) = g0vr(t) +

nh∑

j=1

gjψsj(t)[vr](t)∆sj(t), (3)

where sj(v̇r(t)) are positive thresholds and g0 and gj are
the weights of the inverse model. The dynamic threshold

sj and the weights g0 and gj are derived from the
dynamic thresholds rj and the weights c0 and cj [7].

C. The output of the Inverse Compensation and the error

bounds

In this section we present an analytical formula for the
output of the inverse compensation. Due to inexact in-
version, the weights of the inverse model can be obtained
as j = i, · · · , nh,

(
i∑

j=0

ci
)(

i∑

j=0

gi
)
= 1 + ǫj , (4)

∆zj(t) =
(

i∑

j=0

ci
)
∆rj(t) (5)

where ǫj ∈ R is a constant representing uncertainties in
the inverse RDPI model. We obtain the exact inversion
when ǫj = 0. Then, the output of the inverse compensa-
tion can be expressed as

v(t) = δ0vr(t) +

nh∑

j=1

δjψzj(t)[vr](t)∆zj(t), (6)

where ∆zj(t) = α, δ0 = 1+ ǫ0
c0
, and ǫ ∈ R, and |ǫ| << 1,

and δj ∈ R and |δj | << 1. Then, we can write

v(t) = (1 + ǫ0)vr(t) +

nh∑

j=1

ǫjψzj(t)[vr](t), (7)

where ǫj = δjα. For exact compensation, ǫ0 = 1 and
ǫj = 0. Then, v(t) = vr(t). The output of the inverse
compensation is

v(t) = vr(t) + ǫvr(t) +

nh∑

j=1

ǫj
(
vr(t)− Γzj(t)

)
[vr](t), (8)

where Γzj(t) is the output of the rate-dependent stop
operator, with Γzj(t)[vr](t) = vr(t) − Ψzj(t)[vr](t). Let
γj(t) = Γzj(t), then for t ∈]ti+1, ti]

γj(t) = min{zj(t),max{−zj(t), vr(t)− vr(ti) + γj(ti)}}.
(9)

and the output of the inverse compensation can be
expressed as

v(t) = vr(t)

(

1 +

nh∑

j=0

ǫj

)

−

nh∑

j=1

ǫjΓzj(t)[vr](t). (10)

The error of the inverse compensation can be presented
as e(t) = vr(t)− v(t), then

e(t) = −vr(t)

nh∑

j=0

ǫj +

nh∑

j=1

ǫjΓzj(t)[vr](t). (11)

We can conclude that |Γzj(t)[vr](t)| ≤ zj(t), then

|e(t)| ≤ |vr(t)|

nh∑

j=0

|ǫj |+

nh∑

j=1

|ǫj ||zj(t)|. (12)



Since zj(t) = αj + β|v̇r(t)|

|e(t)| ≤ |vr(t)|

nh∑

j=0

|ǫj |+α

nh∑

j=1

|ǫj |j+β

nh∑

j=1

|ǫj ||v̇r(t)|. (13)

Let δ0 = |ǫ0| and δ = max |ǫj |, where j = 1, · · · , nh.
Then we conclude that the error bounds is

|e(t)| ≤ |vr(t)|δ0nh + αnhδ
︸ ︷︷ ︸

Rate-Independent

+ βnhδ|v̇r(t)|
︸ ︷︷ ︸

Rate-Dependent

(14)

Then we can write

v(t) = vr(t) + b(t), (15)

where b(t) is the error of the compensation.

D. The new model

Eq. (15) provides a linear relation between the new
input vr(s) and the output displacement y(s) of the
piezoelectric actuator. This relation is valid at frequen-
cies lower than the resonance where the RDPI model
is identified. To extend the model in order to account
for the dynamics of the actuator, the Hammerstein
structure is suggested. It consists in considering the
actuator behavior as a cascade of a nonlinear part valid
at low frequency and a linear dynamics. Hence Fig. (1-
a) represents the Hammerstein scheme augmented with
the RDPI inverse model. The actuator is represented
here with the RDPI hysteresis model and a normalized
linear dynamics D(s), with D(s = 0) = 1. Considering
Eq. (15), a new linear dynamical model G(s) = kD(s) is
therefore obtained as schemated in Fig. (1-b) where the
input disturbance is: d(s) = b(s)D(s).

dynamics

system with hysteresis

(a)

(b)

^

+

compensation

Fig. 1: (a): the compensation scheme. (b): the new
system.

