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Introduction

Term rewriting systems are finite devices processing terms over ranked alpha­
bets. They play a very important role in theoretical computer science. They 
are attractive tools because of their simple syntax and semantics. This sim­
plicity facilitates a satisfactory mathematical analysis. On the other hand, 
term rewriting systems have the full power of Turing machines.

The notion of term rewriting systems is paradigmatic for study of many 
theoretical areas. For instance, it is very useful and fruitful in investigation 
of the A-calculus, denotational semantics, mechanical theorem-proving, and 
symbolic algebraic computation. Many other applications of term rewriting 
systems can be found in N. Dershowitz and J.P Jouannaud’s work ([13]), 
J.W. Klop’s work ([47]), and R.V. Book and F. Otto’s book ([4]).

In this dissertation, we study decidability questions concerning term 
rewriting systems. In general, most of the important properties of term 
rewriting systems are undecidable, for example such properties are the ter­
mination and the confluence. Many other properties of term rewriting sys­
tems are shown to be undecidable in the above mentioned works ([13], [47], 
[4]) and G. Huet’s fundamental paper ([46]). In spite of these undecidabil­
ity results, several interesting results on decidable properties were obtained 
for special kinds of term rewriting systems. For instance, for ground term 
rewriting systems, most of the significant properties are decidable (termina­
tion, confluence and so on), see [11], [12], [16], [47], [52]. A term rewriting 
system is called ground if its rules consist of ground terms.

In a part of this work, we shall investigate a special kind of term rewrit­
ing systems: term rewriting systems which preserve recognizability. A term 
rewriting system preserves recognizability if, for any recognizable tree lan­
guage L, the set of descendants of trees being in L is also recognizable. A 
descendant of a tree is obtained from the tree by applying the rules of the
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INTRODUCTION 6

term rewriting system to the tree successively. The term rewriting systems 
which preserve recognizability are very attractive tools because the use of an 
algebraic tool (regular tree languages) can clarify and simplify some proofs 
concerning such systems. For example, regular tree languages are suitable 
when we want to avoid the non-linearity. Several types of term rewriting sys­
tems preserving recognizability were defined by J.H. Gallier and R.V. Book 
in [38], J.L. Coquidé et al in [7], and P. Gyenizse and S. Vágvölgyi in [45]. 
Moreover, see K. Salomaa’s paper ([54]), R. Gilleron and S. Tison’s survey 
([43]), and F. Otto’s work ([51]) for relevant results. Similar results were 
considered in F. Gécseg’s work ([39]) and Z. Ésik’s works ([21], [22]) for tree 
transducers, which are also special term rewriting systems.

A string rewriting system can also be considered as a special term rewrit­
ing system. This is a device that processes strings like a term rewriting 
system processes terms. Many interesting results for string rewriting sys­
tems preserving recognizability were explored and carried over from term 
rewriting systems preserving recognizability. A good survey of these results 
can be found in R.V. Book and F. Otto’s book ([4]), F. Otto’s work ([51]), 
and P. Gyenizse and S. Vágvölgyi’s work ([45]).

In the other part of this dissertation, we are also going to consider 
top-down tree transducers and bottom-up tree transducers. Top-down and 
bottom-up tree transducers have been studied since the early seventies. First, 
W.C. Rounds and J.W. Thatcher introduced the notion of a top-down tree 
transducer in [53], [56]. Then, J.W. Thatcher defined the concept of a 
bottom-up tree transducer in [57]. Later on, J. Engelfriet introduced the 
notion of a top-down tree transducer with regular look-ahead in [15] in order 
to increase the transformational capacity.

There are still other tree transducers, e.g., macro tree transducers ([17], 
[37]), attributed tree transducers ([23], [37]), macro attributed tree transduc­
ers ([37], [49]), high level tree transducers ([18]), modular tree transducers 
([19]), high level modular tree transducers ([59]), however, we will not deal 
with them in this work.

Using top-down and bottom-up transducers, abstract and formal models 
of the syntax-directed translation method can be given, which is a wide­
spread way of specifying the semantics of high level programming languages.

Some restricted types of top-down and bottom-up tree transducers (such 
as deterministic, total, linear, nondeleting etc.) were defined and compared 
with each other with respect to transformational capacity in the works of

.
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W.C. Rounds ([53]), J.W. Thatcher ([56]), J. Engelfriet ([14], [15]), and B.S. 
Baker ([1], [2], [3]). Moreover, F. Gécseg and M. Steinby gave a survey of 
tree languages and tree transducers in [40], and [41]. Recently, G. Dányi and 
Z. Fülöp defined and investigated superlinear deterministic top-down tree 
transducers in [8].

Tree transducers induce tree transformations, which are binary relations 
over trees. Moreover, a tree transformation class is a class consisting of 
tree transformations. Since tree transformations are binary relations, the 
operation composition is defined for them as for binary relations. In this 
dissertation, we shall work only with deterministic tree transducers, which 
induce partial functions.

The compositions and decompositions of tree transformation classes are 
fundamental in the theory of tree transducers and tree transformations. 
Many proofs became simpler and more obvious by using results on composi­
tions and decompositions. Therefore, they were investigated in a large num­
ber of papers. For example, B.S. Baker ([3]), J. Engelfriet ([14], [15]), Fülöp 
([24]), Fülöp and Vágvölgyi ([28], [29], [30], [32], [33], [34], [35], [36]), Gécseg 
and Steinby ([40]), Gyenizse and Vágvölgyi ([44]), Slutzki and Vágvölgyi 
([55]). Dányi and Fülöp ([8], [9]), and Fülöp and Vogler ([37]) studied the 
compositions and decompositions of different types of tree transformations.

The subject of this dissertation is to study some decidability questions of 
term rewriting systems and tree transducers. Our results can be summarized 
as follows.

(1) We introduce the concept of a generalized semi-monadic term rewriting 
system. We show that linear generalized semi-monadic term rewriting 
systems effectively preserve recognizabilitv and we give several decid­
ability and undecidability results on term rewriting systems effectively 
preserving recognizability.

(2) We prove that the injectivity problem of linear deterministic top-down 
tree transducers is decidable and that the same problem is undecidable 
for (nonlinear) homomorphism tree transducers.

(3) We give a linear time algorithm to determine the correct inclusion re­
lationship between two tree transformation classes which are compo­
sitions of some ’’fundamental” tree transformation classes taken from 
the set {DTR, LDTR, DT, LDT, DB, LDB, #, LH}.
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Here DB, DT, H stand for the class of deterministic bottom-up tree trans­
formations, the class of deterministic top-down tree transformations, and 
the class of homomorphism tree transformations, respectively. Moreover, the 
prefix L stands for the restriction linear, and the superscript R stands for 
the regular look-ahead.

The dissertation consists of five chapters, of which the contents are the 
following.

The opening chapter presents the common preparatory notion, notation 
and terminology, focusing our attention on trees. It also surveys those types 
of rewriting systems and tree transducers which are used in this work.

Then we present our results in detail as follows.
In Chapter 2, we introduce further notions and notation, which are used 

only in this chapter. Then, we define the notion of the generalized semi- 
monadic term rewriting system which is a generalization of well-known term 
rewriting systems: the ground term rewriting system, the monadic term 
rewriting system, and the semi-monadic term rewriting system. As a main 
result, we show that linear generalized semi-monadic term rewriting systems 
effectively preserve recognizability. (We note, this is the largest known class 
of term rewriting systems that preserves recognizability.) Furthermore, we 
prove that a tree language L is recognizable if and only if there exists a term 
rewriting system R such that R U i?-1 is a linear generalized semi-monadic 
term rewriting system and that L is the union of finitely many ^д-classes. 
We also show several decidability and undecidability results on term rewrit­
ing systems effectively preserving recognizability and on generalized semi- 
monadic term rewriting systems. Namely, we show that for a term rewriting 
system R effectively preserving recognizability, it is decidable if R is locally 
confluent. Moreover, we show that preserving recognizability and effectively 
preserving recognizability are modular properties of linear collapse-free term 
rewriting systems. (A property V is modular for a class of term rewriting 
systems [which is closed under disjoint union] if the disjoint union of two 
term rewriting systems R and S from this class has the property V if and 
only if both R and S have the property V.) Finally, as a consequence, we ob­
tain that restricted right-left overlapping string rewriting systems effectively 
preserve recognizability.

In Chapter 3, we give a simple proof for the decidability of injectivity 
of linear deterministic top-down tree transducers. Moreover, we show that 
injectivity is undecidable even for homomorphism tree transducers.
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In Chapter 4, we show that DTR = DT о LDB, that LDTR % 
LDT о DB, and that DT LDTR о H, where the composition of tree 
transformation classes X and Y is denoted by X о Y. Using these re­
sults and the composition and inclusion results of Engelfriet ([14], [15]), 
Fiilöp ([24]), and Fülöp and Vágvölgyi ([28], [29], [30], [32], [33], [34], 
[35], [36]) we show that the problem of determining the correct inclusion 
relationship between two tree transformation classes which are composi­
tions of some ’’fundamental” tree transformation classes taken from the set 
{ DTr, LDTR, DT, LDT, DB, LDB, H, LH } can be solved in linear time.

Finally, we summarize the results of the whole dissertation and mention 
some open problems regarding term rewriting systems preserving recogniz- 
abilitv.

This dissertation is strongly based on the papers [26], [44], and [45]. All 
results presented here appear in these works.



Chapter 1

General notions and notation

1.1 Sets and relations
In this section we recall the necessary notions and notation concerning sets, 
relations, and functions.

The set of nonnegative integers is denoted by N.
For a set A, we write Pow(A) and |A| for the power set and the cardinality 

of A, respectively.
Given two sets A and В, А С В means that A is a subset of В, А С В 

stands for that A is a proper subset of B, and A % В denotes that A is not a 
subset of B. Moreover, we denote by А И В that A and В are incomparable 
with respect to inclusion. We write A x В and A — В for the Cartesian 
product of A and В and the difference of A and B, respectively.

Any subset p of the Cartesian product Ax В is called a (binary) relation 
from A to B. We also write apb instead of (a, b) G p. The set dom(p) = {a \ 
apb for some b G B} is called the domain of p, and the set ran(p) = {6 | apb 
for some a G A} is the range of p.

The relation p~l = {(b, a) \ apb} is the inverse of p.
Let p be a relation from A to B, and let r be a relation from В to C. 

Then the relation рот from A to C is defined by рот = {(a, c) | apb and Ьтс 
for some b G B} and is called the composition of p and r. If Y, Z are classes 
of relations, then YoZ = {por\pEY and r G Z}.

A relation from A to A is called a relation on A or over A. The identity 
relation over A is Id{A) = {(a, a) | a G A}. Let p be a relation on A. The

10
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n-fold compositions of p is defined by the following induction: p° = Id(A) 
and p11 = p о pn~l, for n > 0. Moreover, let Z be a class of relations on A. 
Then, Zl — Z and for any n > 1, Zn = Z о Zn~l.

The transitive closure and the reflexive, transitive closure of a relation p 
over A are the relations p+ = Un>i Pn and P* = Un>o Pn, respectively. More­
over, the reflexive, symmetric and transitive closure of p is Un>o(pU P-1)n- 
Clearly, the reflexive, symmetric and transitive closure of p is an equivalence 
relation.

A partial function p from A to В is a relation from A to В such that for 
every a E A there exists at most one b E В such that apb. When this b exists, 
we denote it by p(a). For a subset A' C A, we put p(A') = {b E В \ b = p(a) 
for some a E A'}. A partial function p is total if dom(p) = A. Moreover, a 
total function is called a function or a mapping. Finally, a partial function p 
from A to В is called injective if, for every a,b E A, such that p(a) and p{b) 
exist the condition p(a) = p(b) implies a = b.

Strings and trees1.2
This section contains our notions and notation for strings and trees. First, 
we introduce the basic concepts of strings.

An alphabet E is a finite, nonempty set of symbols. A string or word over 
E is a finite sequence of elements of E. The empty string is denoted by Л. 
For strings и and v over E, we denote the concatenation of и and v by uv or 
и ■ v. The set of all strings over E is denoted by E*. It is well-known that 
E*, equipped with the operation concatenation, is a monoid of which the 
unit element is Л. An equivalence relation p over E* is called a congruence 
over E* if, for any ux,u2,vi,v2 E E*, щри2 and vxpv2 imply uxvipu2v2. Any 
subset of E* is called a language. Suppose that itq, w2, w3 E E* are such that 
Wi = w2W3. Then we say that uq is an extension of w2, that w2 is a prefix 
of uq, and that uq is a suffix of uq. Moreover, if uq Ф w2, then w2 is proper 
prefix of uq. The length of a string w E E* is denoted by |n;| and is defined 
by the following induction:

(i) if w — Л, then |iw| = 0;

(ii) if w = va for some v E E* and a E E, then |w| = |u| + 1.
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We now collect the concepts for terms or trees which will be used. A 
ranked alphabet E is an alphabet in which every symbol has a unique rank 
in N. For m > 0, Em denotes the set of all elements of E which have rank 
rn. Let E and A be ranked alphabets. We say that ЕСЛИ' and only if 
Em Q Am for each m > 0. For / G E we write shortly /to mean that
/ £ c,m.

For a ranked alphabet E and a set H, disjoint with E, the set Ts(#) 
of trees or terms over E indexed by H is the smallest set U satisfying the 
following two conditions:

(i) E0 U H C U,

(ii) /(ii,..., tm) G U whenever m > 1, / G Em and i1;..., tm 6 U.

The set Ts(0) is written as Те and its elements are called ground terms.
Let E and A be two ranked alphabets. Any subset of Ts is called a tree 

language and any relation from Ts to Тд is a tree transformation from Tfi to 
Тд. We denote by / the tree transformation class consisting of all identity 
tree transformations (i.e., / = {Id(Tjf) | E is a ranked alphabet }).

We need a countable set X = {xi,x2,...} of variables which will be kept 
fixed in this dissertation. We suppose that Eill = 0 for each ranked 
alphabet E. Moreover, we put Xm = {aq,... ,xm}, for m > 0. Hence A0 = 0-

A tree t G TS(A) is linear if each variable of X occurs at most once in t. 
Moreover, Ts(Xm) is the set of linear trees in Ts(Am).

For every m > 1, we distinguish a subset Те(Аш) of Ts(A'm) : a 
tree t G TV (Am) is in Tfi(Am) if and only if each variable in Am ap­
pears exactly once in t and the order of the variables from left to right 
in t is xi,...,xm. For example, if E = E0 U E2 with E0 = {3} and 
£2 = {/}, then f(xi, /(#, xi)) G Ts(Xi) but /(ii,/(#,i 1)) TS(AL) and 
thus (£ Te(Ai). Furthermore, f(x2,f($,x 1)) G Ts(A2) but
f(x2,f%Xi)) i Ts(A2). However, f(xi,f%x2)) G Ts(X2).

Let E be a ranked alphabet. Let / 6 Eb í G T2 be arbitrary. The tree 
fk(t) G Те, > 0, is defined by induction: /°(i) = t, and /fc+1(f) — /(/fc(f)) 
for к > 0.

For a tree t G Ts(A), we define the root of f, the height of t, the set of 
subtrees of t, the set of paths of t, the longest leftmost path of t, the longest 
rightmost path of t, and the set of variables of t. They are defined by the 
functions
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TS(X) -> SUI,
TS(X) -> N,
Ts(X) -+ Pow(Ts(X)),
Tx(X) -* Pow(N*),
TS(X) -> N*,
TS(X) -> NT 
TS(X) -*■ Pow(X),

respectively, where, for every t G T^(X), their values are defined by induction 
as follows:

(i) if t G S0 U X, then

root(t) 
height(t) 
sub(t) 
path(t) 
llp(t) 
lrp(t) 
var(t)

root
height
sub
path
lip
Irp
var

t
0,

= W,
= {A},

Л
Л
0, if t € S0 and var(t) = {ű}, if f e X\

(ii) if t = f(t\,..., £m) with m > 1 and / G S

root(t) 
height{t) 
sub(t) 
path(t) 
llp(t) 
lrp(t) 
var(t)

then

/,
= 1 + max {height {ti) \ 1 < г < m},
= {í} U (U^iSiíö(íi)),
= {Л} U {га I 1 < г < m and a G path(ti)},
= l-ZZp(ii),

- m-lrp(tm),
— 0{Триаг(и).

We note that height[t) = ma2;{|a| | a G path(t)}.
For each t G T2(X) and a G path(t), we introduce the subtree t/a G 

sub(t) of t at a as follows:

(i) for f G S0 U X, f/A = t;

(ii) for t = f(ti,..., tm) with то > 1 and / G Sm, if а = A then t/a — t, 
otherwise, if a — iß for some 1 < г < то and ß G N*, then t/a = ti/ß.
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Obviously, sub(t) = {t/a. \ a E path(t)}.
For each t G TS(AT) and a G path(t), if t/a = /(4, ... ,tm) with m > 1 

and / G £m, then t\,..., tm are called the direct subtrees at a.
In term rewriting system theory, the substitution of the subtree t/a of a 

tree t at a path a by a tree r is a fundamental operation. This is formalized 
as follows.

For t G Xe(X), a G path(t), and r G TE(X), we define t[a ■<— r] G Tz{X) 
by induction on the length of a:

(i) if a = Л, then t[a E- r] = r;

(ii) if a = if.3, for some i E N and ß G N*, then necessarily t = /(4, ..., tm) 
for some m > 1, / G and ti,...,tm E T^{X) such that 1 < i < m. 
Then t[a <- r] = /(4, ..., 4_b 4[/3 «- r], 4+b • • •, 4»)-

There is another kind of substitution, called substitution, where we sub­
stitute trees for variables in a tree. Such a substitution is a mapping 
9 : X —» Tx(X) which is different from the identity only on a finite sub­
set of X. For a substitution в, the term 9(t) is produced from t by replacing 
each occurrence of X{ with 9{xi).

For any k,m E N with 1 < m < k, for every tree t E Ts({xm,...,Xk }) 
and for every substitution 9 with 9(xm) = tm,..., 9{xь) = 4, we denote 9{t) 
also by t[xm -f— im,... ,Xk E- tk]. Moreover, in case m = 1, the denotation 
t[xx E- 4, • • • ,xk E- 4] is abbreviated as i[4,... ,4]-

Let S be a ranked alphabet and s,t E T^{X). A unifier of s and t is a 
substitution 9 such that 9{s) = 9{t). A most general unifier of s and t is a 
unifier 9 of s and t such that for each unifier rj of s and i, there is a substitution 
г/ satisfying that r]'(9(s)) = r](s) and rj'{9{t)) = rj{t). It is decidable if s and t 
are unifiable ([50]). Moreover, if s and t are unifiable, then one can effectively 
construct a most general unifier of s and t, see Theorem 4.3 in [50].

Throughout the dissertation we shall consider the most general unifiers 
of unifiable and linear terms s,t E Т%(Х) satisfying var(s) fl var(t) = 0. For 
such s and t, we can construct a most general unifier rj : X -E T^{X) as 
follows.

1. For every a E path(s), if s/a = x E X and a E path(t), then let 
rj{x) = t/a, otherwise let tj{x) — x.
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2. For every a E path(t), if t/a = x E X, a E path(s), and s/a £ X, then 
let rj(x) — s/a, otherwise let rj(x) = x.

3. For every x E X not defined in 1. or 2., let rj(x) = x.

It should be clear that 77 is a most general unifier of s and t. It is well 
known that a most general unifier of s and t is unique up to renaming of 
variables. Hence for each most general unifier rjx of s and t and for every 
variable x E var(s) U var{t), if p(x) E then rj(x) = 771(2:).

Let E be a ranked alphabet and let u, v E TV (A). The tree и is 
a supertree of v if и is linear and there is a substitution 9 such that 
v = 9(u). We illustrate the concept of a supertree by an example. Let 
E = E0 U Ei U E2, E0 = {ft}, Ei = { /}, E2 = {g}. The trees f(x2), 
f(g(x2,xx)), f{g{Í,oo2)) are supertrees of f(g(\Í, it))- On the other hand, 
f(f{x 1)) is not a supertree of f(g($,$)), because there is no substitution 9 
such that 9(f(f(x 1))) = f{g($,$))- Moreover, f(g(xi,xx)) is not a supertree 
of /(#(1,(0) because f(g(xi,xx)) is not linear.

Rewriting systems and their properties1.3
In this section we recall and introduce some notation, basic definitions and 
terminology for rewriting systems. Nevertheless the reader is assumed to be 
familiar with basic concepts of rewriting systems (see, e.g. [4], [7], [13], [46]).

Abstract rewriting systems
An abstract rewriting system is a structure 1Z = (17, —>) consisting of a set U 
and a binary relation —>■ on U.

We denote the transitive closure, the reflexive, transitive closure, and 
the reflexive, symmetric and transitive closure of —> by —>+, —>*, and -H-*, 
respectively. We recall that «-»■* is an equivalence relation.

We say that 1Z is

(i) locally confluent if for any u, ux, u2 E U, if и —>• Ui and и —> u2, then a 
щ E U exists such that ux —>* u3 and u2 —>* u3;

(ii) confluent if for any и, ux,u2 E U, if и —А щ and и —P u2, then а щ E U 
exists such that ux —>* щ and u2 —t* щ]

1.3.1
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(iii) noetherian if there is no infinite sequence of the form

11 \ —У U2 —У U3 —У . . .

with щ £ U, i = 1,2,...;

(iv) convergent if 1Z is confluent and noetherian.

Proposition 1.3.1 [46] A locally confluent and noetherian abstract rewrit­
ing system is a confluent and thus it is a convergent.

An element и G U is called irreducible with respect to 1Z if there does 
not exist u' G U with и —> и'. Moreover, if u,u' Elf such that и —>* и' and 
и' is irreducible with respect to 7Z then we call u1 a normal form of u. It is 
well-known that if 7Z is convergent then, for every и G U, there exists exactly 
one v! G U such that v! is a normal form of и (see, e.g. [46]).

1.3.2 Term rewriting systems
Let E be a ranked alphabet. A term rewriting system (or shortly a rewriting 
system) over E is a finite subset R of T%(X) x T%(X) such that for every 
(Z,r) G R, each variable of r also occurs in l (i.e., var(r) C var(l)). The 
elements (/, r) of R are called rules and are denoted also by l —y r. We denote 
by sign(R) (С E) the ranked alphabet consisting of all symbols appearing 
in the rules of R.

