Decidability Questions for Term Rewriting
Systems and Tree Transducers

Ph.D. Dissertation

by

Pal Gyenizse

Jozsef Attila University
Department of Computer Science
Szeged, Arpa,’d tér 2
H-6720 Hungary

1998



Contents

Introduction 5
1 General notions and notation 10
1.1 Setsand relations . . . . . . ... ... 10
12 Strings atd t7888 . . s 5 s 5 « 5 5 s @y § 5w m @ E s s os s RS 11
1.3 Rewriting systems and their properties . . . . . .. . . .. .. 15
1.3.1 Abstract rewriting systems . . . . . ... .. ... ... 15
1.3.2 Term rewriting systems . . . . . . . . .. ... ... .. 16
1.3.3 String rewriting systems . . . . . . ... .. ... ... 17
1.4 Deterministic tree recognizers, tree transducers and tree trans-
formations . . . . . .. L. 18
1.4.1 Bottom-up tree transducers . . . . ... ... ... .. 18
1.4.2 Top-down tree transducers . . . . . . .. ... ... .. 20
1.4.3 Top-down tree transducers with regular look-ahead . . 22
2 On term rewriting systems preserving recognizability 24
2.1 Further notions and notation. . . . . . . . ... ... ... .. 24
22 Summaryofresults . - : s v s as vav e s s e wE s 8o 27
2.3 Generalized semi-monadic rewriting systems . . . . . . . . .. 31
2.3.1 Linear generalized semi-monadic rewriting systems
preserve recognizability . . . . . . . . ..o 0oL 31
232 Anexample . . . . .. ... 48
2.4 Results on term and string rewriting systems preserving rec-
ogmizability - . ¢« -2 . s a s s E s r s m ey o ns e 52

3 Decidability of the injectivity of deterministic top-down tree
transducers 63



CONTENTS 2

3] Sommary6Lresnlls « » < v . . v s 5 8 v s ax sk m e e 63
3.2 On the injectivity problem of deterministic top-down tree
TEAOEAUOEYE .« « v o v 5 & 5 4 6 5 & ¥ 5 E T B U E R & L 6 64
3.2.1 The injectivity problem of linear deterministic top-
down tree transducers . . . .. .. ... ... .. ... 64
3.2.2  The injectivity problem of homomorphism tree trans-
UUEEEE . » & « s st m o ls Aoy @ 4 e v s b w o 67

4 Decidability of the inclusions in monoids generated by de-

terministic tree transformation classes g |
41 Summary @Sl . - s s s s e r e M B s EE R N E S 71
4.2 Decidability of the inclusions in the monoid generated by
{ DT®, LDT®, DT, LDT, DB, LDB,H,LH} .. .. .. .. 75
4.2.1 The Thuesystem 7. . . . . . . . ... ... ...... 75
4.2.2 The string rewriting system S . . . . .. ... ... .. 87
4.2.3 The inclusion diagram of ||K|| . . . . . . .. . ... .. 91
424 Themainresult . . . . .. ... ... ... .. ..., 100
Conclusions and further research topics 101
Acknowledgements 103
Osszefoglalé (Summary in Hungarian) 104
Index 107

Bibliography 113



List of Figures

!\') !\J (A
(OV] R} —

[SIRYEN

The unification of r;/a and the supertree I3 of l;/8 by the

most general unifier §, when Condition (a’) holds. . . . . . . . 33
The unification of 7/ and the supertree I3 of l5/3 by the

most general unifier §, when Condition (b’) holds. . . . . . . . 34
The unification of 7y /a and the supertree I3 of [ by the most

general unifier §, when Condition (¢’) holds. . . .. ... ... 35
Case 1. of Lemiig 2.3.06 « - ¢ = %« 5 550 ¢ 2 a0 a5 n v n = = - 44
Case 2. of Lemma 2.3.16 . . . . . . .. ... ... ... ... 45
The inclusion diagram of the set |[K||. . . . ... ... .. .. 96



List of Tables

4.1 The string rewriting system S (part 1)
4.2 The string rewriting system S (part 2)



Introduction

Term rewriting systems are finite devices processing terms over ranked alpha-
bets. They play a very important role in theoretical computer science. They
are attractive tools because of their simple syntax and semantics. This sim-
plicity facilitates a satisfactory mathematical analysis. On the other hand,
term rewriting systems have the full power of Turing machines.

The notion of term rewriting systems is paradigmatic for study of many
theoretical areas. For instance, it is very useful and fruitful in investigation
of the A-calculus, denotational semantics, mechanical theorem-proving, and
symbolic algebraic computation. Many other applications of term rewriting
systems can be found in N. Dershowitz and J.P Jouannaud’s work ([13]),
J.W. Klop’s work ([47]), and R.V. Book and F. Otto’s book ([4]).

In this dissertation, we study decidability questions concerning term
rewriting systems. In general, most of the important properties of term
rewriting systems are undecidable, for example such properties are the ter-
mination and the confluence. Many other properties of term rewriting sys-
tems are shown to be undecidable in the above mentioned works ([13], [47],
[4]) and G. Huet’s fundamental paper ([46]). In spite of these undecidabil-
ity results, several interesting results on decidable properties were obtained
for special kinds of term rewriting systems. For instance, for ground term
rewriting systems, most of the significant properties are decidable (termina-
tion, confluence and so on), see [11], [12], [16], [47], [62]. A term rewriting
system is called ground if its rules consist of ground terms.

In a part of this work, we shall investigate a special kind of term rewrit-
ing systems: term rewriting systems which preserve recognizability. A term
rewriting system preserves recognizability if, for any recognizable tree lan-
guage L, the set of descendants of trees being in L is also recognizable. A
descendant of a tree is obtained from the tree by applying the rules of the
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term rewriting system to the tree successively. The term rewriting systems
which preserve recognizability are very attractive tools because the use of an
algebraic tool (regular tree languages) can clarify and simplify some proofs
concerning such systems. For example, regular tree languages are suitable
when we want to avoid the non-linearity. Several types of term rewriting sys-
tems preserving recognizability were defined by J.H. Gallier and R.V. Book
n [38], J.L. Coquidé et al in [7], and P. Gyenizse and S. Vigvolgyi in [45].
Moreover, see K. Salomaa’s paper ([54]), R. Gilleron and S. Tison’s survey
([43]), and F. Otto’s work ([51]) for relevant results. Similar results were
considered in F. Gécseg’s work ([39]) and Z. Esik’s works ([21], [22]) for tree
transducers, which are also special term rewriting systems.

A string rewriting system can also be considered as a special term rewrit-
ing system. This is a device that processes strings like a term rewriting
system processes terms. Many interesting results for string rewriting sys-
tems preserving recognizability were explored and carried over from term
rewriting systems preserving recognizability. A good survey of these results
can be found in R.V. Book and F. Otto’s book ([4]), F. Otto’s work ([51]),
and P. Gyenizse and S. Vagvolgyi’s work ([45]).

In the other part of this dissertation, we are also going to consider
top-down tree transducers and bottom-up tree transducers. Top-down and
bottom-up tree transducers have been studied since the early seventies. First,
W.C. Rounds and J.W. Thatcher introduced the notion of a top-down tree
transducer in [53], [56]. Then, J.W. Thatcher defined the concept of a
bottom-up tree transducer in [57]. Later on, J. Engelfriet introduced the
notion of a top-down tree transducer with regular look-ahead in [15] in order
to increase the transformational capacity.

There are still other tree transducers, e.g., macro tree transducers ([17],
[37]), attributed tree transducers ([23], [37]), macro attributed tree transduc-
ers ([37], [49]), high level tree transducers ([18]), modular tree transducers
([19]), high level modular tree transducers ([59]), however, we will not deal
with them in this work.

Using top-down and bottom-up transducers, abstract and formal models
of the syntax-directed translation method can be given, which is a wide-
spread way of specifying the semantics of high level programming languages.

Some restricted types of top-down and bottom-up tree transducers (such
as deterministic, total, linear, nondeleting etc.) were defined and compared
with each other with respect to transformational capacity in the works of
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W.C. Rounds ([53]), J.W. Thatcher ([56]), J. Engelfriet ([14], [15]), and B.S.
Baker ([1], [2], [3]). Moreover, F. Gécseg and M. Steinby gave a survey of
tree languages and tree transducers in [40], and [41]. Recently, G. Ddnyi and
Z. Fiillop defined and investigated superlinear deterministic top-down tree
transducers in [8].

Tree transducers induce tree transformations, which are binary relations
over trees. Moreover, a tree transformation class is a class consisting of
tree transformations. Since tree transformations are binary relations, the
operation composition is defined for them as for binary relations. In this
dissertation, we shall work only with deterministic tree transducers, which
induce partial functions.

The compositions and decompositions of tree transformation classes are
fundamental in the theory of tree transducers and tree transformations.
Many proofs became simpler and more obvious by using results on composi-
tions and decompositions. Therefore, they were investigated in a large num-
ber of papers. For example, B.S. Baker ([3]), J. Engelfriet ([14], [15]), Fiilop
([24]), Fulop and Vagvolgyi ([28], [29], [30], [32], [33], [34], [35], [36]), Gécseg
and Steinby ([40]), Gyenizse and Véagvolgyi ([44]), Slutzki and Vigvolgyi
([55]), Dényi and Filop ([8], [9]), and Fiilop and Vogler ([37]) studied the
compositions and decompositions of different types of tree transformations.

The subject of this dissertation is to study some decidability questions of
term rewriting systems and tree transducers. Our results can be summarized
as follows.

(1) We introduce the concept of a generalized semi-monadic term rewriting
system. We show that linear generalized semi-monadic term rewriting
systems effectively preserve recognizability and we give several decid-
ability and undecidability results on term rewriting systems effectively
preserving recognizability.

(2) We prove that the injectivity problem of linear deterministic top-down
tree transducers is decidable and that the same problem is undecidable
for (nonlinear) homomorphism tree transducers.

(3) We give a linear time algorithm to determine the correct inclusion re-
lationship between two tree transformation classes which are compo-
sitions of some ”fundamental” tree transformation classes taken from
the set {DT®, LDT®, DT, LDT,DB,LDB,H,LH}.
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Here DB, DT, H stand for the class of deterministic bottom-up tree trans-
formations, the class of deterministic top-down tree transformations, and
the class of homomorphism tree transformations, respectively. Moreover, the
prefix L stands for the restriction linear, and the superscript R stands for
the regular look-ahead.

The dissertation consists of five chapters, of which the contents are the
following.

The opening chapter presents the common preparatory notion, notation
and terminology, focusing our attention on trees. It also surveys those types
of rewriting systems and tree transducers which are used in this work.

Then we present our results in detail as follows.

In Chapter 2, we introduce further notions and notation, which are used
only in this chapter. Then, we define the notion of the generalized semi-
monadic term rewriting system which is a generalization of well-known term
rewriting systems: the ground term rewriting system, the monadic term
rewriting system, and the semi-monadic term rewriting system. As a main
result, we show that linear generalized semi-monadic term rewriting systems
effectively preserve recognizability. (We note, this is the largest known class
of term rewriting systems that preserves recognizability.) Furthermore, we
prove that a tree language L is recognizable if and only if there exists a term
rewriting system R such that R U R™! is a linear generalized semi-monadic
term rewriting system and that L is the union of finitely many <>}-classes.
We also show several decidability and undecidability results on term rewrit-
ing systems effectively preserving recognizability and on generalized semi-
monadic term rewriting systems. Namely, we show that for a term rewriting
system R effectively preserving recognizability, it is decidable if R is locally
confluent. Moreover, we show that preserving recognizability and effectively
preserving recognizability are modular properties of linear collapse-free term
rewriting systems. (A property P is modular for a class of term rewriting
systems [which is closed under disjoint union] if the disjoint union of two
term rewriting systems R and S from this class has the property P if and
only if both R and S have the property P.) Finally, as a consequence, we ob-
tain that restricted right-left overlapping string rewriting systems effectively
preserve recognizability.

In Chapter 3, we give a simple proof for the decidability of injectivity
of linear deterministic top-down tree transducers. Moreover, we show that
injectivity is undecidable even for homomorphism tree transducers.
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In Chapter 4, we show that DT® = DT o LDB, that LDTR ¢
LDT o DB, and that DT ¢ LDTZ® o H, where the composition of tree
transformation classes X and Y is denoted by X o Y. Using these re-
sults and the composition and inclusion results of Engelfriet ([14], [15]),
Fiilop ([24]), and Fiilop and Vagvolgyi ([28], [29], [30], [32], [33], [34],
[35], [36]) we show that the problem of determining the correct inclusion
relationship between two tree transformation classes which are composi-
tions of some ”fundamental” tree transformation classes taken from the set
{ DT®, LDT®,DT,LDT,DB,LDB, H, LH } can be solved in linear time.

Finally, we summarize the results of the whole dissertation and mention
some open problems regarding term rewriting systems preserving recogniz-
ability.

This dissertation is strongly based on the papers [26], [44], and [45]. All
results presented here appear in these works.



Chapter 1

(zeneral notions and notation

1.1 Sets and relations

In this section we recall the necessary notions and notation concerning sets,
relations, and functions.

The set of nonnegative integers is denoted by N.

For a set A, we write Pow(A) and |A| for the power set and the cardinality
of A, respectively.

Given two sets A and B, A C B means that A is a subset of B, A C B
stands for that A is a proper subset of B, and A € B denotes that A is not a
subset of B. Moreover, we denote by A X B that A and B are incomparable
with respect to inclusion. We write A x B and A — B for the Cartesian
product of A and B and the difference of A and B, respectively.

Any subset p of the Cartesian product A x B is called a (binary) relation
from A to B. We also write apb instead of (a,b) € p. The set dom(p) = {a |
apb for some b € B} is called the domain of p, and the set ran(p) = {b | apb
for some a € A} is the range of p.

The relation p=! = {(b,a) | apb} is the inverse of p.

Let p be a relation from A to B, and let 7 be a relation from B to C.
Then the relation po7 from A to C is defined by por = {(a,c) | apb and brc
for some b € B} and is called the composition of p and 7. If Y, Z are classes
of relations, then Yo Z = {po7 | p€ Y and 7 € Z}.

A relation from A to A is called a relation on A or over A. The identity
relation over A is Id(A) = {(a,a) | a € A}. Let p be a relation on A. The

10
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n-fold compositions of p is defined by the following induction: p° = Id(A)
and p" = po p™!, for n > 0. Moreover, let Z be a class of relations on A.
Then, Z'=Z and forany n > 1, Z% = Z o 2™,

The transitive closure and the reflexive, transitive closure of a relation p
over A are the relations p™ = U,>; p" and p* = U, > p", respectively. More-
over, the reflezive, symmetric and transitive closure of p is Unso(p U p~H)™.
Clearly, the reflexive, symmetric and transitive closure of p is an equivalence
relation.

A partial function p from A to B is a relation from A to B such that for
every a € A there exists at most one b € B such that apb. When this b exists,
we denote it by p(a). For a subset A’ C A, we put p(A") ={be€ B | b= p(a)
for some a € A’}. A partial function p is total if dom(p) = A. Moreover, a
total function is called a function or a mapping. Finally, a partial function p
from A to B is called injective if, for every a,b € A, such that p(a) and p(b)
exist the condition p(a) = p(b) implies a = b.

1.2 Strings and trees

This section contains our notions and notation for strings and trees. First,
we introduce the basic concepts of strings.

An alphabet ¥ is a finite, nonempty set of symbols. A string or word over
Y is a finite sequence of elements of ¥. The empty string is denoted by A.
For strings » and v over ¥, we denote the concatenation of u and v by uv or
u - v. The set of all strings over X is denoted by X*. It is well-known that
3*, equipped with the operation concatenation, is a monoid of which the
unit element is A\. An equivalence relation p over ¥* is called a congruence
over ¥* if, for any uy, us, vy, v € £*, upus and vy pvy imply uyv; pusvs. Any
subset of * is called a language. Suppose that wy, wy, w3 € £* are such that
w; = wows. Then we say that w, is an eztension of w,, that ws is a prefiz
of wy, and that ws is a suffiz of w;. Moreover, if w; # ws, then w, is proper
prefiz of w,. The length of a string w € ¥* is denoted by |w| and is defined
by the following induction:

(i) if w = A, then |w| = 0;

(i1) if w = va for some v € £* and a € X, then |w| = |v| + 1.
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We now collect the concepts for terms or trees which will be used. A
ranked alphabet ¥ is an alphabet in which every symbol has a unique rank
in N. For m > 0, ¥,, denotes the set of all elements of ¥ which have rank
m. Let ¥ and A be ranked alphabets. We say that ¥ C A if and only if
Y. € A, for each m > 0. For f € £ we write shortly f(™ to mean that
f € Znm.

For a ranked alphabet ¥ and a set H, disjoint with ¥, the set Tx(H)
of trees or terms over X indexed by H is the smallest set U satisfying the
following two conditions:

(i) ZoUHCUT,
(ii) f(t1,...,tm) € U whenever m > 1, f € £, and t1,...,t, € U.

The set Tx(0) is written as 7% and its elements are called ground terms.

Let ¥ and A be two ranked alphabets. Any subset of T% is called a tree
language and any relation from Tx to Ta is a tree transformation from T to
Ta. We denote by I the tree transformation class consisting of all identity
tree transformations (i.e., I = {Id(Tx) | £ is a ranked alphabet }).

We need a countable set X = {z1, s, ...} of variables which will be kept
fixed in this dissertation. We suppose that ¥ N X = @ for each ranked
alphabet X. Moreover, we put X,, = {Z1,...,Zm}, for m > 0. Hence X, = 0.

A tree t € Tx(X) is linear if each variable of X occurs at most once in ¢.
Moreover, Tx, (X,n) is the set of linear trees in Tx(X,y,).

For every m > 1, we distinguish a subset Tg(Xp) of T5(Xnm) : a
tree t € Tx(X,,) is in Tx(X,,) if and only if each variable in X,, ap-
pears exactly once in ¢ and the order of the variables from left to right
in ¢t is z,...,Tm. For example, if ¥ = Xy U Xy with £y = {4} and
Yy = {f}’ then f(xh i(ﬁ: 561)) = TE(XI) but f(xla f(ﬁ’xl)) ¢ TE(‘\—l) and
thus f(zy, f(§,71)) ¢ Tx(X;). Furthermore, f(z2, f(§,z1)) € Tx(X2) but
f(z2, f(§,21)) ¢ Tx(X2). However, f(z1, f(#,72)) € Tx(X2).

Let ¥ be a ranked alphabet. Let f € ¥;, t € Ty be arbitrary. The tree
f*(t) € Tx, k > 0, is defined by induction: fO(t) =t, and f**1(t) = F(f*(¢))
for £ > 0.

For a tree t € Tx(X), we define the root of ¢, the height of ¢, the set of
subtrees of t, the set of paths of t, the longest leftmost path of t, the longest
rightmost path of t, and the set of variables of t. They are defined by the
functions
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root Ty(X) —» ZTUX,
height Ts(X) — N,

sub Ts(X) — Pow(Ts(X)),
path : Tg(X) — Pow(N*),

llp Tx(X) — N7

Irp Ts(X) — N7,

var Tx(X) — Pow(X),

respectively, where, for every ¢ € Tx(X), their values are defined by induction
as follows:

(i) ift € o U X, then

root(t) = 4

hetght(t) = 0,

subt) = {1},

path(t) = {A},

Lip(t) = A

Irp(t) = A

var(t) = (, if t € &y and var(t) = {t}, if t € X;

(i1) if t = f(t1,-..,tm) with m > 1 and f € %,,, then

root(t) = f

height(t) = 1+ max{height(t;) |1 <1< m},

sublt) = {t}U (U, sub(t:),

path(t) = {A}U{ia|l<i<mand «a € path(t;)},
lp(t) = 1-lUp(tr),

l’l‘p(t) = - lT‘p(tm),

var(t) = U™ var(t;).

We note that height(t) = maz{|a| | @ € path(t)}.
For each t € T=(X) and « € path(t), we introduce the subtree t/a €
sub(t) of t at « as follows:

(i) fort e LoU X, t/A=t;

(ii) for t = f(t1,...,tm) with m > 1 and f € E,, if @ = A then t/a =t,
otherwise, if & = 23 for some 1 < ¢ < m and 3 € N*, then t/a =t;/[.
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Obviously, sub(t) = {t/a | a € path(t)}.

For each t € Tx(X) and « € path(t), if t/a = f(t1,...,tm) with m > 1
and f € ¥,,, then t,,...,t,, are called the direct subtrees at «.

In term rewriting system theory, the substitution of the subtree ¢/« of a
tree t at a path « by a tree r is a fundamental operation. This is formalized
as follows.

For t € Tx(X), a € path(t), and r € Tx(X), we define tfa + r] € Tx(X)
by induction on the length of a:

(i) if @ = A, then tja + r] =r;

(ii) if « =48, forsome i € N and § € N*, then necessarily t = f(ty,...,t,)
for some m > 1, f € %, and ¢y,...,t, € Tx(X) such that 1 <i < m.
Then t[a — ’f'] = f(tl, ke ,ti_l,ti[,ﬁ — T‘], 171, (R tm)

There is another kind of substitution, called substitution, where we sub-
stitute trees for variables in a tree. Such a substitution is a mapping
0 : X — Tx(X) which is different from the identity only on a finite sub-
set of X. For a substitution #, the term 6(¢) is produced from ¢ by replacing
each occurrence of z; with 6(z;).