In most of applications of piezoelectric actuators, a 2nd

order model is sufficient. Indeed, it accounts for the
bandwidth and for the first resonance while the model
remains simple. Therefore, we consider the following 2nd

order model:

G(s) = k.D(s) =
k

1
ω2

n
s2 + 2ζ

ωn
s+ 1

(16)

where ωn is the natural frequency and ζ is the damping
coefficient.

Due to the high sensitivity of miniaturized systems
face to the environment however, their model parameters
are uncertain [18]. Piezoelectric actuators are specif-
ically very sensitive to temperature variation and to
surrounding vibration. Whilst developing a temperature-
dependent model of piezoelectric actuators might become
a very tricky task due to the lack of studies regarding
the precise effects of thermal variation, it is however
of great interest to be able to at least consider and
model these effects as uncertainties. One way in the
litearature to model in an easy way such uncertainties in
piezoelectric actuators models is intervals [14], [16]. Once
an interval model is obtained, interval techniques can be
combined with control techniques to synthesize a robust
controller that will further ensure the stability and the
performances of the closed-loop despite the uncertainties
ranging in the intervals. Because of this easy way to
bound uncertainties, we suggest to use interval models
in this paper. Thus, ”point” model in Eq. (16) becomes:

[G](s) =
[k]

1
[ωn]2

s2 + 2[ζ]
[ωn]

s+ 1
=

[k]

[a2]s2 + [a1]s+ 1
(17)

such that the static gain, the natural frequeny and the
damping ratio of the actuator model are uncertain but
within the intervals [k], [ωn] and [ζ], respectively.

III. An interval RST feedback controller

design

Having the interval model in Eq. (17) to approximate
the behavior of the piezoelectric actuator with the RDPI
inverse model (hysteresis compensator), we propose to
add a feedback controller in order to reject any dis-
turbance, including the internal disturbance d(s) due
to compensation error, and to satisfy certain prescribed
tracking performances. We propose here a RST controller
feedback structure as it is known to be robust against
disturbance additionally to its robustness to ensure static
error deletion.

A. Structure

Let Fig. (2-a) (equivalently Fig. (2-b)) represent the
new model augmented with a RST structured feed-
back controller. Despite the fact that RST controllers
were originally and were systematically designed in the
discrete-domain, we propose here a continous-domain
design combined with interval models. Therefore, R, S
and T are polynomials in the Laplace variable s.

In the classical version, i.e. without using intervals,
the basic idea of the RST controller is to find the
polynomials R, S and T such that the feedback in Fig. (2-
a) has its poles equal to imposed/specified poles. This is
why the RST approach is among the poles assignment
approaches. The found controller will even reject an input
disturbance d if certain conditions are satisfied during
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Fig. 2: (a): the RST controller applied to the new system.
(b): details with the RDPI inverse model.

the design steps. Since we are dealing with intervals, we
propose an interval RST controller design. In this case,
the specifications are also intervals. One important result
in interval techniques that will be used during the further
design is the performances inclusion in interval transfer
functions. This is reminded in Section- (III-B).

B. Performances inclusion for stable transfer functions

Performances inclusion in interval transfer functions
has been used for controllers synthesis [16] and for actu-
ators structures design [2]. We will use this to further de-
sign the RST feedback controller. The theorem contains
two properties: one property for the frequency domain
performances and one property for the time domain
performances.

Consider two stable interval systems having the same
polynomials degrees m and n:

[H1] (s) =

m∑

l=0

[p1l]·s
l

n∑

k=0

[q1k]·sk
, [H2] (s) =

m∑

l=0

[p2l]·s
l

n∑

k=0

[q2k]·sk
(18)

Theorem 3.1: Performances inclusion theorem [12].