Note, that R U R~l is also a rewriting system if and only if for each l —У r 
in R, each variable of l also occurs in r.

We now define the relation —over T^(X). For two terms s,t G T^(X), 
s —t if there are a path a G path(s), a rule l —У r G R, and a substitution 
9 : X —У Tfi(X) such that s/a = 9(1) and t = s[a <— 9(r)]. If s -у-r t, then we 
say that R rewrites s to t or, if the details are also necessary, that R rewrites 
s to t applying the rule l —У r at a.

Note that R rewrites such terms in which not only symbols being in 
sign(R) appear. So, it is important to specify the ranked alphabet E over 
which R is considered. If we do not specify it, then we consider R over 
sign(R).

To every rewriting system R over E, we can associate the abstract rewrit­
ing system 1Z = (T%(X), —>r). Thus, we can easily adopt the notions and
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notation from abstract rewriting systems to term rewriting systems as fol­
lows.

A rewriting system R over £ is locally confluent (confluent, noetherian, 
convergent) if the abstract rewriting system IZ associated to R is locally 
confluent (confluent, noetherian, convergent).

Analogously, a term t G Ts(AT) is called irreducible with respect to R if 
t is irreducible with respect to IZ. Moreover, for two terms $, t G T^(X), we 
call t an Abnormal form of s if t is a normal form of s with respect to IZ.

The set of all irreducible terms with respect to R is denoted by IRR(R). 
Moreover, we put IRRg(R) = IRR(R) П Ts, hence IRRg(R) is the set of all 
ground terms which are irreducible with respect to R.

For a term s G T^(X). we denote the set of normal forms of s with respect 
to R. by NF(s. R). We extend this notation for a tree language L C TV (AT), 
by letting

NF(L,R) = OseLNF(s,R).

It should be clear that if L C T^, then NF(L, R) C Ts.
We denote by [£]д the -H-д-class of a tree t G Т^{Х). Note that if í G Ts 

and R U AT1 is also rewriting system, then [£]д C Ts.
We say that the pair (h,ri) G T’s(A') x ТЬ(АГ) is a variant of the pair 

(/2, r2) G Tz(X) x Ts(AT) if there is an injective substitution 9 : X —> X such 
that 0{l2) = l\ and 0[r2) = rb

We adopt the concept of a critical pair ([46], [47]). Let R be a rewriting 
system over £ and assume that the rules l\ —f r1; l2 ->r2 are in R. Let us 
take a variant 1'2 —> r’2 of l2 —> r2 such that var(li) П var(l2) = 0. Let us 
assume that there is a tree t — li/a, where a G path(li), such that t £ X, t 
and l2 are unifiable. Let 9 be a most general unifier of t and l2. Let Vi = 9(ri) 
and define v2 = 9(li) [a 4- 0{r2)\. Then we call (vi,v2) a critical pair of R. 
Huet [46] showed the following result.

Proposition 1.3.2 Let R be a rewriting system over £. Then R is locally 
confluent if and only if, for every critical pair [v\, v2) of R, there exists a tree 
v G Is (AT) such that V\ ~+*Rv and v2 ~^*Rv.

1.3.3 String rewriting systems
Let £ be an alphabet. A string rewriting system S over £ is a finite subset of 
£* x £* and each element (и, v) of S is called rule. We also write ugjjgS
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meaning that (u, v) € S.
For each w,z e E*, w—>sz if and only if there exists x,y e E* and 

и —> v £ S such that w = xuy and г = xvy.
It should be clear that, e-tj i.e., the reflexive, symmetric and transitive 

closure of —>-5, is a congruence over E*.
It is well-known that the symbols of an alphabet E can be considered as 

unary function symbols and hence words over E can be considered as unary 
trees over the ranked alphabet E U {ij(0)}, where $ 0 E. For example, the 
word apple can be considered as the term a(p(p(l(e(#)))))•

Let S be a string rewriting system over E. The term rewriting system 
associated to S is the term rewriting system R over A, where A = {a^ | 
a € E} U {Ü^} (jj ^ E) and the rules of R are obtained from that of S 
such that xi is put to the right end of both sides of the rules of S. That is 
R = {u(x{) —t v(xi) I и —> v € S}. (For и = aia2...a„, n > 0, u(x 1) = 
a1(a2(... an{x\)...)), thus A^) = zi.) Hence, our notions and results on 
term rewriting systems can be carried over to string rewriting systems.

1.4 Deterministic tree recognizers, tree 

transducers and tree transformations
In this section, we define the concept of a deterministic bottom-up tree trans­
ducer, of a deterministic bottom-up tree recognizer, of a deterministic top- 
down tree transducer, of a deterministic top-down tree recognizer, and of 
a deterministic top-down tree transducer with regular look-ahead. We de­
fine some restricted versions of these devices and introduce other necessary 
notions and notation concerning them. The readers, who are not familiar 
enough with these concepts, can consult with [40] and [41] for more details.

Bottom-up tree transducers
A deterministic bottom-up tree transducer (db for short) is a system A = 
(E, A, A, A', R), where

(1) E is a ranked alphabet, called the input alphabet;

(2) A is a ranked alphabet, called the state alphabet, such that A = A\ 
and А П (E U A U X) = 0;

1.4.1
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(3) A is a ranked alphabet, called the output alphabet;

(4) A'(C A) is the set of final states;

(5) R is a finite set of rules of the form

a-m(Xm)) o(r)* ?

a, ai,... am G A, and r G TA(Xm). Moreover,where m > 0, / G E 
there are no two different rules in R with the same left-hand side.

m j

The tree transformation induced by a db is formalized as follows. De­
fine the binary relation =>A on the set Т£идид(АГ) so that for any t, s G 
Т£идид(А’), t=>As if and only if the following condition holds: there is 
a rule f(ai(xi),...,am(xm)) —> a(r) in R such that s can be obtained 
from t by replacing an occurrence of a subtree /(ai(ii),..., am(tm)) of t 
by a(r[ti,..., £m]), where ..., tm £ TsuauaPQ. The reflexive, transitive 
closure of is denoted by =>*A. The tree transformation induced by A is 
the relation

{ (£, s) G Ts x Тд I t =>- a(s) for some a G A }.л
Clearly, the relation =>д is interpreted as a method of rewriting terms 

into terms. Hence the db A can also be considered as a term rewriting 
system P over E U A U A, where P = R. Moreover, P is locally confluent 
due to the shape of rules in R and the fact that there are no different rules 
in R. with the same left-hand side: these conditions exclude any overlapping 
of left-hand sides. On the other hand, it is not hard to see that P is also 
noetherian. Hence, by Proposition 1.3.1, it is convergent and thus тд is a 
partial function.

Let A = (E, A, A, A', R) be a db and let В C A. Then we denote by 
A(B) the db (E, A, A, B, R).

We now introduce four special types of db’s. Let A — (E, *4, A, A', R) be 
a db. We say that A is

(a) a deterministic bottom-up tree recognizer (dbr) if E = A (hence we 
denote it by A = (E, A, A', R)) and each rule in R is of the form

Ta =

Я-т))am(xm)) y a(f{xb • •f(ai(x i),.. * ?* 5

am G A. In that case, the tree transformation гл is awhere a, ai,.. 
partial identity on T^;

* >
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(b) a linear deterministic bottom-up tree transducer (ldb) if, for each rule 
f(ai(xi),..., am(xm)) —* a(r) in R, r is linear;

(c) a total deterministic bottom-up tree transducer, if, for any states ab .. 
am G A and symbol / G Em (m > 0) there is a rule (hence exactly one) 
in R with left-hand side /(ai(xi),..

(d) a bottom-up homomorphism tree transducer (bh) if A is a singleton set, 
A = A', and A is total.

Let A = (E, A, A', R) be a dbr. Then we also say that A is a dbr over E.
The class of tree transformations induced by all db’s (respectively, ldb’s) 

is denoted by DB (respectively, LDB). The tree language recognized by a 
dbr A is L(A) = dom(rA). The class of tree languages recognized by dbr’s is 
denoted by REC. A tree language is called recognizable if it is in REC.

* >

am(xm))'i
* 5

1.4.2 Top-down tree transducers
We need the following notation. Let E, A be ranked alphabets, where A — A\ 
i.e., A consists only of unary symbols. Then the set T^(A(X)) of trees consists 
of all trees t G T^uA(X) of the form t = ..., an(:rtrJ], where n > 0,
s G Ty,(Xn), and a, G A for 1 < i < n.

Now, a deterministic top-down tree transducer (dt for short) is a system 
A= (E, A, A, a0, R), where

(1) E, A, A are the same as for bottom-up tree transducers;

(2) a0 is an element of A, the initial state;

(3) A is a finite set of rules of the form

a(f{x i,.. Xm)) -> T* 5

a G A, and r G TA(A(Xm))). Moreover, therewhere m > 0, / G E 
are no two different rules in R with the same left-hand side.

ТП 5

The tree transformation induced by a dt is formalized as follows. De­
fine the binary relation on the set Тцидид(А’) so that for any t, s G 
Eeuaua(AT), t=>As if and only if the following condition holds: there is a
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rule ..
placing an occurrence of a subtree a(f(t 
f l) • • • ) tm £ ТЬиЛиД (A ) •

The reflexive, transitive closure of is denoted by =>*A. The tree trans­
formation induced by A is the relation

xm)) —> r in R such that s can be obtained from t by re-
.. ,tm], where

' ?

.., tm)) of t by r[tь • ъ •

= { (t, s) 6 Ts x Тд I a0(t) => s }.лТд

Clearly, the relation =>A is interpreted as a method of rewriting terms 
into terms. Again, A can be considered as a term rewriting system P over 
E U A U A, where P — R. Moreover, P is again locally confluent and termi­
nating. Hence, it is convergent, see Proposition 1.3.1, and thus rA is a partial 
function, cf. [27].

We say that, a deterministic top-down tree transducer A is injective if тл 
is injective i.e., for any t, s G Ts such that t ф s we have rA(t) Ф r^(s).

For each a G A, A(a) = (E, A, A, a, R) is the dt A with initial state a 
instead of do-

Let A = (E, A, A, a0, R) be a dt. We say that A is

(a) a deterministic top-down tree recognizer (dtr) if E = A (hence we de­
note it by A = (E, A, a0,R)) and each rule in R is of the form

a(f(x i,.. xm)) -t /(ai(xi),.. öm(^ra))
• 5 * 1

am G A. In that case the tree transformation тд is awhere a, .. 
partial identity on Tb;

* 5

(b) a linear deterministic top-down tree transducer (ldt) if for each rule 
a(f(xi,..., xm)) —> r in R, r is linear;

(c) a nondeleting deterministic top-down tree transducer (ndt) if for each 
rule a(f(x i,..., xm)) —> r in R, each of the variables xi,... ,xm appears 
at least once in r;

(d) a linear nondeleting deterministic top-down tree transducer (lndt) if it 
is a linear and nondeleting top-down tree transducer;

(e) a total deterministic top-down tree transducer, if for any state a G A 
and symbol / G Em (m > 0) there is a rule (and hence exactly one) in 
R with left-hand side a(/(xb ..., xm));
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(f) a top-down homomorphism tree transducer (th) if A = {a0}, and A is 
total.

The class of tree transformations induced by all dt’s (respectively, ldt’s) 
is denoted by DT (respectively, LDT). The tree language recognized by the 
dtr A is L(A) = dom(r^). The class of tree languages recognized by dtr’s is 
denoted by DREC. It is well known that DREC C REC.

Consider the class of bh and th tree transducers. By Theorem 1.9 in Chap­
ter IV of [40] the class of all tree transformations induced by bh transducers 
coincides with the class of all tree transformations induced by th transduc­
ers. We denote this tree transformation class by H. The proof carries over 
to the linear case as well, hence the class of all tree transformations induced 
by linear bh transducers coincides with the class of all tree transformations 
induced by linear th transducers. We denote this tree transformation class 
by LH.

1.4.3 Top-down tree transducers with regular look­
ahead

Top-down tree transducers with regular look-ahead were defined in [15]. It 
transpired that they have a number of nice properties, especially in the de­
terministic case. For example, the class of deterministic top-down tree trans­
formations with regular look-ahead is closed under composition.

A deterministic top-down tree transducer with regular look-ahead (dtÄ) is 
a system A = (E, A, A, a0, R), where the first four components are defined 
exactly as in the previous subsection. Here R is a finite set of rules of the 
form

.. .,xm)) -> r; L • •) -lm)ъ •

where a(f(xx,..., xm)) —>■ r is an ordinary dt-rule, see the previous subsec­
tion, and for each 1 < i < m, Li C Tfi is a tree language in REC. Moreover, 
Li П L\ = 0 holds for some 1 < i < m, whenever (a(f(xi,.. 
n; Lu ..., Lm) and (a(f(xb ..., xm)) r2; L[,..., L'm) are different rules
in R.

m)) t* 1

One step in the transformation of A is represented by the binary relation 
on Тцилид(^) defined as follows: t=>^s if and only if the following 

condition holds: there is a rule (a(f(x i,...,xm)) —> r; Li,... ,Lm) in R
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such that s can be obtained from t by replacing an occurrence of a subtree 
a(f(ti,..., tm)) of t by r[tu ... ,tm] where tt G Li for 1 < i < m.

It can be seen from the definition of what the notion look-ahead 
means: a rule can be applied at a node of a tree only if the direct subtrees of 
that node are in the tree languages, respectively, given in the rule. Note that 
A can apply at most one rule at any given node. This is because for any two 
different rules in R with the same left-hand side there exists a variable Xi 
such that the ith look-ahead sets are disjoint. As usual, is the reflexive, 
transitive closure of =А,д and the partial function

= { (i, s) G TE x Тд I a0(t) => s }
A

A4

is the tree transformation induced by A.
Let A = (E, A, A, a0, R) be a dtfí. We say that A is a linear deterministic 

top-down tree transducer with regular look-ahead (ldtÄ) if for each rule

W(x i,.. Xm)) -> О L ■ ■)Lm)l) •• 5

in R. r is linear.
The class of all tree transformations induced by all dtÄ’s (respectively 

ldtR,s) is denoted by DTR (respectively LDTR).



Chapter 2

On term rewriting systems 

preserving recognizability

This chapter is divided into four sections. Section 2.1 consists of the necessary 
notions and notation. We summarize the results of this chapter in Section 
2.2. Moreover, in Section 2.3, we show that lgsm rewriting systems effectively 
preserve recognizability and we illustrate our constructions by an example. 
Finally, in Section 2.4, we study rewriting systems preserving recognizability 
and gsm rewriting systems.

Further notions and notation2.1
In this chapter, we need the concept of a (nondeterministic) bottom-up tree 
automaton.

Let S be a ranked alphabet. A bottom-up tree automaton over E is a 
quadruple A = (E,A,A',R), where A is a finite set of states of rank 0, 
E П A = 0, A’(C A) is the set of final states, R is a finite set of rules of the 
following two types:

an) —)• a with n > 0, / E En, a1;..

(ii) a —> a' with a, a' £ A (called A-rules).

We consider R as a ground rewriting system over E U A. The tree language

(l) /(<*!,•• an, a E A.* 7 * 7

24
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recognized by a bottom-up tree automaton A is

L(A) = {í G TE I there exists a e A' such that i4a}.
R.

It is well known that the class of tree languages recognized by bottom- 
up tree automata is REC (see [40]). The bottom-up tree automaton 
A = (E, A, A',R) is deterministic if R has no Л-rules and R has no two 
rules with the same left-hand side. It should be clear that a deterministic 
bottom-up tree automaton is equivalent with a dbr defined in Subsection 
1.4.1 with respect to recognizing capacity and vice versa.

We say that the bottom-up tree automaton A is connected if for every 
a G A there exists í G Ts such that t=>*Aa. Every recognizable tree language 
can be recognized by a deterministic connected bottom-up tree automaton 
(see [40]).

We need the following result, which was shown by Brainerd [5], Kozen 
[48], and Fülöp and Vágvölgyi [31].

Proposition 2.1.1 A tree language L is recognizable if and only if there 
exists a ground rewriting system R such that L is the union of finitely many 
<-±*R-classes.

Next we define some restricted versions of rewriting systems. Therefore, 
let R. be a rewriting system over E. We say that R is

(i) left-linear (right-linear) if, for every rule l —» r in R. I (r) is a linear 
tree;

(ii) linear if it is both left-linear and right-linear;

(iii) ground if, for every rule / —> r in R, both l and r are ground trees;

(iv) monadic if, for every rule l —>■ г in R, height(l) > 1 and height(r) < 1;

(v) semi-monadic if, for every rule l -> r in R, height(l) > 1 and either 
heightfr) = 0 or r = f(yi,.. - ,Ук), where / G Efc, к > 1, and for each 
г G { 1,..., к }, either tji is a variable (i.e., уг- G X) or yi is a ground 
term (i.e., yt G Ts);

(vi) collapse-free if there is no rule l —>■ r in R such that l £ X or r G X;
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(vii) left-to-right minimal if, for every rule l —> r in R,

(viii) left-to-right ground minimal if, for each rule l —»■ r in R. — 
n(Ts x TE) C^*R П(ГЕ x TE);

* .
Ro

(ix) two-way minimal if, for every rule l —> r in R, R-{l-> r}

(x) two-way ground minimal if, for each rule l —> r in R, -H-% 
Tx) C^n(TExTv).

n(TE xß-p-t-r}

It is immediate that the concept of a semi-monadic rewriting system general­
izes the notion of a monadic rewriting system. Moreover, properties (vii)-(x) 
are not static in the sense that we cannot decide by direct inspection whether 
a term rewriting system R has these properties or not. In fact, we will show 
later that (vii)-(x) are decidable properties of linear generalized semi-monadic 
rewriting systems.

Next we introduce the concept of a modular property for a class of rewrit­
ing systems. A class C of rewriting systems is dosed under disjoint union 
if for any rewriting systems R, S e C over E and Д, respectively, such that 
E П Л = 0, the rewrite system RU S over E U Д also belongs to C.

Let C be a class of rewriting systems, closed under disjoint union. A 
property V over C is modular for C if for any R, S £ C over E and Д, 
respectively, such that E П Д = 0, Й115 over E U Д has the property V if 
and only if both R over E and S over Д have the property V. For a short 
survey on the disjoint union of rewriting systems, see the introduction of [6]. 
Moreover, see [6] also for recent results in this area.

We introduce some further notation. Let E be a ranked alphabet and let R 
be a rewriting system over E. Moreover, let Д be a ranked alphabet such that 
E С Д and let L С Тд. Then we define RA(L) = {p \ q^*Rp for some q £ 
L}. We call R*A(L) the set of descendants of elements of L and if Д is 
clear from the context, we write R*(L) rather than R*A(L). We say that R 
preserves A-recognizability, if for every recognizable L С Тд, R*A(L) is also 
recognizable.

A rewriting system R over E preserves recognizability if, for every ranked 
alphabet Д with E С Д, R preserves Д-recognizability.

Again, let R be a rewriting system over E and let ЕС Д. We say that R 
effectively preserves A-recognizability if, for every bottom-up tree automaton
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Б over A, we can effectively construct a bottom-up tree automaton C over 
A such that L(C) = R*A(L(B)).

Finally, a rewriting system R over E effectively preserves recognizability 
if, for every ranked alphabet A with E C A, R effectively preserves Л- 
recognizability.

It is easy to see that a rewriting system over a ranked alphabet effectively 
preserves recognizability then it preserves recognizability.

We shall need the following concepts concerning string rewriting systems. 
Let S be a string rewriting system. We say that S is

(i) Л-free if there is no rule и —>■ v in S such that и = A or v — Л;

(ii) monadic if (u,v) G S implies that |u| > |u| and (|u| = 1 or |г/| = 0).

We say that a string rewriting system S over E (effectively) preserves (E-) 
recognizability if the term rewriting system R over A associated to S (effec­
tively) preserves (A-) recognizability. It is well known that monadic string 
rewriting systems effectively preserve recognizability, see Theorem 4.1.2 in
[4].

2.2 Summary of results
In [42] Gilleron showed that for a rewriting system R it is undecidable if R 
preserves szgn(i?)-recognizability. Moreover, in [51] F. Otto showed that it is 
undecidable in general whether a rewriting system preserves recognizability. 
We obtain the following results.

• There is a ranked alphabet E and there is a linear rewriting system R 
over E such that R preserves E-recognizability but does not preserve 
recognizability. (Theorem 2.4.1)

• Let R be a rewriting system, and let E = { /, jj } U sign(R), where / G 
E2 — sign(R) and jj G E0 — sign(R). Then, R preserves E-recognizability 
if and only if R preserves recognizability. (Theorem 2.4.3)

• Let Я be a rewriting system, and let E = {/,]]} U sign(R), where 
/ G E2 — sign(R) and jj G E0 — sign(R). Then, R effectively preserves 
E-recognizability if and only if R effectively preserves recognizability. 
(Theorem 2.4.6)
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In spite of Gilleroivs undecidability results, we know several rewriting sys­
tems which preserve recognizability. Brainerd [5] showed that ground rewrit­
ing systems over any ranked alphabet £ effectively preserve E-recognizability, 
see also [16]. Gallier and Book [38] introduced the notion of a monadic rewrit­
ing system, and Salomaa [54] showed that linear monadic rewriting systems 
over any ranked alphabet £ effectively preserve £-recognizability. Coquidé 
et al [7] defined the concept of a semi-monadic rewriting system generalizing 
the notion of a monadic rewriting system. Coquidé et al [7] showed that lin­
ear semi-monadic rewriting systems over any ranked alphabet £ effectively 
preserve E-recognizability.

We generalize the concept of a semi-monadic rewriting system and of a 
ground rewriting system by introducing the concept of a generalized semi- 
monadic rewriting system (gsm rewriting system for short). We obtain the 
following main result.

• For every ranked alphabet Д and linear gsm (lgsm) rewriting system 
R over Д, R effectively preserves recognizability. (Theorem 2.3.19)

The proof of this statement can be sketched in the following way. Let Д C 
£, L be a recognizable tree language over £, and let В = (£, В. В', Rß) be a 
tree automaton recognizing L. Similarly to the constructions of Salomaa [54] 
and Coquidé et al [7], we construct a sequence of bottom-up tree automata 
Ci = (£, C, B', Ri), i > 0 having the same ranked alphabet, state set, and 
final state set. The rule set Ro contains Rß. Moreover, R0 contains rules 
which enable Rq to recognize the right-hand sides of rules in R. For each 
i > 0, Ri+i contains Ri, and for each rule l —> r in R, Ci+1 simulates, on the 
right-hand side r, the computation of G on the left-hand side l. There is a 
least integer M > 0 such that Rm = Rm+ i • Hence Cm = Gvr+i- We show 
that L(CM) = R*{L).