For any k,m € N with 1 < m < k, for every tree t € Ts({ Tm, ..., Zk })

and for every substitution 6 with 6(z,,) = tm,...,0(zk) = tk, we denote 6(t)
also by t[Tm < tm,...,Zr < tx]. Moreover, in case m = 1, the denotation
tlxy < t1,...,xk < tx] is abbreviated as t[ty,. .., t].

Let ¥ be a ranked alphabet and s,t € Tx(X). A unifier of s and ¢ is a
substitution # such that 8(s) = 6(t). A most general unifier of s and t is a
unifier § of s and ¢ such that for each unifier  of s and ¢, there is a substitution
n' satisfying that 7'(6(s)) = n(s) and 7'(6(¢)) = n(t). It is decidable if s and ¢
are unifiable ([50]). Moreover, if s and ¢ are unifiable, then one can effectively
construct a most general unifier of s and ¢, see Theorem 4.3 in [50].

Throughout the dissertation we shall consider the most general unifiers
of unifiable and linear terms s,¢ € Tx(X) satisfying var(s) Nvar(t) = 0. For
such s and ¢, we can construct a most general unifier n : X — Tx(X) as
follows.

1. For every a € path(s), if s/a = x € X and a € path(t), then let
n(z) = t/a, otherwise let n(z) = z.
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2. For every a € path(t), if t/a =z € X, o € path(s), and s/a € X, then
let n(z) = s/, otherwise let n(z) = z.

3. For every z € X not defined in 1. or 2., let n(z) = z.

It should be clear that n is a most general unifier of s and ¢. It is well
known that a most general unifier of s and ¢ is unique up to renaming of
variables. Hence for each most general unifier 7; of s and ¢ and for every
variable z € var(s) Uwar(t), if n(z) € Tx then n(z) = n(z).

Let ¥ be a ranked alphabet and let u,v € Tx(X). The tree u is
a supertree of v if u is linear and there is a substitution € such that
v = B(u). We illustrate the concept of a supertree by an example. Let
E=3%UZi Uy, Eo = {8}, &1 = {f}, 2 = {g}. The trees f(x2),
flg(za, 1)), f(g(#,z2)) are supertrees of f(g(3,4)). On the other hand,
f(f(xz1)) is not a supertree of f(g(#,4)), because there is no substitution #
such that 0(f(f(z1))) = f(g(4,1)). Moreover, f(g(z1,z1)) is not a supertree
of f(g(t,4)) because f(g(zy,z1)) is not linear.

1.3 Rewriting systems and their properties

In this section we recall and introduce some notation, basic definitions and
terminology for rewriting systems. Nevertheless the reader is assumed to be
familiar with basic concepts of rewriting systems (see, e.g. [4], [7], [13], [46]).

1.3.1 Abstract rewriting systems

An abstract rewriting system is a structure R = (U, —) consisting of a set U
and a binary relation — on U.

We denote the transitive closure, the reflexive, transitive closure, and
the reflexive, symmetric and transitive closure of — by —*, —* and +*,
respectively. We recall that <+* is an equivalence relation.

We say that R is

(i) locally confluent if for any u,uy,us € U, if u = u; and © — ug, then a
us € U exists such that u; —* uz and uy —* ugz;

(ii) confluent if for any u,u,,us € U, if u —* u; and u —* uq, thenauz € U
exists such that u; —* u3 and uy —* us;
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(iii) noetherian if there is no infinite sequence of the form

Uy —> Uz > U3 > ...
withuy; €U, 1=1,2,...;
(iv) conwvergent if R is confluent and noetherian.

Proposition 1.3.1 [46] A locally confluent and noetherian abstract rewrit-
ing system s a confluent and thus it is a convergent.

An element u € U is called irreducible with respect to R if there does
not exist v’ € U with v — u'. Moreover, if u,u’ € U such that © —* v’ and
v’ is irreducible with respect to R then we call v’ a normal form of u. It is
well-known that if R is convergent then, for every u € U, there exists exactly
one u' € U such that «' is a normal form of u (see, e.g. [46]).

1.3.2 Term rewriting systems

Let ¥ be a ranked alphabet. A term rewriting system (or shortly a rewriting
svstem) over X is a finite subset R of Tx(X) X Tx(X) such that for every
(I,7) € R, each variable of r also occurs in [ (i.e., var(r) C wvar(l)). The
elements (I, r) of R are called rules and are denoted also by | — r. We denote
by sign(R) (C X) the ranked alphabet consisting of all symbols appearing
in the rules of R.

Note, that RUR™! is also a rewriting system if and only if for each [ — r
in R, each variable of [ also occurs in 7.

We now define the relation —x over Tx(X). For two terms s,t € Tx(X),
s —+pg t if there are a path o € path(s), a rule [ — r € R, and a substitution
0 : X — Tx(X) such that s/a = 0(l) and ¢t = s[a «— 0(r)]. If s = ¢, then we
say that R rewrites s to t or, if the details are also necessary, that R rewrites
s to t applying the rule [ — r at a.

Note that R rewrites such terms in which not only symbols being in
sign(R) appear. So, it is important to specify the ranked alphabet ¥ over
which R is considered. If we do not specify it, then we consider R over
sign(R).

To every rewriting system R over X, we can associate the abstract rewrit-
ing system R = (Tx(X),—r). Thus, we can easily adopt the notions and
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notation from abstract rewriting systems to term rewriting systems as fol-
lows.

A rewriting system R over ¥ is locally confluent (confluent, noetherian,
convergent) if the abstract rewriting system R associated to R is locally
confluent (confluent, noetherian, convergent).

Analogously, a term ¢ € Tx(X) is called irreducible with respect to R if
t is irreducible with respect to R. Moreover, for two terms s,t € Tx(X), we
call t an R-normal form of s if ¢ is a normal form of s with respect to R.

The set of all irreducible terms with respect to R is denoted by IRR(R).
Moreover, we put /RR,(R) = IRR(R) N Ty, hence IRR,(R) is the set of all
ground terms which are irreducible with respect to R.

For a term s € Tx(X), we denote the set of normal forms of s with respect
to R by NF(s,R). We extend this notation for a tree language L C Tx(X),
by letting

NF(L,R) = Us e NF (s, R).

It should be clear that if L C Ty, then NF(L,R) C Tx.

We denote by [t]g the <>%-class of a tree t € Tx(X). Note that if t € Ty
and RU R™! is also rewriting system, then [t]gr C Tk.

We say that the pair (I;,71) € Tx(X) x Tx(X) is a variant of the pair
(Ia,m2) € Ts(X) x T (X) if there is an injective substitution § : X — X such
that 8(l) =l and 6(r3) =r;.

We adopt the concept of a critical pair ([46], [47]). Let R be a rewriting
system over X and assume that the rules [ — r1, Iy — 75 are in R. Let us
take a variant I, — 74 of Iy — 7o such that var(l;) Nwvar(l,) = 0. Let us
assume that there is a tree t = l;/a, where « € path(l;), such that t & X, ¢
and [} are unifiable. Let @ be a most general unifier of ¢ and 5. Let v; = 6(r,)
and define vy = 6(l;) [ < 6(r})]. Then we call (v, v2) a critical pair of R.
Huet [46] showed the following result.

Proposition 1.3.2 Let R be a rewriting system over X. Then R 1is locally
confluent if and only if, for every critical pair (vi,vs) of R, there ezxists a tree
v € Ts(X) such that vy = v and va =R v.

1.3.3 String rewriting systems

Let ¥ be an alphabet. A string rewriting system S over ¥ is a finite subset of
¥* x ©* and each element (u,v) of S is called rule. We also write u - v € S
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meaning that (u,v) € S.

For each w,z € ¥*, w—gz if and only if there exists z,y € ¥£* and
uw— v € S such that w = zuy and z = zvy.

It should be clear that, <+% i.e., the reflexive, symmetric and transitive
closure of —g, is a congruence over ¥*.

It is well-known that the symbols of an alphabet ¥ can be considered as
unary function symbols and hence words over ¥ can be considered as unary
trees over the ranked alphabet ¥ U {4}, where # ¢ ¥. For example, the
word apple can be considered as the term a(p(p(l(e(4)))))-

Let S be a string rewriting system over ¥. The term rewriting system
associated to S is the term rewriting system R over A, where A = {a{V) |
a € U {iO} (# € ¥) and the rules of R are obtained from that of S
such that z; is put to the right end of both sides of the rules of S. That is
R = {u(z;) = v(z1) | u > v € S}. (For u = @1a2...an, n > 0, u(z;) =
ar(ay(...an(zy)...)), thus A(z1) = z;.) Hence, our notions and results on
term rewriting systems can be carried over to string rewriting systems.

1.4 Deterministic tree recognizers, tree
transducers and tree transformations

In this section, we define the concept of a deterministic bottom-up tree trans-
ducer, of a deterministic bottom-up tree recognizer, of a deterministic top-
down tree transducer, of a deterministic top-down tree recognizer, and of
a deterministic top-down tree transducer with regular look-ahead. We de-
fine some restricted versions of these devices and introduce other necessary
notions and notation concerning them. The readers, who are not familiar
enough with these concepts, can consult with [40] and [41] for more details.

1.4.1 Bottom-up tree transducers

A deterministic bottom-up tree transducer (db for short) is a system A =
(2, A, A, A", R), where

(1) X is a ranked alphabet, called the input alphabet;

(2) A is a ranked alphabet, called the state alphabet, such that A = A,
and AN(ZUAUX) =0
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(3) A is a ranked alphabet, called the output alphabet;
(4) A'(C A) is the set of final states;
(5) R is a finite set of rules of the form

flay(z1), .-y am(zm)) — a(r)

where m > 0, f € £, a,a1,...a, € A, and 7 € Ta(X,,). Moreover,
there are no two different rules in R with the same left-hand side.

The tree transformation induced by a db is formalized as follows. De-
fine the binary relation =4 on the set Ty, aua(X) so that for any ¢,s €
Tsuaua(X), t=4s if and only if the following condition holds: there is
a rule f(ai(z1),...,am(zm)) — a(r) in R such that s can be obtained
from t by replacing an occurrence of a subtree f(ai(t1),...,am(tm)) of t
by a(r[ty,...,tm]), where t1,...,tm € Touaua(X). The reflexive, transitive
closure of = 4 is denoted by =7%. The tree transformation induced by A is
the relation

Ta={(t,s) €Ty x T | t%a(s) for some a € A" }.

Clearly, the relation = 4 is interpreted as a method of rewriting terms
into terms. Hence the db A can also be considered as a term rewriting
system P over ¥ U AU A, where P = R. Moreover, P is locally confluent
due to the shape of rules in R and the fact that there are no different rules
in R with the same left-hand side: these conditions exclude any overlapping
of left-hand sides. On the other hand, it is not hard to see that P is also
noetherian. Hence, by Proposition 1.3.1, it is convergent and thus 74 is a
partial function.

Let A= (Z,A4,A,A",R) be a db and let B C A. Then we denote by
A(B) the db (£, A, A, B, R).

We now introduce four special types of db’s. Let A= (X, A, A, A", R) be
a db. We say that A is

(a) a deterministic bottom-up tree recognizer (dbr) if ¥ = A (hence we
denote it by A = (X, 4, A, R)) and each rule in R is of the form

flai(zy),- - am(zm)) = a(f(z1,---,Tm))

where a,ay,...,a,, € A. In that case, the tree transformation 74 is a
partial identity on T¥;
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(b) a linear deterministic bottom-up tree transducer (1db) if, for each rule
flai(z1), ..., am(zm)) — a(r) in R, r is linear;

(¢) a total deterministic bottom-up tree transducer , if, for any states a,, .. .,
am € A and symbol f € £, (m > 0) there is a rule (hence exactly one)
in R with left-hand side f(ai(z1),...,am(Zm));

(d) a bottom-up homomorphism tree transducer (bh) if A is a singleton set,
A=A’ and A is total.

Let A= (X,A4, A", R) be a dbr. Then we also say that A is a dbr over .

The class of tree transformations induced by all db’s (respectively, 1db’s)
is denoted by DB (respectively, LDB). The tree language recognized by a
dbr A is L(A) = dom(7.4). The class of tree languages recognized by dbr’s is
denoted by REC. A tree language is called recognizable if it is in REC.

1.4.2 Top-down tree transducers

We need the following notation. Let £, A be ranked alphabets, where A = A,
i.e., A consists only of unary symbols. Then the set Tx(A(X)) of trees consists
of all trees t € Tyya(X) of the form ¢t = s[a;(x;,),- .., an(z;,)], where n > 0,
s €Tx(X,),and a; € Afor1 <i<n.

Now, a deterministic top-down tree transducer (dt for short) is a system
A= (2,4 A, ay, R), where

(1) X, A, A are the same as for bottom-up tree transducers;
(2) ag is an element of A, the initial state;

(3) R is a finite set of rules of the form

a(f(z1,...,Zm)) =1

where m > 0, f € £,,, a € A, and r € Ta(A(Xy))). Moreover, there
are no two different rules in R with the same left-hand side.

The tree transformation induced by a dt is formalized as follows. De-
fine the binary relation =4 on the set Txyaua(X) so that for any t,s €
Tsuaua(X), t=4s if and only if the following condition holds: there is a
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rule a(f(zy,...,Zm)) — 7 in R such that s can be obtained from t by re-
placing an occurrence of a subtree a(f(t,...,tn)) of t by r[t1, ..., tx], where

tl; ceey tTn € TEUAUA(1¥)~
The reflexive, transitive closure of = 4 is denoted by =*. The tree trans-

formation induced by A is the relation
TA = {(t,S) € Tz; X TA I ao(t)%s}.

Clearly, the relation = 4 is interpreted as a method of rewriting terms
into terms. Again, A can be considered as a term rewriting system P over
YU AUA, where P = R. Moreover, P is again locally confluent and termi-
nating. Hence, it is convergent, see Proposition 1.3.1, and thus 74 is a partial
function, cf. [27].

We say that, a deterministic top-down tree transducer A is injective if 74
is injective i.e., for any ¢, s € Ty, such that ¢ # s we have 74(¢t) # 74(s).

For each a € A, A(a) = (£, A, A, a, R) is the dt A with initial state a
instead of ay.

Let A= (3,A,A ag, R) be a dt. We say that A is

(a) a deterministic top-down tree recognizer (dtr) if ¥ = A (hence we de-
note it by A = (3, A, ag, R)) and each rule in R is of the form

a(f(zy,. ., zm)) = flar(zy), ..., am(Tm))

where a,a;,...,a, € A. In that case the tree transformation 74 is a
partial identity on T%;

(b) a linear deterministic top-down tree transducer (1dt) if for each rule
a(f(z1,..., Tm)) = rin R, r is linear;

(c) a nondeleting deterministic top-down tree transducer (ndt) if for each
rule a(f(z1,..., Zm)) — rin R, each of the variables z,, . . ., z,,, appears
at least once in r;

(d) a linear nondeleting deterministic top-down tree transducer (Indt) if it
is a linear and nondeleting top-down tree transducer;

(e) a total deterministic top-down tree transducer, if for any state a € A
and symbol f € £,, (m > 0) there is a rule (and hence exactly one) in
R with left-hand side a(f(z1,...,Zm));
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(f) a top-down homomorphism tree transducer (th) if A = {ao}, and A is
total.

The class of tree transformations induced by all dt’s (respectively, 1dt’s)
is denoted by DT (respectively, LDT). The tree language recognized by the
dtr A is L(A) = dom(7.4). The class of tree languages recognized by dtr’s is
denoted by DREC. It is well known that DREC C REC.

Consider the class of bh and th tree transducers. By Theorem 1.9 in Chap-
ter IV of [40] the class of all tree transformations induced by bh transducers
coincides with the class of all tree transformations induced by th transduc-
ers. We denote this tree transformation class by H. The proof carries over
to the linear case as well, hence the class of all tree transformations induced
by linear bh transducers coincides with the class of all tree transformations
induced by linear th transducers. We denote this tree transformation class
by LH.

1.4.3 Top-down tree transducers with regular look-
ahead

Top-down tree transducers with regular look-ahead were defined in [15]. It
transpired that they have a number of nice properties, especially in the de-
terministic case. For example, the class of deterministic top-down tree trans-
formations with regular look-ahead is closed under composition.

A deterministic top-down tree transducer with reqular look-ahead (dt®) is
a system A = (X, A, A, ap, R), where the first four components are defined
exactly as in the previous subsection. Here R is a finite set of rules of the
form

(a(f(z1,...,Zm)) = T; L1,..., Ly)

where a(f(zy,...,2,)) — r is an ordinary dt-rule, see the previous subsec-
tion, and for each 1 < i < m, L; C Ty is a tree language in REC. Moreover,
L; N L, = § holds for some 1 < 7 < m, whenever (a(f(z1,...,Zm)) —
ri; Ly, ..., Ly) and (a(f(z1,...,Zm)) — ro; LY, ..., L!) are different rules
in R.

One step in the transformation of A is represented by the binary relation
=4 on Txyaua(X) defined as follows: t=>4s if and only if the following
condition holds: there is a rule (a(f(z1,...,2Zm)) = 7; L1,...,Ly) in R
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such that s can be obtained from ¢ by replacing an occurrence of a subtree
a(f(ty,...,tm)) of t by r[t1,...,tm] where t; € L; for 1 < i < m.

[t can be seen from the definition of =4 what the notion look-ahead
means: a rule can be applied at a node of a tree only if the direct subtrees of
that node are in the tree languages, respectively, given in the rule. Note that
A can apply at most one rule at any given node. This is because for any two
different rules in R with the same left-hand side there exists a variable z;
such that the ith look-ahead sets are disjoint. As usual, =% is the reflexive,
transitive closure of = 4 and the partial function

Ta={(t,s) € Iy XTA|ao(t)i>3}

is the tree transformation induced by A.
Let A= (Z, A4, A, ag, R) be a dt®. We say that A is a linear deterministic
top-down tree transducer with reqular look-ahead (1dt®) if for each rule

(a(f(z1,...,Zm)) = 715 L1,..., Ly)

in R. r is linear.
The class of all tree transformations induced by all dt#’s (respectively
1dt#’s) is denoted by DT® (respectively LDTZR).



Chapter 2

On term rewriting systems
preserving recognizability

This chapter is divided into four sections. Section 2.1 consists of the necessary
notions and notation. We summarize the results of this chapter in Section
2.2. Moreover, in Section 2.3, we show that lgsm rewriting systems effectively

preserve recognizability and we illustrate our constructions by an example.
Finally, in Section 2.4, we study rewriting systems preserving recognizability
and gsm rewriting systems.

2.1 Further notions and notation

In this chapter, we need the concept of a (nondeterministic) bottom-up tree

automaton.
Let ¥ be a ranked alphabet. A bottom-up tree automaton over T is a

quadruple A = (X, A, A’ R), where A is a finite set of states of rank 0,
ENnAdA =0, A(C A) is the set of final states, R is a finite set of rules of the

following two types:
(i) f(a1,...,a,) > awithn>0, f € X, a1,...,a,,a € A.
(ii) @ — o' with a,a’ € A (called A-rules).

We consider R as a ground rewriting system over ¥ U A. The tree language

24
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recognized by a bottom-up tree automaton A is

L(A) = {t € T | there exists a € A’ such that té% a}.

It is well known that the class of tree languages recognized by bottom-
up tree automata is REC (see [40]). The bottom-up tree automaton
A = (£, A, A R) is deterministic if R has no A-rules and R has no two
rules with the same left-hand side. It should be clear that a deterministic
bottom-up tree automaton is equivalent with a dbr defined in Subsection
1.4.1 with respect to recognizing capacity and vice versa.

We say that the bottom-up tree automaton A is connected if for every
a € A there exists t € Ty, such that ¢ =7 a. Every recognizable tree language
can be recognized by a deterministic connected bottom-up tree automaton
(see [40]).

We need the following result, which was shown by Brainerd [5], Kozen
[48], and Fiilép and Vagvolgyi [31].

Proposition 2.1.1 A tree language L s recognizable if and only if there
exists a ground rewriting system R such that L is the union of finitely many
—p-classes.

Next we define some restricted versions of rewriting systems. Therefore,
let R be a rewriting system over X. We say that R is

(1) left-linear (right-linear) if, for every rule I — r in R, [ (r) is a linear
tree;

(ii) linear if it is both left-linear and right-linear;
(iii) ground if, for every rule [ — r in R, both [ and r are ground trees;
(iv) monadic if, for every rule [ — r in R, height(l) > 1 and height(r) < 1;

(v) semi-monadic if, for every rule | — r in R, height(l) > 1 and either
height(r) =0 or r = f(y1,.-.,Yx), where f € ¢, kK > 1, and for each
i € {1,...,k}, either y; is a variable (i.e., y; € X) or y; is a ground
term (i.e., y; € Tx);

(vi) collapse-free if there is no rule I — r in R such that l € X or r € X
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(vii) left-to-right minimal if, for every rule [ — r in R, “Ho gty O R

(viii) left-to-right ground minimal if, for each rule | — r in R, Rl
ﬂ(TE X TE) C—);{ ﬁ(TE X TE);

(ix) two-way minimal if, for every rule [ — r in R, S r-1r} SRS

(x) two-way ground minimal if, for each rule { — r in R, a1y Tz x
Tz) C(—)*R ﬂ(TE X TS)

It is immediate that the concept of a semi-monadic rewriting system general-
izes the notion of a monadic rewriting system. Moreover, properties (vii)-(x)
are not static in the sense that we cannot decide by direct inspection whether
a term rewriting system R has these properties or not. In fact, we will show
later that (vii)-(x) are decidable properties of linear generalized semi-monadic
rewriting systems.