In the frequency domain:

if







[q1k] ⊆ [q2k] , ∀k = 1 · · ·n
and

[p1l] ⊆ [p2l] , ∀l = 1 · · ·m
⇒







[ρ] ([H1] (jω)) ⊆ [ρ] ([H2] (jω))
and

[ϕ] ([H1] (jω)) ⊆ [ϕ] ([H2] (jω))

In the time domain:

if







[q1k] ⊆ [q2k] , ∀k = 1 · · ·n
and

[p1l] ⊆ [p2l] , ∀l = 1 · · ·m
⇒ [h1] (t) ⊆ [h2] (t)

where [ρ] ([Hi](jω) is the set of magnitude of the interval
system [Hi], [ϕ] ([Hi](jω) is its argument and [hi](t) is
the impulse response of the two systems.

As a definition, we say that [H1](s) ⊆ [H2](s) when
[q1k] ⊆ [q2k] and [p1l] ⊆ [p2l].

C. Problem formulation

Let us decompose [G](s) as: [G](s) = [B](s)
[A](s) with

[B](s) = [k] and [A](s) = [a2]s
2+[a1]s+1. From Fig. (2-

a), we obtain

y(s) =
[B]T

([A]S + [B]R)
yr(s) +

[B]S

([A]S + [B]R)
d(s). (19)

Our target is to find the RST controller s.t. the controller
reject the effect of the disturbance d(s) and s.t. a desired
tracking performance described by a desired closed-loop
interval transfer function [Hd](s) be satisfied. That is
- disturbance rejection: to ensure disturbance rejec-
tion, the transfer function that links d(s) and y(s) should
contain at least one zero, i.e. S(s) should be of the
following structure:

S(s) = szSz(s), (20)

where Sz(s) is a polynomial with a relative degree of z
with regards to S(s).
- tracking performance: according to the perfor-

mances inclusion result in Theorem- (III-B), the follow-
ing inclusion permits to the closed-loop to satisfy the
desired specification described by [Hd](s):

[B](s)T (s)

([A](s)S(s) + [B](s)R(s))
⊆ [Hd](s) (21)

Indeed, Eq. (21) satisfies y(s) ⊆ [Hd](s)yr(s) and thus
the output follows prescribed and desired evolution.

D. Rewriting the problem

Let us decompose the desired closed-loop transfer func-
tion as: [Hd](s) = [Bm](s)

[Am](s) where [Am](s) will be called
interval reference polynomial. For existence of solution,
deg[Am] ≥ 2× deg[A]. In the sequel we take: deg[Am] =
2 × deg[A]. Therefore, the above RST controller design
problem becomes in finding the polynomials R(s), S(s)
and T (s) such that we satisfy the following conditions:

- condition-1: for disturbance rejection, let us con-
sider that S(s) exhibits one zero, i.e. z = 1. This is
because we do not know the order of S at this time
and because we will have more degrees of freedom in
S by minimizing z. In counterpart, only low frequency
disturbance will be rejected when the relative degree
z is low. Because the disturbance d is due to error of
hysteresis compensation that is supposed to be much
below the resonance frequency, z = 1 is sufficient, i.e.:

S(s) = s.S1(s) (22)

- condition-2: from Inclusion. (21), we have:

[A](s)S(s) + [B](s)R(s) ⊆ [Am](s) (23)

Inclusion. (23) is an interval inclusion version of the
Diophantine equation.
- condition-3: from Inclusion. (21), we also have:

[B](s)T (s) ⊆ [Bm](s) (24)



- condition-4: finally, similarly to Diophantine equa-
tion [19], the Diophantine inclusion in Inclusion. (23) has
unique solutions iff:

deg(R) = deg([A]) (25)

This unicity of solutions is to ensure that one has the
same number of independent inclusions and of unknown
variables.