Brainerd [5], Kozen [48], and Fülöp and Vágvölgyi [31] showed that a tree 
language L is recognizable if and only if there exists a ground rewriting system 
R such that L is the union of finitely many «->■ д-classes. We obtain a similar 
characterization for recognizable tree languages by proving the following.

• A tree language L is recognizable if and only if there exists a rewriting 
system R such that R U R-1 is an lgsm rewriting system and that L is 
the union of finitely many «-^-classes. (Theorem 2.3.21)



CHAPTER 2. ON TERM REWRITING SYSTEMS PRESERVING ... 29

Our concepts and results carry over to strings as well. We generalize the 
concept of monadic string rewriting systems by introducing the concept of 
restricted right-left overlapping string rewriting systems.

We show the following two statements.

• Restricted right-left overlapping string rewriting systems effectively 
preserve recognizability. (Theorem 2.3.23)

• A string language L is recognizable if and only if there exists a string 
rewriting system S such that S' U S'-1 is a restricted right-left overlap­
ping string rewriting system and that L is the union of finitely many 
^5-classes. (Theorem 2.3.23)

We also show the following sequence of decidability results for rewriting 
systems (effectively) preserving recognizability.

• Let R\, R2 be rewriting systems. Let Ri effectively preserve recogniz­
ability. Then it is decidable if —>д2 C —^. (Theorem 2.4.8)

• For an lgsm rewriting system R, it is decidable whether R is left-to-right 
minimal. (Consequence 2.4.12)

• Let Ri and R2 be rewriting systems such that Rx U Rx 1 and R2 U R2l 
are rewriting systems and effectively preserve recognizability. Then it 
is decidable if ^*Rl C . (Consequence 2.4.13)

• Let R be a rewriting system such that R U Д-1 is an lgsm rewriting 
system. Then it is decidable whether R is two-way minimal. (Conse­
quence 2.4.14)

• Let Rx, R2 be rewriting systems over a ranked alphabet E. Suppose 
that Rx effectively preserves recognizability. Let g e E — Eo be such 
that g does not occur on the left-hand side of any rule in Rx, and 
let {j 6 Eo be irreducible with respect to Rx. Then it is decidable if 
~*r2 n(Ts x Ts) С ->д1 C(TS x TE). (Theorem 2.4.15)

• Let R be an lgsm rewriting system over E. Moreover, let g G E — Eo 
be such that g does not occur on the left-hand side of any rule in R, 
and let (J € E0 be irreducible with respect to R. Then it is decidable 
whether R is left-to-right ground minimal. (Consequence 2.4.18)
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-l• Let Ry and R2 be rewriting systems over E such that Ry U R
R-2 U R2[ are rewriting systems and effectively preserve recognizability. 
Moreover, let gy. g2 E E — E0 be such that for each i E { 1, 2 }, gi does 
not occur in Ri. Let jJi, $2 E E0 be such that for each i E {1,2}, jk is 
irreducible with respect to RiL)R~l. Then it is decidable if n(TE x 
TE) С е>д2 П(Ts x TE). (Consequence 2.4.19)

and

-l• Let R. be a rewriting system over E such that R U R is an lgsm
rewriting system. Moreover, let g G E — E0 be such that g does not 
occur in any rule of R, and let j{ G E0 be irreducible with respect to 
R U R~l. Then it is decidable whether R is two-way ground minimal. 
(Consequence 2.4.20)

• Let R be a rewriting system over E effectively preserving recognizabil­
ity, and let p, q G TE(X). Then it is decidable if there exists a tree 
r G TE(A) such that p~^*Rr and q^*Rr. (Lemma 2.4.21)

• Let R be a rewriting system over E effectively preserving recognizabil­
ity. Then it is decidable if R is locally confluent. (Theorem 2.4.22)

By direct inspection we obtain that for any dt Л = (E, A, A, a0, R) with 
EnA = 0,i?isa convergent left-linear gsm rewriting system over the ranked 
alphabet MuEuA. Hence Fülöp’s [25] undecidability results on deterministic 
top-down tree transducers imply the following.

• Each of the following questions is undecidable for any convergent left- 
linear gsm rewriting systems Ry and R2 over a ranked alphabet Í2, for 
any recognizable tree language L CTq given by a tree automaton over 
Q recognizing L, where Г is the smallest ranked alphabet for which 
NF(L, Ry) C Tr.

(i) Is NF(L, Ri) П NF(L, R2) empty?

(it) Is NF(L, R\) П NF(L, R2) infinite?

(in) Is NF(L, Ry) П NF(L, R2) recognizable?

(iv) Is Tr — NF(L,Ri) empty?

(v) Is Tr - NF(L.Ri) infinite?

(vi) Is Tr — NF(L,Ri) recognizable?
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(vii) Is NF(L,Ri) recognizable? 

(viii) Is NF(L, Ri) = NF(L, Д2)? 

(vx) Is NF(L, Ri) C NF(L,R2)?

(Proved in Theorem 2.4.27)

Finally, we show that preserving recognizability and effectively preserv­
ing recognizability are modular properties of linear collapse-free rewriting 
systems. That is, the following statement holds.

• Let R and S be linear collapse-free rewriting systems over disjoint 
ranked alphabets £ and Д, respectively. Then R and S (effectively) 
preserve recognizability if and only if RuS over EuA also (effectively) 
preserves recognizability. (Consequence 2.4.31 and Theorem 2.4.32)

This result implies the following.

• Preserving recognizability and effectively preserving recognizability are 
modular properties also of А-free string rewriting systems. (Theorem 
2.4.33)

Generalized semi-monadic rewriting sys­
tems

2.3

Linear generalized semi-monadic rewriting sys­
tems preserve recognizability

In this subsection we introduce the notion of a gsm rewriting system and 
show that linear gsm rewriting systems effectively preserve recognizability.

2.3.1

Definition 2.3.1 Let R be a rewriting system over £. We say that R is a 
generalized semi-monadic rewriting system (gsm rewriting system for short) 
if there is no rule l —»• r in R with l G X and the following holds. For any rules 
li —> rx and l2 —V r2 in R, for any occurrences a G path{rx) and ß G path(l2), 
and for any supertree l3 G T^(X) of l2/ß with var(l3) П var{lx) = 0, if

(i)’a = A or ß = A,
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(ii) Г[/а and Z3 are unifiable, and

(iii) 9 is a most general unifier of rx/a and Z3, 

then

(a) l2/ß G X or

(b) for each 7 € path(l3), if k/ß'y € X, then 9(13/7) GlU Ts.

Notice that Condition (a) implies that Z3 G X. We abbreviate the expression 
linear gsm to lgsm.

Example 2.3.2 Let E = ЕоиЕхиЕг, E0 = { f }, Ei = { / }, and S2 = {£?}- 
Let the rewriting system R over E consist of the rule

g(xux2) -> f(g(xij)) .

We obtain by direct inspection that R is lgsm.

Definition 2.3.3 A rewriting system R over E is restricted right-left over­
lapping if there is no rule l —> r in R with l G X and the following 
holds.
a G path(rx) and ß G path(l2), and for any supertree Z3 G T%(X) of l2/ß 
with var(l3) П var(lx) — 0, if (i), (ii), and (iii) in Definition 2.3.1 hold, then 
(a;), (b’), or (c’) hold.

Л, l2/ß G X.

(b;) a = Л and for each 7 G path(l3), if Z2 / /?7 G X, then 0(l3/j) GlU Ts.

(c’) ß = X and for each 7 G path(l3), if l2/7 G X, then 9(l3/7) G X U T^.

Note that Condition (a’) implies that Z3 G X. We visualize the unification 
of rx/a and the supertree Z3 of l2/ß by the most general unifier 9, when 
Condition (a’) (Condition (b’), Condition (c’), respectively) holds on Figure 
2.1 (Figure 2.2, Figure 2.3, respectively).

The proofs of the following two results are straightforward.

Observation 2.3.4 A rewriting system R is gsm if and only if R is restricted 
right-left overlapping.

For any rules lx —> rx and l2 —>■ r2 in R, for any occurrences

(a’) a
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a — A

I2/ß G X and /3 = Xi 

Q[xi) - n

h

ß

Figure 2.1: The unification of т^/а and the supertree Z3 oi l2/ß by the most 
general unifier (9, when Condition (a1) holds.
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a — A

0(r 0 = 9(h)

for each 7 G path(l3), if l2/ß'y G X, then ^(Z3/7) G X U Tfi

Figure 2.2: The unification of 77/a and the supertree /3 of l2/ß by the most 
general unifier 9, when Condition (b‘) holds.
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ß = X

Oin/a) = в(13)

for each 7 G path(l3), if l2/j G X, then 9(l3/y) 6lU Ts

Figure 2.3: The unification of 77/0: and the supertree /3 of Z2 by the most 
general unifier 9, when Condition (c’) holds.
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Observation 2.3.5 Each semi-monadic rewriting system is gsm as well.

We now show that lgsm rewriting systems effectively preserve recogniz- 
ability. Throughout this subsection, R is an lgsm rewriting system over 
some ranked alphabet Д, and E is an arbitrary ranked alphabet such that 
ДСЕ. Moreover, let L = L(B) be a recognizable tree language over S, 
where В — (E, В, В', Rß) is a deterministic connected bottom-up tree au­
tomaton over E. Via a series of theorems and lemmas we show that R^(L) 
is recognizable. In fact we construct a tree automaton C over E such that 
L(C) = R^(L). Our construction is illustrated by an example in Subsection 
2.3.2. As we are interested in the tree language R^(L) rather than in RA(L), 
by R*{L) we always mean R^(L).

Let E be the set of all ground terms и over E such that there are rules lx —у 
rx and I2 r2 in R, and there are occurrences a G path{rx) and ß G path(l2), 
and there is a supertree l3 G T^(X) — X of l2/ß with var(l3) П var(lx) — 0 
such that

(i) a = Л or ß = Л,

(ii) rx/a and /3 are unifiable, and

(iii) в is a most general unifier of rx/a and l3, and

(iv) there is an occurrence 7 G path{l3) such that l2/ß7 G X and дЦз/'у) G 
Ts, and that и is a subterm of #(/3/7).

It should be clear that E is finite and effectively constructable.
Recall that В = (E, В, B1, Rb) is a deterministic connected bottom-up 

tree automaton such that L(B) — L. We lose no generality by assuming that 
В П N = 0. Moreover, without loss of generality we may assume that for 
each rule / —> r in R, l G TE(Xn) for some n > 0. Let

D = В U { p[ax,..., an] I n > 0,p G Ts(An),ab ..., an G В U E,p is а 
subtree of the right-hand side r of some rule l —> r in R}.
It should be clear that В U E C D. Let

С = В О {1,... ,\D — B\} .

We consider C as a ranked alphabet, for each c G C the rank of c is 0. Let 
( ) : D —> C be a bijection such that (b) = b for each b G B.
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For each г > 1, consider the bottom-up tree automaton C — 
(E,C, B', Rf), where Rz is defined by recursion on г (for an example see 
Subsection 2.3.2).

We define R0 as follows.

(i) Rß Q Ro-

(ii) For all n > 0, / € E„, ti,... ,tn E D, if f(ti,... ,tn) E D, then we put 
the rule /((H),..., (tn)) -* (f(tu ..., tn)) in Rq.

We shall refer to a rule appearing in (ii) as a (ii)-type rule of R0.
Let us assume that i > 1 and we have defined the set TL-i- Then we 

define R.i as follows.

(a) R-i-i C R^.

(b) For any rule l —> r in R with n > 0, l E T^(Xn), for all ab..., an E
В U E, if Z[(ai),..., (an)] c for some с E C, then we put the rule
(r[ab ... ,an]) c in Ri.

As В is connected, all states in В are reachable in C0. By (ii) in the 
definition of R0, all states in { 1,..., |D — B\} are reachable in R0. Hence C0 
is connected. As Ri C i^+i for i > 0, Ci is connected for i > 1.

It should be clear that there is an integer M > 0 such that RM = Rm+i- 
Let M be the least integer such that RM = Rm+i- Let C = CM- Let S = RM, 
and from now on we write C — (E, С, B', S), rather than См = (E, С, B', Rm)- 

Our aim is to show that R*(L) = L(C). To this end, first we show 
five preparatory lemmas, then the inclusion L(C) C R*(L), then again five 
preparatory lemmas, and finally the inclusion R*(L) C L(C).

Lemma 2.3.6 L = L(C0).

Proof. By direct inspection of the set R0 of rules.

Lemma 2.3.7 For any p E Ts, г/р —^o(r[ai,..., an]) for sorn,e r E T^(Xn), 
n > 0, and ai,..., an E В U E, then p — r\p\,... ,pn], where pi E Ts and 
Pi ~^*Ro(ai) for 1 < i < n.

Proof. By direct inspection of the rules of R0.

The following statement is a simple consequence of Lemma 2.3.7.

□

□
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Lemma 2.3.8 For any p gTe, ifp-+*Ro(r[ai,...,an])forsomereTE( Xn), 
n > 0, and ai,..., an £ В U E, then p = r[pi,... ,pn], where for each 1 < 
i < n, if the variable Xi appears in the tree r, then pi £ and pi —3>*Ro(ai).

Lemma 2.3.9 For any i > 1, p £ Ts, g, t £ uC, A: > 1, and v\,...,Vk G 
TsuC; if

(2.1)

and Ci applies an (Ri — Ri_{)-rule in the last step q —t of (2.1), then there 
exists an s € 7s sac/г í/iaí

s —^ p and s t .
R Ri-1

Proof. Let a: be the occurrence where C* applies an (Ä; — i?i_i)-rule

Mali­

in the last step q —t of (2.1). Then

q = u[(r[a1,..

(2.2)

an]) -> c* J

an])] j•)

where и £ T%(Xi), и/а = х±, r £ T^(Xn), n > 0, and ai,..., an £ В U E. 
Bv Lemma 2.3.8,

p = u[r[pi,... ,pn}} ,

for each 1 < г < n, if the variable Xi appears in the tree r, then p, £ Ts and 
Pi —^ (aj). Finally, t = гг [с]. By (b) of the definition of rules of i?i, г > 1, 
there is a rule / —> r in R with l £ TS(X„), n > 0, and there are states and 
trees a[ £ В U E for 1 < г < n such that for each 1 < i < n, a' = a* if Xi 
appears in the tree r, and that

/[«),...,«)] A c.
Äi-l

is connected, there are trees qi,... ,qn 6 Ts such that for each 1 <
a'. Let

As C
i < n, if Xi appears in the tree r, then g* = рг-, and that g^ —Fi

г-1

Ri-1

s = u[l[qi, ■ ■ -Mn}] ■

Then
s —>p

R



CHAPTER 2. ON TERM REWRITING SYSTEMS PRESERVING ... 39

and
s = u[l[qu ...,<?„]] -и[1[а\,.. <]] Г* u[c\ = t .• JRo

Hence (2.2) holds. □
Lemma 2.3.10 For every i > 0, p G Ts, q G TSuC-, if p-^%. q, then there is 
an s G Те such that

s—tp and s—>q.
R Rq

Proof. We proceed by induction on i. For i — 0 the statement is trivial. Let 
us suppose that i > 1 and that we have shown the statement for 1,2,..., i—1.
Let

ptq’
and let m be the number of (R — i^_x)-rules applied by Ci along (2.3). We 
show by induction on m that

(2.3)

'Г

there is an s G TV such that s —> p and s —У q .
R Ro

(2.4)

If m = 0, then p—^ q and hence by the induction hypothesis on i, (2.4) 
holds.

Let us suppose that m > 1 and that for 0,1,..., m — 1, we have shown 
(2.4). Let p—>*Riq where C applies m (Ri — TWx)-rules. Then there are 
integers n, к, 1 < к < n, and there are trees П, t2, «ъ u2i ■ ■ ■, G Ruc such 
that (I), (II), (III), and (IV) hold.

(I) p = ux —uk = Í1 —>-Äi “fc+1 = t2 —t’Ri ■ ■ ■ -t-Rt Un = q.

(II) along the reduction subsequence p = щ —... —uk = П of (I), Ci 
applies no (Ri — IT_i)-rule.

(III) in the rewriting step uk —uk+x Ci applies an (Ri — FWi)-rule.

(IV) along the reduction subsequence t2 = Rk+i ~^r, ■ ■ ■ ~^r, un = q of (I), 
Ci applies m — 1 (Ri — Tx_x)-rules.

By the induction hypothesis on i, there is a tree sx G R such that

Sx4p and Si A tx .
R Rq

(2.5)
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Hence
Si —>• t\ —> to ■

Ro Ri

Bv Lemma 2.3.9, there is a tree s2 G TE such that
* ”s2 —> Si and s2 —> t2 .

R Ri-i

Hence there is j > 0 and there are wx,... ,Wj € T-£Uc such that 

= wi w2 ->■ ■ • ■ -> Wj = t2 = uk+i un = q ,
*4-1 *4-1 *4_i Я» /4

and along (2.7), C; applies m — 1 (Xj — i^_i)-rules. By the induction hypoth­
esis on m, there is a tree s3 € Те such that

s3 s2 and s3 —> q .
R Rq

(2.6)

(2.7)«2

Hence by (2.5) and (2.6),

33i327s'ip-
Thus (2.4) holds.

Theorem 2.3.11 L(C) C X*(X).

Proof. Let p G L[C). Then p —t*s b for some b G X'. Hence by Lemma 2.3.10, 
there is an s G Те such that

□

s A- p and s A 6 .
я Яо

Hence s G L(C0). By Lemma 2.3.6, sG L Thus by (2.8), p G R*{L).

Now we show the inclusion R*(L) C X(C). First we prove five lemmas.

Lemma 2.3.12 Let lx —» rx and l2 —> r2 6e ndes in R. Let a G path{rx), 
where rx/a G T^{Xj), j > 0. Let ß G path(l2), where l2/ß G TE(X) — X, 
and iei s G T^(Xk) — X, к > 1, be a supertree of l2/ß. Let a = A or ß — A.

(2.8)

□

Let
(ri/a:)[ai,...,aj] = s[zb ..., zk]

where ax,.. . ,a,j G В U E, zx,... ,zk G TSub- Let 7 G path(s) be such that 
l2/ß7 G X, and s/7 = /or some 1 <u<k. Then zv & В У2 E.

(2.9)
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Proof. Let lx G Ts(Xm) for some m> 0. Let l3 = s[xm+1,... ,xm+k\. Then 
l3 G 7s({ xm+\,..., xm+k }) is a supertree of l2/ß, for each m + 1 < i < m + k, 
Xi appears exactly once in l3. Moreover, var(lx) П var{l3) = 0, and by (2.9),

{т\/(Y) [di, . . . , dj\ h \%m+\ 4 ) • • • i %m+k ^ %к\ ■

Let вх : X —> Tz(X) be a most general unifier of Гх/а and l3. By (2.10), 
there is a substitution 92 : X —> Т^ив(Х) such that

Wi(ri/a)) = (ri/a)[ai,...,aj] = l3[xm+l <— Zi,...,xm+k <— zk] =

ЫЬШ
where 92(9i(^i)) = a* for 1 < i < j and ö2(0i(ira+i)) = Zi for 1 < i < k. By 
Definition 2.3.1 and by the definition of E, 0i\xm+u) G XUE. If 9\{xrn+v) G 

X, then 92{9i{xm+l/)) is a subtree of aß for some p G {l,...,j}. Hence 
by the definition of E, zv — 92{9i{xm+u)) G В U E. If 9\(xm+u) G E, then 
zv — 92[9\(xmjrU)^ — 9\{хт^.у) G E.

Intuitively, the following lemma states that along a reduction sequence of 
S we can reverse the order of the consecutive application of a (ii)-type rule 
of R.q at a G N* and the application of an (S' — До)-rule at ß G N* if a is 
not a prefix of ß and ß is not a prefix of a.

Lemma 2.3.13 Let

(2.10)

□

U\ -t u2 -* u3 s s
be a reduction sequence of C. Let a G path{u\), and ß G path(u2) be such 
that Ui —>5 u2 applying a (ii)-type rule rulei of Ro at a, and that u2 —>5 щ 
applying an (S — R0)-rule rule2 at ß. If a is not a prefix of ß and ß is not 
a prefix of a, then there is a tree v G T^uc such that щ —v applying rule2 
at ß. and v —>$• Щ applying rulei at a.

Proof. Straightforward.

Lemma 2.3.14 Let i > 0, t G T^uc(Xi), a G path{t), t/a = ib c G 
{ 1,..., \D — B\ }, and b G B. Let

□

(2.11)t[c] =щ ~£u2-£...-£un = b

un G Tsuc- Then along (2.11), Ci applies a rule in Ri — R0with n > 1, u\,.. 
at some prefix ß of a.

* >
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Proof. Bv direct inspection of the construction of the Cfs. □

Lemma 2.3.15 For any n > 0, и G T^(Xn), v\,..
»i, • •

vn,v e D, m > 1, and* 5

Wm € TEuC, if* ;

«[(til),.. . , (!!„>] =Wi-+W2^+...-+Wm = (v), (2.12)

and C applies only (ii)-type rules of Rq along (2.12), then u[v\,... ,vn] = v.

Proof. We proceed by induction on height{u). The basis heighten) = 0 of 
the induction is trivial. The induction step is a simple consequence of (ii) in 
the definition of R0 and of the inclusion R0 C S. □

Lemma 2.3.16 Let t G L(C), m > 1, t\,..., tm € Тцис, b G B', and let

t = h 12 i3 tm (2.13)= b .

Let l —> r be a rule in R, where l G Ty,(Xu) and n > 1. Moreover, let 
1 < j < m, and let

tj/a = l[(v1),...,(vn)] , 

vn G D, a G pathftj). Let aq,..

(2.14)

an G path(l) suchwhere n > 1, v\,.. 
that

‘ 5 * J

l/oii = Xi for 1 < i < n . (2.15)

Consider the reduction subsequence

(2.16)= btj tj+1 tms s s

of (2.13). If C does not apply any rules at the occurrences aai,..., aan along 
(2.16), then Vi,..., vn G В U E.