Next we introduce the concept of a modular property for a class of rewrit-
ing svstems. A class C of rewriting systems is closed under disjoint union
if for any rewriting systems R, S € C over ¥ and A, respectively, such that
YN A = (), the rewrite system RU S over ¥ U A also belongs to C.

Let C be a class of rewriting systems, closed under disjoint union. A
property P over C is modular for C if for any R,S € C over ¥ and A,
respectively, such that TN A =0, RU S over ¥ U A has the property P if
and only if both R over ¥ and S over A have the property P. For a short
survey on the disjoint union of rewriting systems, see the introduction of [6].
Moreover, see [6] also for recent results in this area.

We introduce some further notation. Let ¥ be a ranked alphabet and let R
be a rewriting system over . Moreover, let A be a ranked alphabet such that
¥ C A and let L C Ta. Then we define R4 (L) = {p | ¢ =% p for some q €
L}. We call Ri(L) the set of descendants of elements of L and if A is
clear from the context, we write R*(L) rather than R} (L). We say that R
preserves A-recognizability, if for every recognizable L C Tx, RA(L) is also
recognizable.

A rewriting system R over X preserves recognizability if, for every ranked
alphabet A with ¥ C A, R preserves A-recognizability.

Again, let R be a rewriting system over % and let ¥ C A. We say that R
effectively preserves A-recognizability if, for every bottom-up tree automaton
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B over A, we can effectively construct a bottom-up tree automaton C over
A such that L(C) = R, (L(B)).

Finally, a rewriting system R over X effectively preserves recognizability
if, for every ranked alphabet A with ¥ C A, R effectively preserves A-
recognizability.

It is easy to see that a rewriting system over a ranked alphabet effectively
preserves recognizability then it preserves recognizability.

We shall need the following concepts concerning string rewriting systems.
Let S be a string rewriting system. We say that S is

(i) A-free if there is no rule u — v in S such that u = X or v = A;
(i1) monadic if (u,v) € S implies that |u| > |v| and (Jv| =1 or |v| = 0).

We say that a string rewriting system S over ¥ (effectively) preserves (X-)
recognizability if the term rewriting system R over A associated to S (effec-
tively) preserves (A-) recognizability. It is well known that monadic string
rewriting systems effectively preserve recognizability, see Theorem 4.1.2 in

[4].

2.2 Summary of results

In [42] Gilleron showed that for a rewriting system R it is undecidable if R
preserves sign(R)-recognizability. Moreover, in [51] F. Otto showed that it is
undecidable in general whether a rewriting system preserves recognizability.
We obtain the following results.

e There is a ranked alphabet ¥ and there is a linear rewriting system R
over ¥ such that R preserves Y¥-recognizability but does not preserve
recognizability. (Theorem 2.4.1)

e Let R be a rewriting system, and let ¥ = { f, 4} U sign(R), where f €
Yy—sign(R) and § € Lg—sitgn(R). Then, R preserves X-recognizability
if and only if R preserves recognizability. (Theorem 2.4.3)

e Let R be a rewriting system, and let ¥ = { f,4} U sign(R), where
| € Ly — sign(R) and § € £y — sign(R). Then, R effectively preserves
Y-recognizability if and only if R effectively preserves recognizability.
(Theorem 2.4.6)
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In spite of Gilleron’s undecidability results, we know several rewriting sys-
tems which preserve recognizability. Brainerd [5] showed that ground rewrit-
ing systems over any ranked alphabet ¥ effectively preserve -recognizability,
see also [16]. Gallier and Book [38] introduced the notion of a monadic rewrit-
ing syvstem, and Salomaa [54] showed that linear monadic rewriting systems
over any ranked alphabet ¥ effectively preserve Y-recognizability. Coquidé
et al [7] defined the concept of a semi-monadic rewriting system generalizing
the notion of a monadic rewriting system. Coquidé et al [7] showed that lin-
ear semi-monadic rewriting systems over any ranked alphabet ¥ effectively
preserve Y-recognizability.

We generalize the concept of a semi-monadic rewriting system and of a
ground rewriting system by introducing the concept of a generalized semi-
monadic rewriting system (gsm rewriting system for short). We obtain the
following main result.

e For every ranked alphabet A and linear gsm (lgsm) rewriting system
R over A, R effectively preserves recognizability. (Theorem 2.3.19)

The proof of this statement can be sketched in the following way. Let A C
Y, L be a recognizable tree language over ¥, and let B = (X, B, B’, R5) be a
tree automaton recognizing L. Similarly to the constructions of Salomaa [54]
and Coquidé et al [7], we construct a sequence of bottom-up tree automata
Ci = (3,C,B',R;), i > 0 having the same ranked alphabet, state set, and
final state set. The rule set Ry contains Rgz. Moreover, Ry contains rules
which enable Ry to recognize the right-hand sides of rules in R. For each
1 > 0, R;41 contains R;, and for each rule [ — r in R, C;;; simulates, on the
right-hand side r, the computation of C; on the left-hand side [. There is a
least integer M > 0 such that Ry = Rpry1. Hence Cpy = Crriq. We show
that L(Cp) = R*(L).

Brainerd [5], Kozen [48], and Fiilop and Vagvolgyi [31] showed that a tree
language L is recognizable if and only if there exists a ground rewriting system
R such that L is the union of finitely many <>}%-classes. We obtain a similar
characterization for recognizable tree languages by proving the following.

e A tree language L is recognizable if and only if there exists a rewriting
system R such that RU R™! is an lgsm rewriting system and that L is
the union of finitely many «+%-classes. (Theorem 2.3.21)
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Our concepts and results carry over to strings as well. We generalize the
concept of monadic string rewriting systems by introducing the concept of
restricted right-left overlapping string rewriting systems.

We show the following two statements.

e Restricted right-left overlapping string rewriting systems effectively
preserve recognizability. (Theorem 2.3.23)

e A string language L is recognizable if and only if there exists a string
rewriting system S such that SUS™! is a restricted right-left overlap-
ping string rewriting system and that L is the union of finitely many
+r¢-classes. (Theorem 2.3.23)

We also show the following sequence of decidability results for rewriting
systems (effectively) preserving recognizability.

e Let R, R, be rewriting systems. Let R; effectively preserve recogniz-
ability. Then it is decidable if =% C —% . (Theorem 2.4.8)

e For an lgsm rewriting system R, it is decidable whether R is left-to-right
minimal. (Consequence 2.4.12)

e Let Ry and R, be rewriting systems such that B, U R7" and Ry U Ry!
are rewriting systems and effectively preserve recognizability. Then it
is decidable if <% C <% . (Consequence 2.4.13)

e Let R be a rewriting system such that R U R™! is an lgsm rewriting
system. Then it is decidable whether R is two-way minimal. (Conse-
quence 2.4.14)

e Let Ry, R, be rewriting systems over a ranked alphabet ¥. Suppose
that R, effectively preserves recognizability. Let ¢ € ¥ — ¥ be such
that g does not occur on the left-hand side of any rule in R;, and
let § € ¥y be irreducible with respect to R;. Then it is decidable if
=5, ((Ts x Tx) € =%, N(Tx x Tx). (Theorem 2.4.15)

e Let R be an lgsm rewriting system over X. Moreover, let g € ¥ — ¥
be such that g does not occur on the left-hand side of any rule in R,
and let § € ¥y be irreducible with respect to R. Then it is decidable
whether R is left-to-right ground minimal. (Consequence 2.4.18)
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e Let Ry and R, be rewriting systems over ¥ such that R; U R{' and
R,U R;" are rewriting systems and effectively preserve recognizability.
Moreover, let g;, g, € ¥ — Xy be such that for each i € {1,2}, g; does
not occur in R;. Let 41,82 € ¥y be such that for each i € {1,2}, #; is
irreducible with respect to R;UR; . Then it is decidable if R, N(Tx x
Tx) C %, N(Tx x Tx). (Consequence 2.4.19)

e Let R be a rewriting system over ¥ such that R U R~! is an lgsm
rewriting system. Moreover, let ¢ € ¥ — ¥ be such that g does not
occur in any rule of R, and let § € ¥, be irreducible with respect to
R U R™!. Then it is decidable whether R is two-way ground minimal.
(Consequence 2.4.20)

e Let R be a rewriting system over X effectively preserving recognizabil-
ity, and let p,q € Tx(X). Then it is decidable if there exists a tree
r € Tx(X) such that p—% r and ¢ =% r. (Lemma 2.4.21)

e Let R be a rewriting system over ¥ effectively preserving recognizabil-
ity. Then it is decidable if R is locally confluent. (Theorem 2.4.22)

By direct inspection we obtain that for any dt A = (X, A, A, ay, R) with
YNA =, Ris a convergent left-linear gsm rewriting system over the ranked
alphabet AUSUA. Hence Fiilop’s [25] undecidability results on deterministic
top-down tree transducers imply the following.

e Each of the following questions is undecidable for any convergent left-
linear gsm rewriting systems R; and Ry over a ranked alphabet €2, for
any recognizable tree language L C Tq given by a tree automaton over
(2 recognizing L, where I' is the smallest ranked alphabet for which

NF(L,R)) C Tr.
(i) Is NF(L,R,) N NF(L, R,) empty?
(ii) Is NF(L, R,) N NF(L, R,) infinite?
(i7i) Is NF(L, Ry) N NF(L, Ry) recognizable?
(i) Is Tr — NF(L, R;) empty?
(v) Is Tr — NF(L, R,) infinite?
(vi) Is Tr — NF(L, R,) recognizable?
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(vii) Is NF(L, R1) recognizable?
(viii) Is NF(L,R;) = NF(L, R,)?
(iz) Is NF(L,R,) C NF(L, R;)?

(Proved in Theorem 2.4.27)

Finally, we show that preserving recognizability and effectively preserv-
ing recognizability are modular properties of linear collapse-free rewriting
systems. That is, the following statement holds.

e Let R and S be linear collapse-free rewriting systems over disjoint
ranked alphabets ¥ and A, respectively. Then R and S (effectively)
preserve recognizability if and only if RUS over SUA also (effectively)
preserves recognizability. (Consequence 2.4.31 and Theorem 2.4.32)

This result implies the following.

e Preserving recognizability and effectively preserving recognizability are
modular properties also of A-free string rewriting systems. (Theorem
2.4.33)

2.3 Generalized semi-monadic rewriting sys-
tems

2.3.1 Linear generalized semi-monadic rewriting sys-
tems preserve recognizability

In this subsection we introduce the notion of a gsm rewriting system and
show that linear gsm rewriting systems effectively preserve recognizability.

Definition 2.3.1 Let R be a rewriting system over .. We say that R is a
generalized semi-monadic rewriting system (gsm rewriting system for short)
if there isno rule/ — r in R with [ € X and the following holds. For any rules
Iy = ry and I — 7o in R, for any occurrences « € path(ry) and § € path(ly),
and for any supertree I3 € Tx(X) of ly/3 with var(l3) Nwvar(l;) = 0, if

((a=Aorf=A
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(ii) ri/c and [3 are unifiable, and
(iii) # is a most general unifier of 7, /o and I3,
then
(a) I,/B € X or
(b) for each v € path(ls), if ls/6y € X, then §(l3/7) € X U Tx.

Notice that Condition (a) implies that I3 € X. We abbreviate the expression
linear gsm to lgsm.

Example 2.3.2 Let ¥ = 20U21UZ2, 20 = {ﬁ}, 21 = {f }, and 22 = {g}
Let the rewriting system R over X consist of the rule

9(371,-7«'2) — f(g(xh ﬁ)) s
We obtain by direct inspection that R is Igsm.

Definition 2.3.3 A rewriting system R over X is restricted right-left over-
lapping if there is no rule [ — 7 in R with [ € X and the following
holds. For any rules [; — 7, and Il — 7o in R, for any occurrences
« € path(r,) and B € path(ly), and for any supertree i3 € Tx(X) of I/
with var(l3) Nwvar(ly) =0, if (i), (ii), and (iii) in Definition 2.3.1 hold, then
(a’), (b’), or (c’) hold.

(@) a=A1l/0 € X.
(b’) @ = X\ and for each v € path(l3), if /By € X, then 0(l3/v) € X U T%.
(¢’) 8 = X and for each v € path(l3), if l/vy € X, then §(l3/7) € X U Tx.

Note that Condition (a’) implies that [3 € X. We visualize the unification
of r;/« and the supertree I3 of l5/3 by the most general unifier #, when
Condition (a’) (Condition (b’), Condition (c’), respectively) holds on Figure
2.1 (Figure 2.2, Figure 2.3, respectively).

The proofs of the following two results are straightforward.

Observation 2.3.4 A rewriting system R is gsm if and only if R 1s restricted
right-left overlapping.
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a= A
ly | lo/8 € X and I3 = z;

9(1’1) =T

1

Figure 2.1: The unification of 7 /a and the supertree I3 of I,/ by the most
general unifier §, when Condition (a’) holds.
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for each v € path(l3), if l3/By € X, then 0(l3/7) € X UTx

Figure 2.2: The unification of 7/« and the supertree I3 of 5/ by the most
general unifier §, when Condition (b’) holds.
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ly

for each v € path(l3), if /v € X, then 0(l3/7) € X UTx

Figure 2.3: The unification of r;/a and the supertree I3 of [, by the most
general unifier §, when Condition (c¢’) holds.
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Observation 2.3.5 Each semi-monadic rewriting system is gsm as well.

We now show that lgsm rewriting systems effectively preserve recogniz-
ability. Throughout this subsection, R is an lgsm rewriting system over
some ranked alphabet A, and ¥ is an arbitrary ranked alphabet such that
A C X. Moreover, let L = L(B) be a recognizable tree language over X,
where B = (X, B, B, Rg) is a deterministic connected bottom-up tree au-
tomaton over ¥. Via a series of theorems and lemmas we show that R} (L)
is recognizable. In fact we construct a tree automaton C over £ such that
L(C) = R%(L). Our construction is illustrated by an example in Subsection
2.3.2. As we are interested in the tree language R5, (L) rather than in R} (L),
by R*(L) we always mean Ry (L).

Let E be the set of all ground terms u over X such that there are rules [, —
ri and [y — r2 in R, and there are occurrences o € path(ry) and 8 € path(l,),
and there is a supertree I3 € Tx(X) — X of ly/3 with var(l3) Nvar(ly) = 0
such that

(i) a=Aor =2,
(ii

) 71/« and [3 are unifiable, and
(iii) # is a most general unifier of 1/« and [3, and
)

(iv) there is an occurrence y € path(l3) such that ly/8y € X and 0(l3/7) €
Tx, and that u is a subterm of 6(l3/7).

It should be clear that F is finite and effectively constructable.

Recall that B = (X, B, B’, Rp) is a deterministic connected bottom-up
tree automaton such that L(B) = L. We lose no generality by assuming that
B N N = (). Moreover, without loss of generality we may assume that for
each rule [ — 7 in R, | € Tx(X,) for some n > 0. Let

D = BU{play,...,an] | n > 0,p € Tx(Xp),a1,...,6, € BUE,pis a
subtree of the right-hand side r of some rule [ — r in R}.

It should be clear that BUE C D. Let
C=BuU{l,...,|D-B|}.

We consider C' as a ranked alphabet, for each ¢ € C the rank of ¢ is 0. Let
() : D — C be a bijection such that (b) = b for each b € B.
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For each ¢ > 1, consider the bottom-up tree automaton C, =
(X,C,B',R;), where R; is defined by recursion on i (for an example see
Subsection 2.3.2).

We define Ry as follows.

(i) Rs € R.

(ii) Foralln >0, f € £,, t1,...,t, € D, if f(t1,...,t,) € D, then we put
the rule f((t1),..., (ts)) = (f(t1,..., %)) in Ry.

We shall refer to a rule appearing in (ii) as a (ii)-type rule of Rj,.
Let us assume that 2 > 1 and we have defined the set R;_;. Then we
define R; as follows.

(&) R;_1 € Ry

(b) For any rule [ — r in R with n > 0, [ € Tx(X,), for all a,,...,a, €
BUE, ifl[{a1), ..., {(an)] —%,_, c for some c € C, then we put the rule
(rlai,...,an]) = cin R;.

As B is connected, all states in B are reachable in Cy. By (ii) in the
definition of Ry, all states in {1,...,|D — B|} are reachable in Ry. Hence C
is connected. As R; C R;y; for 2 > 0, C; is connected for z > 1.

It should be clear that there is an integer M > 0 such that Ry, = Rpsyq.
Let M be the least integer such that Ry = Ry;.q. Let C = Cyr. Let S = Ry,
and from now on we write C = (X, C, B’, S), rather than Cyy = (X, C, B', Ry).

Our aim is to show that R*(L) = L(C). To this end, first we show
five preparatory lemmas, then the inclusion L(C) C R*(L), then again five
preparatory lemmas, and finally the inclusion R*(L) C L(C).

Lemma 2.3.6 L = L(Cy).

Proof. By direct inspection of the set Ry of rules. O

Lemma 2.3.7 For anyp € Tk, if p—}, (r[as, ..., an]) for somer € Ts(X,),
n >0, and ay,...,an, € BUE, then p = r[p1,...,pn), where p; € Tx and
pi 7 g,(a;) for 1 <i < n.

Proof. By direct inspection of the rules of R,. a

The following statement is a simple consequence of Lemma 2.3.7.
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Lemma 2.3.8 Foranyp € Ty, if p—=, (r[ay, ..., an]) for somer € TE(XR),
n >0, and ay,...,a, € BUE, then p = r[p1,...,pn|, where for each 1 <
i < n, if the variable z; appears in the tree r, then p; € Ty and p; =% (a;).

Lemma 2.3.9 Forany: > 1, p€Tx, q,t € Txue, k> 1, and vy, ..., v, €

QLUC; 7’/
p=7v ) ¥ aa s U = >t 2.1
1R0 2Ro Ry o qR* ’ ( )

1

and C; applies an (R; — R;—)-rule in the last step q—rg, t of (2.1), then there
exists an s € Tx such that

— =
52D and S o L. (2.2)

1

Proof. Let a be the occurrence where C; applies an (R; — R;_1)-rule
(rlai,...,a,)) = ¢
in the last step ¢ —g, ¢t of (2.1). Then

g =ul{rlar,...,a.))],

where u € Tx(X1), u/a =1z, T € Tg(Xn), n >0, and a1,...,a, € BUE.
By Lemma 2.3.8,
p=ulr[ps,...,pa]l,

for each 1 <1 < n, if the variable x; appears in the tree r, then p; € Ty, and
Pi —k,(@i). Finally, ¢ = ulc]. By (b) of the definition of rules of R;, i > 1,
there is a rule [ — r in R with [ € Tx(X,), n > 0, and there are states and
trees a; € BUFE for 1 <7 < n such that for each 1 <7 < n, a} = q; if z;
appears in the tree r, and that

@), - ()] 5 e

As C;_; is connected, there are trees qi,...,¢, € Tx such that for each 1 <
i < n, if z; appears in the tree r, then ¢; = p;, and that ¢; =%, aj. Let

s =ulllgr, -, qn]] -

Then
_)
5P
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and
s=ulllqr,...,qu)] D ulllal,...,a]] = ulc]=t.
Ro Rri—l

Hence (2.2) holds. a

Lemma 2.3.10 Forevery: > 0,p €Ty, q € Txuc, if p —%, 4, then there is
an s € Tx, such that
LY .
s and s IS¢

Proof. We proceed by induction on :. For i = 0 the statement is trivial. Let
us suppose that z > 1 and that we have shown the statement for 1,2,...,7—1.
Let
~q, 2.3
P4 (2.3)

and let m be the number of (R; — R;_;)-rules applied by C; along (2.3). We
show by induction on m that

there is an s € Ty, such that s ip and s;}q . (2.4)

If m = 0, then p—%._ ¢ and hence by the induction hypothesis on , (2.4)
holds.

Let us suppose that m > 1 and that for 0,1,...,m — 1, we have shown
(2.4). Let p—% g where C applies m (R; — R;_1)-rules. Then there are
integers n, k, 1 < k < n, and there are trees %1, t3, u1, us, . .., u, € Txyc such

that (I), (II), (III), and (IV) hold.
(I) P=1U] PR, ... 7R, Uk = t1 PR, Ugy1 = L2 7R, ... 7R, Up = (.

(IT) along the reduction subsequence p = u; —*g, ... g, ux = t; of (I), C;
applies no (R; — R;_1)-rule.

(ITI) in the rewriting step ugy —*g, uk+1 C; applies an (R; — R;_;)-rule.

(IV) along the reduction subsequence ty = ugt1 g, ... g, Un = ¢ of (),
C; applies m — 1 (R; — R;_1)-rules.

By the induction hypothesis on ¢, there is a tree s; € Ty such that

% St . :
$1 Rpand isOtl (2.5)
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Hence
x*
S1 =t >ty .
Ry R;

By Lemma 2.3.9, there is a tree sy € Ty, such that

n e
So—> 81 and sp — 1o . 4
2 7 81 2,7 02 (2.6)
Hence there is j > 0 and there are wy, ..., w; € Tyyc such that
Sog =Wy, —> Wy —> ... = W; =t =Ups1—>... Uy = 2.
T S T VA e A e (1)

and along (2.7), C; applies m—1 (R; — R;_1)-rules. By the induction hypoth-
esis on m, there is a tree s3 € Ty, such that

5.8 d Y
S: S9 anda S: q .
3 R 2 3

Hence by (2.5) and (2.6),

S 85 =D .
S3 o 827781 7
Thus (2.4) holds. a

Theorem 2.3.11 L(C) C R*(L).