Considering condition-1 (S(s) = s.S1(s)) and the

closed-loop transfer function [B](s)T (s)
([A](s)S(s)+[B](s)R(s)) how-

ever, the RST controller ensures a zero steady-state
tracking performance error by taking:

T (s = 0) = R(s = 0) (26)

Hence, the problem finally becomes:
Problem 3.1: Find the polynomials R(s), S(s) and

T (s) s.t.:
a) Robust disturbance rejection:

S(s) = s.S1(s)

b) Tacking performances through Diophantine
inclusion:

[A](s)S(s) + [B](s)R(s) ⊆ [Am](s)

c) Numerator inclusion to complete the tracking
performances:

[B](s)T (s) ⊆ [Bm](s)

d) Robust steady-state tracking performance:

T (s = 0) = R(s = 0)

e) Unicity of solution for the Diophantine inclu-
sion:

deg(R) = deg([A])

Note that the disturbance rejection and the steady-state
tracking performances are said robust here because they
will be ensured independently to the model parame-
ters. On the other hand, the transient part tracking
performances are also said robust because, through the
Diophante inclusion, the controller will ensure the spec-
ifications for any uncertainties of the model parameters
described by intervals [A](s) and [B](s).

Because [B](s) = [k] and because of condition-d of
Problem. (3.1), we can keep T (s) as a static gain for the
sake of simplicity: T (s) = R(s = 0). Hence, [Bm] is a
static gain according to condition-c of Problem. (3.1).
In this case, condition-c is not used to calculate any
controller parameters since R(s = 0), and thus T (s) =
R(s = 0) is already calculated from the Diophantine
inclusion in condition-b. [Bm] can be taken to be: [Bm] =
[k]R(s = 0), which also satisfies condition-c and is thus
defined a posteriori , i.e. once R(s = 0) is calculated.

E. Choice of the desired interval transfer function

The suggested RST interval controller design requires
a desired interval transfer function [Hd](s). This refer-
ence interval transfer function is a transcription of the de-
sired and specified tracking performances for the closed-
loop. Let us take the following tracking performances
specifications:

- the settling time tr of the closed-loop should be less
or equal to trmax. Thus an interval desired settling time
can be created as follows: [tr] = [0, trmax],

- no oscillation is desired in the step-response of the
closed-loop.

A first order system of type 1

(
[tr ]
3 s+1)

can be a tran-

scription of the above specifications. Taking into account
the fact that deg[Am] = 2 × deg[A] = 4, the following
structure is given for [Hd](s):

[Hd](s) =
[k]R(s = 0)

(
[tr]
3 s+ 1

)(
[tr]
3nf

s+ 1
)3 =

[Bm](s)

[Am](s)
(27)

where nf > 1 is an integer to maintain the first order
part 1

( [tr ]
3 s+1)

dominant. For that we take nf = 30.

F. Resolution

The resolution of the RST controller is an iteration
solving of the 5 conditions in Problem. (3.1), except
condition-c. The iteration process is presented below.

From conditon-e, we impose

R(s) = ρ2s
2 + ρ1s+ ρ0, (28)

where ρ2, ρ1 and ρ0 = R(s = 0) are parameters to be
sought for.

Then, because deg([Am]) = 4, from the Diophantine
equation in condition-b, we should have deg(S) = 2.
Hence, considering condition-a, we impose

S(s) = s(µ1s+ µ0), (29)

where µ1 and µ0 are parameters to be sought for.

Introducing Equ. (28) and Equ. (29) in the Diophan-
tine inclusion in condition-b, we have

µ1[a2]s
4 + (µ1[a1] + µ0[a2]) s

3 + (µ1 + µ0[a1] + [k]ρ2) s
2

+(µ0 + [k]ρ1) s+ [k]ρ0 ⊆ [tr]
4

81n3
f

s4 + [tr]
3

9n2
f

(

1 + 1
3nf

)

s3

+ [tr]
2

3nf

(

1 + 1
nf

)

s2 + [tr]
3

(

1 + 1
nf

)

s+ 1

(30)

Finally, from Inclusion. (30) and from condition-d, the
RST controller parameters are therefore calculated to



satisfy the following inclusions:







µ1 ∈ [tr]
4

81n3
f
[a2]

µ0 ∈ 1
[a2]

(
[tr]

3

9n2
f

(

1 + 1
3nf

)

− µ1[a1]
)

ρ2 ∈ 1
[k]

(
[tr]

2

3nf

(

1 + 1
nf

)

− µ1 − µ0[a1]
)

ρ1 ∈ 1
[k]

(
[tr]
3

(

1 + 1
3nf

)

− µ0

)

ρ0 ∈ 1
[k]

T (s) = ρ0

(31)

As from Inclusion. (31), the derivation of the controller
avoids set inversion problem and thus is straightforward
in calculation.