Proof. Let 1 < i < n, and let us assume that V{ G D — В. By (2.14) and 
(2.15),

(2.17)

By Lemma 2.3.14, C applies a rule in S—R0 at some prefix of aa; along (2.16). 
Let ß G pathftj) be the longest prefix of cm^ such that C applies a rule rule 
in S — Ro at ß along (2.16). Then rule is of the form (ri[ai,..

tj/aati = (vß .

<vl) —t c,* ?
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where к > 0, rq G T^(XK), cq,..., aK G В U E, and there is a rule li —> rq in 
R. Moreover there exists £, j < £ < m, such that

= (ri[Qb- • a*]> »* 7

where for each 7Г, j < n < £ — 1, ^//3 = t^+i/ß or £*■/ß -^stn+i/ß- We lose 
no generality by assuming that

tj/ß~^ti+\/ß-£----*4fß = (nk, • •
By Lemma 2.3.13 we may assume that there exists v, j < v < £ such that 

(a) along the reduction subsequence

<■«]) ■ (2.18)* 7

tj/ß~^---^’t<'/ß

of (2.18) no rule is applied at any prefix of ска:;, that

(b) along (2.19) each application of a (ii)-type rule of Ro at some 5 G N* 
is followed somewhere later by an application of an 5 — .Ro-rule of S at 
a prefix e of d, and that

(c) along the reduction subsequence

tv/ß-+----+tz/ß = (r1[ai,.. 

of (2.18), S applies only (ii)-type rules of fío •

(2.19)

a«])‘ 7

Then
tv/ß = s[(zi),...,(zk)] (2.20)

for some k > 1, s G Ts(Xk), and (z\),..., (zk) G C. By (2.20). (c) of the 
definition of v, and Lemma 2.3.15,

s[zi,...,zk] =ri[ab...,aK] .

The word a is a prefix of ß or ß is a prefix of a. Hence we can distinguish 
two cases.

Case 1 a is a prefix of /3, see Figure 2.4. In this case,

(2.21)

(2.22)/? = а7
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tj/a = l[(vi),..., {vn)] 
ß = aj 

ot-i — 7 5

ßö = GtCii

tj

a

(Vi)

Figure 2.4: Case 1. of Lemma 2.3.16

for some 7 G N*, and hence tv/ß is a subtree of tufoL. Now by (2.14), the 
definition of v, and (2.20),

s is a supertree of l/7 .

Let ui be the prefix of aa; with length(cu) = length^aaß — 1. Observe 
that C applies a (ii)-type rule of Ro at the occurrence ш along (2.16). Hence

a £X .
Let h e N* be defined by the equation jő = Then

ßS — OíO-i ,

(2.23)

(2.24)

(2.25)

and by (a) of the definition of 17

ő € path(s), 5 G path(l/7), and (l/j)/S — Xi . 

By (2.25) and by (a) of the definition of v,

ßö G path(tv) .

(2.26)
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I
tj/a =

a = ß 7

M
Figure 2.5: Case 2. of Lemma 2.3.16

By (2.17), (2.25), (a) of the definition of u, and (2.20)

(vß = {tj/ß)/S = {tv/ß)/5 = ..., (zk)}/5 = (zfl) (2.27)

for some 1 < fj. < k. As R is gsm, by (2.23), (2.24), (2.26), (2.21), and 
Lemma 2.3.12, zß 6 В U E. By (2.27), Vi G В U E.

Case 2 ß is a prefix of a, see Figure 2.5. In this case

(2.28)a = ß 7

for some 7 € N*, and hence tj/a is a subtree of tj/ß. Now by (2.14), the 
definition of г/, and (2.20),

(2.29)s/7 is a supertree of l .

Moreover, by (a) of the definition of u,

ai e path(s/7), l/ai G X, and {s/^/ai G X . (2.30)
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Let си be the prefix of eta* with length(uj) = length(aa/) — 1. Observe 
that C applies a (ii)-type rule of R0 at the occurrence ш along (2.16). Hence

s/l £ X .

By (2.28) and by (a) of the definition of u,

ß^cti = acq G path(tu) .

Then by (2.17), (2.32), (a) of the definition of v, and (2.20),

Ы = (tj/ß)/yai = (tu/ß)/yoci = s[(2a),..., (zk)]/yoii = (zß) 

for some l < g < k. By (2.21),

(s/t)[zi, ...,zk] = s[zi,..., zk ]/7 = r^ai,..., aK]/7 .

(2.31)

(2.32)

(2.33)

(2.34)

As R is gsm, by (2.29), (2.31), (2.30), (2.33), (2.34), and Lemma 2.3.12, 
zß G В U E. By (2.33), Vi G В U E. □
Theorem 2.3.17 R*{L) C L(C).

Proof. By (i) in the definition of R0, RB C R0. Hence L C L(C0). As 
Ri-i C Ri for г > 1, we have L C Ь{С/) for i > 0. Hence L C L(C). Thus it 
is sufficient to show that for each t G L(C), if t—>Rt', then t' G L{C). To this 
end, let us suppose that t T, applying the rule l —»■ r in R at a G path{t). 
Here l G Tfi(An) for some n > 0. Let a-i,... ,ctn G path(l) be such that

IjoLi — Xi for 1 < г < n .

Then
t — s[Z[ui,..

where s G Th(Ai), a G path(s), s/a = aq, and щ,... ,un G Tfi. Moreover, 

t' = t[a t— r[ui,..

As t G L(C), there is a reduction sequence

t = ti t2 t3 -> tm = b,
•Ь О »Ь ib

G Txuc, and there are integers j, к with

Un]] >• 5

«n]] = s[r[ub . . un/[ •• 5 * 5

(2.35)

where m > 1, b G B', ..
1 < j, к < m such that

t• > ‘'m
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(i) tj = s[/[(ui), •.., (un)]j, where e D and щ ->■*s(ví) for 1 < i < n,

(ii) tk = s[c0], for some c0 € C, where l[{vi),..., (n„)] ->* c0, and that

(iii) along the reduction subsequence tj —hs tj+i —... —>s 4 of (2.35), C 
does not apply any rules at the occurrences aab ..., aan.

By Lemma 2.3.16, tq,..., vn £ В U E. Hence by Condition (ii) in the defini­
tion of Ri, i > 1, and by the definition of C, the rule r[(rq),..., {vn)\ -> c0 is 
in S. Thus we get

un}\ s[r[(vi),..., (un>]] s[c0] -4 b .t' = s[r[ui,. . • 5

As b e B', t' G L(C).

By Theorems 2.3.11 and 2.3.17, we get the following.

Theorem 2.3.18 R*(L) = L(C).

As A, R, E (ACE), and H are arbitrary, we have the following result.

□

Theorem 2.3.19 Linear generalized semi-monadic rewriting systems effec­
tively preserve recognizability.

Theorem 2.3.20 A tree language L is recognizable if and only if there exists 
a rewriting system R such that R U R~l is a rewriting system preserving 
recognizability and that L is the union of finitely many class es.

Proof. Let us assume that L is recognizable. Then by Proposition 2.1.1 
there is a ground rewriting system R such that L is the union of finitely 
many -H-д-classes. Clearly, R U Ä-1 is an lgsm rewriting system and hence, 
by Theorem 2.3.19, preserves recognizability.

Let us assume that there exists a rewriting system R such that R U R~l
is a rewriting system preserving recognizability and that L is the union of 
finitely many -н-д-classes. That is to say, L = [ti]R U [г2]я U ... U [ffc]Ä for 
some к > 0. As —G = <-+*R, L = (R U 7Гг)*({ ti,...,tk })• It should 
be clear that the tree language { f1;..., tk } is recognizable. Since R U R~l 
preserves recognizability, L is also recognizable.

RUR~l

□
The following theorem is a simple consequence of our results.
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Theorem 2.3.21 A tree language L is recognizable if and only if there exists 
a rewriting system R such that RU R~x is an Igsm rewriting system and that 
L is the union of finitely many ^*R-class es.

Example 2.3.22 Let E — So LJ Lu U S2, So — {$,$}, Sj = { f }, S2 = ■{ g 
Let R. consist of the rules

д{д(хъ$),х2) ->• f(g(g($,xi),x2))

g(g($,x2),xi) ->• f(g(g($,xi),x2)).

Then RU R 1 is an lgsm rewriting system. Hence, by Theorem 2.3.21, the 
union of finitely many arbitrary <-*■ д-classes is recognizable.

Let S be a string rewriting system over S. We say that S is restricted 
right-left overlapping if there is no rule Л —> r in S, and the following holds. 
For any rules /1 —> r\ and l2 —> r2 in S, for any nonempty suffix и e E+ of 
r! and any nonempty suffix v E E+ of l2, if и — т\ or v = l2, then v cannot 
be a proper prefix of u. For example the string rewriting system

{ apple —у peach }

is restricted right-left overlapping.
It is not hard to see that each monadic string rewriting system is restricted 

right-left overlapping as well.
The following theorem is an interesting consequence of our results on 

rewriting systems.

Theorem 2.3.23 Restricted right-left overlapping string rewriting systems 
effectively preserve recognizability. Moreover, a string language L is recog­
nizable if and only if there exists a string rewriting system S such that SuS 
is a restricted right-left overlapping string rewriting system and that L is the 
union of finitely many E^*s-classes.

-1

2.3.2 An example
In this subsection we illustrate the construction of Cj, j > 0 by an example. 
Let S = So U Ex U S2, S0 = {if}, Si = { / }, S2 = 
system R over S consist of the following two rules.

{#}. Let the rewriting
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f(f(g(xi»W) -»• /№0) ,
g(x i,x2)

By direct inspection we obtain that R is an lgsm rewriting system. Here 
E = { ft }. Let L = { Jt) }. It is not hard to see that

R’{L) = {Г МШ I n > 0 } U { /“(()\n>2).

Consider the bottom-up tree automaton В = (E, В, B'. Rß), where В — 
{61,62}) В' = { 62 }, and RB consists of the following two rules: jj —> b\ , 
(/(61,61) —> 62 - It is not hard to show that L = L(B). By direct inspection 
we obtain that the set of subterms of the right-hand sides of the rules of R is

{ xi, f(x 1), f{f(xi)), #, g{x 1, ti), f(g(x 1, #)) } -

Then
d = {61, ДВ), Д/МГЯДЬг)). Д/Й)), «(í-i.it).

s(í>2,1). <?(#, if), f(g(h, If)), fl'/Ch, ft)), /(if:, К))}.
Moreover, C — { 61,62,1,..., 13 }. Let () : D —> { 1,... ,\D — B\} be defined
by

= 62, (it)
= 3, (/Ш)
= e, (/(/(#)))
= 9, (5ОШ

— h, (62) 
= 2

(h) 1
(ДЫ)(/(6 i)> 4,

5, (/(/(62))) 
8, (<7(621#))

(/(/(61)))
(<7(6i,#))
(/(5(61,#))) = И, </(<7(62,#))) = 12, (/(<7 (#,#))>

7,
10,
13.

Then C0 = (E, С, B', R0) is determined by the set R0 of rules. Ro consists 
of the following fifteen rules.

5(61,61)
/(61) —t (f(bi)),
/«#)) (/(#)>,
/((/(62)» -> (/(/(62))),
5(6i,(i0) (5(6i,0)),
5(00,00) -► (5(0,#)),

62,'1,
-*• (#),
-> (/(62)),
-* (/(/(61))) 

</(/(#))>, 
(5(62,0)),

#
/(62)
/((/(61)))

/((/(it)))
5(62, (if))
/((5(61,0))) -> (/(5(61,#))), /((5(62,0))) (/(5(62,it))),
/((5(#,#)>) (/(5(#,#))>-
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That is, Ro consists of the following fifteen rules.

-1 öi, g{bx,bx) —* ö2, Л
-+ 2,

5, /(3)
p(öi,l) -7- 8, <7(62,1) —> 9, 77(1,1) -> 10,

-+ И, /(9)
The bottom-up tree automaton Cx = (E,C,B':RX) is determined by the 

set Rx of rules. Rx contains all rules of R0 and the following five rules.

—t 1,
ДМ /(02) -> 3, /(1)

-> 6, /(4)
-> 4,

/(2) -7- 7,

/(8) -> 12, /(10) ->• 13.

(f(f{b\))) -> (/(/(Ö2))), (f(g(bi, it))) -> ö2,
</(<?M)> ->• («/(ölj)), (ДяС&г,#))) -> (y(ö2, it))
</0КШ> -> <ДШ-

That is, i?i contains all rules of Д0 and the following five rules.

5 -7- 6,11 -7- Ö2,11 -»• 8,12 -»• 9,13 10.

The bottom-up tree automaton C2 = (E, C, B\ R2) is determined by the 
set R.2 of rules. R2 contains all rules of Rx and the following seven rules.

</№))> -+ </GKM))>, </(№))> <ДМ)>,
(f(f(bi))) —> ö2,
(/(/(Ö2))) -> (g(p2> it)),
</(/(#))> (ДШ-

</(/(ö2))) (f(g(b2,m,
</(/(#))) -> (ДДШ),

That, is, i?2 contains all rules of Rx and the following seven rules.

5 -7- 11, 5 —> 8, 5 -7- 62, 6 -7- 12, 6 -7- 9, 7 —» 13, 7 -7- 10.

The bottom-up tree automaton C3 = (E, С, В1, Д3) is determined by the 
set Д3 of rules. Д3 contains all rules of R2 and the following two rules.

</(/(Ы)> </ЫМ))>, </(/(M)> -» (д(ь2Л)).
That is, Д3 contains all rules of R2 and the following two rules.

5 -7- 12, 5 -7- 9.
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Since R4 = R3, the bottom-up tree automaton C4 — (E,C,B',R4) is 
equal to C3 = (E, (7, H',i?3). Let S = f?4 and let us write C = (E,C,B',S) 
for C\ = (E, C, B', R4). Hence S consists of the following twenty-nine rules.

<7(61,61) —> b2, it
-*• 3, /(1)

6, /(4)
-1 9, 5(1,1) —у 10,
-> 12, /(10) -4 13,

tt -> 6
/(61) —> 2, ,/(62)
/(2) -4 5, /(3)
5(6i,l) ~4 8, 5(62,1)
/(8) -4 11, /(9)

-4 6. 11

-4 1,
-»• 4,

ъ

—t 62,5 11 —> 8,
12 13 -> 10, 5 —t 11, 

-> 12, 
—> 10,

—>62, 6-> 8, 5
-»■ 9, 7
-> 12, 5

By direct inspection we obtain that the states 3, 4, 6, 7, 9, 10, 12, and 13 
are superfluous as no final state can be reached from any of them. Hence we 
drop all of them and also omit all rules in which they appear. In this way we 
obtain the bottom-up tree automaton A\ = (E,C,B',Si), where Si consists 
of the following twelve rules.

5
6 13, 7
5

5(61,61) —> 62, I-+ 6 —t 1,
—t 5, 5(61,1) —> 8,
—> 62, 11 
-)> 8

1,
/(61) -f 2, /(2)
/(8) 11, 11 —>• 8, 

—У b2.55 -> 11, 5

It is not hard to see that the rule 5 —> 11 is superfluous. We obtain the 
bottom-up tree automaton A2 = (E, С, B', S2), from A\ by dropping the rule 
5 —» 11. Thus S2 consists of the following eleven rules.

tt 6i, 5(61,61) —»■ 62, tt
/(61) —t 2, /(2)
/(8) -> 11, 11

->• 8, 5

We define the deterministic bottom-up tree automaton A3 = 
(E, C, A', S3), from A2 by applying the subset construction. Then S3 consists 
of the seven following rules.

-1 5, 5(61,1) -4- 8,
—t 8,-4 b2, 11

—t b2.5
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{6i,l},
{2},

—> {5,8, 62},

g({ 1 }) { 5i, 1 }) —» { , 8 },
/({02,8})
/({5,8,02})

/({* 1,1»
/({2})
/({8,11,52» —> {8,11,62}-

■"+ {8,11,62}, 
—> {8,11,62},

Moreover, A' consists of the three states { 62, 8 }, { 8,11, 62 }, { 5, 8, 62 }. Let 
us redenote the states of A3 as follows. Let

«1 = { 61,1}, a2 = { 62, 8 }, 03 = { 2 }, a4 = { 8,11,62 }, a5 = { 5,8, 62 }. 

Hence S3 consists of the following seven rules:

tt Gl, <?(öl,Ol) —> «2, /(o l) -1 G3,
/(02) -> 04, /(03)
/(04) —t a4.

Moreover, A' = { a2, a4, a5 }.
It should be clear that the states a2,a4,a5 are equivalent. Finally 

we construct a minimal deterministic bottom-up tree automaton A4 = 
(E, C, A", S3), from A3 by merging the equivalent states a2,a4,a5. Hence 
S4 consists of the following five rules.

05, /(a5) —f 04,

Ö ~t ai, (7(01, ai) —»■ a2, /(a» —f аз, /(a2) —> a2, /(аз) —>• a2. 

Moreover, A" = { a2 }. We obtain by direct inspection that L(A4) = R*(L).

Results on term and string rewriting sys­
tems preserving recognizability

2.4

In this section we study rewriting systems preserving recognizability and 
gsm rewriting systems. First we present a ranked alphabet E and a linear 
rewriting system R over E such that R preserves E-recognizability but does 
not preserve recognizability.

Theorem 2.4.1 There is a ranked alphabet E and there is a linear rewriting 
system. R over E such that R preserves E-recognizability but does not preserve 
recognizability.
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Proof. Let E = Ex U E0, Ex = {f,g}, E0 = {jt}. Let R consist of the 
following five rules.

.f(g{xi))^f(f(.g(.9{xi)))), /(it) —g(i) -> tt, tt—>•/(it), Ö-t^(ií)- 
It should be clear that for each tree i e Tj, i—>^tf, and fj—>*Rt. Hence 
for each nonempty tree language L C Ts, R*(L) = T2. Thus R preserves 
E-recognizability.

Let A = Eu{ h}, where h G Ax- Let L = { /(<7(/i(tt))) }■ Since L is finite, 
L is recognizable. However, R*(L) = { fn(gn(h(t))) | n > 0, í G } is not 
recognizable.

We shall need the following two statements, of which the proof are 
straightforward.

□

Lemma 2.4.2 Let R be a rewriting system overE. Then the following state­
ments are equivalent.

(i) R (effectively) preserves recognizability.

(ii) For each ranked alphabet A with sign(R) C A, R (effectively) preserves 
N-recognizability.

Theorem 2.4.3 Let R be a rewriting system over sign(R), and let E = 
{ /, Ü } U sign(R), where / G E2 — sign(R) and ji G E0 — sign(R). Then, R 
preserves E-recognizability if and only if R preserves recognizability.

Proof. (<í=) Trivial.
(=>) Let A be an arbitrary ranked alphabet with sign(R) C A. To each 

symbol g G A*, — sign(R), к > 0, we assign a tree tg G T^{Xk). To this end, 
we number the symbols in A — sign(R) from 1 to |A — sign(R)\. Then we 
define the nth left comb leftn and the nth right comb rightn as follows.

(i) lefto = /(it, ft) and righto = tt,

(ii) for each n > 0, leftn+1 = f{leftn,xn+l), rightn+1 = f($,rightn).

Finally, to a symbol g e Л/с — sign(R), к > 0, with number l, we assign the 
tree tg = f(leftk,righti).

Consider the rewriting system

S = { g(x 1,..., xk) ->■ tg I к > 0, g G Ak - sign(R),tg is assigned to g } .
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It should be clear that S is a convergent rewriting system. For each tree 
p G Тд, we denote by p', the T-normal form of p. For a tree language 
L С Тд, let L' = {p' I p G L }. It is not hard to show the following two 
statements.

Claim 2.4.4 For any r, s G Тд,

t-+s if and only if r' s' .

Claim 2.4.5 A tree language L over Д is recognizable if and only if L' is 
recognizable over E.

Finishing proof of Theorem 2.4.3:
Let L be any recognizable tree language over Д. By Claim 2.4.5, L' is 

a recognizable tree language over E. By Claim 2.4.4, {R*ffL))' = R^.(L'). 
By Claim 2.4.5, R*A(L) is recognizable if and only if R^(L') is recognizable. 
Hence if R preserves recognizability over E, then R preserves recognizability 
over Д. As Д is an arbitrary ranked alphabet with sign(R) С Д, by Lemma 
2.4.2, R preserves recognizability.

The proof of the following result is similar to the proof of Theorem 2.4.3.
□

Theorem 2.4.6 Let R be a rewriting system over sign(R), and let E = 
{/, i} U sign(R), where f G S2 — sign(R) and Ц G E0 — sign(R). Then, 
R. effectively preserves E-recognizability if and only if R effectively preserves 
recognizability.

Consequence 2.4.7 Let R be a rewriting system over E such that there 
is a symbol f E E2 — sign(R) and there is a constant } G E0 - sign(R). 
Then R preserves recognizability if and only if R preserves E-recognizability. 
Moreover, R effectively preserves recognizability if and only if R effectively 
preserves E-recognizability.

Theorem 2.4.8 Let R, S be rewriting systems over a ranked alphabet E. 
Let R effectively preserve recognizability. Then it is decidable if -+*s C —VR.

Proof. Let m > 0 be such that for all variables Xj occurring on the left-hand 
side of some rule in S, X{ G Xm, that is, i < m. Let us introduce new 
constant symbols Z — { z\,..., zm } with Z П E = 0. For each t G T^(X),



CHAPTER 2. ON TERM REWRITING SYSTEMS PRESERVING ... 55

let tz E TzuZ(X) be defined by tz = t[zx,.. 
obtain that for all u,v E Tr(X),

zm\. By direct inspection we' 7

и v if and only if uz vZ 7

hence
и A v if and only if uz^Avz .

Claim 2.4.9 -+*s C —>*R if and only if for each rule l —»• r in S, rz E
-^suz({ 4 })•

Proof. (=>) Let l —у r be an arbitrary rule in S. Clearly, l—»fir. Thus 
Г, e ÜJUZ({ f. })■

(<£=) Let us suppose that ti,t2 G TS(AT), and that t\ —»si2 applying the 
rule l —» r. As rz E R^uzd 4 }), 4 ~^*Rrz holds. Hence l —»д r implying that 
tx —PR f2 as well.

Finishing proof of Theorem 2.4.8:
Let i —» r be an arbitrary rule in S. We can construct a tree automa­

ton over £ U Z recognizing the singleton set {lz}. As R effectively pre­
serves recognizability, -Rsuz({4}) is recognizable, and we can construct a 
tree automaton over £ U Z recognizing R^,uZ{{ 4 })• Hence we can decide if 
rz E Psuz({ 4 })• Thus by Claim 2.4.9, we can decide if —>5 С —»д.