Proof. Let p € L(C). Then p —%b for some b € B'. Hence by Lemma 2.3.10,
there is an s € Tx such that

s—}gpandsgb. (2.8)

Hence s € L(Cy). By Lemma 2.3.6, s € L. Thus by (2.8), p € R*(L). a

Now we show the inclusion R*(L) C L(C). First we prove five lemmas.

Lemma 2.3.12 Let Iy — 1 and ly — ro be rules in R. Let a € path(ry),
where ri/a € Ts(X;), 7 > 0. Let 8 € path(ly), where I3/8 € Tx(X) — X,
and let s € Ts(Xy) — X, k > 1, be a supertree of lo/B. Let « = X or 8 = ).
Let

(rl/a)[al,...,aj] :s[zl,...,zk] 5 (29)

where ay,...,a; € BUE, z,...,2 € Txup. Let v € path(s) be such that
/By € X, and s/v =x,, for somel <v < k. Thenz € BUE.
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Proof. Let [, € Tx(X,,) for some m > 0. Let I3 = s[Zm41,-- -, Tmsk]. Then
Iy € Ts({ Tms1,-- -, Tmsk }) is a supertree of I/ 3, for each m+1 < i < m+k,
x; appears exactly once in l3. Moreover, var(l;) Nvar(l3) = 0, and by (2.9),

(ri/a)]a1,...,a5] = l3[Tme1 & 21, -« oy Tmgk — 2k - (2.10)

Let #; : X — Tx(X) be a most general unifier of r;/a and 3. By (2.10),
there is a substitution 6 : X — Tyyp(X) such that

O2(01(r1/@)) = (ri/a)ar, ..., 0] = B[Tmy1 & 21, -, Tmak — 2] =

02(01 (1)),
where 05(0(z;)) = a; for 1 < ¢ < j and 05(61(Tmsi)) = z; for 1 < i < k. By
Definition 2.3.1 and by the definition of E, 61 (zmpm4,) € XUE. If 0)(zmy,) €
X, then 02(61(zm+y)) is a subtree of a, for some p € {1,...,5}. Hence
by the definition of E, z, = 65(61(zm+v)) € BUE. If 61(zmyy) € E, then
2y = 02(01(Zm+v)) = 01(Tmsv) € E. =

Intuitively, the following lemma states that along a reduction sequence of
S we can reverse the order of the consecutive application of a (ii)-type rule
of Ry at @ € N* and the application of an (S — Rp)-rule at § € N* if « is
not a prefix of § and [ is not a prefix of a.

Lemma 2.3.13 Let
(/51 ? Ug ? Us

be a reduction sequence of C. Let a € path(uy), and B € path(us) be such
that u; —sus applying a (1i)-type rule ruley of Ry at «, and that us —>s u3
applying an (S — Ry)-rule ruleg at 5. If o is not a prefiz of B and 3 is not
a prefir of «, then there is a tree v € Tsyc such that uy —gv applying rule,
at 3, and v—rgusz applying rule; at c.

Proof. Straightforward. O

Lemma 2.3.14 Let i > 0, t € Txuc(X1), @ € path(t), t/a = z;, ¢ €
{1,...,|D—B|}, and b€ B. Let
tlc| = —S Uy —>...—Uu, = b 2.11
d=wmDmo . (211)

t

withn > 1, uy,...,u, € Txuc. Then along (2.11), C; applies a rule in R;— Ry
at some prefiz B of .
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Proof. By direct inspection of the construction of the C;’s. a

Lemma 2.3.15 For anyn > 0, u € Tg(Xn), Vi,...,Un, v € D, m>1, and
Wiy o0 g Wy S T}:UC: '[,f

ul(vy), ..., (vp)] = wy FWa P W = (v), (2.12)

and C applies only (ii)-type rules of Ry along (2.12), then ufvy, ..., v,] = v.

Proof. We proceed by induction on height(u). The basis height(u) = 0 of
the induction is trivial. The induction step is a simple consequence of (ii) in
the definition of Ry and of the inclusion Ry C S. O

Lemma 2.3.16 Lett € L(C), m > 1, t1,...,tm € Txuc, b € B’, and let

=tttz ...Ftm=b. :
t=t 2t 2t P m = (2.13)

Let | — 1 be a rule in R, where | € Tx(X,) and n > 1. Moreover, let
1 <5 <m, and let

tifa=I[{v1),--., ()], (2.14)
where n. > 1, vy,...,v, € D, a € path(t;). Let ay,...,an € path(l) such
that

llasy=z; forl<i<n. (2.15)

Consider the reduction subsequence

ti g tivr g Ftm =0 (2.16)

of (2.13). If C does not apply any rules at the occurrences aqy, . . ., aay, along
(2.16), then vy,...,v, € BUE.

Proof. Let 1 < i < n, and let us assume that v; € D — B. By (2.14) and
(2.15),

tj/aa,- = (’Ui> % ' (217)
By Lemma 2.3.14, C applies a rule in S— R, at some prefix of ac; along (2.16).
Let 3 € path(t;) be the longest prefix of ac; such that C applies a rule rule
in S — Ry at (3 along (2.16). Then rule is of the form (ri[a;,...,ax]) — ¢,
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where & > 0, 71 € Tx(X,), a1,...,a. € BUE, and there is a rule [; — r; in
R. Moreover there exists &, 7 < & < m, such that

t]/ﬁ?tj+1/5—;>?tf/ﬂ= <T1[al,...,an]> "

where for each m, j <7 <& —1, ¢ /B8 =try1/B or to/B—strs1/8. We lose
no generality by assuming that

tj//j?tj+1/ﬂ?. “ —S‘)tf/ﬂ = (rl[al, o ,a,c]) - (218)
By Lemma 2.3.13 we may assume that there exists v, 7 < v < £ such that

(a) along the reduction subsequence
ti/62 - 2 t/B (2.19)

of (2.18) no rule is applied at any prefix of ac;, that

(b) along (2.19) each application of a (ii)-type rule of Ry at some § € N*
is followed somewhere later by an application of an S — Ry-rule of S at
a prefix € of ¢, and that

(¢) along the reduction subsequence
tu/‘B_S) ?tf/ﬂ = <r1[a17"' 7an]>

of (2.18), S applies only (ii)-type rules of Rj.

Then
bl B = 881}, - - - {20 (2.20)

for some k > 1, s € Tx(Xz), and (z1),...,{z) € C. By (2.20), (c) of the
definition of v, and Lemma 2.3.15,

8555558 = P10 3 Gl + (2.21)

The word « is a prefix of 3 or [ is a prefix of c. Hence we can distinguish

two cases.
Case 1 « is a prefix of 3, see Figure 2.4. In this case,

p=ay (2.22)
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(vi)
Figure 2.4: Case 1. of Lemma 2.3.16

for some v € N*, and hence ¢,/ is a subtree of ¢,/a. Now by (2.14), the
definition of v, and (2.20),

s is a supertree of [/ . (2.23)

Let w be the prefix of aa; with length(w) = length(ac;) — 1. Observe
that C applies a (ii)-type rule of Ry at the occurrence w along (2.16). Hence

sEX . (2.24)
Let 0 € N* be defined by the equation v = ;. Then
86 = aq; (2.25)
and by (a) of the definition of v,
0 € path(s),d € path(l/7), and (I/7)/6 = z; . (2.26)
By (2.25) and by (a) of the definition of v,
B0 € path(t,) .
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Figure 2.5: Case 2. of Lemma 2.3.16

By (2.17), (2.25), (a) of the definition of v, and (2.20),

(vi) = (t;/6)/0 = (t,/B)/0 = s[(z1), - - -, (2)]/6 = (2u) (2.27)

for some 1 < u < k. As R is gsm, by (2.23), (2.24), (2.26), (2.21), and
Lemma 2.3.12, z, € BUE. By (2.27),v; € BUE.

Case 2 [ is a prefix of «, see Figure 2.5. In this case

a = Py (2.28)

for some v € N*, and hence ¢;/« is a subtree of ¢;/3. Now by (2.14), the
definition of v, and (2.20),

s/ is a supertree of [ . (2.29)

Moreover, by (a) of the definition of v,

a; € path(s/vy),l/a; € X, and (s/v)/a; € X . (2.30)
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Let w be the prefix of acy; with length(w) = length(aa;) — 1. Observe
that C applies a (ii)-type rule of Ry at the occurrence w along (2.16). Hence

s/vT€X. (2.31)
By (2.28) and by (a) of the definition of v,
Byoy = aoy € path(t,) . (2.32)
Then by (2.17), (2.32), (a) of the definition of v, and (2.20),
() = (/870 = (6] B) /705 = sl(z1), - (270w = () (2.33)
for some 1 < p < k. By (2.21),

a2y « o 28] = 881505 <5 28] /T =Fil01; o5 8117 (2.34)
As R is gsm, by (2.29), (2.31), (2.30), (2.33), (2.34), and Lemma 2.3.12,
z, € BUE. By (2.33), v, € BUE. O

Theorem 2.3.17 R*(L) C L(C).

Proof. By (i) in the definition of Ry, Rg C Ry. Hence L C L(Cy). As
R,y C R, fori > 1, we have L C L(C;) for ¢ > 0. Hence L C L(C). Thus it
is sufficient to show that for each ¢t € L(C), if t =g t/, then ¢ € L(C). To this
end, let us suppose that t =z t’, applying the rule  — r in R at & € path(t).
Here [ € Tx(X,,) for some n > 0. Let o, ..., o, € path(l) be such that

l/a;=z;for1<i<n.

Then
b= alllt; 5.5 Unl] 5
where s € Tx(X,), a € path(s), s/a = z,, and uy, ..., u, € Tx. Moreover,
t' =tla + rlug, ..., un)] = s[rug,. .., u.]] -
As t € L(C), there is a reduction sequence

=t =ty Sty ... Dty = 5
t=t 222t 2. 2 tm =D, (2.35)

where m > 1, b € B, t1,...,tm € Tsuc, and there are integers 7, k with
1 < 7,k < m such that
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(i) t; = s[l[{v1), ..., (vn)]], where v; € D and u; =%(v;) for 1 < i < n,
(ii) tx = s[co], for some ¢y € C, where {[(v1), ..., (vs)] =% co, and that

(iii) along the reduction subsequence t; —2gtji1 —s...—*st; of (2.35), C
does not apply any rules at the occurrences aqy, ..., aq,.

By Lemma 2.3.16, vy,...,v, € BUE. Hence by Condition (ii) in the defini-
tion of R;, + > 1, and by the definition of C, the rule r[(vy),..., (v,)] = ¢ is
in S. Thus we get

*

t = slriug, ..., )] 1 s[r[{v1), .-, (va)]] 7 seo] —;? b.

Asbe B', t' € L(C). a
By Theorems 2.3.11 and 2.3.17, we get the following.

Theorem 2.3.18 R*(L) = L(C).
As A, R, ¥ (A C %), and B are arbitrary, we have the following result.

Theorem 2.3.19 Linear generalized semi-monadic rewriting systems effec-
tiwely preserve recognizability.

Theorem 2.3.20 A tree language L s recognizable if and only if there exists
a rewriting system R such that R U R~ is a rewriting system preserving
recognizability and that L is the union of finitely many <>%-classes.

Proof. Let us assume that L is recognizable. Then by Proposition 2.1.1
there is a ground rewriting system R such that L is the union of finitely
many <*H-classes. Clearly, RU R™! is an lgsm rewriting system and hence,
by Theorem 2.3.19, preserves recognizability.

Let us assume that there exists a rewriting system R such that RU R~}
is a rewriting system preserving recognizability and that L is the union of
finitely many <+}-classes. That is to say, L = [t;]gp U [t2]r U ... U [tx]g for
some k > 0. As =p p-1 = ©%, L = (RURY)*({t1,..-,t }). It should
be clear that the tree language {¢1,...,¢ } is recognizable. Since RU R™!
preserves recognizability, L is also recognizable. a

The following theorem is a simple consequence of our results.
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Theorem 2.3.21 A tree language L is recognizable if and only if there ezists
a rewriting system R such that RUR™! is an lgsm rewriting system and that
L is the union of finitely many <>%-classes.

Example 2.3.22 Let X = EOU21UEQ, 20 = {ﬁ,$}, Zl = {f}, 22 = {g}
Let R consist of the rules

g(g(:l:l,$),x2) ~— f(g(g($,a:1),$2)) )

g(g($,I2),III1) - f(g(g($,x1),:r2)) ¥

Then RU R™! is an lgsm rewriting system. Hence, by Theorem 2.3.21, the
union of finitely many arbitrary <>}%-classes is recognizable.

Let S be a string rewriting system over ¥. We say that S is restricted
right-left overlapping if there is no rule A — r in S, and the following holds.
For any rules Iy — r; and I — 75 in S, for any nonempty suffix v € = of
r1 and any nonempty suffix v € £7 of [y, if w = r; or v = l5, then v cannot
be a proper prefix of u. For example the string rewriting system

{ apple — peach }

is restricted right-left overlapping.
It is not hard to see that each monadic string rewriting system is restricted

right-left overlapping as well.
The following theorem is an interesting consequence of our results on

rewriting systems.

Theorem 2.3.23 Restricted right-left overlapping string rewriting systems
effectively preserve recognizability. Moreover, a string language L is recog-
nizable if and only if there exists a string rewriting system S such that SUS™!
18 a restricted right-left overlapping string rewriting system and that L is the
union of finitely many <>%-classes.

2.3.2 An example

In this subsection we illustrate the construction of C;, j > 0 by an example.
Let T =X UX, U, o ={8}, Z1 ={f}, 2= {g} Let the rewriting
system R over ¥ consist of the following two rules.
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f(flg(zn,8)) — f(f(=z1)),

9(z1, T2) = flg(z1,)) -
By direct inspection we obtain that R is an lgsm rewriting system. Here
E={%}. Let L ={g(41)}. It is not hard to see that

R(L)={f"9&1)) In=20}u{f*#)|n=2}.

Consider the bottom-up tree automaton B = (X, B, B, Ri), where B =
{b1,bs}, B = {by }, and Rp consists of the following two rules: § — b; ,
g(b1,b1) — by . It is not hard to show that L = L(B). By direct inspection
we obtain that the set of subterms of the right-hand sides of the rules of R is

{-’L‘l» .f($1)7 f(f(xl))v ﬁag(‘rla ﬁ)’ f(g(wla ﬁ)) } ®

Then
D = {b1,bs,8, f(b1), f(b2), f(1), F(f(b1)), F(f(B2)), F(f(2)), 9(br, )
9(b2, 1), 98, 1), f(9(b1, 1)), fF(g(b2, 8)), f(g(4,8) } -
Moreover, C' = { by, bs,1,..., 13} Let (): D—{1,..., |D — B| } be defined
by
<b1> = bh <b2> = va <ﬁ> = 1,
(f(b1)) = 2, (f(b)) = 3, (f(#) = 4,
(f(f())) = 5, (f(f(b2))) = 6, (f(f®) = T,
(g(br, ) = 8 (g(b,#)) =9, (g(tt)) = 10,
(Flg(br, 1)) = 11, (f(g(b2,8))) = 12, (f(¢(4,8)) = 13.

Then Cy = (X, C, B', Ry) is determined by the set Ry of rules. R, consists
of the following fifteen rules.

ﬁ - bl, g(bl,bl) = bg,

f - (), f(b1) = (f(br)),
f(b2) — (f(b2)), () - (F),
FUFD))) = (f(F(),  f(F(B2))) = (f(F(b2))),
FE@N = (FE®), g, — (9o, 1),
g(ba, (8) = (g(b2, ), g((#). ) = (9(8.4),
fgb, 1)) — (flg(br, ), f({g(b2, 1)) — (F(g(b2, 1)),
fo@ ) — (Flalt 1))
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That is, Ry consists of the following fifteen rules.

# — by, g(bl, 1) — by, —+ 1,
f(2) =5 f() - 6, f4 -7,
g(bb 1) — 87 (b27 ) - 97 g(l, 1) =¥ 10
F8) = 11, f(9) — 12, f(10) — 13.

The bottom-up tree automaton C; = (X, C, B’, Ry) is determined by the
set Ry of rules. R; contains all rules of Ry and the following five rules.

(FUf(B)) = (f(F(B))), (f(g(br,8))) — ba
(flg(br, 1)) = (g(br, 1)), (flg(be, 1)) — (g(bo, 1)),
(flat.9)) — (9t 1)

That is, R; contains all rules of Ry and the following five rules.

5—6,11 = by, 11 —+ 8,12 — 9,13 — 10.

The bottom-up tree automaton Cy = (X, C, B, Ry) is determined by the
set Ry of rules. Ry contains all rules of R; and the following seven rules.

(F(f(B))) = (flg(or, 1)), (F(f(01))) — (g(b1, §)),
(f(f(0r))) — ba, (F(f(b2))) — (f(g(b2s 1)),
(F(f(02))) — (9(b2, 1)),  (FUFM@))  — (et D,
(FUF@®)N  — (1)

That is, R, contains all rules of R; and the following seven rules.

5—11,5—> 8,5 > by,6 > 12,6 - 9,7 — 13,7 — 10.

The bottom-up tree automaton C3 = (X, C, B', R3) is determined by the
set R3 of rules. R3 contains all rules of Ry and the following two rules.

(F(f(B1)) — (flg(b2, 1)), (F(F(b1))) — (g(ba, 1)).

That is, R; contains all rules of Ry and the following two rules.

85 =- 12, 5 = 9.



CHAPTER 2. ON TERM REWRITING SYSTEMS PRESERVING ... 51

Since R4y = Rj3, the bottom-up tree automaton Cy = (X,C,B’,Ry) is
equal to C3 = (X,C, B', R3). Let S = R4 and let us write C = (Z,C, B, S)
for Cy = (£,C, B, R;). Hence S consists of the following twenty-nine rules.

QT
e dddllidl

Tt O Ot = Ut

(=
—

oy < —

= © 00 © O H 0 Ut

[Nl

-

b4 4 ddddddd

bZa ﬁ — 17
3, f() = 4
6, f4) - 7,
9, g(1,1) — 10,
12, f(10) — 13,
bz, 11 — 8§,
10, 5 — 11,
by, 6 — 12,
13, 7 =3 10,
9.

By direct inspection we obtain that the states 3, 4, 6, 7, 9, 10, 12, and 13
are superfluous as no final state can be reached from any of them. Hence we
drop all of them and also omit all rules in which they appear. In this way we
obtain the bottom-up tree automaton A; = (X,C, B’, S1), where S; consists

of the following twelve rules.

i —
fb) —
f@®) —
5 —

b17
2,

11,
11,

g(b1,b1)
f(2)

11

5

1idd

bz, j — 1,
5, g(bl, 1) S 8,
bg, 11 — 8,
8 5 > bz.

It is not hard to see that the rule 5 — 11 is superfluous. We obtain the
bottom-up tree automaton A; = (X, C, B, Ss), from A; by dropping the rule
5 — 11. Thus S, consists of the following eleven rules.

i —
fb) —
fi8) ~»
) —

b17
2;
11,
81

glbi, b)) — by, 1§ =% 1
f(2) — 5, g(b,1) — 8,
11 3 By, 11 Y
5 —F b2.

We define the deterministic bottom-up tree automaton A3 =
(Z,C, A, Sy), from A, by applying the subset construction. Then S;3 consists
of the seven following rules.
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A = {b,1},  g({b,1},{b,1}) — {b2,8},
f({bl’l}) — {2}7 f({bQ,S}) =z {8?117b2}1
f({Q}) — {5’871)2}’ f({578’b2}) = {8711:b2}:

F({8,11,b}) — {8,11,b,}.

Moreover, A’ consists of the three states { b2,8},{8,11,02},{5,8,b2}. Let
us redenote the states of Az as follows. Let

ar ={b,1},a2={b2,8},a3={2}, a0 ={8,11,b2 },a5 = { 5,8,b, }.

Hence S3 consists of the following seven rules:

i — a1, g(a,a1) — az, fla)) — a3,
flaz) — a4, f(a3) — a5, f(as) — aqy,
f(a4) —F a4

Moreover, A" = { as, a4, as }.

It should be clear that the states as,a4,as; are equivalent. Finally
we construct a minimal deterministic bottom-up tree automaton Ay =
(3,C, A" S;), from Az by merging the equivalent states as,ay,as. Hence
Sy consists of the following five rules.

§ = a1, 9(a1,a1) = az, f(a1) — a3, f(az) = a2, f(a3) — a2
Moreover, A” = { ay }. We obtain by direct inspection that L(A4) = R*(L).

2.4 Results on term and string rewriting sys-
tems preserving recognizability

In this section we study rewriting systems preserving recognizability and
gsm rewriting systems. First we present a ranked alphabet ¥ and a linear
rewriting system R over X such that R preserves X-recognizability but does
not preserve recognizability.

Theorem 2.4.1 There is a ranked alphabet ¥ and there is a linear rewriting
system R over ¥ such that R preserves ¥-recognizability but does not preserve

recognizability.
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Proof. Let ¥ = 3, U, &) = {f,9}, Lo = {#}. Let R consist of the
following five rules.

flo(z1)) = F(Flg(g(21)))), F(H) =4 gf) =8 = f@), £ — g(t)

It should be clear that for each tree ¢t € Ty, t—% 4, and § —5¢t. Hence
for each nonempty tree language L C Ty, R*(L) = Tx. Thus R preserves
Y-recognizability.

Let A = XU{ h}, where h € A;. Let L = { f(g(h(%))) }. Since L is finite,
L is recognizable. However, R*(L) = { f*(¢"(h(¢))) | n > 0,t € Tz } is not
recognizable. a

We shall need the following two statements, of which the proof are
straightforward.