G. The controller

Once the parameters of R(s), S(s) and T (s) calculated,
the controller is implemented. The scheme in Fig. (2) is
not implementable because T (s) and R(s) are not causal.

Instead, the scheme in Fig. (3) is used where T (s)
R(s) is

strictly causal and R(s)
S(s) is causal non-strictly:

T (s)

R(s)
=

ρ0

ρ2s2 + ρ1s+ ρ0
(32)

R(s)

S(s)
=
ρ2s

2 + ρ1s+ ρ0

s(µ1s+ µ0)
(33)

system with hysteresis

^
+

-

dynamics

RDPI compensation

and disturbance

Fig. 3: Implementation of the RST controller and of the
RDPI compensator.

IV. Experimental results

The application of the proposed interval RST con-
troller design to a piezoelectric actuator is presented in
this section.

A. The experimental setup

The piezoelectric actuator to be used has a tubular
structure. Piezoelectric tube actuators are actually the
original principal actuator in atomic force microscopy
(AFM) [3] for images scanning applications. Nowadays,
piezoelectric tube actuators can also be used for nanoma-
nipulation applications [20]. The tube actuator has one
internal electrode that serves as electrical ground and
four external electrodes to which four independent elec-
trical potentials can be applied. Accoding to the applied
potentials, a bending of the tube along x-axis, a bending
along y-axis and an expansion along z-axis (the tube
axis) is obtained. In this paper, we only study the
bending (displacement) along y-axis.

The used experimental setup includes the piezoelectric
actuator referenced as PT 230.94 from the PI company
and which has 30mm of length and 3.2mm of external
diameter. The internal diameter is 2.2mm. The actuator
voltage in this study will be ranging up to ±100V . A
displacement sensor that measures the y bending at the
tip of the piezotube actuator. The sensor principle is in-
ductive and is the reference ECL202 from LionPrecision

company. A computer from which the driving voltage is
generated, the controller is implemented and the mea-
surement is acquired. Matlab-Simulink software is
used for that. A dSPACE acquisition board, referenced as
dS1104, serves as interface and contains the DAC (digital
to analogic) and ADC (analogic to digital) converters.
Since the voltage from the computer and the dSPACE
acquisition board is limited to ±10V , a voltage amplifier
with a gain of 20 is also used.

B. Characterization and hysteresis compensation

The hysteresis behavior of the piezoelectric actuator
is displayed in Fig. (4), obtained at several frequen-
cies (1Hz, 50Hz, 150Hz and 200Hz) much below the
first resonance frequency which is approximately 778Hz
(from the identified model in Eq. (35)). As from the
hysteresis curves, the actuator exhibits rate-dependent
hysteresis behavior.
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Fig. 4: Experimental hysteresis at different frequencies.

A rate-dependent Prandtl-Ishlinskii (RDPI) model
Φ̂[u(t)] was identified with the experimental data based
on the four frequencies in Fig. (4). Then, an inverse
RDPI model u(t) = Φ̂−1[vr(t)] was derived and then put
in cascade with the actuator as hysteresis compensator.
Finally, the efficiency of the hysteresis compensator is
tested with sine input signal vr(t) with frequencies from
1Hz to 200Hz. Fig. (5) displays the results. They clearly
show that, even for frequency that was not used for the
identification, the compensation performance remains
unchanged. The hysteresis is reduced from 8µm

30µm ≈ 27%

(corresponding to 200Hz in Fig. (4)) to less than 1.5
30 =

5% (corresponding to 200Hz in Fig. (5)) while the
average gain is unity (v ≈ vr).
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Fig. 5: Hysteresis compensation at different frequencies.

Then a step input vr = 15µm is applied to the actuator
with hysteresis compensator. The normalized step re-
sponse is shown in Fig. (6) (blue solid line) which reveals
the badly damped oscillations property of the actuator.
Such oscillations have to be attenuated or cancelled by
the further interval RST controller.
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Fig. 6: Step response of the piezoelectric actuator with
the RDPI inverse model.