□

□

Consequence 2.4.10 Let Rx and R2 be rewriting systems effectively pre­
serving recognizability. Then it is decidable if ~~tRl R2 ■

Observation 2.4.11 If one omits a rule from an Igsm rewriting system, 
then the resulting rewriting system still remains Igsm.

One can easily show the following result applying Theorem 2.3.19, Con­
sequence 2.4.8, and Observation 2.4.11.

Consequence 2.4.12 For an Igsm rewriting system R, it is decidable 
whether R is left-to-right minimal.

Consequence 2.4.8 also implies the following.
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Consequence 2.4.13 Let Rx and R2 be rewriting systems such that Rx\jRfl 
and R‘2 U R2l 
Then it is decidable if С 4->д .

Theorem 2.3.19, Observation 2.4.11, and Consequence 2.4.13 imply the 
following.

rewriting systems and effectively preserve recognizability.are

Consequence 2.4.14 Let R be a rewriting system such that R U R 1 is an 
Igsm rewriting system. Then it is decidable whether R is two-way minimal.

Theorem 2.4.15 Let R\,R2 be rewriting systems over a ranked alphabet E. 
Let R) effectively preserve recognizability. Let g £ E — E0 be such that g does 
not occur on the left-hand side of any rule in R\, and let j} € E0 be irreducible 
with respect to R\. Then it is decidable if —**r2 П(Те x Те) C —n(Ts xTj).

Proof. We assume that g £ Ei. One can easily modify the proof of this case 
when proving the more general case g £ Efc, к > 1. For each t £ Te(X), 
let tg £ Те be defined from t by substituting дг(j}) for all occurrences of the 
variable ж* for i > 1.

Claim 2.4.16 ~^*r2 П(Те x Те) C —^ n(Ts x Tff) if and only if for each 
rule l r in R2, rg £ i?i({ lg }).

Proof. (=>■) Let Z —> r be an arbitrary rule in R2. Clearly, lg —»Ä2 rg. Thus 
by our assumption lg ~^*Rl rg.

(<t=) Let us suppose that íb t2 £ Те, and that ti ~^r2 t2 applying the rule 
As rg £ R[({lg}), lg —t rg holds. Hence l^*Rlr implying thatl —> r.

ti —t2 as well. □
Finishing proof of Theorem 2.4.15:

For each rule l —У r in R2, the tree language {lg } is recognizable, and we 
can construct a tree automaton over E recognizing {lg }. As R± effectively 
preserves recognizability, T*({ lg }) is also recognizable, and we can construct 
a tree automaton over E recognizing R{({ lg }). Hence for each rule l —»■ r in 
R2, we can decide whether or not rg £ R{({ lg }). Thus by Claim 2.4.16, we 
can decide if -4д2 П(ТЕ x Tff) C -+*Ri n(TE x Ts). □
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Consequence 2.4.17 Let Ri and R2 be rewriting systems over £ effectively 
■preserving recognizability. Moreover, let g\,g2 G £ — £o be such that for each 
i G { 1,2}, <7i does not occur on the left-hand side of any rule in Ri. Let 
jti, tt2 € So be such that for each i G {1,2}, jk is irreducible with respect to 
Ri. Then it is decidable if ~+*Rl n(Ts x Tj) = ~**r2 П(Те xTs).

One can easily show the following result applying Theorem 2.3.19, Ob­
servation 2.4.11, and Consequence 2.4.15.

Consequence 2.4.18 Let R be an Igsm rewriting system over £. Moreover, 
let g G £ — £0 such that g does not occur on the left-hand side of any rule 
in R, and let }} G £o be irreducible with respect to R. Then it is decidable 
■whether R is left-to-right ground minimal.

Consequence 2.4.15 also implies the following.

Consequence 2.4.19 Let R\ and R2 be rewriting systems over £ such 
that Ri U Rf1 and R2 U Rff1 are rewriting systems and effectively pre­
serve recognizability. Moreover, let g\,g2 G £ — £0 be such that for each 
i G {1,2}, gi does not occur in Ri- Let 6 £o be such that for each 
i G {1, 2 }, jJi is irreducible with respect to Rí U R~l. Then it is decidable if 
^*Ri П(ТЕ x TS) C n(TE x Tff).

Theorem 2.3.19, Observation 2.4.11, and Consequence 2.4.19 imply the 
following.

Consequence 2.4.20 Let R be a rewriting system over £ such that RUR^ 
is an Igsm rewriting system. Moreover, let g e E — E0 be such that g does not 
occur in any rule of R, and let $ G £o be irreducible with respect to R U R~l. 
Then it is decidable whether R is two-way ground minimal.

Lemma 2.4.21 Let R be a rewriting system over £ effectively preserving 
recognizability, and let p,q G T%(X). Then it is decidable if there exists a 
tree r G Т-^(Х) such that p—t*Rr and q~^*Rr.

Proof. Let m > 0 be such that var(p) C Xm, var(q) C Xm. Let us introduce 
new constant symbols Z = { zx,..., zm} with Zfl£ = 0. For each t G 
Tz(Xm), let tz G Tsuz be defined by tz — t[zu ...,zm].
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The singleton sets {pz}, {qz} are recognizable, and we can construct 
two tree automata over E U Z which recognize {pz} and {qz }, respec­
tively. As R preserves recognizability, RZuz({Pz}) and Rhuziidz}) are 
recognizable, and we can construct two tree automata over E U Z which 
recognize R^uZ{{pz}) and R^vZ{{ qz }), respectively. Hence we can de­
cide if RhuzdPz}) П Rbuzd T }) = 0, see [40]. Clearly, R*^uZ{{pz}) П 
Rhuzii (lz }) Ф 0 if and only if there exists a tree r G TZ(X) such that 
P ~>R r and q ~+R r. □

Theorem 2.4.22 Let R be a rewriting system over E effectively preserving 
recognizability. Then it is decidable if R is locally confluent.

Proof. By Proposition 1.3.2, R is locally confluent if and only if for every 
critical pair (vi, v2) of R there exists a tree v G TZ(X) such that v\ —**R v and 
v2 ~>*Rv. It is well known that all critical pairs of R are variants of finitely 
many critical pairs of R. Hence it is sufficient to inspect finitely many critical 
pairs. Thus the theorem follows from Lemma 2.4.21. □

Proposition 2.4.23 [25] Let A = (E,A, А, а0,Д) be a dt. Then R is a 
convergent rewriting system over the ranked alphabet AllEU A. Moreover, 
ran{jA) = NF(L, R), where L = { a0(s) | s G domfrff) }.

Fiilöp [25] has obtained the following undecidability results.

Proposition 2.4.24 Each of the following problems is undecidable for ar­
bitrary dt’s A\ = (E, Ai, A, a\, R\) and A2 = (E, H2, A, 02, R2), where we 
denote L\ = гап(г_д1) and L2 = ran{r^2).

(i) Is Lx П I/2 empty?

(ii) Is Lx П L2 infinite?

(iii) Is Lx П L2 recognizable ?

(iv) IsT& — L\ empty?

(v) Is Тд — Lx infinite?

(vi) Is Тд — Lx recognizable?
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(vii) Is L\ recognizable?

(viii) Is Lx = Lo?

(ix) Is Lx CL2?

Applying the results of Proposition 2.4.24, Fiilöp [25] has also shown the 
following undecidability results.

Proposition 2.4.25 Each of the following questions is undecidable for any 
convergent left-linear rewriting systems Rx and R2 over a ranked alphabet Q, 
for any recognizable tree language L CTq given by a tree automaton over Í2, 
where Г is the smallest ranked alphabet for which NF(L. Rx) C Tp.

(i) Is NF(L, Rx) П NF(L, R2) empty?

(ii) Is NF{L, Rx) П NF(L, R2) infinite?

(iii) Is NF(L, Rx) П NF(L, R2) recognizable?

(iv) Is Tp — NF(L, Rx) empty?

(v) Is Tp ~ NF(L, Rx) infinite?

(vi) Is Tp — NF(L, Rx) recognizable?

(vii) Is NF{L,Rx) recognizable?

(viii) Is NF(L, Rx) = NF(L, R2) ?

(ix) Is NF(L, Rx) C NF(L, R2) ?

We obtain the following result by direct inspection.

Lemma 2.4.26 For each dt Л = (E, A, A, ao, R), there exists a dt В = 
(S', A, A, ao, R') such that E'nA = 0 and that ran(r^) = гап(тв). Moreover, 
let A — (E, A, A, ao, R) be a dt with E П A = 0. Then R is a left-linear gsm 
rewriting system.
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Theorem 2.4.27 Each of the following questions is undecidable for any con­
vergent left-linear gsm rewriting systems R\ and R2 over a ranked alphabet 
Í2, for any recognizable tree language L С Tq given by a tree autóm.aton 
over Q recoqnizinq L, where Г is the smallest ranked alphabet for which
NF(L,Ri) C Tr.

(i) Is NF(L, Ri) П NF(L, R2) empty?

(ii) Is NF(L, Ri) П NF(L, R2) infinite?

(iii) Is NF(L, R\) П NF(L, R2) recognizable?

(iv) Is Tr — NF(L, Ri) empty?

(v) Is Tr — NF{L,R\) infinite?

(vi) Is Tr — NF(L,Ri) recognizable?

(vii) Is NF(L, Ri) recognizable?

(viii) Is NF(L, Ri) = NF(L, R2) ?

(ix) Is NF(L, Rx) c NF{L, R2) ?

Proof. Proposition 2.4.25 appeared as Theorem 5.2 in [25]. We can apply 
the proof of Theorem 5.2 in [25] with slight modifications. By Lemma 2.4.26, 
the proofs of (i)-(vii) and of (ix) carry over.

To adopt the proof of (viii), we observe the following. Let A = (S, A, A, 
a0, R.) be a deterministic top-down tree transducer. Then by Lemma 2.4.26, 
we may assume that E П A = 0. Hence, by Lemma 2.4.26, R is a left- 
linear gsm rewriting system. Let * be a new symbol with rank 0, such that 
* ^ EuAUi. If we add a rule a(xi) —у * (with a e A) to R, then R remains 
a left-linear gsm rewriting system.

Lemma 2.4.28 Let R and S be linear collapse-free rewriting systems over 
the disjoint ranked alphabets E and A, respectively. Let Г be a ranked alphabet 
with S U А С Г. Consider R and S as rewriting systems over Г. Then

(i) ^o-IrC-^jjU^ko^s), and 

(Ü) ~>ßus =

□



CHAPTER 2. ON TERM REWRITING SYSTEMS PRESERVING ... 61

Proof. The proof of (i) is straightforward. Condition (ii) is a simple conse­
quence of (i).

Lemma 2.4.29 Let R and S be linear collapse-free rewriting systems 
the disjoint ranked alphabets S and A, respectively. Let R and S preserve 
recognizability. Then RU S over £ U A also preserves recognizability.

Proof. Let L be a recognizable tree language over some ranked alphabet 
Г, where E U А С Г. By Lemma 2.4.28, (R U £)f (L) = S^(R^(L)). As R 
preserves recognizability, R^{L) is recognizable. Moreover, since S preserves 
recognizability, S?(Pf (L)) is also recognizable.

□
over

□
Lemma 2.4.30 Let R and S be linear collapse-free rewriting systems over 
the disjoint ranked alphabets £ and A, respectively. Let RU S over £ U A 
preserve recognizability. Then R and S also preserve recognizability.

Proof. Let L be a recognizable tree language over some ranked alphabet Г, 
where ЕСГ. It is sufficient to show that i?f (L) is recognizable. Without 
loss of generality we may rename the symbols of Г such that Г П A = 0. 
Thus Rf(L) = (fill 5") гид(-^)- Since EllA C FUA and R U S preserves 
recognizability, -Rp(L) is recognizable.

Since linear collapse-free rewriting systems are closed under disjoint 
union, we have obtained the following results.

□

Theorem 2.4.31 For the class of linear collapse-free rewriting systems, the 
property of preserving recognizability is modular.

The proof of the following result is similar to the proof of Theorem 2.4.31.

Theorem 2.4.32 For the class of linear collapse-free rewriting systems, the 
property of effectively preserving recognizability is modular.

Since Л-free string rewriting system correspond to linear collapse-free 
rewriting system, our results on linear collapse-free rewriting systems im­
ply that preserving recognizability and effectively preserving recognizability 
are modular properties of А-free string rewriting systems.

Theorem 2.4.33 For the class of X-free string rewriting systems, the prop­
erty of (effectively) preserving recognizability is modular.
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Recently, F. Otto [51] has proved the following result which appeared as 
a conjecture in a previous version of the paper [45].

Theorem 2.4.34 [51] A string rewriting system S over E preserves E-re- 
cognizability if and only if S preserves recognizability.



Chapter 3

Decidability of the injectivity 

of deterministic top-down tree 

transducers

This chapter is divided into two sections. In Section 3.1, we summarize the 
results of this chapter. Section 3.2 contains the proof of the decidability of 
the injectivity problem of linear deterministic top-down tree transducers and 
the proof of the undecidability of the injectivity problem of homomorphism 
tree transducers.

3.1 Summary of results
The injectivity problem of deterministic top-down tree transducers sounds 
as follows.

Does there exist an algorithm which decides, for every dt A = 
(E, A, A, a0, R), whether the partial function тд is injective or not ?

In [20], Z. Ésik studied, among others, the decidability of this injectivity 
problem. He showed that the injectivity problem of linear deterministic top- 
down tree transducers is decidable i.e., that for ldt’s such an algorithm exists. 
He gave a rather involved proof. As the main result of this chapter,

• we will give a simpler proof for the decidability of the injectivity prob­
lem of linear top-down tree transducers. (Theorem 3.2.4)

63
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Our proof is based on the two well-known facts that linear top-down 
tree transducers preserve recognizability of tree languages and the emptiness 
problem is decidable for recognizable tree languages.

Z. Esik also showed in [20] that the injectivity problem is undecidable 
for (general) dt:s. He reduced this problem to the Post Correspondence 
Problem (PCP) by showing that an instance of the PCP can be encoded 
in a deterministic top-down tree transducer such that the deterministic top- 
down tree transducer is not injective if and only if the instance of PCP has 
a solution.

We sharpen this negative result in this chapter by showing that the injec­
tivity problem is undecidable already for homomorphism tree transducers.

• Namely, we show that there is no algorithm for deciding whether an 
arbitrary homomorphism tree transducer is injective or not. (Theorem 
3.2.7)

We prove in the way that we reduce the problem to an undecidabilitv result 
of Dauchet [10] concerning tree codes.

3.2 On the injectivity problem of determin­
istic top-down tree transducers

The injectivity problem of linear deterministic 

top-down tree transducers
In this subsection we show that the injectivity problem of linear deterministic 
top-down tree transducers is decidable. First we recall a result.

Proposition 3.2.1 (Corollary IV.6.6 of [40]) Let A = (£, A, A, a0, R) be a 
Idt. Then, for each recognizable subset L of T%, Гд(Т) is also recognizable. 
Moreover, given A and L, тд(Т) can effectively be constructed.

3.2.1

We need the following concept. Let A = (E, A, A, a0, R) be a dt. A state 
a G A is useful if there exist t G Ts(Ai), s G T%, t! G Тд(Хх) and s' G Тд 
such that

ао(ф])^'[а(5)]=Н'И-
The main result is based on the following lemma.
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Lemma 3.2.2 Let A = (E, A, A, ao, R) be a Indt. Then, A is not injective 
if and only if there exist a useful state a £ A and trees t, t' £ T^ with 
rOOtft) ф rOOt[t') Such that 1'A(a)(t) — rA(a) (t')-

Proof. First suppose that A is not injective. Then, there are t, t' £ T% with 
t. At! and s £ Тд such that тд(£) = тд(С) = s.

Let us observe that t Ф t! if and only if there exist an integer к > 1, 
a £ fz(Xk) and trees tb ..., tk, Tx,..., t'k G TE with rootftf) ф root{t'f), for 
I < i < k, such that t = u[ti,...,tk] and t! = u[t\,..., t'k\. Note that the 
condition к > 1 is important and that in the special case when root{t) Ф 
rootft') we have к — 1, и — xi, t\ =t and t\ ~ t'.

Since A is linear and nondeleting, the derivations a0(t)=>As and 
a0 (t!) =>*A s can be written in the form

«о(i) = a0{u[tx,..., ifc]) =» r[ax(tx),..., ak(4) j => r[r±,..., rk] = s

and

a0(t’) = a0(u[t[,..., t'k]) 4> r[ai(<i), ■ • •, ak(t'k)} = J r[r[, ...,r'k] = s,

respectively, where r G TA(Xk), au...,ak G A and rb ..., rk, r[,..., r'k G 
TA. Moreover, each variable of Xk appears exactly once in r.

Since r[ri,... ,rk\ = s = r[r[,... ,г'ф\, we get that, for every 1 < i < 
к, Vi = r' holds. Therefore, for every 1 < i < k, TA(ai){ti) = гд(а<)(^), what 
we wanted to prove. (Note that al:... ,ak are useful.)

Conversely, assume that there exists a useful state a £ A and trees t, t' £ 
Tv with root(t) Ф root{t') such that гд(а)(£) = r^a)(t') — v. The state 
a is useful so there is a context и £ T^{X\) which ’’reaches” a, that is 
to say, a0(u) =>A u’[a(xi)], for some v! £ TA(Xi). (Note that the condition 
v! £ TA(Xi) follows from the fact that A is both linear and nondeleting.)

Let г = u[t\ and r' = u[t']. Then, we have г ф r' because root(t) Ф 
root(t'). Moreover we have

a0(r) = a0(w[t]) =>u'[a(i)] A>u'[v\ and a0(r') = а0(м[£']) => u'[a(t')] => u'[v].

Consequently A is not injective. □
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For a ranked alphabet E and / £ Em with m > 0, we denote by Tf the 
set of trees having root / i.e., we put Tf = {f(t\,... ,tm) I L £ Ts, for 
1 < i < m}.

It is an obvious fact that Tf is recognizable.
The above lemma can be stated equivalently as follows.

Lemma 3.2.3 Let A — (E, A, A, ao, R) be a Indt. Then A is not injective if 
and only if there exist a useful state a £ A and f,g£T, with f ф g and

TA(a){Tf) П Тд(а)(Т<,) ф 0.

Next we note that, by standard construction, for every dt A, there exists 
a dt A' such that гд = тд/ and all states of A' are useful. We shall use this 
fact in the proof of our main theorem which is as follows.

Theorem 3.2.4 The injectivity for an arbitrary Idt A is decidable.

Proof. Let A = (E, A, A, a0, R) be an arbitrary ldt. If A has no a useful 
state, then certainly тд = 0 and hence A is injective.

Otherwise, let A! = (E, A', A, ao, R1) be a ldt such that тд = тд< and all 
states of A' are useful. Now A is injective if and only if A' is injective. We
distinguish two cases.

Case 1 : AI is deleting (i.e., is not nondeleting). Then, it is an exercise 
to show that A! is certainly not injective.

Case 2 : A! is nondeleting. Then, by Lemma 3.2.3, it is not injective if 
and only if

TA'(a)(Tf) П Тд/(а) (Tg) ф 0,

for some state a £ A' and f,g£ E with f ф g. Since Tf and Tg are 
obviously recognizable, by Proposition 3.2.1, both гд/(а)(Ту) and r^<(a)(T9) 
are recognizable and can effectively be constructed. Finally, we note that 
(1) recognizable tree languages are effectively closed under intersection and 
that (2) the emptiness problem for recognizable tree languages is known to 
be decidable. (For proofs of (1) and (2), see Theorems II.4.2 and 11.10.2 in 
[40], for example.)

Hence we can decide whether A! is injective in Case 2, too. □
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The injectivity problem of homomorphism tree 

transducers
In this subsection we prove that the injectivity problem is undecidable even 
for homomorphism tree transducers. We show that the so called code prob­
lem, which was introduced and shown to be undecidable in [10], is reducible 
to the injectivity problem.

A generator set is a nonempty, finite subset E of TE(X) with the proper­
ties that

3.2.2

(i) E has at least one ground element and that

(ii) for every еЕЁ, if Xi appears in e, then Xj also appears in e, for every
1 < j < *•

For example, f{x2,f{x2,#)) and /(/(#, x3), x{) cannot be elements of 
any generator set, however f(xi,f(x2,xi)) can, where / and are symbols 
of rank 2 and 0, respectively.

Given a generator set E, for к > 0 we define Ek = {e G E 
smallest integer such that e G Ts(Afc)}. Then E0 ф 0 and Ег П Ej = 0, 
whenever i ф j.

Any generator set E generates a tree language Те С Те, which is the 
smallest set H satisfying the following conditions:

(i) E0 С Я,

(ii) if e G Ek and ,..., tk G H, for some к > 1, then e[tx,..., 4] G H.

For each e G Ek, with к > 0 we put

eTE = {e[t

As an example, let S = {/^2\ #^0^} be a ranked alphabet. Then
E = {f(xi,g(x2)), f(xi,xi),glxi),i^} is a generator set.

The following definition of the code problem is adopted from [10] .

Definition 3.2.5 A generator set E C T^(Xn) is called a code if, for every 
ei, e2 G E with e\ Ф e2, the condition eiTE П e2TE = 0 holds.

к is the

• • ,tk\ I П, • • • ,4 £ TE}.l) •



CHAPTER, 3. DECIDABILITY OF THE INJECTIVITY ... 68

Informally speaking, E is a code if and only if each element of TE can be 
constructed unambiguously with tree substitution from elements of E. Thus 
the example appearing at the end of Subsection 3.2.1 is not a code, since for 
ei = f(xi,g(x2)) and e2 = f(xuxi), we have /($(#),$(#)) G е1ТЕГ\е2ТЕ.

In [10] it was shown that it is undecidable whether an arbitrary generator 
set E C Ts(Xn) is a code in the following way. For an arbitrary instance of 
the PCP, a generator set E can be constructed such that E is not a code if 
and only if that instance has a solution. On the other hand, as was noted in 
[10], it is decidable, if a linear generator set E is a code. (A generator set E 
is linear if each e £ E is linear i.e., every variable occurs at most once in e. 
Hence, if this is the case, then eTE is recognizable, for every e G E.)