Lemma 2.4.2 Let R be a rewriting system over . Then the following state-
ments are equivalent.

(i) R (effectively) preserves recognizability.

(i1) For each ranked alphabet A with sign(R) C A, R (effectively) preserves
A-recognizability.

Theorem 2.4.3 Let R be a rewriting system over sign(R), and let ¥ =
{ f,1} U sign(R), where f € £y — sign(R) and t € £y — sign(R). Then, R
preserves L-recognizability of and only if R preserves recognizability.

Proof. («) Trivial.

(=) Let A be an arbitrary ranked alphabet with sign(R) C A. To each
symbol g € Ay — sign(R), k > 0, we assign a tree ¢, € Tx(Xj). To this end,
we number the symbols in A — sign(R) from 1 to |A — sign(R)|. Then we
define the nth left comb left, and the nth right comb right,, as follows.

(i) lefto = f(£,4) and righto = 1,
(ii) for each n > 0, leftpi1 = f(leftn, Tni1), Tightn = f(§, right,).

Finally, to a symbol g € Ay — sign(R), k > 0, with number [, we assign the
tree t, = f(leftg,right;).
Consider the rewriting system

S={g(z1,...,zx) >ty | k> 0,9 € Ay — sign(R), 1, is assigned to g } .
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It should be clear that S is a convergent rewriting system. For each tree
p € Ta, we denote by p’, the S-normal form of p. For a tree language
L CTa let L' ={p | p€ L} Itis not hard to show the following two
statements.

Claim 2.4.4 For anyr,s € Th,

rs if and only z'fr’—R>s'.

Claim 2.4.5 A tree language L over A 1is recognizable if and only if L' is
recognizable over X.

Finishing proof of Theorem 2.4.3:

Let L be any recognizable tree language over A. By Claim 2.4.5, L' is
a recognizable tree language over ¥£. By Claim 2.4.4, (Ri(L)) = R&(L)).
By Claim 2.4.5, R4 (L) is recognizable if and only if R5(L') is recognizable.
Hence if R preserves recognizability over X, then R preserves recognizability
over A. As A is an arbitrary ranked alphabet with sign(R) C A, by Lemma
2.4.2, R preserves recognizability. a

The proof of the following result is similar to the proof of Theorem 2.4.3.

Theorem 2.4.6 Let R be a rewriting system over sign(R), and let ¥ =
{ f,2} U sign(R), where f € 3 — sign(R) and § € £y — sign(R). Then,
R effectively preserves X-recognizability if and only if R effectively preserves
recognizability.

Consequence 2.4.7 Let R be a rewriting system over ¥ such that there
is a symbol f € Lo — sign(R) and there is a constant § € 3y — sign(R).
Then R preserves recognizability if and only if R preserves X-recognizability.
Moreover, R effectively preserves recognizability if and only if R effectively
preserves X-recognizability.

Theorem 2.4.8 Let R, S be rewriting systems over a ranked alphabet %.
Let R effectively preserve recognizability. Then it is decidable if =% C —%.

Proof. Let m > 0 be such that for all variables z; occurring on the left-hand
side of some rule in S, z; € X,,, that is, ¢ < m. Let us introduce new
constant symbols Z = {z,...,2m } with ZNX = 0. For each t € Tx(X),
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let t, € Txuz(X) be defined by t, = t[z1,...,2,]. By direct inspection we
obtain that for all u,v € Tg(X),

u?v if and only if u, -}-;vz "

hence
* . . *
u —RH} if and only if u, 7{> T «

Claim 2.4.9 =5 C —% if and only if for each rule | — r in S, r, €
Rz ({1:})-

Proof. (=) Let [ — r be an arbitrary rule in S. Clearly, [ —%r. Thus
r: € Rz ({1:})-

(<) Let us suppose that t;,t2 € Tx(X), and that t; —5¢, applying the
rule ] - r. Asr, € Ry ,,({l.}), [z = r. holds. Hence [ =% r implying that
t1 =Rty as well. O

Finishing proof of Theorem 2.4.8:

Let [ — r be an arbitrary rule in S. We can construct a tree automa-
ton over ¥ U Z recognizing the singleton set {I,}. As R effectively pre-
serves recognizability, Ry ,({[.}) is recognizable, and we can construct a
tree automaton over ¥ U Z recognizing R}, ,,({!.}). Hence we can decide if
r. € Ry ({1, }). Thus by Claim 2.4.9, we can decide if =5 C —%. O

Consequence 2.4.10 Let R, and Ry be rewriting systems effectively pre-
serving recognizability. Then it is decidable if = = —%, .

Observation 2.4.11 If one omits a rule from an lgsm rewriting system,
then the resulting rewriting system still remains lgsm.

One can easily show the following result applying Theorem 2.3.19, Con-
sequence 2.4.8, and Observation 2.4.11.

Consequence 2.4.12 For an lgsm rewriting system R, it is decidable
whether R 1s left-to-right minimal.

Consequence 2.4.8 also implies the following.
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Consequence 2.4.13 Let R, and R, be rewriting systems such that RjUR]!
and Ry U Ry' are rewriting systems and effectively preserve recognizability.
Then it is decidable if <3p C g, .

Theorem 2.3.19, Observation 2.4.11, and Consequence 2.4.13 imply the
following.

Consequence 2.4.14 Let R be a rewriting system such that RU R™! is an
lgsm rewriting system. Then it is decidable whether R is two-way minimal.

Theorem 2.4.15 Let R,, Ry be rewriting systems over a ranked alphabet X.
Let R, effectively preserve recognizability. Let g € ¥ — X be such that g does
not occur on the left-hand side of any rule in Ry, and let § € ¥y be irreducible
with respect to Ry. Then it is decidable if =%, N(Tx xTx) C =%, N(Ts xTx).

Proof. We assume that g € ¥;. One can easily modify the proof of this case
when proving the more general case g € £, & > 1. For each t € Tx(X),
let t, € Tx, be defined from ¢ by substituting g*(%) for all occurrences of the
variable z; for 7 > 1.

Claim 2.4.16 —%, N(Tx x Tx) € =% N(Tx x Tx) if and only if for each
rule l =1 in Ry, rg € R{({{, }).

Proof. (=) Let [ — 7 be an arbitrary rule in R,. Clearly, I, —g, 4. Thus
by our assumption [, =% 7.

(«<=) Let us suppose that t;,ts; € Tx, and that t; —>g, ¢, applying the rule
Il - r. Asry € Ri({l,}), lg =%, g holds. Hence [ —% 7 implying that
ty =%k, t2 as well. a

Finishing proof of Theorem 2.4.15:

For each rule | — 7 in R,, the tree language {l, } is recognizable, and we
can construct a tree automaton over ¥ recognizing {l, }. As R; effectively
preserves recognizability, R}({ [, }) is also recognizable, and we can construct
a tree automaton over X recognizing R;({ [, }). Hence for each rule { — r in
R, we can decide whether or not r, € Rf({{,}). Thus by Claim 2.4.16, we
can decide if =%, N(Tx x Tx) C =%, N(Tx x Tx). O
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Consequence 2.4.17 Let R, and R, be rewriting systems over ¥ effectively
preserving recognizability. Moreover, let g1, go € ¥ — Xy be such that for each
i € {1,2}, g; does not occur on the left-hand side of any rule in R;. Let
1,82 € X be such that for each ¢ € {1,2}, t; is irreducible with respect to
R;. Then it is decidable if =% N(Tx x Tx) = =5, N(Tx x Tk).

One can easily show the following result applying Theorem 2.3.19, Ob-
servation 2.4.11, and Consequence 2.4.15.

Consequence 2.4.18 Let R be an lgsm rewriting system over ¥. Moreover,
let g € ¥ — Xy such that g does not occur on the left-hand side of any rule
in R, and let § € Xy be irreducible with respect to R. Then it is decidable
whether R s left-to-right ground minimal.

Consequence 2.4.15 also implies the following.

Consequence 2.4.19 Let R, and Ry be rewriting systems over ¥ such
that Ry U RT' and Ry, U R3' are rewriting systems and effectively pre-
serve recognizability. Moreover, let 91,90 € ¥ — ¥y be such that for each
i € {1,2}, g; does not occur in R;. Let 81,8 € Zy be such that for each
i € {1,2}, t; is irreducible with respect to R; U R;*. Then it is decidable if
HT{I ﬂ(Tg X TE) C HF{Z ﬂ(Tg X TE)

Theorem 2.3.19, Observation 2.4.11, and Consequence 2.4.19 imply the
following.

Consequence 2.4.20 Let R be a rewriting system over ¥ such that RUR™!
15 an lgsm rewriting system. Moreover, let g € X — 3 be such that g does not
occur in any rule of R, and let § € 3y be irreducible with respect to RU R™L.
Then it 1s decidable whether R is two-way ground minimal.

Lemma 2.4.21 Let R be a rewriting system over ¥ effectively preserving
recognizability, and let p,q € Tx(X). Then it is decidable if there ezists a
tree v € T (X) such that p—% T and g—%7.

Proof. Let m > 0 be such that var(p) C X, var(q) C X,,. Let us introduce
new constant symbols Z = {z,...,2, } with ZNX = 0. For each t €
Ts(X), let t, € Tsyz be defined by t, = t[z1,. .., zm]-



CHAPTER 2. ON TERM REWRITING SYSTEMS PRESERVING ... 58

The singleton sets {p.}, {q.} are recognizable, and we can construct
two tree automata over ¥ U Z which recognize {p,} and {q.}, respec-
tively. As R preserves recognizability, Ry ,,({p.}) and Ry ;({q.}) are
recognizable, and we can construct two tree automata over ¥ U Z which
recognize Ry ,({p.}) and R} ,({q.}), respectively. Hence we can de-
cide if Ry ,({p:}) N Ry ;,({q:}) = 0, see [40]. Clearly, R% ,({p.}) N
R:,z({q.}) # 0 if and only if there exists a tree r € Tx(X) such that
p—rrand g —RT. a

Theorem 2.4.22 Let R be a rewriting system over ¥ effectively preserving
recognizability. Then it is decidable of R is locally confluent. '

Proof. By Proposition 1.3.2, R is locally confluent if and only if for every
critical pair (v1,vs) of R there exists a tree v € Tx(X) such that v; =% v and
vy — 5 v. It is well known that all critical pairs of R are variants of finitely
many critical pairs of R. Hence it is sufficient to inspect finitely many critical
pairs. Thus the theorem follows from Lemma 2.4.21. O

Proposition 2.4.23 [25] Let A = (X,A,A,a9,R) be a dt. Then R is a
convergent rewriting system over the ranked alphabet AU X U A. Moreover,
ran(ty4) = NF(L, R), where L = { aog(s) | s € dom(74) }.

Fiilop [25] has obtained the following undecidability results.

Proposition 2.4.24 Fach of the following problems is undecidable for ar-
bitrary dt’s Ay = (I, A1, A a1, Ry) and Ay = (2, Ay, A, as, Ry), where we
denote Ly = ran(74,) and Ly = ran(ta,).

(i) Is Ly N Ly empty?
(i1) Is Ly N Lo infinite?
(iii) Is Ly N Ly recognizable?
(iv) Is Ta — Ly empty?
(v) Is Ta — Ly infinite?
)

(vi) Is Ta — Ly recognizable?
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(vii) Is Ly recognizable?
(Vlll) Is L1 = Lg ?
(ix) Is Ly € Ly?

Applying the results of Proposition 2.4.24, Fiilép [25] has also shown the
following undecidability results.

Proposition 2.4.25 FEach of the following questions is undecidable for any
convergent left-linear rewriting systems Ry and Ry over a ranked alphabet €,
for any recognizable tree language L C Tq given by a tree automaton over §Q,
where U is the smallest ranked alphabet for which NF(L, R,) C Tr.

(i) Is NF(L,R,) N NF(L, Ry) empty?

(ii) Is NF(L,R) N NF(L, Ry) infinite?
(iii) Is NF(L,Ry) N NF(L, Rs) recognizable?
(iv) Is Tr — NF(L, Ry) empty?
(v
(vi) Is Tr — NF(L, Ry) recognizable?

Is Tr — NF(L, Ry) infinite?

Is NF(L,R,) = NF(L,Ry)?

(viii

)
)
)
(vii) Is NF(L, R;) recognizable?
)
)

Is NF(L,R)) C NF(L, Ry)?

(ix
We obtain the following result by direct inspection.

Lemma 2.4.26 For each dt A = (X, A,A, a9, R), there exists a dt B =

(2, A, A, ag, R') such that ©'NA = 0 and that ran(74) = ran(7s). Moreover,

let A= (%, A, A ap, R) be a dt with XN A =0. Then R is a left-linear gsm
rewriting system.
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Theorem 2.4.27 Each of the following questions is undecidable for any con-
vergent left-linear gsm rewriting systems R, and Ry over a ranked alphabet
Q, for any recognizable tree language L C Tq given by a tree automaton
over § recognizing L, where ' is the smallest ranked alphabet for which
NF(L,Ry) C Tr.

(i) Is NF(L,R;) N NF(L, R,) empty?

(i) Is NF(L, R\) N NF(L, Ry) infinite?
(iii) Is NF(L,R,) N NF (L, Ry) recognizable?
(iv) Is Tr — NF(L, Ry) empty?

(vi) Is Tr — NF (L, R,) recognizable?
(vii) Is NF(L, R,) recognizable?

)

)

)

)

(v) Is Tr — NF(L, Ry) infinite?

)

)

(vili) Is NF(L,R)) = NF(L,Ry)?
)

(ix) Is NF(L,R)) C NF(L, Ry)?

Proof. Proposition 2.4.25 appeared as Theorem 5.2 in [25]. We can apply
the proof of Theorem 5.2 in [25] with slight modifications. By Lemma 2.4.26,
the proofs of (i)-(vii) and of (ix) carry over.

To adopt the proof of (viii), we observe the following. Let A = (X, A, A,
ag, R) be a deterministic top-down tree transducer. Then by Lemma 2.4.26,
we may assume that ¥ N A = (. Hence, by Lemma 2.4.26, R is a left-
linear gsm rewriting system. Let = be a new symbol with rank 0, such that
* € SUAUA. If we add a rule a(z1) — + (with a € A) to R, then R remains
a left-linear gsm rewriting system. O

Lemma 2.4.28 Let R and S be linear collapse-free rewriting systems over
the disjoint ranked alphabets ¥ and A, respectively. Let I' be a ranked alphabet
with ©. U A CT. Consider R and S as rewriting systems over I'. Then

(i) #so—r C —rU(—ro—s), and

(i) =kus = 7RO 5
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Proof. The proof of (i) is straightforward. Condition (ii) is a simple conse-
quence of (i). O

Lemma 2.4.29 Let R and S be linear collapse-free rewriting systems over
the disjoint ranked alphabets ¥ and A, respectively. Let R and S preserve
recognizability. Then RUS over ¥ U A also preserves recognizability.

Proof. Let L be a recognizable tree language over some ranked alphabet
[, where EUA CTI'. By Lemma 2.4.28, (RU S);(L) = SE(R:(L)). As R
preserves recognizability, Rf(L) is recognizable. Moreover, since S preserves
recognizability, S{(Rf(L)) is also recognizable. a

Lemma 2.4.30 Let R and S be linear collapse-free rewriting systems over
the disjoint ranked alphabets ¥ and A, respectively. Let RU S over ¥ U A
preserve recognizability. Then R and S also preserve recognizability.

Proof. Let L be a recognizable tree language over some ranked alphabet T,
where ¥ C I'. It is sufficient to show that R (L) is recognizable. Without
loss of generality we may rename the symbols of I" such that TN A = 0.
Thus Rp(L) = (RU S)fua(L). Since EUA CTUA and RU S preserves
recognizability, R} (L) is recognizable. a

Since linear collapse-free rewriting systems are closed under disjoint
union, we have obtained the following results.

Theorem 2.4.31 For the class of linear collapse-free rewriting systems, the
property of preserving recognizability is modular.

The proof of the following result is similar to the proof of Theorem 2.4.31.

Theorem 2.4.32 For the class of linear collapse-free rewriting systems, the
property of effectively preserving recognizability is modular.

Since A-free string rewriting system correspond to linear collapse-free
rewriting system, our results on linear collapse-free rewriting systems im-
ply that preserving recognizability and effectively preserving recognizability
are modular properties of A-free string rewriting systems.

Theorem 2.4.33 For the class of A-free string rewriting systems, the prop-
erty of (effectively) preserving recognizability is modular.
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Recently, F. Otto [51] has proved the following result which appeared as
a conjecture in a previous version of the paper [45].

Theorem 2.4.34 [51] A string rewriting system S over ¥ preserves S-re-
cognizability if and only if S preserves recognizability.



Chapter 3

Decidability of the injectivity
of deterministic top-down tree
transducers

This chapter is divided into two sections. In Section 3.1, we summarize the
results of this chapter. Section 3.2 contains the proof of the decidability of
the injectivity problem of linear deterministic top-down tree transducers and
the proof of the undecidability of the injectivity problem of homomorphism
tree transducers.

3.1 Summary of results

The injectivity problem of deterministic top-down tree transducers sounds
as follows.

Does there exist an algorithm which decides, for every dt A =
(3, A, A, ag, R), whether the partial function 74 is injective or not ?

In [20], Z. Esik studied, among others, the decidability of this injectivity
problem. He showed that the injectivity problem of linear deterministic top-
down tree transducers is decidable i.e., that for 1dt’s such an algorithm exists.
He gave a rather involved proof. As the main result of this chapter,

e we will give a simpler proof for the decidability of the injectivity prob-
lem of linear top-down tree transducers. (Theorem 3.2.4)
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Our proof is based on the two well-known facts that linear top-down
tree transducers preserve recognizability of tree languages and the emptiness
problem is decidable for recognizable tree languages.

Z. Esik also showed in [20] that the injectivity problem is undecidable
for (general) dt’s. He reduced this problem to the Post Correspondence
Problem (PCP) by showing that an instance of the PCP can be encoded
in a deterministic top-down tree transducer such that the deterministic top-
down tree transducer is not injective if and only if the instance of PCP has

a solution.
We sharpen this negative result in this chapter by showing that the injec-
tivity problem is undecidable already for homomorphism tree transducers.

e Namely, we show that there is no algorithm for deciding whether an
arbitrary homomorphism tree transducer is injective or not. (Theorem
3.2.7)

We prove in the way that we reduce the problem to an undecidability result
of Dauchet [10] concerning tree codes.

3.2 On the injectivity problem of determin-
istic top-down tree transducers

3.2.1 The injectivity problem of linear deterministic
top-down tree transducers

In this subsection we show that the injectivity problem of linear deterministic
top-down tree transducers is decidable. First we recall a result.

Proposition 3.2.1 (Corollary IV.6.6 of [40]) Let A = (X, A, A, a9, R) be a
Idt. Then, for each recognizable subset L of Ts, T4(L) is also recognizable.
Moreover, given A and L, T4(L) can effectively be constructed.

We need the following concept. Let A = (X, A, A, ag, R) be a dt. A state
a € A is useful if there exist t € Tx(X,), s € Tx, t' € Ta(X1) and s’ € Ta
such that
a0(t[s]) 2 ¢[a(s)] 2 ¢

The main result is based on the following lemma.
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Lemma 3.2.2 Let A = (£, 4,4, a9, R) be a Indt. Then, A is not injective
if and only if there exist a useful state a € A and trees t, t' € Ty with
root(t) # root(t') such that T4)(t) = T (t').

Proof. First suppose that A is not injective. Then, there are ¢, ¢’ € Ty, with
t #t' and s € Ta such that 74(t) = 74(¢') = s.

Let us observe that ¢t # t' if and only if there exist an integer & > 1,
u € Te(X}) and trees ti, ..., tg, b, ..., t% € Tx with root(t;) # root(t;), for
1 € i £k, such that t = ulty,...,%] and ¢’ = uft],..-,t.]. Note that the
condition £ > 1 is important and that in the special case when root(t) #
root(t') we have k=1, u =1z, t; =t and ¢} =¢'.

Since A is linear and nondeleting, the derivations ao(t) =% s and
ag(t') =% s can be written in the form

ao(t) = ag(ufty, - .-, tk)) f}r[al(tl), v oy Op(tr)] f}r[rl, ey Pal =&
and
ao(t') = ap(ulty, - .., 1)) % rlai(t)), ..., ax(t})] %r[r'l, cenyBh 28,
respectively, where r € TA(Xk), Bige oo 5Bk € A 8O Piycvey P Thses < T €
Ta. Moreover, each variable of X appears exactly once in 7.
Since r[ry,...,mx] = s = r[r},...,7L], we get that, for every 1 < i <

k, r; = r; holds. Therefore, for every 1 <@ < k, Ta(e;)(t:) = Ta,)(t'i), what
we wanted to prove. (Note that ay, ..., a, are useful.)

Conversely, assume that there exists a useful state a € A and trees ¢, t' €
Ts. with root(t) # root(t') such that 744)(t) = 7@ () = v. The state
a is useful so there is a context u € Ty(X;) which "reaches” a, that is
to say, ag(u) =* u'[a(z,)], for some v’ € Ta(X;). (Note that the condition
u' € Ta(X,) follows from the fact that A is both linear and nondeleting.)