C. The new model

The linear model G(s) = kD(s) in Eq. (16) is identified
in this section. First the static gain k is identified from
Fig. (5). Since this gain is approximately 1, we suggest
to bound it with the following interval, such that any
future uncertainty (for e.g. due to temperature variation)
be accounted for:

[k] = [0.8µm, 1.2µm] (34)

Regarding the dynamics D(s), its identification is made
with the experimental step response in Fig. (6). The
identified model is shown in Eq. (35) and its simulation
is displayed in Fig. (6) (red dashed line) which indicates
a good agreement with the experimental result.

D(s) =
1

41.83× 10−9s2 + 12.27× 10−6s+ 1
(35)

In order to yield the interval model in Eq. (17), we
consider each parameter of Eq. (35) as the center of the
related interval parameter. The radius of each interval

is taken as 20% of the center. The resulting interval
parameters, listed in Eq. (36), are much larger than the
intervals in [14], [16] where the radius are 10%. Thus,
the uncertainty considered in this paper is wider and the
RST controller is more robust.







[a2] = [37.647× 10−9, 46.013× 10−9]
[a1] = [11.043× 10−6, 13.497× 10−6]
[k] = [0.8, 1.2]

(36)

D. Controller derivation and simulation of the closed-

loop

The specification that is used to create the reference
model in Eq. (27) and to calculate the controller parame-
ters is: trmax = 5ms. This choice is because, additionally
to the oscillations to be damped, we want to reduce the
settling time which was initially ≈ 15ms (see Fig. (6)).

The controller parameters are calculated using the
inclusions in Inclusion. (31) and the procedure in Sec-
tion. (III-F). We obtain:

. µ1 ∈ [0, 75.9× 10−9]. We select: µ1 = 3.795× 10−9.

. µ0 ∈ [−1.36 × 10−6, 0.41 × 10−3]. We select: µ0 =
0.2× 10−3.
. ρ2 ∈ [0, 358× 10−9]. We select: ρ2 = 179× 10−9.
. ρ1 ∈ [0, 2.15× 10−3]. We select: ρ1 = 1.075× 10−3.
. ρ0 ∈ [0.833, 1.25]. We select: ρ0 = 1.04.
Finally, T (s) = ρ0 = 1.04.
Note that we selected the middle of each interval

solution for each controller parameter. However, any
values taken in the intervals will satisfy the specifications
as well.
The calculated RST controller is implemented and the

closed-loop is simulated following the diagram in Fig. (3).
For that, we apply the controller to the interval model
[G](s) with parameters in Eq. (36) and in Eq. (34).
The response y to a step reference input yr = 15µm
is displayed in Fig. (8-a) while the response y to a step
disturbance d = 1µm is displayed in Fig. (8-b). They
clearly reveal the efficiency of the closed-loop to satisfy
the desired behavior (without oscillations, simulated set-
tling time = 3.33ms) and to reject the disturbance for
any uncertainties within the interval model [G](s).

E. Experimental results of the closed-loop

We now apply the RST controller to the real piezo-
electric tube actuator with its hysteresis compensator,
still following the diagram in Fig. (3). The result is
shown in Fig. (8) which presents a step response without
oscillations and with a settling time of 4ms, and which
demonstrate as well the efficiency of the proposed con-
troller to satisfy the specifications.

V. Conclusion

A feedforward-feedback controller design for piezo-
electric actuators with hysteresis and badly damped
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Fig. 7: Simulation of the closed-loop. (a): the response to
a input reference step of yr = 15µm amplitude. (b): the
response to a step disturbance of d = 1µm.
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Fig. 8: Experimental result of the closed-loop: response
to a input reference step of yr = 15µm amplitude.

oscillations was proposed in this paper. The feedforward
controller was based on the rate-dependent Prandtl-
Ishlinskii (RDPI) approach in order to reduce the rate-
dependent hysteresis of the actuator. Then a RST con-
troller structure was introduced for the feedback and a
new interval design was proposed for that. The proposed
controller design did not use set inversion problem, which
eased the controller parameters calculation. Both simu-
lation and experiments were carried out which demon-
strated the efficiency of the proposed control design.
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