We explicitly recall the main result of [10].

Proposition 3.2.6 ([10]) There is no algorithm for deciding if an arbitrary 
generator set E C Т%(Хп) is a code.

Next we introduce the concept of a tree homomorphism . Let S and A 
be ranked alphabets. Moreover, let th : E —>■ Тд(АГ) be a mapping with the 
property that if / G Efc for some к > 0, then we have th(f) G TA(Xk). The 
tree homomorphism induced by th is the mapping th : Ts —> Тд defined by 
induction as follows :

(i) If / G S0, then th(f) = th(f).

(ii) If / G Sfc for some к > 1 and ti,...,tk G Ts, then

th(f(ti,..., tk)) = th(f)[th{ti),..., th(tk)].

(Note that [ ] is tree substitution.)
It is an easy exercise to show that for any tree homomorphism th, a 

homomorphism tree transducer A can be constructed effectively such that 
th = тд. Conversely, for any homomorphism tree transducer A, the mapping 
tt is a tree homomorphism, which can be given effectively from A.

Now we prove our other result.

Theorem 3.2.7 There is no algorithm for deciding whether an arbitrary 
homomorphism tree transducer is injective or not.
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Proof. We perform the proof in two main steps.
In the first step we show that for an arbitrary generator set E a tree 

homomorphism th can be constructed such that E is a code if and only if th 
is an injective mapping.

To this end, let E C Tz(Xn) with E — E0 U ... U En be an arbitrary 
generator set. For 0 < к < n, we define E'fc = {/e | e £ Ek} and we put 
S' = UjUE'.

Let th : E' —»■ E be the bijection defined by th(fe) = e, for each fe £ E'. 
Let th : TS/ —»• Tz be the tree homomorphism induced by th. Then the 
following two statements hold.

Statement 3.2.8 Let e be an arbitrary tree in Ek for some к > 0. Then 
th(Tje) = eTß- (For the definition ofTfe, see Subsection 3.2.2.)

Proof. It is an easy exercise to show that th(Tfi») = Те- Then the proof of 
our Statement follows immediately.

Statement 3.2.9 The generator set E C Tz(Xn) is a code if and only if th 
is injective.

Proof. First suppose that E is not a code. Then, there exist e\ £ Ek and 
e2 € Ei with e\ Ф ez and C\Te П e2Tg ф 0.

Let t be a tree in ефТв D е2Тв- By Statement 3.2.8 there exist t[,... ,t'k £ 
T-z' and u[,..., u[ £ Tz' such that th(fei(t[,..., t'k)) = th(fe2(u[,..., u\)) = t. 

Consequently, th is not injective, since fei Ф fe2.
Conversely, assume that th is not injective. Then, there exist t', u' £ Tz> 

such that t! ф v! and th(t') = th{u').
Choose a pair t', и' with the above property, such that the sum 

heightft1) + height(u') is minimal. Then root(t') ф root{u') holds.
For, if root{t') = root(u'), that is t1 — /е(^,..., t'k) and v! — 

fe(u[,..., u'k), then, since t' Ф v!, there exists an index 1 < i < к such that 
t\ ф u'. Moreover, thifi'f) — thfu'f), because th{t!) = e[th(t\),..., th(t'k)] = 
e[th(u[),..., th(u'k)] = th(u') and because, by condition (2) in the defini­
tion of a generator set, any of the variables xi,...,xk appears in e. Thus 
heightifif) + height(u'f) < height(F) + heighten'), ф u\ and thft'f) = 
thfu'fi, which contradicts the minimality of height(T) + heightfu'). There­
fore rootft') Ф root(u'), that is t' — fei (t\,..., t'k) and u' = fe2{u'x,..., u[), 
where ex £ Ek, e2 € Et and e\ Ф e2, moreover, ..., t'k, u\,..., u\ £ Tz>.

□
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We define t = th{t') — th(u'). Then, by Statement 3.2.8, t G e\TE and 
t G e2Tß, proving that E is not a code.

Finishing proof of Theorem 3.2.7:
In the second step, we finish the proof of our theorem. Let E be an arbi­

trary generator set. Construct the tree homomorphism h which is injective 
if and only if £ is a code. Then, construct the homomorphism tree trans­
ducer A with the property th = гд (see the note before the present theorem). 
Then, A is injective if and only if E is a code which is undecidable in general. 
This finishes the proof of Theorem 3.2.7.

In [20] it was shown that, for every deterministic bottom-up tree trans­
ducer B, a deterministic top-down tree transducer A can be constructed 
effectively such that В is injective if and only if A is injective. Hence the 
result of the previous subsection can be applied to decide if an arbitrarily 
given deterministic bottom-up tree transducer is injective.

Finally, note that a deterministic homomorphism tree transducer is a 
special deterministic top-down tree transducer. Hence by Proposition 2.4.23 
and Lemma 2.4.26, the following holds.

□

□

Theorem 3.2.10 Let R be a convergent left-linear gsm rewriting system 
over S. Let L C Ts be a recognizable tree language. Then it is undecid­
able if the tree function —П(L x NF(L, R)) is injective.



Chapter 4

Decidability of the inclusions in 

monoids generated by 

deterministic tree 

transformation classes

This chapter is divided into two sections. In Section 4.1, we summarize the 
results of this chapter. Section 4.2 contains the proof of DTR = DT о LDB, 
LDTR <2 LDT о DB, and DT <2 LDTR о H. Using these results and 
the composition and inclusion results of Engelfriet, Fülöp, and Fülöp and 
Vágvölgyi, we give a linear time algorithm to determine the correct inclu­
sion relationship between two tree transformation classes which are compo­
sitions of some ’’fundamental” tree transformation classes taken from the set 
{.DTR, LDTR, DT, LDT, DB, LDB, H, LH}.

4.1 Summary of results
In his pioneer papers [14], [15], Engelfriet studied the compositions of deter­
ministic bottom-up tree transducers, deterministic top-down tree transduc­
ers, and deterministic top-down tree transducers with regular look-ahead.
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Among several results, he has shown that

(a) DTRoDTR = DTR 
DB C DTR 

LDTR = LDBoLDT

(b) LDTRoLDTR = LDTR 
LDBoDT = DTR(c) (d)

(e)

Moreover, Fülöp and Vágvölgyi [28], [58], [29], [35], [30], [34] systemati­
cally studied the compositions of several types of deterministic top-down 
tree transformation classes and among several inclusion and decomposition 
results they have shown that

(f) DT о LH = DT2 = DT3 (g) HoH = H .

Finally, Fülöp [24] studied the compositions of deterministic bottom-up tree 
transformation classes. Fie has shown that

(h) DB о DB — DB (i) LDB о LDB = LDB .

The set of tree transformation classes appearing in (a) - (i) is

M = {DTr, LDTR, DT, LDT, DB, LDB, Я, LH}.

We note that there are top-down tree transformation classes, top-down tree 
transformation classes with regular look-ahead, and also bottom-up tree 
transformation classes in M.

Our aim is to construct an algorithm which, given arbitrary 
., Ym, Z\,..., Zn G M, decides which one of the following four con­

ditions hold:
Yl > • ■

Zi о ... о Zn (гг) Yi о ... о Ym C Z\ о ... о Zn
М Z\ о ... о Zn.

In other words, we consider the monoid [M] = {Yx о ... о Ym | m > 
0, Yi,... ,Ym G M} generated by M with composition and give an algorithm 
which decides, given arbitrary two elements Y\ о ... о Ym and Z\ о ... о Zn of 
[M], whether Y\ о ... о Ym C Z\ о ... о Zn holds or not.

In their works [34] and [24], Fülöp and Vágvölgyi proposed a method 
with which such an algorithm can be constructed in certain cases. The 
method is based on presenting the monoid [M] by defining relations. We note

(0 Yi о... о Yrn
(Hi) Zl O ... O zn C Yi O ... O Ym (iv) Yi O ... O Ym
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that the presentation of a monoid in this manner is a well-known technics 
in algebra. In fact, the method of Fülöp and Vágvölgyi is only a general 
frame and does not give much help in solving the problems that arise in 
its application actual monoids. Still, they applied the method succesfully 
for two monoids generated by deterministic top-down and by deterministic 
bottom-up tree transformation classes, respectively. Moreover, this method 
was also applied by Slutzki and Vágvölgyi [55] for a monoid generated by 
deterministic top-down tree transformation classes with regular look-ahead 
and also by Dányi and Fülöp [9] for a monoid generated by a set containing 
the class of deterministic superlinear top-down tree transformations. The 
last application was published in [37] for a monoid generated by total top- 
down tree transformation classes and for a monoid generated by the class of 
attributed tree transformations and the class of macro tree transformations.

We also give the algorithm for M by applying this method. Before show­
ing how it is applied to our case, we introduce some further notation. We 
consider two monoids defined in terms of M: the free monoid M* (with 
the operation of concatenation) and [M], defined above, the monoid finitely 
generated by M (with the operation of composition). Strings over M i.e., 
elements of M*, represent tree transformation classes in [M] by means of the 
homomorphism || || : M* -> [M] defined by

||A|| = /, and

||Fi • Y2 ■... ■ Ym\\ = Yi о Г2 о ... о Fm for m > 1 and Yu ..., Ym € M.

Let p be the kernel of || || i.e., the congruence relation over M* induced by 
the homomorphism || || :

P = ker(\\ II) = {(v,w) eM* x M* I IHI = 1И1}.

We construct the algorithm and prove its correctness in the following
steps.

• In Subsection 4.3.1, we give a Thue system T over M such that C p. 
(A Thue system is the ” two-way” version of a string rewriting system, 
a detailed explanation follows in Subsection 4.2.1)

The Thue system T consists of 22 formal equations of which the realizations 
are valid decomposition equations in M. They are, except one, known from
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the papers [14], [15] of Engelfriet, [28], [58], [35] of Fiilöp and Vágvölgyi, and 
[24] of Fiilöp.

• Our contribution to T is DTR — DT о LDB, which is proved to be 
valid in Theorem 4.2.2.

• In Subsection 4.3.2, we give a subset of К of M* and a string rewriting 
system S over M such that *->*s = -H-^, Theorem 4.2.6. Moreover, we 
prove that there is a linear time algorithm which, for every и € M*, 
computes a word v 6 К in linear time such that u—**sv. (Theorem 
4.2.8)

The set К will be proved to be a set of representatives for the equivalence 
classes of p.

• Therefore, in Subsection 4.3.3, we present the inclusion diagram of ||iF|| 
of the set of tree transformation classes represented by the elements of 
K. In order to show that the diagram is correct, among others, we 
prove the non-inclusions LDTR % LDT о DB and DT %. LDTR о H 
in Lemma 4.2.9 and in Lemma 4.2.10.

In Subsection 4.3.4, we complete our results and obtain the desired algo­
rithm.

• We show that p = -н-tj in Theorem 4.2.17.

• We show that [M] = ||7f|| i.e., that К is a set of representatives of the 
equivalence classes of p. (Theorem 4.2.18)

• Finally, using the algorithm obtained in Theorem 4.2.8, we present 
the algorithm which decides, for arbitrary elements Ух о ... о Ym and 
Z\ о... о Zn of [M] whether Yxo.. ,oYm C Zx о... о Zn holds. (Theorem 
4.2.19)
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Decidability of the inclusions in the 

monoid generated by { DTR, LDTR, DT, 
LDT, DB, LDB, H, LH}

4.2.1 The Thue system T

4.2

Let S be an alphabet. A Thue system T over E is a finite subset of E* x E* 
and each element (u, v) of T is called a rewriting rule. The Thue congruence 
generated by T is the reflexive, transitive closure -H-f of the relation G>T 
defined as follows: for any w,z G E*, w z if and only if there exist 
x, у G E* and (u, v) G T such that either w = xuy and z = xvy, or, w = xvy 
and z = xuy. It is well-known that is the least congruence over E* 
containing T.

It should be clear that a Thue system T over E is a “two-way” version 
of a string rewriting system in the sense that the rewriting rules of T can 
be used in both directions (cf. Subsection 1.3.3). As mentioned, for a string 
rewriting system S, the reflexive, symmetric and transitive closure of ->5 
is a congruence over E*. It is called the Thue congruence generated by S.

Consider the set of tree transformations

M = { DTR, LDTR, DT, LDT, DB, LDB, H, LH }

and the two monoids defined in terms of M: the monoid M* (with the op­
eration of concatenation) and [.M] = {Yi о ... о Ym \ m > 0,Yi & M for 1 < 
г < m}, the monoid finitely generated by M (with the operation of compo­
sition). We will freely confuse names (e.g. the symbol DT) with meanings 
(the class DT). Strings over M represent transformation classes in [M] by 
means of a homomorphism || || : M* —»■ [M] defined by

||УХ -У2 • ••• • Ym\\ = Y1oY2o...oYm .

We denote by I G [M] the tree transformation class consisting of all identity 
tree transformations i.e., / = ||A||. Let p be the kernel of || || i.e., the 
congruence relation induced by the homomorphism || || :

p = ker{II II) = {(u, w) G M* x M* | «II = INI} •
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In the rest of this subsection we give a Thue system T over AI and show 
that A P-

Let the Thue system T C AI* x M* consist of the following 22 rewriting
rules.

(I) (LDTR ■ LDT, LDTR) (2) (LDTr ■ LDB, LDTR) 
(3) (DT ■ LDB, DTr)
(5) (DT ■ LH, DT2)
(7) (LDT ■ LDTR,LDTR) (8) (LDT ■ DT, DT2)
(9) (LDT ■ LH, LDT2)
(II) (LDB ■ LDT,LDTr) (12) (LDB ■ LDB, LDB) 
(13) (LDB ■ H, DB)
(15) (H ■ LDT, DT)
(17) (H ■ H, H)
(19) (LH ■ LDT, LDT)
(21) (LH ■ H, H)

(4) (DT ■ H, DT2)
(6) (LDT ■ DTr, DTr)

(10) (LDB ■ DT,DTR)

(14) (LDB ■ LH,LDB) 
(16) (H ■ LDB, DB) 
(18) (H • LH, H)
(20) (LH ■ LDB, LDB) 
(22) (LH-LH,LH)

Next we will argue that for every (a,ß) £ T, ||a|| = ||/3||, or equivalently, 
(a,ß) £ p. For each г (1 < i < 22), if the г-th rewriting rule of T is (a,ß), 
then the corresponding claim ||а|| = ||/?|| will be denoted by (i'). We thus 
have to prove that (г') holds for 1 < i < 22. First we will show that (3') 
hold. In the proof we will need the following result.

Lemma 4.2.1 For each diT A = (S, A, A, a0, Ra), there exists a dbr V = 
(S, D, E, D', Rx>) such that for each look-ahead set L appearing in a rule of 
A, L = L(V(C)) for some CCD.

Proof. Let Li,...,Lk be all the look-ahead sets appearing in the rules 
of A. where к > 0. For 1 < i < k, let Li = L(T>i) for some dbr 
Т>г - (E, RVi). Let D = Dl x ... x Dk, D' = 0, and let
7Tj : Di x ... x Df. —> Di be the zth projection for 1 < i < k. The 
rule f(di(xi),...,dm(xm)) -> d(f(xu.. 
f(ni(dl)(xi),...,'Ki(dm)(xTn)) -> 7Yi(d)(f(xi,...xm)) £ RVi for 1 < i < k. 
It should be clear that for each 1 < г < к, Li = L(V(Cf)) with C* = 
Dix ... Di-i x D( x Di+i x ... x Dk.

Theorem 4.2.2 DTR = DT о LDB.

xm)) is in Rt> if and only if* J

□
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Proof. It should be clear that DT C DTR and LDB C DB. By Theorem 
3.2 of [15] DB C DTR. By (i) of Proposition 4.2.3 DTR is closed under 
composition. Hence DT о LDB C DTR.

We now show that DTR C DT о LDB. Intuitively, we simulate the com­
putation of a dtR A by the composition of a dt В and an ldb C as follows. 
All states of A are in the state set of B. In state a of A, and at a node и la­
beled bv /, В applies a rule of which right-hand side contains as subtrees the 
right-hand sides of all Л-rules with left-hand side a(f(x\.... ,xm)). More­
over, the right-hand side of this H-rule also contains the variables x\,.. 
corresponding to the subtrees at the sons of v. Thus, during its computation, 
В copies slightly modified versions of the subtrees at the sons of v. Hence 
C is able to compute the look-ahead of A on these subtrees and is able to 
choose the right-hand side of the rule applied by A.

More precisely, let A = (£, A, A, a0, Ra) be a dtR. We lose no generality 
by assuming that Д0 ф 0. Let ц G A0 be arbitrary. By Lemma 4.2.1, 
there exists a dbr V = (E, D, £, D', Rv) such that for each look-ahead set 
L appearing in a rule of A, L = L(V(E)) for some E C D. We denote by 
L{E) the tree language L(V(E)).

Consider the dt В — (E, B, £ U A U Г, a0, Rß), where В = AO {b}, b ф A 
is a new state, £ = { / | / 6 £ }, and £ П A = 0. We define the ranked 
alphabet Г and Rß in the following way.

(i) For any a € A, m > 0, and / G £m, let

■ 5

гга)) —>■ t\, L(Dn),..., L(Dim)){a{f(x i,.. * 5

((^l) • • ■) ^m)) t tn, L(Dni),..., L(Dnm))

be all rules in RA with left-hand side a(f{xi,..., zm)) for some n > 0. 
Then we put the function symbol (a, f) in Tm+„ and the rule

xm)) -> (a,f)(b{xi),...,b(xm),ti,...,tn)a(f(xi,.. ' 5

in Rß.
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(Intuitively, the right-hand side of the above rule contains as subtrees 
the right-hand sides of all Дд-rules with left-hand side a(f(xi,..., xm)). 
Moreover, it also contains the variables xm. When applying the
above rule at a node v labeled by /, all subtrees at the sons of v are 
copied and then В is able to relabel these subtrees applying rules of
(H)-)

(ii) For any m > 0, and / € E we put the rulem 5

b(f(xi, • ■ Xm)) -> f{b{xi),...,b(xm))* 5

in Rß.

(Intuitively, В in state b rewrites every symbol / into /.)

By direct inspection we see that В is total.
Intuitively, the ldb C computes the look-ahead of A on the subtrees con­

taining symbols with “tilde” and hence is able to choose the rule applied by 
A. Thus C deletes the other right-hand sides and the subtrees containing 
symbols with “tilde” and leaves only the chosen right-hand side. To this end 
the state set of C contains all states of V. Moreover, C contains two other 
states, yes and no as well. Consider an input subtree with topmost symbol 
in Г. If there is a computation of A encoded in this subtree, then C arrives 
above its topmost symbol in state yes, otherwise it arrives above its topmost 
symbol in state no.

To be precise, consider the ldb С = (E U Д U Г, С, A, { yes }, Rc), where 
C = { yes, no } U D and Rc is defined as follows.

we put ő (yes (xx),..., yes(xm)) ->
and

(i) For any m > 0, and Ő € A
yes(ó(xi,.. .,xm)) in Rc- Moreover, for any m > 0, and ő e A

Cm e {yes, no}, we put 5(cx{xi),... ,cm{xm)) no(S(xl,..

m 5

rm

Cl, ■ ■

xm)) in Rc if Ci = no for some 1 < i < m.
’ 1 * ^

(Intuitively, if C reaches the topmost symbol of an input subtree in 
state yes, then it contains some computation of A.)

(ii) For any m > 0, and / 6 Em, if f(di(xi),... ,dm(xm)) d(f(x u .. 
xm)) G Rv, then we put the rule f{di(xi),..., dm{xm)) ->■ d(f(xb .. 
xm)) in Rc.
(Intuitively, C computes the look-ahead of A applying the above rules.)

* >
* 5
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(iii) For any a G A, m > 0, / G £m, with

(a(f(xi,xm)) ->■ túL(Dn),..., L(Dlm))

( ^(/(-^1) • • ■ j ^-m)) t tn) ..., L(Dnm))

being all rules in Дд with left-hand side a(/(xi,...,rm)), for any 
cb ...,cn G {yes, no}, and for any di,...,dm G T>, if there exists 
an integer 1 < j < n such that dx G Dji,... ,dm G F>jm, then we put 
the rule

( T / ) (^ 1(^l)>-••> j Cl (^m+l)) • • • ) Cn(-^m+ra)) ^ ffi' (xm+j )

in .Д; otherwise, we put the rule

( (з-i)j • • •) dm(xTO), Ci(icTO-)-i),..., cn(xm_f.n)) f no(p)

in Re-
(Intuitively, C chooses the right-hand side of the rule which is applied 
by A. Then C deletes the other right-hand sides and the subtrees 
containing symbols with tilde and leaves only the chosen right-hand 
side. If no Л-rule is applicable by A, then C enters the state no.)

Note that the determinism of A ensures that in (iii) there exists at most 
one j such that dx G ТД, ..dm G Djn. Hence there are no two different 
rules in Rc with the same left-hand side. By direct inspection we see that C 
is a total.

We now show that тд = rgorc- It is sufficient to show that for any a £ A, 
p G T£ and q G Тд,

a(p) => q <£=> there exists r G Т£иДиГ such that a(p)=>r and r =}- yes(q) .

We proceed by induction on the structure of p.
Case 1. p G £0-
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" Let us suppose that a{p) =>*A q. Then the rule a{p) —>• q is in RA, 
the rule a(p) -> (a,p)(q) is in RB, and the rule (a,p)(yes(xi)) —>■ yes{x{) £ 
Re- Let r = (a,p)(q). Then a(p)=>Br. Moreover, r =>c{a,p){yes(q)) 
^cljes(q).

" <=" Let us assume that there exists r G Т^идиг such that a(P) r
and r =^*cyes(q). Since height(jp) = 0, a(p) -> r is in Дв. By the definition 
of R.B, there exists a rule a(p) —> s in Дд such that r = (a,p)(s). By the 
definition of f?c, (a,p)(s) =>c(a,p)(yes(s)) =>c yes(s). Hence yes(s) = yes(q). 
Thus s = q and a(p) =>A q.