Let r = u[t] and ' = wu[t']. Then, we have r # r’ because root(t) #
root(t'). Moreover we have

*

ao(r) = ao(uft]) 3w/ [a()] S w'f] and ao(r') = ao(ult]) S wla(t)] S w'fo]

Consequently A is not injective. a
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For a ranked alphabet ¥ and f € ¥,, with m > 0, we denote by T} the
set of trees having root f i.e., we put Tf = {f(t1,...,tm) | ti € Tk, for
1 <1< m}.

It is an obvious fact that 7% is recognizable.

The above lemma can be stated equivalently as follows.

Lemma 3.2.3 Let A= (%, A, A, ag, R) be a Indt. Then A is not injective if
and only if there exist a useful state a € A and f, g € ¥ with f # g and

Ta) (Tr) N Ty (Tg) # 0.

Next we note that, by standard construction, for every dt A, there exists
a dt A’ such that 74 = 74 and all states of A" are useful. We shall use this
fact in the proof of our main theorem which is as follows.

Theorem 3.2.4 The injectivity for an arbitrary ldt A s decidable.

Proof. Let A = (3,4, A, ap, R) be an arbitrary Idt. If A has no a useful
state, then certainly 74 = () and hence A is injective.

Otherwise, let A’ = (X, A, A, ag, R') be a ldt such that 74 = 74 and all
states of A’ are useful. Now A is injective if and only if A’ is injective. We
distinguish two cases.

Case 1: A’ is deleting (i.e., is not nondeleting). Then, it is an exercise
to show that A’ is certainly not injective.

Case 2 : A’ is nondeleting. Then, by Lemma 3.2.3, it is not injective if
and only if

Ta @) (Tr) N Ta@)(Ty) # 0,

for some state a € A’ and f, g € ¥ with f # g¢. Since Ty and T, are
obviously recognizable, by Proposition 3.2.1, both 744 (Tf) and Ty (q)(Ty)
are recognizable and can effectively be constructed. Finally, we note that
(1) recognizable tree languages are effectively closed under intersection and
that (2) the emptiness problem for recognizable tree languages is known to
be decidable. (For proofs of (1) and (2), see Theorems I1.4.2 and II.10.2 in
[40], for example.)

Hence we can decide whether A’ is injective in Case 2, too. O
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3.2.2 The injectivity problem of homomorphism tree
transducers

In this subsection we prove that the injectivity problem is undecidable even
for homomorphism tree transducers. We show that the so called code prob-
lem, which was introduced and shown to be undecidable in [10], is reducible

to the injectivity problem.
A generator set is a nonempty, finite subset E of Tx(X) with the proper-

ties that
(i) E has at least one ground element and that

(ii) for every e € E, if x; appears in e, then z; also appears in e, for every
1€ 7<d

For example, f(za, f(z2,#)) and f(f(#,z3),z1) cannot be elements of
any generator set, however f(zy, f(zs,z,)) can, where f and # are symbols
of rank 2 and 0, respectively.

Given a generator set E, for £ > 0 we define Fy = {e € F | k is the
smallest integer such that e € Tx(Xk)}. Then Ey # 0 and E; N E; = 0,

whenever 7 # j.
Any generator set E generates a tree language T C 7%, which is the

smallest set H satisfying the following conditions:
(i) Eo C H,
(ii) if e € Ey, and ty,...,t; € H, for some k > 1, then e[ty,...,t] € H.
For each e € Ei, with £ > 0 we put
eTg = {e[tr,...,t] | t1,...,t € Tg}.

As an example, let ¥ = {f® g1 #O} be a ranked alphabet. Then

E = {f(z1,9(z2)), f(z1,21),9(z1),#} is a generator set.
The following definition of the code problem is adopted from [10] .

Definition 3.2.5 A generator set E C Tx(X,,) is called a code if, for every
e1, s € E with ey # ey, the condition eyTg N exTp = O holds.
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Informally speaking, E is a code if and only if each element of Tx can be
constructed unambiguously with tree substitution from elements of E. Thus
the example appearing at the end of Subsection 3.2.1 is not a code, since for
e; = f(z1,9(z2)) and ex = f(z1,21), we have f(g(#),9(#)) € e1Te NexTg.

In [10] it was shown that it is undecidable whether an arbitrary generator
set E C Tx(X,) is a code in the following way. For an arbitrary instance of
the PCP, a generator set E can be constructed such that F is not a code if
and only if that instance has a solution. On the other hand, as was noted in
[10], it is decidable, if a linear generator set E is a code. (A generator set E
is linear if each e € F is linear i.e., every variable occurs at most once in e.
Hence, if this is the case, then €Ty is recognizable, for every e € E.)

We explicitly recall the main result of [10].

Proposition 3.2.6 ([10]) There is no algorithm for deciding if an arbitrary
generator set E C Tx(X,,) is a code.

Next we introduce the concept of a tree homomorphism . Let ¥ and A
be ranked alphabets. Moreover, let th : © — Ta(X) be a mapping with the
property that if f € & for some k& > 0, then we have th(f) € Ta(Xs). The
tree homomorphism induced by th is the mapping th : Ts, — Ta defined by
induction as follows :

(i) If f € o, then th(f) = th(f).

(ii) If f € &k for some k > 1 and ¢1,...,t € Ty, then

th(f(t1,...,t) = th(f)[th(t),. .., th(ts)]-

(Note that [ ] is tree substitution.)

It is an easy exercise to show that for any tree homomorphism th, a
homomorphism tree transducer A can be constructed effectively such that
th = 74. Conversely, for any homomorphism tree transducer .4, the mapping
7r is a tree homomorphism, which can be given effectively from A.

Now we prove our other result.

Theorem 3.2.7 There is no algorithm for deciding whether an arbitrary
homomorphism tree transducer is injective or not.
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Proof. We perform the proof in two main steps.

In the first step we show that for an arbitrary generator set E a tree
homomorphism th can be constructed such that E is a code if and only if th
is an injective mapping.

To this end, let £ C Tx(X,) with E = EyU...U E, be an arbitrary
generator set. For 0 < k < n, we define ¥ = {f. | e € E;} and we put
2 =L X

Let th : ¥ — E be the bijection defined by th(f.) = e, for each f, € ¥
Let th : Tsy — Ty be the tree homomorphism induced by th. Then the
following two statements hold.

Statement 3.2.8 Let e be an arbitrary tree in Ey for some k > 0. Then
th(Ty,) = eTg. (For the definition of T},, see Subsection 3.2.2.)

Proof. It is an easy exercise to show that th(Tx/) = Tg. Then the proof of
our Statement follows immediately. a

Statement 3.2.9 The generator set E C Tx(X,) is a code if and only if th
18 1njective.

Proof. First suppose that E is not a code. Then, there exist e; € E} and
ey € E{ with €1 75 €9 and 61TE N 62TE ;é @

Let ¢ be a tree in ;T NexTx. By Statement 3.2.8 there exist t,...,t; €
Tsr and w0}, . . . ;u] € Ty such that th{fe, (L, - - ;1)) =th{fea(uy;- .-, W)) =1L

Consequently, th is not injective, since f., # fe,.

Conversely, assume that th is not injective. Then, there exist ¢/, u’' € T
such that ¢ # ' and th(t') = th(u').

Choose a pair t', ' with the above property, such that the sum
height(t') + height(u') is minimal. Then root(t') # root(u') holds.

For, if root(t’) = root(u'), that is ' = f.(f],...,t) and o' =
fe(ul, ..., uy), then, since t' # v/, there exists an index 1 <7 < k such that
t! # u.. Moreover, th(t.) = th(u}), because th(t') = e[th(t}),...,th(t,)] =
e[th(u)), ..., th(u})] = th(u') and because, by condition (2) in the defini-
tion of a generator set, any of the variables z,,...,z, appears in e. Thus

height(t.) + height(ul) < height(t') + height(u'), t; # u; and th(t]) =
th(ul), which contradicts the minimality of height(t') + height(u’). There-
fore root(t') # root(w'), that is t' = f,,(t},...,t;) and v’ = f,,(u},...,u}),
where e; € Ey, e; € E; and e; # e,, moreover, t),...,t,ul,...,u € Ts.
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We define t = th(t') = th(u’). Then, by Statement 3.2.8, t € e,Tg and
t € exTg, proving that E is not a code. O

Finishing proof of Theorem 3.2.7:

In the second step, we finish the proof of our theorem. Let E be an arbi-
trary generator set. Construct the tree homomorphism A which is injective
if and only if E is a code. Then, construct the homomorphism tree trans-
ducer A with the property th = 74 (see the note before the present theorem).
Then, A is injective if and only if E is a code which is undecidable in general.
This finishes the proof of Theorem 3.2.7. a

In [20] it was shown that, for every deterministic bottom-up tree trans-
ducer B, a deterministic top-down tree transducer A can be constructed
effectively such that B is injective if and only if A is injective. Hence the
result of the previous subsection can be applied to decide if an arbitrarily
given deterministic bottom-up tree transducer is injective.

Finally, note that a deterministic homomorphism tree transducer is a
special deterministic top-down tree transducer. Hence by Proposition 2.4.23
and Lemma 2.4.26, the following holds.

Theorem 3.2.10 Let R be a convergent left-linear gsm rewriting system
over . Let L C T be a recognizable tree language. Then it is undecid-
able if the tree function =5 N(L x NF(L, R)) is injective.



Chapter 4

Decidability of the inclusions in
monoids generated by
deterministic tree
transformation classes

This chapter is divided into two sections. In Section 4.1, we summarize the
results of this chapter. Section 4.2 contains the proof of DT® = DT o LDB,
LDT® ¢ LDT o DB, and DT ¢ LDTR o H. Using these results and
the composition and inclusion results of Engelfriet, Fiilop, and Fiilop and
Viéagvolgyi, we give a linear time algorithm to determine the correct inclu-
sion relationship between two tree transformation classes which are compo-
sitions of some ”"fundamental” tree transformation classes taken from the set
{DT® LDT® DT,LDT,DB,LDB,H,LH}.

4.1 Summary of results

In his pioneer papers [14], [15], Engelfriet studied the compositions of deter-
ministic bottom-up tree transducers, deterministic top-down tree transduc-
ers, and deterministic top-down tree transducers with regular look-ahead.
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Among several results, he has shown that

(a) DTRoDTR = DTR (b) LDTRoLDTR = LDTR
(c) DB C DTR (d) LDBoDT = DTR
(e) LDT® = LDBoLDT .

Moreover, Fiilop and Véagvolgyi [28], [58], [29], [35], [30], [34] systemati-
cally studied the compositions of several types of deterministic top-down
tree transformation classes and among several inclusion and decomposition
results they have shown that

(f) DT o LH = DT? = DT® (g) HoH=H .

Finally, Fiil6p [24] studied the compositions of deterministic bottom-up tree
transtormation classes. He has shown that

(h) DBo DB = DB (i) LDBo LDB = LDB .
The set of tree transformation classes appearing in (a) - (i) is

M = {DT® LDT® DT,LDT,DB,LDB,H,LH}.

We note that there are top-down tree transformation classes, top-down tree
transformation classes with regular look-ahead, and also bottom-up tree
transformation classes in M.

Our aim is to construct an algorithm which, given arbitrary
Yi,..., Y, Z21,...,Z, € M, decides which one of the following four con-
ditions hold:

(1)) Yio...0Y, = Zjo...0Z, (i1) Y10...0Y, C Zjo...07,
(ti1) Zyo...0Z, C Yio...0Y, (w) Yio...0Y, X Zyo...0Z,.

In other words, we consider the monoid [M] = {Yjo...0Y, | m >
0, Yi,...,Y,, € M} generated by M with composition and give an algorithm
which decides, given arbitrary two elements Yj0...0Y,, and Z10...0 7, of
[M], whether Y1 0...0Y;, C Zj0...0Z, holds or not.

In their works [34] and [24], Fiilop and Végvolgyi proposed a method
with which such an algorithm can be constructed in certain cases. The
method is based on presenting the monoid [M] by defining relations. We note
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that the presentation of a monoid in this manner is a well-known technics
in algebra. In fact, the method of Fiilép and Vagvolgyi is only a general
frame and does not give much help in solving the problems that arise in
its application actual monoids. Still, they applied the method succesfully
for two monoids generated by deterministic top-down and by deterministic
bottom-up tree transformation classes, respectively. Moreover, this method
was also applied by Slutzki and Vagvoélgyi [55] for a monoid generated by
deterministic top-down tree transformation classes with regular look-ahead
and also by Déanyi and Filép [9] for a monoid generated by a set containing
the class of deterministic superlinear top-down tree transformations. The
last application was published in [37] for a monoid generated by total top-
down tree transformation classes and for a monoid generated by the class of
attributed tree transformations and the class of macro tree transformations.

We also give the algorithm for M by applying this method. Before show-
ing how it is applied to our case, we introduce some further notation. We
consider two monoids defined in terms of M: the free monoid M* (with
the operation of concatenation) and [M], defined above, the monoid finitely
generated by M (with the operation of composition). Strings over M i.e.,
elements of M*, represent tree transformation classes in [M] by means of the
homomorphism || || : M* — [M] defined by

IAll =1, and

Y1 -Ys-...- Y| = YioYso...0Y, for m>1andVy,...,Y, € M.

Let p be the kernel of || || i.e., the congruence relation over M* induced by
the homomorphism || || :

p=ker(|[ll) ={(v,w) e M* x M™ | |]v]| = [[w]] }.
We construct the algorithm and prove its correctness in the following

steps.

e In Subsection 4.3.1, we give a Thue system 7" over M such that <>} C p.
(A Thue system is the ”two-way” version of a string rewriting system,
a detailed explanation follows in Subsection 4.2.1)

The Thue system T consists of 22 formal equations of which the realizations
are valid decomposition equations in M. They are, except one, known from
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the papers [14], [15] of Engelfriet, [28], [58], [35] of Fiilop and Vagvélgyi, and
[24] of Fiilsp.

e Our contribution to T is DT® = DT o LDB, which is proved to be
valid in Theorem 4.2.2.

e In Subsection 4.3.2, we give a subset of K of M* and a string rewriting
system S over M such that <% = <>7, Theorem 4.2.6. Moreover, we
prove that there is a linear time algorithm which, for every u € M*,
computes a word v € K in linear time such that v —%v. (Theorem
4.2.8)

The set K will be proved to be a set of representatives for the equivalence
classes of p.

e Therefore, in Subsection 4.3.3, we present the inclusion diagram of || K|
of the set of tree transformation classes represented by the elements of
K. In order to show that the diagram is correct, among others, we
prove the non-inclusions LDT® ¢ LDT o DB and DT ¢ LDTE o H

in Lemma 4.2.9 and in Lemma 4.2.10.

In Subsection 4.3.4, we complete our results and obtain the desired algo-
rithm.

e We show that p = <% in Theorem 4.2.17.

e We show that [M] = ||K]|| i.e., that K is a set of representatives of the
equivalence classes of p. (Theorem 4.2.18)

e Finally, using the algorithm obtained in Theorem 4.2.8, we present
the algorithm which decides, for arbitrary elements Y; o...0Y;, and
Zyo...0Zy, of [M] whether Yjo...0Y,, C Zj0...0Z, holds. (Theorem
4.2.19)
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4.2 Decidability of the inclusions in the
monoid generated by { DT®, LDT", DT,
LDT, DB, LDB, H, LH}

4.2.1 The Thue system T

Let ¥ be an alphabet. A Thue system T over ¥ is a finite subset of £* x ©*
and each element (u,v) of T is called a rewriting rule. The Thue congruence
generated by T is the reflexive, transitive closure <»% of the relation <>p
defined as follows: for any w,z € ¥* w<>rz if and only if there exist
z,y € £* and (u,v) € T such that either w = zuy and z = zvy, or, w = zvy
and z = zuy. It is well-known that <>} is the least congruence over X*
containing 7.

It should be clear that a Thue system 7" over ¥ is a “two-way” version
of a string rewriting system in the sense that the rewriting rules of T can
be used in both directions (cf. Subsection 1.3.3). As mentioned, for a string
rewriting system S, the reflexive, symmetric and transitive closure <3 of —g
is a congruence over X*. It is called the Thue congruence generated by S.

Consider the set of tree transformations

M = {DT® LDT® DT,LDT,DB,LDB,H,LH}

and the two monoids defined in terms of M: the monoid M* (with the op-
eration of concatenation) and [M] ={Yj0...0Y,, |m>0,Y; € M for1 <
i < m }, the monoid finitely generated by M (with the operation of compo-
sition). We will freely confuse names (e.g. the symbol DT) with meanings
(the class DT'). Strings over M represent transformation classes in [M] by
means of a homomorphism || || : M* — [M] defined by

|Yi-Ys-...- Y|l = VioYso0...0¥,

We denote by I € [M] the tree transformation class consisting of all identity
tree transformations i.e., I = ||A||. Let p be the kernel of || || i.e., the
congruence relation induced by the homomorphism || || :

p=ker(|ll) = {(v,w) € M* x M™ | []v]| = |lw][} .
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In the rest of this subsection we give a Thue system T over M and show
that <3 C p.

Let the Thue system 7" C M™ x M* consist of the following 22 rewriting
rules.

(1) (LDT®.LDT,LDT®) (2) (LDT®-LDB,LDTR®)

(3) (DT -LDB,DTR) (4) (DT-H,DT?)

(5) (DT -LH,DT?) (6) (LDT-DTE DTE)

(7) (LDT-LDT® LDT®) (8) (LDT-DT,DT?)

(9) (LDT-LH,LDT?) (10) (LDB-DT,DTR®)

(11) (LDB-LDT,LDT®) (12) (LDB-LDB,LDB)

(13) (LDB-H,DB) (14) (LDB-LH,LDB)

(15) (H - LDT,DT) (16) (H -LDB,DB)

(17) (H-H,H) (18) (H-LH,H)

(19) (LH - LDT,LDT) (20) (LH-LDB,LDB)

(21) (LH-H,H) (22) (LH-LH,LH)
Next we will argue that for every (o, 8) € T, ||a|| = ||8]||, or equivalently,
(cr, B) € p. For each i (1 <14 < 22), if the i-th rewriting rule of 7' is (e, §),
then the corresponding claim ||a|| = ||#]] will be denoted by (¢). We thus

have to prove that (i) holds for 1 < 7 < 22. First we will show that (3)
hold. In the proof we will need the following result.

Lemma 4.2.1 For each dt® A = (Z,A, A, ag, Ry), there exists a dbr D =
(X,D,X, D', Rp) such that for each look-ahead set L appearing in a rule of
A, L =L(D(C)) for some C C D.

Proof. Let Li,...,L; be all the look-ahead sets appearing in the rules
of A, where k¥ > 0. For 1 < i < k, let L; = L(D;) for some dbr
D; = (E,D,5,D;Rp,). Let D = Dy X ... X Dy D = 0, and let
m : Dy x ... x Dr — D; be the ith projection for 1 < 2 < k. The
rule f(dy(z1),-..,dm(zm)) — d(f(z1,...,Zm)) is in Rp if and only if
f(mi(dy)(z), .-« Ti(dm)(Zm)) = mi(d)(f(z1,...Tm)) € Rp, for 1 < i < k.
It should be clear that for each 1 < ¢ < k, L; = L(D(C;)) with C; =
D1X...Di-1XD£XDi+1X...XDk. O

Theorem 4.2.2 DT® = DT o LDB.
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Proof. It should be clear that DT C DT® and LDB C DB. By Theorem
3.2 of [15] DB C DT®. By (i) of Proposition 4.2.3 DT® is closed under
composition. Hence DT o LDB C DTE.

We now show that DT® C DT o LDB. Intuitively, we simulate the com-
putation of a dt® A by the composition of a dt B and an ldb C as follows.
All states of A are in the state set of B. In state a of A, and at a node v la-
beled by f, B applies a rule of which right-hand side contains as subtrees the
right-hand sides of all A-rules with left-hand side a(f(zi....,%,)). More-
over, the right-hand side of this B-rule also contains the variables z1,..., z,
corresponding to the subtrees at the sons of v. Thus, during its computation,
B copies slightly modified versions of the subtrees at the sons of v. Hence
C is able to compute the look-ahead of A4 on these subtrees and is able to
choose the right-hand side of the rule applied by .A.

More precisely, let A = (£, 4, A, ap, R4) be a dt®. We lose no generality
by assuming that Ay # 0. Let u € Ag be arbitrary. By Lemma 4.2.1,
there exists a dbr D = (X, D, X, D', Rp) such that for each look-ahead set
L appearing in a rule of A, L = L(D(FE)) for some E C D. We denote by
L(E) the tree language L(D(FE)).

Consider the dt B = (T, B,XUAUT, aq, Rg), where B= AU{b}, b A
is a new state, = {f | f € £}, and EN A = ). We define the ranked
alphabet I' and Rj in the following way.

(i) Foranya€ A, m >0, and f € E,, let

(a(f(z1,...,Zm)) = t1; L(D11), ..., L(Dim) )

ColFlErs - s Tn)) =% i LLDnt)s + = o 5 L Dy }

be all rules in R4 with left-hand side a(f(z1,...,Zm)) for some n > 0.
Then we put the function symbol (a, f) in I',,, and the rule

a(f(z1,---,zZm)) = (a, f)((z1), ..., 0(Tm),t1, .- -5 tn)

in RB.
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(i)

(Intuitively, the right-hand side of the above rule contains as subtrees
the right-hand sides of all R 4-rules with left-hand side a(f(z1,...,Zm)).
Moreover, it also contains the variables zy, ..., z,. When applying the
above rule at a node v labeled by f, all subtrees at the sons of v are
copied and then B is able to relabel these subtrees applying rules of

(ii).)
For any m > 0, and f € %,,, we put the rule
b(f(x1s- s Tm)) = F(b(T1),- - -, b(Tm))

in RB-

(Intuitively, B in state b rewrites every symbol f into f )

By direct inspection we see that B is total.