Case 2. p = f(px,... ,pm), f € Sm, m > l,px,...,pm £ TE.
" Let us suppose that a(p) ^g. Let

< a(f(xi,.. xm)) —t П; L(Du), ..., L(Dim))* 7

(,..., xm)) )■ fn, L(Dnx), -. -, L(Dnrn))

be all rules in Дд with left-hand side a(f(xi,.. 
assume that we applied the jth rule in the above derivation. That is.

xm)), where n > 1. Let us’ 7

• • ,Prn)) => SjlaiipiJ,..., сц(рк)]=> Sj[qi,..., qt\ = q ,a(f(p i> •

where s3 £ TA(Xt), l > 0, t3 = s^a^x^),..., a^z*,)], рг £ L(Djx),... ,pm £ 
L(Djm), and ai(ph) =>Aqi, . -., aj(pi,) =^®- Hence

Pm =^> dm(pm)Pi=|-di(pi).--

for some Д G Dji,... ,dm £ D3m. By the definition of RB, the rule a(/(z1, 
...,xm)) -t {a,f)(b(xi),...,b(xm),ti,...,tn) в RB. Hence

* 7

a(/(Pl. • • • ,Pm)) =^< a- / )(b(pi), • • • , b(Pm), ilbl. • • • >Prn], • • ■ , fn[Pl, • • -.Pro])-

Since X is total, for each 1 < i < n, there exists exactly one tree r, G Т£;иДиГ 
such that ti\pi,... ,pm] r3. Moreover, for each 1 < i < m, there exists 
exactly one tree pi G X^ such that b(pi) =>Bfii-
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Thus we get
a{'P) = a{f(p

( a, ..., b(pm), ti[pU . . . ,pm], . ,рш], • ■ • , tn\p

1> •

1, •

(a,f){pi,...,pm,rl,...,rj,.. rn) = r ,• ?

where t0\pu ... ,pm] 
ai {Pi\) ■ ■ ■ ,Щ {Pii) Ui for some их,...,щ G Т0иДиГ. By the in­
duction hypothesis

sj[fll(Pii). • • • >az(Pú)], Г, . . . , П;],

ux^ yes(qx),... yes(qi) .

By (i) of the definition of Rc

sj[yes{qil),..., yes(yi;))] yes(sj[qx,..., qi}) .

Hence

Tj = ^[«i,..., щ\ =>*c Sj[yes(qh),..., yes{qil))] yes(s7[yn,..., qll\)(*)
= ?/es(y).'

Since C is total, for each 1 < i < n there exists exactly one tree qi G Тд 
such that Ti =^Cj(y;), where c; G {yes,no}. By (*) Cj = yes and qj = y. By 
(iii) in the definition of i?c, the rule

( / ) (^1 (-^l) i • • • > i Cl (^m+l) j ■ • • ,Cj (rra+j), • • • j Cn (a?m+n ) ) >• Cj )

is in Rc, where c; G {yes, no}, i G {1,..., n}. Hence

r 4( a, f)(di(pi), • ■ •, dm(pm), ci((ft),..., Cj(yj),..., cn(y„)) yes(y) .
С c

" <=" Let us assume that there exists r G Tf-uAur such that a(p) =>*B r 
and r =>^yes(q). Then

a(p) =a(f(p1,...,prn))=>

( A f )(&(pi), - • ■ , 6(Pm), ilbb ■ - • ,Pm], • • ■ , *n[Pl, • • • ,Pm\)

(a,f)(pi,...,Pm,r1,...,rn) = r,
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where a(f(xi,..
Pi for 1 < i < m, and U\pi,... ,pm] =Ф-*B r, for 1 < г < n.

For each 1 < i < n, ti — s*[a*i(x<K*.i))> • • •> ^(^(»л))] for some h > 0, 
Si G TA(Xh), and a8i,..., aüi G A Here ф : {l,...,n} x {1,2,...} 
{1,2,...} is a mapping. Hence

for each 1 i S. A ^г[Ръ • • • iPm] = ®i[^ti(p^(i,i))> • • • > (Prp(i,i,)] , 

and the derivation i,[px,... ,pm] r, has the form

^m)) -> (f)(b(xi),..., b(xm), t ..,tn) G RB, b(pi) =>*Bii •* )

L[Pl, ■ ■ ■ ) Pm] — 'Sjfajx (p0(i,l))> ■ • ■ j &ili (P<t>(i,li)\ ^ ■ ■ ■ , Wj/J — Tj

where
ail(p<t>{i,l)) ^ uil, ■ ■ ■ ) aili (P4>(i,li)) =^uiii ■

We now write the derivation r =>•£ yes(g) in a more detailed form

О a, /)(di(pi), • - •, dm(Pm), cx(gx),..., c*^))(а, /)(Px, • • • ,Pm,ri, • • • 5

where p, =>£ ^г(Рг) for 1 < г < то; for each 1 < г < n, y; G Тд, c, G {yes, no}, 
and r, =>*c Ci(qi). In the last step we apply the rule

( f ) (,d 1(2-1)) ■ • • ) dm(a^m) , Cx. . . , Сд^т+п)) ^ Cj(^Xm^.j) G -Re,

where for each 1 < i < n, cq G {yes, no}, Cj = yes, and q3 = q.
By the definition of Rc

( ®(./ ( A j • • • i -^m)) ^ Ij, L(DjiL(Djm) ) G Тд ,

where dx G DjX,..., dm G Djm, hence pi G L(Djx),... ,pm G L(Djm). 
Moreover,

rj = Sj-ftiji, • • •, tiji,-] =b Sj[yesOi),..., yes(v,.)] yes(sj[n1,..., t^)] =

yes(9j)

where vx,... ,vXj G Тд,

Uji yes(ux),.. -, ujtj yes(vtj)
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and
Sj[vi, • • •, vtj] = qj .

By the induction hypothesis,

an (РФОЛ)) ^ • • •, Hij (РФШр) ^ vh •

Hence

a(p) a{f {Pli • • • ) Pm) ) Sj\ajl (РфОЛ)) J ‘ ‘ ! aji (P0(j,/j))] ^ [^1) ■ • • ) vlj] —

Qj = 4 -

□
We recall some composition and decomposition results.

Proposition 4.2.3 [15]

DTRoDTR = DTR, 
(гг) LDTR о LDTr 
(in)

w
LDTr,

DTr C LDBoDT, 
LDTR C LDBoLDT.(iv)

Lemma 4.2.4 For every (a, ß) G T, ||o:|| — ||/3||, or equivalently, (a, ß) € p.

Proof. We obtain the following result by direct inspection.
I C LDT C LDTR C £>Tä .

In the proof of Theorem 3.2 in [15], Engelfriet showed that US С ЛТЯ. His 
proof carries over to the linear case, that is, one can show in the same way 
that LDB C LDTR. Thus we get that

(t)

I C LDB C LDTR C DTr .(t)
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The following equations hold.

(T) LDTR о LDT — LDTr (by (f), and (ii) of Proposition 4.2.3)
(2') LDTRoLDB — LDTR (by (t), and (ii) of Proposition 4.2.3)
(3') DToLDB = DTR (by Theorem 4.2.2)
(4'j DT о H = DT2 (by Table 2 in [36])

(5') DToLH = DT2 (by Table 2 in [36])
(6') LDT о DTr = DTR (by (f), and (i) of Proposition 4.2.3)
(7') LDT о LDTr — LDTR (by (f), and (ii) of Proposition 4.2.3)
(8') LDT oDT = DT2 (by Table 2 in [36])
(9') LDToLH = LDT2 (by Table 2 in [36])
(10') LDBoDT = DTr (by (t),(i) and (iii) of Proposition 4.2.3)
(IT) LDBoLDT = LDTr (by (J), (f), (ii) and (iv) of

Proposition 4.2.3)
(12') LDBoLDB — LDB (by Figure 2 in [24])
(13') LDBoH = DB (by Figure 2 in [24])
(14') LDB о LH = LDB (by Figure 2 in [24])

HoLDT = DT 
HoLDB = DB 

HoH = H 
HoLH = Я

(by Table 2 in [36]) 
(by Figure 2 in [24]) 
(by Figure 2 in [24]) 
(by Figure 2 in [24]) 

(19') LH о LDT = LDT (by Table 2 in [36])
(20') LH о LDB = LDB (by Figure 2 in [24])
(21') LH о H = Я (by Figure 2 in [24])
(22') LHoLH = LH (by Figure 2 in [24])

(15')
(16')
(17')
(18')

□
Consequence 4.2.5 GfjJ, C p.

The following calculation will be needed in Subsection 4.2.2. However, 
we present is here so that they are more close to T, which is needed to 
verify it. We list elements (Uk,Vk) (23 < к < 106) of For each integer 
23 < к < 106, we write rather than (Uk,Vk) G <-*■£,. Moreover,
the list (ii,... ,iik) of integers with 1 < Ц,...,цк < к — 1 which follows the 
pair Uk vk indicates that Uk can be transformed into Vk by applying the 
relations (ii),..., (iik) in this order. In this way we present the proof that 
и к ^ T vk ■
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DTRDTR ■ DTR 
LDTR ■ DTR 

DT■DTR 
DB • DTR 

LDB ■ DTR 
H-DTR 

LH ■ DTR 
DT2 ■ DTR 

LDT2 • DTR 
LDT ■ H ■ DTR 

LDT • LDB ■ DTR 
LDT■DB■DTR 
LDTR ■ H ■DTR 

DTR ■LDTR

(3.10.12.10.15.6.3.15.17.15.3) 
(11,6,10,12,10)
(15.6.3.15.17.15.3)
(16.10.12.10.3.15.17.15.3) 
(10,12,10)
(3.15.17.15.3)
(3.15.21.15.3)
(25,25)

(23) 44
DTR(24) 44^
DTR(25) 44^
DTR(26) 44^
DTR44^(27)
DTR(28) 44^
DTR(29) 44^
DTR(30)
DTR (6,6)(31)
DTR (28,6)

(27.6)
(26.6)
(28,24)
(3,11,12,11,15,7,11,16,13,15,

(32) 4-4
DTR(33) 44^
DTR(34) 44^
DTR(35) 44)£,
£>ТЙ(36) 4-4J,

10)
LDTRLDTr■LDTR 

DT■LDTR 
DB■LDTR 

LDB■LDTR 
H■LDTR 

LH ■ LDTR 
DT2 • LDTR 

LDT2 ■ LDTR 
LDT•H■LDTR

(46) LDT-LDB-LDTR
(47) LDT ■ DB ■ LDTR
(48) LDTR ■ H ■ LDTR 

DTR ■ DT
LDTr ■ DT 

DB-DT 
H-DT 

LH -DT

(11,2,1)
(15.7.11.16.13.15.10)
(16.11.12.16.13.15.10) 
(11,12,11)
(11.16.13.15.10) 
(11,20,11)
(38,25)

(37)
DTR(38)
dtr4-4 j.(39)
LDTR4-4(40)
dtr44^,(41)
LDTR(42) 44^,
dtr4-4^.(43)
LDT" (7.7)(44)
DTR (41.6)

(40, 7)
(39.6) 
(41,24)
(3,10,25)
(11,8,10,49)
(16,10,28)
(15.17.15)
(15.21.15) 
(4, 52) 
(8,8,54) 
(52,8)
(10.6)

(45) 44^.
LDTR44^,
DTR4-4^,
DTR44
£>ТЙ(49)
DTR(50)
DT"(51)

<->5. DT(52)
DT(53)
DT2DT3 4-4y(54)
DT2LDT2 • DT 

LDT ■H-DT 
LDT- LDB■DT

4-4(55)
£>T244^(56)
£>ТЙ4-4y(57)
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DTR (51.6)
(52.50)
(3,11,38)
(15,9,15,5)
(13,15,10)
(61,54)
(9,19)
(15,8)
(11.7)
(62,6)
(15.50)
(3,13,12,13,16,4,3, 25) 
(13,2)
(16,4,3,25)
(16,13,12,16,13,17,13)

(58) LDT■DB-DT 
LDTr ■ H ■ DT 

DTr ■ LDT 
DT ■ LDT 
DB•LDT 

DT2 • LDT 
LDT3 

LDT•H■LDT 
LDT■LDB■LDT 
LDT■DB■LDT 
LDTr ■ H ■ LDT 

DTr ■ DB 
LDTr ■ DB 

DT-DB

DTR(59)
DT R(60)
DT2(61)
DTR(62)
DT2(63)
LDT2(64)
DT2(65) ■f->Y

LDTR(66)
dtr(67)
DTß(68)
DTß(69)

•Я(70)
dtr(71)

Я52(72)
(13.12.13)
(16.17.16)
(16.21.16)
(71.25) 

LDT ■ DB (9, 75)
LDT ■ DB (74)
LDT ■ DB (73)
LDT ■ DB (72)
LDTR ■ H (74, 70)

(3,12,3) 
(16,12,16)
(3.25) 

LDT-LDB (9,20) 
LDT ■ DB (16)
LDT-LDB (12)
LDT ■ DB (83)
LDTR ■ H (16,70)

(3,13,71)
(13.17.13) 
(4,54)

LDT ■ H (9,21)
LDT ■ H (17)

DBLDB■DB 
H ■ DB 

LH • DB 
DT2 ■ DB 

LDT2 ■ DB 
LDT■H-DB 

LDT ■ LDB ■ DB 
LDT■DB2 

LDTR ■H-DB 
DTR • LDB 
DB ■ LDB 

DT2 ■ LDB 
LDT2 ■ LDB 

LDT•H■LDB 
LDT■LDB2 

LDT■DB■LDB 
LDTR ■ H ■ LDB 

DTR-H 
DB • H 
DT2 ■ H 

LDT2 ■ H 
LDT ■ H2

(73)
DB(74)
DB(75)
DTR(76) 4-4-J,

(77)
(78)
(79)
(80)
(81) 4-^

DTR(82)
DB(83)
DTR(84)

(85)
(86) •H-5,
(87) 4-^

(88) 4-^

(89)
DTR4-^JI(90)
ЯЯ(91)
DT24-^j.(92)

(93)
445.(94)
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(95) LDT ■ LDB-H £>f LDT-DB 
LDT-DB-H £>f LDT-DB 

LDTR-H2 4+f LDTR-H 
DTR-LH £4f DTR 

LDTR-LH ^f LDTR 
DB-LH of ßß 

DT2-LH of ßT2 
LDT2-LH of LDT2 

LDT-H-LH of LDT-H 
LDT-LDB-LH of LDT ■ LDB 
LDT-DB-LH of LDT-DB 
LDTR-H-LH of LDTR-H

(13)
(96) (91)
(97) (17)
(98) (3.14.3) 

(11,9,11,1) 
(13,18,13) •
(4.18.4) 
(9,22,9)

(99)
(100)
(101)
(102)
(103)
(104)

(18)
(14)

(105)
(106)

(100)
(18)

The string rewriting system S

In this subsection, we give a subset К of M* and a string rewriting system S 
over M such that of = of. Moreover, we prove that there is a linear time 
algorithm which, for every и £ M*, computes a word v £ К in linear time 
such that и о* v.

Let К С M* be defined by

К = { Л, DTR, LDTr, DT, LDT, DB, LDB, Я, LH }U

{ DT2, LDT2, LDT ■ H, LDT ■ LDB, LDT ■ DB, LDTR ■ H } .

The string rewriting system S is visualized in two tables. In the Table
4.1 each row corresponds to an element и of К — { Л } and each column 
corresponds to an element Y £ { DTR, LDTR, DT, LDT, DB }. In the Table
4.2 each row corresponds to an element и of К — { A } and each column 
corresponds to an element Y £ { LDB, H, LH}. Hence each element и of 
К — { Л } and each element Y £ M determine an entry of Table 4.1 or 
Table 4.2. By direct inspection we now show that the entry determined by 
и £ К — { Л } and Y £ M contains a word v £ К — { Л } such that either 
и • Y £->-f u or u-Y = v. First we read the entries in the Table 4.1 and then 
in the Table 4.2. In both tables we proceed column by column. In each 
column we proceed from the top to the bottom. Simultaneously, we read 
the relations (23) — (106) beginning with (23). For each entry determined by 
и £ К — { Л } and Y £ M and containing v £ K, we carry out the following.

4.2.2
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If и ■ Y = v, then we go to the next entry. If и ■ Y фу, then we read the 
current relation (г) of (23) — (106). If (г) is of the form и - Y G>£v, then we 
go to the next entry and to the relation (г + l), otherwise we find the relation 
и ■ Y among (1) — (22).

Let the string rewriting system S be the set of all pairs of the form (u-Y, v), 
where и E К — { X}, Y E M, and v is the entry of Table 4.1 or Table 4.2 
determined by the row of и and the column of Y, moreover, u-Y фу. By the 
above observation, G»£ C GGJ,. Conversely, by direct inspection we obtain 
that T C S. Hence G>£ C Moreover, by Consequence 4.2.5, C p. 
Thus we get the following result.

Theorem 4.2.6 C p.

In the following discussion, we need the concept of the finite automaton, 
therefore we introduce it now.

A finite automaton is a 4-tuple A = (E,A, 5, ao), where E is an input 
(unranked) alphabet, A is a finite set of states, 5 is a mapping from A x E 
to A, and ao G A is the initial state. A configuration of A is a pair (q, w) in 
Q x E*. The move relation l-д is defined as follows. For any configurations 
(q,w), (q',w') of A, if w = yw' and 5(q,y) = q', then (q,w) Ид The
reflexive, transitive closure of \~a is denoted by \-*л.

Consider the automaton A = (M, K, Ő, Л), where for each Y G M, 
S(А, У) = Y, and for any и G К — { Л } and Y G M, 5(u,Y) is equal to 
the entry of Table 4.1 or Table 4.2 determined by the row of и and the 
column of Y.

Claim 4.2.7 For any w G M* and z G К, if (Л, w) Нд (z, Л) then w -^-*s z.

Proof. By the definition of S and A, for any и G К and Y G M, S(u, Y) = v 
if and only either u-Y = v ox u-Y —>5 v. Hence the claim follows by an easy 
induction on the length of w.
By Claim 4.2.7, for every word w G M*, the automaton A computes in О(|го|) 
time a word z G К such that w —>5 z. Hence we have got the following result.

□

Theorem 4.2.8 There is a linear time algorithm which, for every word w G 
M*, computes a word z G К such that w —>*s z.
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DTR LDTR DT LDT DB

DTR DTr DTr DTR DTR DTR
LDTr DTR LDTR DTr LDTR LDTR ■ H

DTR DTR DT2 DT2 DTRDT
DTR LDTR DT2 LDT2LDT LDT■DB
DTR DTR DTR DTRDB DB
DTr LDTR DTR LDTRLDB DB
DTR DTRH DT DT DB
DTR LDTRLH DT LDT DB

DT2 DTr DTR DT2 DT2 DTr

LDT2 DTR LDTR DT2 LDT2 LDT-DB
DTR DTR DT2 DT2LDT-H LDT■DB
DTR LDTR DTR LDTRLDT ■ LDB LDT■DB
DTR DTR DTR DTRLDT■DB LDT■DB

LDTR ■ H DTR DTR DTr DTr LDTR ■ H

Table 4.1: The string rewriting system S (part 1).



■(Z 1-red) £ maisÁs Зпримэд Suii^s эцх :Z'\ ajq'BJL

H ■ ylQlH ■ уХОЗH ■ yl<J7и ■ ухаз
за • хазза•хазза■хазза■хаз
заз ■ хазза■хаззаз ■ хаззаз • хаз
н-хазя • хазза■хазн-хаз

ъхазн-хаззаз ■ хазгхаз
zxazxaухаzxa
нзнзазнз
ннзан

заззазаззаз
зазазаза

гхазя • хаззаз■хазхаз
zxazxaухаха

ухазн ■ ухазу хазухаз
у хаухау хауха
нзнзаз

об- saioMONMi SNOismoNi знх хо лхптуаюза з шхзунэ
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4.2.3 The inclusion diagram of ||iC||
In this subsection we give an inclusion diagram for the set of tree transforma­
tion classes ||АГ|| = { ЦгоЦ | w € К }. To this end, we first show the following 
6 lemmas.

Lemma 4.2.9 LDTR % LDToDB.

Proof. Let E = E0 U Ex U E2, where E0 = { tt, $ }, Ei 
Let p C Ts x Ts be defined by

{5}, and E2 = {/}.

p = {t/om $),/(<?"( $), $)) I n > о} и {(/о/»«), л), f(gnm,«) i n > о >.
Here and in what follows, g°($) = jj and <7n+1({|)
Consider the ldtß A = (E, A, E, a0, Ra), where A = { a0, ab a2, a3, a4 } and 
Ä 4 consists of the following 8 rules.

5(5n(t0) for n > o.

(a0(f(xux2)) -t /(ai(a;i),a2(a;2));Tj:, {$}), 
(ao(./(iid2)) -> /(03(24), aA(x2))] Те, {#}), 
(01(5(24)) 5(01(24)); 2s), 

—> $; ),
(o2($) —)• $; ),
(03(5(24)) —t 5(03(2:1)); Ts ), 

~t tt; )> 
tt; )•

(o3(0)
(a4(tt)

It should be clear that тд = p. We now show that p LDT о DB. By way 
of a contradiction, let us suppose that there is an ldt В = (E, B, A, bo, Rb) 
and a db С = (A, С, E, C, Re) such that p 
and В is deterministic, there is exactly one rule in Rß with left-hand side 
b0(f(xl,x2)). Let us suppose that this rule is of the form

Tß о тс- As dom(p) C dom(rB)

bo{f{xi,x2)) -* r ,

where r G T/\(B(X2)). We now show that both 24 and x2 appear in r. Let 
us suppose that 24 does not appear in r. Then Tß(/(}J,ft)) = ()).
Hence

/(#, Ю = rß о 2c(/(tt, it)) =4° 2-c(/(5(tt), #)) = /(5(tt), tt)) •
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A contradiction. Thus xx appears in r. Let us suppose that x2 does not 
appear in r. Then rß(/(jt,jt)) = тв(/(#, $)). Hence

/(tU) = rBOTC(f (#,#)) = rß о rc(/(;},$)) = /($,$) •

A contradiction. Thus x2 appears in r. Hence r = t[bx(xx),b2(x2)\, where 
t G TA(X2), and both xx and x2 appear in t, and bx,b2 G B.

Consider the derivations

f(9n(,$),§)zft[bi(9n№),b2($)]=£t[b1(gn($)),px] , 

Язп($)Л)=>ф1(дп(й)),ь2($)]=>фх(дпа)),р2\,
where px,p2 G Тд, and the rules 62($) —t px and b2(it) -> p2 are in Äß. Let

U = { s G Tz(X 1) I i[c(xi),pi] =p-c'(s) f°r some c G C,c' G C }U

{ s G Th(Xi) I t[c(xx),p2\ c'(s) for some cgC,c'gC'}.