Intuitively, the Idb C computes the look-ahead of A on the subtrees con-
taining symbols with “tilde” and hence is able to choose the rule applied by
A. Thus C deletes the other right-hand sides and the subtrees containing
symbols with “tilde” and leaves only the chosen right-hand side. To this end
the state set of C contains all states of D. Moreover, C contains two other
states, yes and no as well. Consider an input subtree with topmost symbol

in .

If there is a computation of A encoded in this subtree, then C arrives

above its topmost symbol in state yes, otherwise it arrives above its topmost

symbol in state no. .
To be precise, consider the Idb ¢ = (U AUT,C,A,{yes}, Rc), where
C = {yes,no}U D and R is defined as follows.

(1)

(i)

For any m > 0, and § € A, we put d(yes(z1),...,yes(zm)) —
yes(d(z1,...,xm)) in Re. Moreover, for any m > 0, and § € A,,, and
Cly.--,cm € {yes,no}, we put 6(ci(z1),--.,cm(Tm)) = no(é(zy, ...,
ZTm)) in Re if ¢; = no for some 1 <7 < m.

(Intuitively, if C reaches the topmost symbol of an input subtree in
state yes, then it contains some computation of A.)

(]i(.’l,'l, 5y
f

(flz1,...,

For any m > 0, and f € Xy, if f(di(z1),.-.,dm(zm)) — d
Tm)) € Rp, then we put the rule f(di(z1),...,dn(zm)) — d
Zpm)) in Re.

(Intuitively, C computes the look-ahead of A applying the above rules.)
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(iii) Forany a € A, m >0, f € &,,, with

{alf(Bse038m)) = 3 D{Du)s o5 T{ D) }

Lol i 50 8m)) = B BlDwi ) -+ - s L{ D) }
being all rules in R4 with left-hand side a(f(zy,...,z,)), for any
cl,---,¢n € {yes,no}, and for any d,,...,d,, € D, if there exists
an integer 1 < j < n such that d; € Djy,...,d, € Dj,,, then we put
the rule

(a, f)(di(x1), - - - , dn(Zm); €1 (Brnt1)s - - - s Ca(@rmin)) = Cj(Im+j)
in R¢; otherwise, we put the rule
((J,, f)(dl(x1)7 Ly dm(xm)a Cl(xM+1)7 ) Cn(xm+n)) = TLO(,U,)

in Fe.

(Intuitively, C chooses the right-hand side of the rule which is applied
by A. Then C deletes the other right-hand sides and the subtrees
containing symbols with tilde and leaves only the chosen right-hand
side. If no A-rule is applicable by A, then C enters the state no.)

Note that the determinism of A ensures that in (iii) there exists at most
one j such that d, € Dj,, ..., d, € D;,. Hence there are no two different
rules in Re with the same left-hand side. By direct inspection we see that C

is a total.
We now show that 74 = 7go7c. It is sufficient to show that for any a € A,

p € Ty and q € Th,

a(p) % q < there exists r € Ty A r such that a(p) =;> r and =;>yes(q) :

We proceed by induction on the structure of p.
Case 1. p € %.
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" =" Let us suppose that a(p) =% ¢. Then the rule a(p) — ¢ is in R4,
the rule a(p) — (a,p)(q) is in Rp, and the rule (a,p)(yes(z1)) — yes(z;) €
Re. Let r = (a,p)(q). Then a(p)=pr. Moreover, r=:(a,p)(yes(q))
=¢ yes(q).

" <=" Let us assume that there exists r € Ty A such that a(p) =57
and r =/ yes(q). Since height(p) =0, a(p) — r is in Rz. By the definition
of Rp, there exists a rule a(p) — s in R4 such that r = (a,p)(s). By the
definition of Re, (a, p)(s) =¢&(a,p)(yes(s)) =c yes(s). Hence yes(s) = yes(q).
Thus s = ¢ and a(p) =% ¢.

Case 2. p= f(p1,---,Pm), f €EZm, m>1,p1,...,Pm € Tx.

" =" Let us suppose that a(p) =% ¢. Let

(a(f(z1,...,2m)) = t1; L(D11),. .., L(Dym) )

(a(f(z1,..-y2m)) = tn; L(Dp1), -« -, L(Dpm) )

be all rules in R4 with left-hand side a(f(z1,...,%m)), where n > 1. Let us
assume that we applied the jth rule in the above derivation. That is.

a(f(pr---,Pm)) = silar (i), - i) = silar, -l =

where S]‘ € TA(‘X’[), { Z O, tj = sj[al(a:il), .. .,al(xi,)], D1 e L(Djl), «e-syPm €
L(Djy), and a1(pi,) =% 1, - - -, ai(p;,) =% q- Hence

b1 %dl(p1)7 > apm:,;}dm(pm)

for some d; € Dj1,...,dy, € Djn. By the definition of R, the rule a(f(z,
cosZm)) = {a, £Y(b(z1), .., 0(Tm),t1,---,tn) € Rg. Hence

a(f(p1s---yPm)) ?( a, fY(0(p1),---,0(Pm), ti[P1s - - - s Pmls - s tnlP1y - - - s D) -

Since B is total, for each 1 <7 < n, there exists exactly one tree r; € Ty A
such that #[p1,...,pm]| =5 7. Moreover, for each 1 < 7 < m, there exists

exactly one tree p; € Ty such that b(p;) =% D;.



CHAPTER 4. DECIDABILITY OF THE INCLUSIONS IN MONOIDS ...81

Thus we get
a(p) = a(f(p1,---,Pm)) =

B
<a'7f>(b(p1)7'")b(pm)vtl[plv"'7pm}a"'7tj[p17"'7pm]7"'atn[]71v"'7pm]):;>
Lls £ Y(B1s o5 5 0mis Pis o5 c5 P - aTin) =7,
where ¢[p1,...,pm] = sjlai(y),.. )], o= silur, ..., w),
a1(pi,) =g, ..., a(p;,) =puw for some uy,...,u; € Ty o - By the in-

duction hypothesis
u; =;> ves(q1), ..., w =;> yes(q) -
By (i) of the definition of R¢
sjlyes(gi,), - - - yes(a))] :;>yes(sj[q1, wros Qi) -

Hence

(%) r; = silur, ..., w] =¢ silyes(ai), - -, ves(q,))] =t ves(silai, - - - @)
= yes(q).

Since C is total, for each 1 < ¢ < n there exists exactly one tree ¢; € Ta
such that r; =% ¢;(¢;), where ¢; € {yes,no}. By (%) ¢; = yes and ¢; = ¢. By
(iii) in the definition of R¢, the rule

{8, F Hdal@1)s « « « 1Pl B)s €l Bt )s <= - 1 il Bt Jy - o 5 Enl B ) —F Gl mis)
is in R¢, where ¢; € {yes,no}, i € {1,...,n}. Hence
r %<a1 f)(dl(ﬁl)v ceey dm(ﬁm)a Cl((h); ceey CJ(QJ)7 LR Cn(qn)) ?yeS(Q) .

" <" Let us assume that there exists r € T, r such that a(p) =57
and r =7} yes(g). Then

a(p) = a’(.f(ph L 7pm)) ?

*

<a’f>(b(p1)7 s 7b(pm)1t1{p17 woe me]7" : 7tﬂ[p1’ s ‘7pm]) :B>

<a1f>(ﬁ17-"7ﬁ’marly'--?'rn) =T
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where a(f(z1,...,Zm)) = (a, f)(0(z1),...,b6(zm), t1,.-.,ta) € Rp, b(p;) =73
p; for 1 < i <m, and t;[py,...,pm] =gm for 1 <i < n.

For each 1 < i < n, t; = si[ai1(T4¢,1))s - - - » Git, (Tp(ig,))] for some [; > 0,
si € Ta(Xy,), and a;,,...,ay;, € A. Here ¢ : {1,...,n} x {1,2,...} —
{1,2,...} is a mapping. Hence

for each 1 < i < n, ti[p1, ..., Pm] = silaii (Ps(,1))s - - - @i, (Poi )]
and the derivation t;[p1,. .., pm] =% ; has the form
tz‘[ply .- apm] = 5 [a'il(qu(i,l)), ey Qg (P¢(i,l,-)] % Si[uila ce ,Uiti] =Ty

where
* *
ai1(Pg(i,1)) = Uity -+ Gt (Pyits)) = Ui, -

We now write the derivation r =} yes(g) in a more detailed form
<(l, f)(ﬁla . 0 8 >ﬁm7 T1y. .- 7rn) %<a7 f)(dl(ﬁ1)7 - ey dm(ﬁm)y Cl(Ql), . ycn(qn))

= yes(q) ,

where p; =% d;(p;) for 1 <i < m;foreach 1 <i<n, g € Ta, ¢; € {yes, no},
and 7; =% ¢;(¢;). In the last step we apply the rule

<a‘7 f)(dl(xl): ceey dm(xm)7 cl(xm—i-l)’ “ 8y cn(xm-f-n)) - Cj($m+j) = RC’

where for each 1 < ¢ < n, ¢; € {yes,no}, ¢; = yes, and ¢; = gq.
By the definition of R¢

(a(f(z1,---,2Zm)) = tj; L(Dj1),...,L(Djm)) € Ra,

where d; € Dj1,...,dm € Djnm, hence py € L(Dj1), ..., Pm € L(Djm).
Moreover,

Ty = S iy =« =y By =;>3j[yes('u1), -y yes(vy)] =;>yes(sj['u1, )] =

yes(q;)

where vy, ..., € Th,
?) b 7

Uj1 %yes(vl)a - o =y sl :;>yes(vzj) ’
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and
.S'j[’l)l, v s .,’U[j] = q]' 3

By the induction hypothesis,

aj, (Ps(s,1)) f} V1, - - -5 Gt (Paigy)) :} v,
Hence
a(p) = a(f(pv.- . pm)) Z 85105 (Poin): - - > 33 (Poian))) = sslvrs -, v,] =
9 =4q-

We recall some composition and decomposition results.

Proposition 4.2.3 [15]

() DT DTE = DTZ,

(i4) LDTEoLDT® = LDTE,

(4i1) DT®R C LDBo DT,
(iv) LDT®E C LDBoLDT.

Lemma 4.2.4 For every (o, 3) € T, ||a|| = ||B||, or equivalently, («, 8) € p.

Proof. We obtain the following result by direct inspection.
(1) fCc DT CLDP®C DTE,

In the proof of Theorem 3.2 in [15], Engelfriet showed that DB C DTE. His
proof carries over to the linear case, that is, one can show in the same way
that LDB C LDTZ®. Thus we get that

(1) I C LDBC LDTE C DTE.
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The following equations hold.

N EPTSsEDT = LDT® (1), and (ii) of Proposition 4.2.3)

(1 (by

(7} LDT®eLDB = LDT® (by (1), and (ii) of Proposition 4.2.3)
(3) DT oLDB = DT® (by Theorem 4.2.2)

(4) DToH = DT? (by Table 2 in [36])

(5') DToLH = DT? (by Table2 in [36])

(6') LDT o DT® = DT® (by (), and (i) of Proposition 4.2.3)
(7Y LDToLDT®R = LDT® (by (1), and (ii) of Proposition 4.2.3)
(8) LT e DT = DT> (by Table 2 in [36])

(9) LDToLH = LDT? (by Table?2 in [36])

(1 = DT® (by (), (i) and (iii) of Proposition 4.2.3)
(1

)  LDBoDT
1) LDBoLDT LDTE (by (1), (1), (ii) and (iv) of

Proposition 4.2.3)

(12'y LDBoLDB = LDB (by Figure 2 in [24])
(13 LDBoH = DB  (by Figure 2 in [24])
(14) LDBoLH = LDB (by Figure 2 in [24])
(15") HolLDT = DT (by Table 2 in [36])

(16") HsLDB = DB (by Figure 2 in [24])
(17 HoH = H (by Figure 2 in [24])
(18") HoLH = H (by Figure 2 in [24])
(19) LHoLDT = LDT (by Table 2 in [36])

(20" LHoLDB = LDB (by Figure 2 in [24])
(21) ILHeoH = H (by Figure 2 in [24])
(22" IHolH = LH (by Figure 2 in [24])

Consequence 4.2.5 <7 C p.

The following calculation will be needed in Subsection 4.2.2. However,
we present is here so that they are more close to 7', which is needed to
verify it. We list elements (ug,vg) (23 < k& < 106) of <»7.. For each integer
23 < k < 106, we write ug <>} v rather than (ug,vx) € <*%. Moreover,
the list (7y,...,1%,) of integers with 1 < 4y,...,%, <k — 1 which follows the
pair u <7 vg indicates that u; can be transformed into vx by applying the
relations (1), ..., (4, ) in this order. In this way we present the proof that
U < Uk
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(23) DTE. DT® 5 DT®  (3,10,12,10,15,6,3,15,17,15,3)

(24) LDTE.DTE % DTE (11,6,10,12,10)

(25) DT -DTE 3% DT® (15,6,3,15,17,15,3)

(26) DB-DT® 3 DTE (16,10,12,10,3,15,17,15,3)

(27) LDB-DT® +% DT® (10,12,10)

(28) H-DT® &% DTER  (3,15,17,15,3)

(29) LH-DTE &3 DTRE  (3,15,21,15,3)

(30) DT?.DTE 3% DTE (25,25)

(31) LDT?.-DTR % DTR (6,6)

(32) LDT-H-DTE % DTE (28,6)

(33) LDT-LDB-DT® % DTE (27,6)

(34) LDT-DB-DT® % DTE (26,6)

(35) LDTR.H.-DTR <% DTE (28,24)

(36) DTR.LDTE % DT® (3,11,12,11,15,7,11,16,13,15,
10)

(37) LDTE.LDTRE &% LDTE (11,2,1)

(38) DT -LDTE <% DTRE (15,7,11,16,13,15,10)

(39) DB-LDT® 3 DTE (16,11,12,16,13,15,10)

(40) LDB:-LDT® <% LDTR (11,12,11)

(41) H.-LDT® <% DTR  (11,16,13,15,10)

(42) LH-LDT® <% LDTE (11,20,11)

(43) DT?.EDT® +% DPT® (38,25)

(44) LDT?.LDTE % LDT® (7,7)

(45) LDT-H-LDTE &% DTE (41 6)

(46) LDT-LDB-LDT® % LDT® (40,7)

(47) LDT-DB-LDTR <3 DTR  (39,6)

(48) LDTR-H-LDT®R 3 DT® (41,24)

(49) DTE.DT % DTER  (3,10,25)

(50) LDTR.DT <% DT®R (11,8,10,49)

(51) DB-DT <% DTE (16,10,28)

(52) H-DT % DT  (15,17,15)

(53) LH-D’.I; % D; 215 2)1 ,15)

(54) DT? % D 4,5

(55) LDT?.DT <% DT? (8,8,54)

(56) LDT -H-DT % DT? (52,8)

(57) LDT-LDB-DT <% DTE (10,6)
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(58) LDT -DB-DT % DT® (51,6)
(59) LDT%.-H - DT #% DI® (52, 50)
(60) DPTR.LDT &% DT® (3,11, 38)
(61) DT -LDT % DT? (15,9,15,5)
(62) DB-LDT <% DTE (13,15, 10)
(63) DT?.LDT <% DT? (61, 54)
(64) LDT?® <% LDT? (9,19)
(65) LDT -H-LDT <% DIT? (15,8)
(66) LDT-LDB-LDT <% LDTE (11,7)
(67) LDT-DB-LDT <% DT® (62,6)
(68) LDTR.H-LDT <% DTE (15,50)
(69) DTR.DB +% DTR (3,13,12,13,16,4, 3, 25)
(70) LDTE.DB <% LDTR-H (13, 2)
(71) DT-DB ©% DT® (16,4, 3,25)
(72) DB? % DB (16,13,12,16,13,17,13)
(73) LDB-DB <% DB (13,12, 13)
(74) H-DB <% DB (16,17, 16)
(75) LH-DB «% DB (16,21, 16)
(76) DT?.DB <% DTE (71, 25)
(77) LDT?-DB <% LDT-DB (9,75)
(78) LDT-H-DB % LDT-DB (74)

(79) LDT-LDB-DB ¢} LDT-DB (73)

(80) LDT -DB? % LDT-DB (72)

(81) LDTE.H-DB <% LDTE-H (74,70)
(82) DTE.LDB % DTR (3,12,3)
(83) DB-LDB +% DB (16,12, 16)
(84) DT?.LDB <% DTE (3,25)
(85) LDT?.LDB <% LDT-LDB (9,20)
(86) LDT -H-LDB % LDT-DB (16)

(87) LDT -LDB? <% LDT-LDB (12)

(88) LDT-DB-LDB <% LDT-DB (83)

(89) LDTR.-H-LDB +% LDTE-H (16,70)
(90) DTR.H % DTE (3,13,71)
(91) DB-H <+ DB (13,17,13)
(92) DTe.gH % DT° (4,54)
(93) LDT?-H «% LDT-H (9,21)
(94) LDT-H? % LDT-H (17)
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(95) LDT-LDB-H <% LDT-DB (13)

(96) LDT-DB-H <% LDT-DB (91)

(97) LDTR.H? 3% LDTR-H (17)

(98) DTR.LH <% DTF (3,14, 3)
(99) LDTR.LH % LDTE (11,9,11,1)
(100) DB-LH % DB (13,18,13)
(101) DT?-LH % DT? (4,18,4)
(102) LDT? - LH <% LDT? (9,22,9)
(103) LDT-H-LH +% LDT-H  (18)

(104) LDT-LDB-LH <% LDT-LDB (14)

(105) LDT-DB-LH <% LDT-DB  (100)
(106) LDTR-H-LH % LDTRE-H (18)

4.2.2 The string rewriting system S

In this subsection, we give a subset K of M* and a string rewriting system .S
over M such that <>} = <>%. Moreover, we prove that there is a linear time
algorithm which, for every u € M*, computes a word v € K in linear time
such that v —* v.

Let K C M* be defined by

K =4{ X DT LDT®, DT, LDT, DB, LDB, H,LH JU

{DT?,LDT* LDT - H,LDT - LDB,LDT - DB,LDT® - H} .

The string rewriting system S is visualized in two tables. In the Table
4.1 each row corresponds to an element v of K — { A} and each column
corresponds to an element Y € { DT® LDT® DT,LDT, DB }. In the Table
4.2 each row corresponds to an element u of K — { A} and each column
corresponds to an element Y € { LDB, H, LH }. Hence each element u of
K — {)\} and each element ¥ € M determine an entry of Table 4.1 or
Table 4.2. By direct inspection we now show that the entry determined by
ue€ K—{A}and Y € M contains a word v € K — { A} such that either
u-Y <pvoru-Y =v. First we read the entries in the Table 4.1 and then
in the Table 4.2. In both tables we proceed column by column. In each
column we proceed from the top to the bottom. Simultaneously, we read
the relations (23) — (106) beginning with (23). For each entry determined by
u€ K—{)A}and Y € M and containing v € K, we carry out the following.
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If uw-Y = v, then we go to the next entry. If u-Y # v, then we read the
current relation () of (23) — (106). If (i) is of the form u - Y <*} v, then we
go to the next entry and to the relation (i+ 1), otherwise we find the relation
u-Y <% v among (1) — (22).

Let the string rewriting system .S be the set of all pairs of the form (u-Y, v),
where u € K — {A}, Y € M, and v is the entry of Table 4.1 or Table 4.2
determined by the row of u and the column of Y, moreover, u-Y # v. By the
above observation, <*% C «»7.. Conversely, by direct inspection we obtain
that 7 C S. Hence <>} C <%. Moreover, by Consequence 4.2.5, <33 C p.
Thus we get the following result.

Theorem 4.2.6 < = <5 C p.

In the following discussion, we need the concept of the finite automaton,
therefore we introduce it now.

A finite automaton is a 4-tuple A = (X, A,0,a9), where ¥ is an input
(unranked) alphabet, A is a finite set of states, ¢ is a mapping from A x ¥
to A, and ag € A is the initial state. A configuration of A is a pair (¢, w) in
@ x ¥*. The move relation 4 is defined as follows. For any configurations
(q,w), (¢',w") of A, if w=yw' and §(q,y) = ¢, then (g, w) F4 (¢',w'"). The
reflexive, transitive closure of -4 is denoted by H%.

Consider the automaton A = (M, K,§, ), where for each YV € M,
5(A\,Y) =Y, and for any u € K —{A} and Y € M, §(u,Y) is equal to
the entry of Table 4.1 or Table 4.2 determined by the row of u and the
column of Y.

Claim 4.2.7 For any w € M* and z € K, if (\,w) F* (2,A) then w—% z.

Proof. By the definition of S and A, foranyu € K andY € M, §(u,Y) =v
if and only either u-Y = v or u-Y —gv. Hence the claim follows by an easy
induction on the length of w. a
By Claim 4.2.7, for every word w € M*, the automaton .A computes in O(|w|)
time a word z € K such that w —% 2. Hence we have got the following result.