It should be clear that \U\ < 2|C|. Let

J = max{ height(s) | s G U } .

Let n > J. Then

bo(f(gn00, $)) ^ФЛ9п($)), &г($)] =* t[bi(9n{$)),Pi\ ф,рг] ,

bo(f(gn{$)J))=>t[bx(gn($)),b2($)]=>t[bx(gn($)),p2}j>t\p,p2} 

for some p,px,p2 G TA. Since /(f/n(íí), #) G dom(p) and f(gn{$), $) G dom(p),

t\p,Pi] t[c(q), Ci(gi)] c'(sx[q, qxj) = c'(f(gn(§), $)) ,

t\p,P2] ^ i[c(g), 02(92)] ^ c"(s2[9, g2]) = c"(f{gn(#)>#))

where c,cbc2 G C, c',c" G C, q,qi,q2 G TE, sbs2 G TE(X2), p=>*cc(q), 
Pi ^*Ccx{qx), p2=>*c c2(q2),

i[c(zi),Ci(gi)]=^c'(si[2;bgi]) ,
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t[c{xl),c2(q2)]j?c"(s2[xl,q2}) .

Hence Si[.'ri, <7i] £ U, s2[xi,q2] £ U, and

5i[g, ?i] = /(i/n($), $), s2[q, q2] = f{gn{j), #) •
By the definition of J and n, \llp(sx[xx, qx])\ < J < n. On the other hand,

IM/G/n($),$))| = |Wp(ai[9»?i])| = n + 1 ,

hence llp(sx[xx, qx]) is a proper prefix of llp(sx[q, qx]). Thus xx appears in 
the tree si, and llp(sx[xx, qx]) leads to an occurrence of xx. Moreover, as 
llp(sx[q, qx\) leads to $ in the tree si[g, qx], $ appears in the tree q. By similar 
arguments, we obtain that xx appears in s2 and jj appears in the tree q. Hence 
q contains both $ and jt, and thus jj appears in the tree si[g, 51] = $).
A contradiction. □
Lemma 4.2.10 DT <2 LDTR о H

Proof. First, we introduce a notation. Let r be a tree transformation from 
7V to Хд and L C Tj be a tree language. Then

r(L) = {s £ Тд I there exists t £ L such that (f, s) £ r}.

We can generalize this notation. Let C be a class of tree transformations and 
T be a class of tree languages. Then

C(T) = {r{L) I r £ C and L £ T}.

Now, we finish the proof of this lemma by contradiction. Let us suppose that 
DT C LDTR о H. Then,

DT(REC) C H(LDTR(REC)).

By the Corollary 6.7 in Chapter IV of [40], LDTr(REC) = REC. 
Hence,

DT(REC) C H(REC).

It is a contradiction because H(REC) C DT(REC) by the proof of Theorem 
6.12 in Chapter IV of [40]. So, DT % LDTR о H. □
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Corollary 4.2.11 LDTR о H C DTR.

Proof. Since LDTR C DTR and H C DTR, by (i) of Proposition 4.2.3 
get that LDTRoH C DTr. The proper inclusion LDTRoH C DTR follows 
from Lemma 4.2.10 and the inclusion DT C DTr.

we

□
Lemma 4.2.12 LDB £ DT2.

Proof. By the proof of Theorem 4.5 in [33] and by (*) in [32], dom(DT2) = 
DREC. It is well known that dom(LDB) = REC and DREC C REC, see 
[40]. Hence dom(DT2) C dom(LDB) and in this way LDB % DT2.

Lemma 4.2.13 LDT % DB.

Proof. Let E = E0 U Еь where E0 = { jj }, Ei = { / }, and let A = A0 U Д 
where A0 = {it, $ }, and Ai = { / }. Let p C x Тд be defined by p — 
{ (/"(tt),/”(#)) I n > 0 is an even number } U { (/n(Ü), /"($)) | n > 1 is an 
odd number }.

Let the ldt A = (E, A, A, a0, Ra) be defined as follows. A — { a0, ax } and 
Ra consists of the following four rules.

c

1)

Ö0(f(x)) -4 f(ai(x)) , 
ai(f(x)) -4 f(ao(x)) , 

—У $ ,°l(it)
ao(0)

It should be clear that гд = p. Thus p 6 LDT. Let us suppose that 
p G DB. Then there is a db В = (E, В, A, B', RB) such that rB = p. Let J 
bound the heights of the right-hand sides of the rules in RB. Let n > J be 

number. Then (/"(ft), /"(it)) € P, and hence

-> it-

an even

ГШ =ГЛ(Г (it))
for some Ьг G B'. As (/n+1(it)) /n+1($)) € p,

(*)

r+1(ö)fb2(r+1($))
for some ö2 G Б'. By (*)

7”+1(ll)f/№i(/n(#)))f M/”+1№) ■
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Hence the rule
/(»>(*!))-► W+1(S))

is in Rß. However, this contradicts the assumption that J bounds the heights 
of the right-hand sides of the rules in Rß. □
Lemma 4.2.14 H (Z LDTR.

Proof. Let E = E0 U Eb where E0 = { ft }, Ei = { / }, and let A = Д0 и Д2, 
where Д0 = { Й }, Д2 = { }. The binary balanced tree pn G TA of height n 
is defined as follows. Let po — jj, and for any n > 0, let pn = g(pn-i,pn-i)- 
Let p С Tfi x Ta be defined by

P = { (fn($),Pn) I n > 0} .

Consider the th A = (E, А, Д, a0, R), where A = { a0 } and R consists of the 
following 2 rules.

ra0(/(^i)) -)• f/(a0(2;i),ao(a;i))
öo(íí) Ji­

lt should be clear that p = тл. It is not hard to see that p 0 LDTR. □

Theorem 4.2.15 The diagram in Figure 4-1 is an inclusion diagram for
mi
Proof. We divide the proof into three steps. In the first step we show that 
if a class Y is above another class Z and there is an edge between Y and Z, 
then Zcy. We go through the edges in the diagram of Figure 4.1 in a top- 
down and left-to-right order and list all nontrivial inclusions corresponding 
to the edges. We add the proof of each inclusion in parenthesis.
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DT2 C DTR (by the inclusion DT C DTR and 
by (i) of Proposition 4.2.3)
(.LDTR C DTR, H С ЯТй and 
by (i) of Proposition 4.2.3)
(.LDT о DB
LDTR о LDT о LDB о H {=]

LDTR о LDB о Я (= LDTr о Н)
(LDT2 (= LDT о LH C LDT о Я)
(by (f), (Í), and (ii) of Proposition 4.2.3)

LDT2 C LDT о LDB (LDT2 (= LDT о LH C LDT о ЬЯЯ)

LDTRoH С ЯТя

(13')LDT о DB C LDTRoH LDTо £ЯЯ о Я С

LDT2 С LDToH 
LDTоLDB С LDTr

In the second step, using the results of the first step, we show that if 
a class Y is above another class Z and there is an edge between Y and 
Z, then Z C Y. We again go through the edges in the diagram of Figure 
4.1 in a top-down and left-to-right order, in each horizontal “virtual plane” 
clockwise. We add the proof of each inclusion in parenthesis. When citing 
known inclusion results, we ignore the original sources of some easy results 
and refer instead to the inclusion diagrams appearing in papers [34] and 
[24] to ensure a convenient progress. Moreover, we shall frequently show an 
inclusion X C Y by referring to a noninclusion V % Z, where VC. Y and
X c z.
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DT2 C DTR (by Theorem 5 in [32] and 
by Figure 1 in [33])
(by Lemma 4.2.11)
(by Lemma 4.2.9)
(by Lemma 4.2.12)
(by Figure 1 in [34])
(by Figure 1 in [34])
(by Lemma 4.2.14)
(by Lemma 4.2.13)
(by Figure 1 in [34])
(by Figure 1 in [24])
(by Figure 1 in [34])
(by Figure 1 in [34])
(by Figure 1 in [34])
(by Lemma 4.2.9)
(by Lemma 4.2.14)
(by Figure 1 in [24])
(by Figure 1 in [24])
(by Figure 1 in [34])
(by Lemma 4.2.12)

LDTRoH C DTr 
LDToDB C LDTRoH 

LDToH C LDToDB 
LDToH C DT2 

DT C DT2 
LDTR C LDTRoH 

DB C LDToDB 
H C LDToH 
H C DB 
H C DT 

LDT C DT 
LDT2 C LDToH 

LDToLDB C LDTR 
LDToLDB C LDToDB 

LDB C DB 
LH С Я 

LDT C LDT2 
LDT2 C LDToLDB 
LDB C LDT о LDB (by Lemma 4.2.13)

(by Figure 1 in [24]) 
(by Figure 1 in [24]) 
(by Figure 1 in [24])

LH C LDB
LH C LDT 

I C LH

Finally, in the third step we show that if neither of the inclusions Y C Z 
and ZC Fis indicated by the diagram for classes Y and Z in K, then they 
are incomparable. We traverse the diagram in a top-down and left-to-right 
order as follows. The diagram is drawn as if its nodes, except the topmost 
and lowest ones, were fitting to three horizontal planes. We visit first the 
upper plane, then the middle one and finally the lower one. In each plane we 
proceed clockwise. For each element Y in K, when visiting Y, we compare 
Y with all elements Z in К such that there is neither an ascending nor a 
descending path between the Y and Z, and that Y and Z have not been 
compared yet. We add the proof of each incomparability in parenthesis.
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DT2 X LDTRoH 
DT2 N LDToDB 
DT2 N LDTr 
DT2 X DB

(by Lemma 4.2.10 and Lemma 4.2.12) 
(by Lemma 4.2.10 and Lemma 4.2.12) 
(by Lemma 4.2.10 and Lemma 4.2.12) 
(by Lemma 4.2.10 and Lemma 4.2.12) 

DT2 N LDT о LDB (by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.10 and Lemma 4.2.12) 
(by Lemma 4.2.12 and Lemma 4.2.10) 
(by Lemma 4.2.12 and Lemma 4.2.10) 
(by Lemma 4.2.14 and Lemma 4.2.9) 
(by Figure 1 in [34])
(by Lemma 4.2.14 and Lemma 4.2.12) 
(by Lemma 4.2.13 and Lemma 4.2.12) 

LDT о H N LDT о LDB (bv Lemma 4.2.14 and Lemma 4.2.12)
(by Lemma 4.2.13 and Lemma 4.2.12) 
(by Lemma 4.2.10 and Lemma 4.2.12) 
(by Lemma 4.2.13 and Lemma 4.2.12) 
(by Figure 1 in [34])

DT X LDT о LDB (by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.13 and Lemma 4.2.12) 
(by Lemma 4.2.13 and Lemma 4.2.14) 
(by Lemma 4.2.12 and Lemma 4.2.14) 
(by Lemma 4.2.14 and Lemma 4.2.13) 
(by Lemma 4.2.14 and Lemma 4.2.13)

DT2 X LDB
LDTRoH X DT 
LDT о DB X DT 
LDToDB X LDTR 

LDToH X DT 
LDToH X LDTR 
LDToH X DB

LDToH X LDB 
DT X LDTR
DT X DB 
DT X LDT2

DT X LDB 
LDTR X DB 
LDTr X Я

DB X LDT 
DB X LDT2
DB X LDT о LDB (by Lemma 4.2.14 and Lemma 4.2.13)

(by Figure 1 in [34])
(by Figure 1 in [34])

H X LDT о LDB (by Lemma 4.2.14 and Lemma 4.2.13)
(by Figure 1 in [24])
(by Lemma 4.2.13 and Lemma 4.2.12) 
(by Lemma 4.2.13 and Lemma 4.2.12)

H X LDT 
H X LDT2

H X LDB
LDT X LDB 

LDT2 X LDB

□
In the light of Theorem 4.2.15, the following result is obtained by direct 
inspection of the inclusion diagram of Figure 4.1.

Consequence 4.2.16 Foranyu,vEK, ||u|| = ||u|| if and only if и = v.
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4.2.4 The main result
The main results are easy consequences of the work presented in the previous 
subsections.

Theorem 4.2.17 *s = p.

Proof. By Theorem 4.2.6 it is sufficient to show that p C Let w,w' G 
M* be such that ||го|| = ||u/||. Then, by Theorem 4.2.8, there exist z,z' G К 
such that w —^ z and By Theorem 4.2.6, ||w|| = ||z|| and ||гг/|| =
Ill'll, hence we have ||z|| = ||z'||. By Consequence 4.2.16, г = z'. Therefore 
we get w ^*s w'.

Theorem 4.2.18 [M] = ||iF||-

Proof. Obviously ||ii|| С ||M*|| = [М]. To show that ||M*|| С ЦА'Ц, let 
w G AI*. By Theorem 4.2.8 there exists z G К such that u>^*sz. By 
Theorem 4.2.6 ||w|| = ||z||. Hence ||гг|| G ||ЛГ||-

Finally we turn to the decision problem of the inclusion in [М].

Theorem 4.2.19 There is a linear time algorithm which for any tree trans­
formation classes Yi,.. ., Ym, Zx, ..., Zn G M decides which one of the fol­
lowing four mutually exclusive conditions holds.

Yi о ... о Ym 
(и) U O ... о Ym
(iii) ZX о . .. о Zn
(iv) Tl О ... о Ym

□

□

= Zxo ...o Zn, 
C Zxo...oZn, 
C Yx O ... о Ym, 
И Zx о ... о Zn.

Proof. By Theorem 4.2.8 we find in linear time y,z G К with Yx... Ym —»•£у 
and Zx... Zn —Ys z. Then by Theorem 4.2.6, we also have ||l/i...T^l|| = 
I Ml and \\ZX ... Zn\\ = ||z||. Thus, one of the conditions (i)-(iv) holds for 
Yx о ... о Ym and Zx о ... о Zn if and only if the corresponding (i’)-(iv’) holds 
for IMI and ||z||, where

(0 IMI = INI 
(**') ily 11 С 
(*«') INI c IMI.
(w') ||y II N IMI.

By Figure 4.1 it is decidable in constant time which one of (i’)-(iv’) holds. □



Conclusions and further 

research topics

We have introduced the notion of the generalized semi-monadic rewriting sys­
tem, which is a generalization of well-known rewriting systems: the ground 
rewriting system, the monadic rewriting system, and the semi-monadic 
rewriting system. We have shown that lgsm rewriting systems effectively 
preserve recognizability. We have shown that a tree language L is recog­
nizable if and only if there exists a rewriting system R such that R U R~l 
is an lgsm rewriting system and that L is the union of finitely many 
classes. We have presented several decidability and undecidability results on 
gsm rewriting systems.

We have given a simple proof for the decidability of the injectivity prob­
lem of linear deterministic top-down tree transducers. Moreover, we have 
shown that the injectivity problem is undecidable even for homomorphism 
tree transducers.

Finally, we have shown that DTR = DT о LDB, LDTR % LDT о DB, 
and DT % LDTR о H. Using these results and the composition and in­
clusion results of Engelfriet, Fülöp, and Fülöp and Vágvölgyi, we have 
given a linear time algorithm to determine the correct inclusion rela­
tionship between two tree transformation classes which are compositions 
of some ’’fundamental” tree transformation classes taken from the set 
{DTR, LDTr, DT, LDT, DB, LDB, H, LH}.

Our results give rise to several open problems.

• Generalize lgsm rewriting systems such that the obtained rewriting 
systems still effectively preserve recognizability.

• Let R\ and R2 be rewriting systems effectively preserving recogniz-
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ability (lgsm rewriting systems, respectively) over E. Is it decidable if 
~*Äin(?sxTs) С ~^д2 n(Ts xTs)? Is it decidable if o*ßin(rExTs) C 
^я2 X Ts)7

• Let R be a rewriting system effectively preserving recognizability. Is it 
decidable if R is left-to-right minimal? Is it decidable if R is two-way 
minimal? Is it decidable if R is left-to-right ground minimal? Is it 
decidable if R is two-way ground minimal? The last two questions are 
also open if R is an lgsm rewriting system.

• Dauchet and his colleagues [11], [12] have shown that for a ground 
rewriting system R, it is decidable if R is confluent and it is decidable 
if R. is noetherian. Give subclasses Сг and C2 of lgsm rewriting systems 
which contain the class of ground rewriting systems such that for any 
rewriting system R G Ci it is decidable if R is noetherian and that for 
any rewriting system R G C2, it is decidable if R is confluent.

• A rewriting system R over E is tame if for all critical pairs (и, v) of R

(i) R*{{ и }) U R*({ v }) is finite,
(ii) for each w G /?.*({ и }) U i?*({ v }), w does not hold, and

(iii) for any v! G R*({u}) and v' G i?*({u}), there is 
such that u' —>-ß z and v' —UR z.

If R effectively preserves recognizability, then it is decidable if R is 
tame. If R is convergent, then R is tame as well. It would be worth 
while studying tame rewriting systems preserving recognizability.

G ЫХ)a z
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• •

Összefoglaló
(Summary in Hungarian)

A term átíró rendszerek fontos szerepet játszanak az elméleti számítástu­
dományban. Nagyon hasznosnak bizonyultak például a А-kalkulus, a de- 
notációs szemantika, az automatikus tételbizonyítás és a szimbolikus algebrai 
számítások kutatásánál.

Ebben a disszertációban term átíró rendszerekre és fatranszformátorokra 
vonatkozó néhány eldönthetetlenségi kérdést vizsgálunk meg.

A disszertáció első részében regularitást megőrző term átíró rendsze­
reket vizsgálunk. Egy term átíró rendszer megőrzi a regularitást, ha 
tetszőleges reguláris fanyelv esetén, ezen reguláris fanyelvben lévő fákból 
képzett leszármazottak halmaza is reguláris. Egy fának egy leszármazottja 
úgy keletkezik, hogy néhányszor alkalmazzuk a fára a term átíró rendszer 
szabályait.

Először definiáljuk az általánosított szemi-monadikus term átíró rendszer 
fogalmát, amely tartalmazza a korábban már ismert regularitást megőrző 
term átíró rendszereket, nevezetesen a ground, a monadikus és a szemi- 
monadikus term átíró rendszereket. Ezután, megmutatjuk, hogy a lineáris 
általánosított szemi-monadikus term átíró rendszerek effektiven megőrzik a 
regularitást. (Ez azt jelenti, hogy meg tudjuk adni a leszármazottak fanyelvét 
felismerő faautomatát is, a kiinduló reguláris fanyelvet felismerő faau­
tomatából és a term átíró rendszer szabályaiból.) Az eredmény segítségével 
adunk egy új jellemzését a felismerhető fanyelveknek.

A továbbiakban bebizonyítunk néhány eldönthetőségi és eldönthetetlen­
ségi eredményt a regularitást effektiven megőrző term átíró rendszerekre 
és az általánosított szemi-monadikus term átíró rendszerekre vonatkozó­
an. Többek között megmutatjuk, hogy a regularitást effektiven megőrző

104



ÖSSZEFOGLALÓ (SUMMARY IN HUNGARIAN) 105

tetszőleges term átíró rendszerről eldönthető, hogy lokálisan konfluens-e.
A fenti fogalmakat és eredményeket átvisszük a sztring átíró rendszerekre 

is. mivel egy sztring átíró rendszer tekinthető úgy, mint egy speciális term 
átíró rendszer.

A disszertáció további részében fatranszformátorokra vonatkozó eldönt­
hetőségi kérdéseket vizsgálunk meg. A fatranszformátorok számos típusát 
definiálták és vizsgálták a 70-es évek eleje óta. Mi a determinisztikus 
top-down, a determinisztikus bottom-up és a determinisztikus reguláris- 
előrenézésű top-down fatranszformátorokat tekintjük.

Először adunk egy egyszerű bizonyítást arra, hogy a lineáris determi­
nisztikus top-down fatranszformátorok injektivitási problémája eldönthető. 
Ezután bebizonyítjuk, hogy nem lineáris esetben az injektivitási probléma 
már a homomorfizmus fatranszformátorok esetében is eldönthetetlen.

A fatranszformátorok által indukált fatranszformációk bináris relációk 
fák felett, így a fatranszformációk kompozíciója, amelyet o-rel jelölünk, a 
szokásos módon definiálható. Megmutatunk néhány kompozíciós és tartal- 
mazási eredményt fatranszformáció osztályokra, amelyek közül a legfontosab­
bak: DTr = DT о LDB, LDTR % LDT о DB és DT % LDTR о Я. Itt DB 
jelöli a determinisztikus bottom-up, DT a determinisztikus top-down, H 
pedig a homomorfizmus fatranszformációk osztályát. Az L prefix jelenti a 
linearitást és az R felsőindex pedig a reguláris-előrenézést.

Ezen eredmények és a korábban ismert kompozíciós és tartalmazási 
eredmények (főleg J. Engelfriet, Fülöp Zoltán és Vágvölgyi Sándor 
eredményei) felhasználásával adunk egy lineáris idejű algoritmust, amelynek 
segítségével tetszőleges két, a { DTR, LDTR, DT, LDT, DB, LDB, H, LH } 
halmazból vett fatranszformáció osztályokból kompozícióval képzett, osztály 
közötti tartalmazás eldönthető.

Végül, összegezzük a disszertáció eredményeit és mutatunk néhány 
megoldatlan problémát a regularitást megőrző term átíró rendszerekre 
vonatkozóan.

A disszertáció eredményei a következő három cikkben jelentek meg:

• Z. Fülöp, P. Gyenizse, On injectivity of deterministic top-down tree 
transducers, Information Processing Letters, 48 (1993) 183-188.

• P. Gyenizse, S. Vágvölgyi, Composition of Deterministic Bottom-up, 
Top-down, and Regular Look-ahead Tree Transformations, Theoretical 
Computer Science, 156 (1996) 71-97.
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• P. Gyenizse, S. Vágvölgyi, Linear Generalized Semi-monadic Rewrite 
Systems Effectively Preserve Recognizability, Theoretical Computer 
Science, 188 (1997), megjelenés alatt.

Szeretnék köszönetét mondani témavezetőmnek, Dr. Fülöp Zoltánnak, 
áldozatos munkájáért, hasznos útmutatásaiért és értékes tanácsaiért. Sze­
retném megköszönni Dr. Vágvölgyi Sándornak a sok szakmai konzultációt 
és a felbecsülhetetlen segítséget, valamint Dányi Gábornak és Bernátsky 
Lászlónak a disszertáció elolvasása közben felmerült észrevételeiket és meg­
jegyzéseiket.
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