Theorem 4.2.8 There is a linear time algorithm which, for every word w €
M*, computes a word z € K such that w—7% z.
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DT®R | LDTR| DT | LDT DB
DTR DT®| DT®R | DTE| DTE D=
LOT® DTR | LDT® | DTR | LDT® | LDT®:-H

DT DT®| DTR | DT? | DT? DTE
LDT DTR | LDTR| DT? | LDT? | LDT - DB
DB DT®| DT® | DTR| DTE DB
LDB DTE | LDTR | DT® | LDT® DB
H DT®| DT® | DT | DT DB
LH DTR \LDT® | pT | EDT DB

DT? DT®| DTE | DT? | DT? DTE®
LDT? DTR | LDT®| DT? | LDT? | LDT - DB
LDT-H | DT®| DT® | DT? | DT? |LDT-DB
LDT-LDB | DT® | LDT® | DTE | LDT® | LDT - DB
LDT-DB || DT®| DT® |DT®| DTER |LDT-DB
LDTE.-H | DT®| DT® | DT®| DT® | LDT®-H

Table 4.1: The string rewriting system S (part 1).
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LDB H LH
D= 2 DTE DTE
LDT® L™ LDT®-H LDT®
DT DTE DT? DT?
LDT LDT-LDB| LDT -H LDT?
DB DB DB DB
LDB LDB DB LDB
H DB H H
LH LDB H LH
DT? DTE DT? DT?
LDT? LDT-LDB| LDT -H LDT?
LDT-H LDT-DB | LDT-H LDT -H
LDT-LDB |\ LDT -LDB|LDT -DB | LDT -LDB
LDT-DB || LDT-DB |LDT-DB| LDT-DB
LDTR®.-H | LDT®-H |LDT®R-H| LDTE-H

Table 4.2: The string rewriting system S (part 2).
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4.2.3 The inclusion diagram of || K||

In this subsection we give an inclusion diagram for the set of tree transforma-
tion classes || K|| = {||w]| | w € K }. To this end, we first show the following
6 lemmas.

Lemma 4.2.9 LDT® ¢ LDT o DB.

Proof. Let ¥ = 3yUX; UX,, where £y = {#,$}, X, ={g},and Z, = { f }.
Let p C Tx x Tx be defined by

p={(f(g"(1),%),f(¢"(8),9)) In =0} U{(f(g"(8), %), F(g"(#), %) [In=>0}.

Here and in what follows, ¢°(f) = # and ¢g"*'(§) = g¢(¢™(%)) for n > 0.
Consider the 1dt? A = (X,A,%,a0, Ra), where A = { ay,a4,az,a3,a4 } and
R 4 consists of the following 8 rules.

(ao(f(z1,72)) — flai(z1),a2(x2)); Tx, {8 }),
(ao(f(z1,22)) — flas(z1),aa(z2)); T, {1}),
(ai(g(z1)) — glai(z1)); Tz ),

(ar(t) - &)

(a2($) - §),

(as(g(z1)) — g(az(z1)); Tx ),

(as(f) — ),

(aa(f) - #)-

It should be clear that 74 = p. We now show that p € LDT o DB. By way
of a contradiction, let us suppose that there is an 1dt B = (X, B, A, by, Rg)
and a db C = (A, C, %, C', Re) such that p = 75 0 7¢. As dom(p) C dom(7p)
and B is deterministic, there is exactly one rule in Rz with left-hand side
bo(f(z1,z2)). Let us suppose that this rule is of the form

bo(f(z1,29)) =1,

where r € Ta(B(X3)). We now show that both z; and z, appear in r. Let
us suppose that z; does not appear in 7. Then 75(f(#,1)) = 78(f(9(8),1))-
Hence

f@8) =mmorc(ft 1) =momc(f(g(t). ) = flg(t).§) -
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A contradiction. Thus z; appears in r. Let us suppose that z, does not
appear in 7. Then 75(f(4,%)) = 78(f(#,$)). Hence

f6,8) =msome(f(1,1) =8omc(f(2,8) = f(5,9) .

A contradiction. Thus z, appears in 7. Hence r = t[by(z}), bo(z2)], where
t € Ta(X3), and both z, and z, appear in ¢, and by, b, € B.
Consider the derivations

Fg™(8),3) = tlbr(g™(#)), b2(8)] = t[br (9™ (9)), 1]
F(g"(8),8) = t[ba(9"(8), b2($)] = (b1 (9™ (2)), p2] ,
where py, ps € Ta, and the rules bo($) — p; and bo(f) — po are in Rg. Let

*

U={seTs(X1) | tle(z1),pi] =C>c’(s) for some c € C,c' € C'}U

{s € Ts(X1) | tle(z1), pa) =;>c'(s) for somece C,d € C'} .
It should be clear that |U] < 2|C|. Let
J = maz{ height(s) | s € U} .
Let n > J. Then
bo(f (9" (2),8)) = t[br (9" (£)), b2(3)] = t[b1 (9" (1)) 1] :;> tlp, p1]

bo(f(g"(®), ) = tloa (g"()), b2 ()] 5 tlba (9™ (})), P2l = tlp, po]
for some p, p1, p2 € Ta. Since f(g" (), #) € dom(p) and f(¢"(f),$) € dom(p),

tlp, ] 2 tlela). a1 (@)] 3 ¢ (s1lg, m]) = € (F(5(3),9)) ,

t[p, pa] = tle(q), ca(a2)] > ¢ (s2lg, @2l) = ¢"(F(g"(#), 1)

where C,Cy,Co € C7 Clac” = Cl, q,41,92 € TE, S1,S2 = TE(X2)a p=>2 C(Q),
pr=¢clq), p2=¢ c2(q2),

tle(z1), (@) 5 ¢ (sa[zn, aul)
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tle(z1), e2(g2)] 2 ¢ (s2le, 2] -

Hence si[z1,q1] € U, s3[z1, q2] € U, and

silg, ] = f(9"(8),9), s2q,q2] = f(g"(),8) -
By the definition of J and n, |lip(si[z1,¢1])] < J < n. On the other hand,

lp(f(9™(3),$))| = llip(silg, a])| =n+ 1,

hence llp(s1[z1,q1]) is a proper prefix of llp(si[q,q:]). Thus z; appears in
the tree sy, and Illp(s1[z1,q1]) leads to an occurrence of z;. Moreover, as
llp(siq, q1]) leads to $ in the tree si[q, ¢1], $ appears in the tree q. By similar
arguments, we obtain that z; appears in s, and § appears in the tree ¢g. Hence
q contains both $ and 4, and thus f appears in the tree s1[q, ¢1] = f(9™(3), $).
A contradiction. O

Lemma 4.2.10 DT € LDTRoc H

Proof. First, we introduce a notation. Let 7 be a tree transformation from
Tx to Ta and L C Tx, be a tree language. Then

7(L) = {s € Ta | there exists ¢t € L such that (¢,s) € 7}.

We can generalize this notation. Let C be a class of tree transformations and
T be a class of tree languages. Then

C{T)={r(L)|r€eCand LeT}.

Now, we finish the proof of this lemma by contradiction. Let us suppose that
DT C LDT® o H. Then,

DT(REC) C H(LDT®(REC)).

By the Corollary 6.7 in Chapter IV of [40], LDTR(REC) = REC.
Hence,
DT(REC) C H(REC).

It is a contradiction because H(REC) C DT(REC) by the proof of Theorem
6.12 in Chapter IV of [40]. So, DT € LDT® o H. a
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Corollary 4.2.11 LDT®o H c DTE.

Proof. Since LDT® C DT® and H C DT, by (i) of Proposition 4.2.3 we
get that LDT®o H C DT*®. The proper inclusion LDT®o H c DTZE follows
from Lemma 4.2.10 and the inclusion DT C DTE. O

Lemma 4.2.12 LDB ¢ DT?.

Proof. By the proof of Theorem 4.5 in [33] and by (x) in [32], dom(DT?) =
DREC. 1t is well known that dom(LDB) = REC and DREC C REC, see
[40]. Hence dom(DT?) C dom(LDB) and in this way LDB ¢ DT?>. O

Lemma 4.2.13 LDT ¢ DB.

Proof. Let ¥ =XyUX;, where g = {#},X; ={f},and let A = AgUA,,
where Ag = {4,$}, and A; = {f}. Let p C Tx x Ta be defined by p =
{(f™(2),f™(#)) | » > 0 is an even number } U {(f™(%), f™($)) | n > 1is an
odd number }.

Let the ldt A = (£, A, A, ag, R4) be defined as follows. A = { ag,a; } and
R 4 consists of the following four rules.

ao(f(z)) — f
1(f(@) — f
$
#

~

=
8

= = = =
~—

Q
-

( —
(10( —

It should be clear that 74 = p. Thus p € LDT. Let us suppose that
p € DB. Then there is a db B = (X, B, A, B’, Rg) such that 75 = p. Let J
bound the heights of the right-hand sides of the rules in Rz. Let n > J be
an even number. Then (f™(%), /*(#)) € p, and hence

[T =5b0("(®) (%)
for some b; € B'. As (f**1(#), f*1(3)) € p,

) 2 ba(F7(8)

b

for some b, € B'. By (x)

FrE) = Fou (1) 7 ba(f7(9)) -
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Hence the rule

fbu(21)) = ba(f7H1(8))
is in R. However, this contradicts the assumption that J bounds the heights
of the right-hand sides of the rules in Rg. a

Lemma 4.2.14 H ¢ LDTE.

Proof. Let £ =%X,UZX;, where S = {t}, ;1 ={f}, and let A = AU A,,
where Ay = {#}, Ay = { g}. The binary balanced tree p, € Ta of height n
is defined as follows. Let py = f, and for any n > 0, let p, = g(pn—1,Pn_1).
Let p C Tx x T be defined by

p=L{("#),pn) | n 20}

Consider the th A = (X, A, A, ag, R), where A = {ag } and R consists of the
following 2 rules.

(Lo(f(l'l)) = 9(00(531)7@0(331)),
ag(4) — 4.

It should be clear that p = 74. It is not hard to see that p € LDTZ%. O

Theorem 4.2.15 The diagram in Figure 4.1 is an inclusion diagram for
1K1

Proof. We divide the proof into three steps. In the first step we show that
if a class Y is above another class Z and there is an edge between Y and Z,
then Z C Y. We go through the edges in the diagram of Figure 4.1 in a top-
down and left-to-right order and list all nontrivial inclusions corresponding
to the edges. We add the proof of each inclusion in parenthesis.
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DTE
LDTRo H
DT?
LDT o DB
LDT o H
. LDT®
DT
DB
i LDT o LDB
LDT=
LDT ¢
LDB
L
°
b

Figure 4.1: The inclusion diagram of the set ||K]||.

96
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DI% c DTE (by the inclusion DT C DT* and
by (i) of Proposition 4.2.3)
LDTRoH C DTF (LDT® C DT®, H C DT and
by (i) of Proposition 4.2.3)
LDToDB C LDTRoH (LDToDB) LDToLDBoH C
LDTR o LDT o LDBo H %
LDTRoLDBo H ¥ LDT® o H)
LDT*> C LDToH  (LDT*® LDToLH C LDT o H)
LDToLDB C LDTE (by (1), (1), and (ii) of Proposition 4.2.3)
LDT? C LDToLDB (LDT?®L LDToLH C LDT o LDB)

In the second step, using the results of the first step, we show that if
a class Y is above another class Z and there is an edge between Y and
Z, then Z C Y. We again go through the edges in the diagram of Figure
4.1 in a top-down and left-to-right order, in each horizontal “virtual plane”
clockwise. We add the proof of each inclusion in parenthesis. When citing
known inclusion results, we ignore the original sources of some easy results
and refer instead to the inclusion diagrams appearing in papers [34] and
[24] to ensure a convenient progress. Moreover, we shall frequently show an
inclusion X C Y by referring to a noninclusion V' € Z, where V' C Y and
X EZ.
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DI?% c DT® (by Theorem 5 in [32] and
by Figure 1 in [33])
LDT®«H c DT® (by Lemma 4.2.11)
LDToDB C LDTRoH  (by Lemma 4.2.9)

LDToH C LDToDB (by Lemma 4.2.12)

LDToH C DT? (by Figure 1 in [34])

DT ¢ DT (by Figure 1 in [34])

LDT® Cc LDTRoH  (by Lemma 4.2.14)

DB C LDToDB (by Lemma 4.2.13)

H c LDToH (by Figure 1 in [34])

H Cc DB (by Figure 1 in [24])

H c DT (by Figure 1 in [34])

LDT c DT (by Figure 1 in [34])

LDT?* C LDToH (by Figure 1 in [34])

LDToLDB C LDT%® (by Lemma 4.2.9)

LDToLDB C LDToDB (by Lemma 4.2.14)

LDB C DB (by Figure 1 in [24])

LH Cc H (by Figure 1 in [24])

LDT c LDT? (by Figure 1 in [34])
LDT* C LDToLDB (by Lemma 4.2.12)
LDB C LDToLDB (by Lemma 4.2.13)

LH C LDB (by Figure 1 in [24])

LH c LDT (by Figure 1 in [24])

I ¢ LH (by Figure 1 in [24])

Finally, in the third step we show that if neither of the inclusions Y C Z
and Z C Y is indicated by the diagram for classes Y and Z in K, then they
are incomparable. We traverse the diagram in a top-down and left-to-right
order as follows. The diagram is drawn as if its nodes, except the topmost
and lowest ones, were fitting to three horizontal planes. We visit first the
upper plane, then the middle one and finally the lower one. In each plane we
proceed clockwise. For each element Y in K, when visiting Y, we compare
Y with all elements Z in K such that there is neither an ascending nor a
descending path between the Y and Z, and that ¥ and Z have not been
compared yet. We add the proof of each incomparability in parenthesis.
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DT?

pre

D

DT?

D

L=
LDTREoc H
LDT o DB
LDT o DB
LDT o H
LDT o H
LDT o H
LDT o H
LA o H
DT

DT

BT

DT

3
LDTE
LIT®
DB

DB

DB

H

H

H

H

LDT
LDT?

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

LDTRo H
LDT o DB
LDTR

DB

LDT o LDB
LDB

DT

Dr

LDTE

DT

LDT%

DB

LDT o LDB
LDB

LDT®

DB

LDT?

LDT o LDB
LDB

DB

i

LDT

LDT?

LDT o LDB
LDT

LDT?

LDT o LDB
LDB

LDB

LDB

(by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.12 and Lemma 4.2.10)
(by Lemma 4.2.12 and Lemma 4.2.10)
(by Lemma 4.2.14 and Lemma 4.2.9)
(by Figure 1 in [34])

(by Lemma 4.2.14 and Lemma 4.2.12)
(by Lemma 4.2.13 and Lemma 4.2.12)
(by Lemma 4.2.14 and Lemma 4.2.12)
(by Lemma 4.2.13 and Lemma 4.2.12)
(by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.13 and Lemma 4.2.12)
(by Figure 1 in [34])

(by Lemma 4.2.10 and Lemma 4.2.12)
(by Lemma 4.2.13 and Lemma 4.2.12)
(by Lemma 4.2.13 and Lemma 4.2.14)
(by Lemma 4.2.12 and Lemma 4.2.14)
(by Lemma 4.2.14 and Lemma 4.2.13)
(by Lemma 4.2.14 and Lemma 4.2.13)
(by Lemma 4.2.14 and Lemma 4.2.13)
(by Figure 1 in [34])

(by Figure 1 in [34])

(by Lemma 4.2.14 and Lemma 4.2.13)
(by Figure 1 in [24])

(by Lemma 4.2.13 and Lemma 4.2.12)
(by Lemma 4.2.13 and Lemma 4.2.12)

5|

In the light of Theorem 4.2.15, the following result is obtained by direct
inspection of the inclusion diagram of Figure 4.1.

Consequence 4.2.16 For any u,v € K, ||u|| = ||v|| if and only if u = v.
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4.2.4 The main result

The main results are easy consequences of the work presented in the previous
subsections.

Theorem 4.2.17 &7 = &5 =p.

Proof. By Theorem 4.2.6 it is sufficient to show that p C <%. Let w,w’ €

M* be such that [|w|| = ||w'||. Then, by Theorem 4.2.8, there exist z, 2’ € K
such that w —% 2z and w' —% 2’. By Theorem 4.2.6, ||w|| = ||z|| and ||w'|| =
||2'||, hence we have ||z|| = ||2||. By Consequence 4.2.16, z = 2’. Therefore
we get w s w'. O

Theorem 4.2.18 [M] = ||K]|.

Proof. Obviously ||K|| C ||M*|| = [M]. To show that ||M*|] C ||K]]|, let

w € M*. By Theorem 4.2.8 there exists z € K such that w—%z2. By

Theorem 4.2.6 [|w|| = ||z||. Hence ||w]|| € || K]|. ‘ a
Finally we turn to the decision problem of the inclusion in [M].

Theorem 4.2.19 There is a linear time algorithm which for any tree trans-
formation classes Y1, ..., Y, Z1,...,Zn € M decides which one of the fol-
lowing four mutually exclusive conditions holds.

(1) 16:::0¥m = F10...902y;
(7)) Yio...0Y, C Zjo...0Z,,
(i) Zpo...0%8, € ¥i¢...0Yn,
(iv) Yio...0Y, W Zjo...0Z,.

Proof. By Theorem 4.2.8 we find in linear time y, 2z € K with Y; ... Y,, =%y
and Z,...Z, —%z. Then by Theorem 4.2.6, we also have ||Y]...Y,]|| =
llyl| and ||Z; ... Zn|| = ||2]|- Thus, one of the conditions (i)-(iv) holds for
Yio...o0Y,, and Z;0...0Z, if and only if the corresponding (i’)-(iv’) holds
for ||y|| and ||z||, where

@) el = llzll,

@) Ayl < lzll,

(@) |zl < lyll;

(") lyll Izl
By Figure 4.1 it is decidable in constant time which one of (i’)-(iv’) holds. O



Conclusions and further
research topics

We have introduced the notion of the generalized semi-monadic rewriting sys-
tem, which is a generalization of well-known rewriting systems: the ground
rewriting system, the monadic rewriting system, and the semi-monadic
rewriting system. We have shown that lgsm rewriting systems effectively
preserve recognizability. We have shown that a tree language L is recog-
nizable if and only if there exists a rewriting system R such that R U R~!
is an lgsm rewriting system and that L is the union of finitely many <>%-
classes. We have presented several decidability and undecidability results on
gsm rewriting systems.

We have given a simple proof for the decidability of the injectivity prob-
lem of linear deterministic top-down tree transducers. Moreover, we have
shown that the injectivity problem is undecidable even for homomorphism
tree transducers.

Finally, we have shown that DT® = DT o LDB, LDT® ¢ LDT o DB,
and DT ¢ LDTR o H. Using these results and the composition and in-
clusion results of Engelfriet, Fiilop, and Fiilop and Vagvolgyi, we have
given a linear time algorithm to determine the correct inclusion rela-
tionship between two tree transformation classes which are compositions
of some ”fundamental” tree transformation classes taken from the set
{DT®, LDT® DT, LDT,DB,LDB, H, LH}.

Our results give rise to several open problems.

e Generalize lgsm rewriting systems such that the obtained rewriting
systems still effectively preserve recognizability.

e Let R, and R, be rewriting systems effectively preserving recogniz-
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ability (lgsm rewriting systems, respectively) over . Is it decidable if
_)??.1 ﬂ(TE XT}:) - —)722 ﬂ(TE XTE)? Is it decidable if (—*’;%1 ﬂ(Ty_j XTE) c
H}i’.z O(Tg X TZ)?

e Let R be a rewriting system effectively preserving recognizability. Is it
decidable if R is left-to-right minimal? Is it decidable if R is two-way
minimal? Is it decidable if R is left-to-right ground minimal? Is it
decidable if R is two-way ground minimal? The last two questions are
also open if R is an lgsm rewriting system.

e Dauchet and his colleagues [11], [12] have shown that for a ground
rewriting system R, it is decidable if R is confluent and it is decidable
if R is noetherian. Give subclasses C; and Cj; of Igsm rewriting systems
which contain the class of ground rewriting systems such that for any
rewriting system R € C; it is decidable if R is noetherian and that for
any rewriting system R € C,, it is decidable if R is confluent.

e A rewriting system R over X is tame if for all critical pairs (u,v) of R

(i) R*({u})UR*({v}) is finite,
(i) for each w € R*({u})U R*({v}), w =% w does not hold, and
(iii) for any v’ € R*({u}) and v' € R*({v}), there is a z € Tx(X)
such that u' =% 2z and v’ =% =.

If R effectively preserves recognizability, then it is decidable if R is
tame. If R is convergent, then R is tame as well. It would be worth
while studying tame rewriting systems preserving recognizability.
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Osszefoglalé
(Summary in Hungarian)

A term atir6 rendszerek fontos szerepet jatszanak az elméleti szdmitdstu-
domanyban. Nagyon hasznosnak bizonyultak példaul a A-kalkulus, a de-
notaciés szemantika, az automatikus tételbizonyitds és a szimbolikus algebrai
szamitasok kutatdsanal.

Ebben a disszertacioban term atiré rendszerekre és fatranszformatorokra
vonatkozé néhany eldonthetetlenségi kérdést vizsgalunk meg.

A disszertacio elsé részében regularitdst megérzé term atiré rendsze-
reket vizsgalunk. Egy term &tir6 rendszer megérzi a regularitast, ha
tetszOleges regularis fanyelv esetén, ezen regularis fanyelvben 1év6 fakbdl
képzett leszarmazottak halmaza is reguldris. Egy fanak egy leszarmazottja
ugy keletkezik, hogy néhanyszor alkalmazzuk a fira a term &atiré rendszer
szabdlyait.

El6észor definidljuk az dltalanositott szemi-monadikus term atiré rendszer
fogalmdt, amely tartalmazza a kordbban mar ismert regularitist meg6rzé
term atird rendszereket, nevezetesen a ground, a monadikus és a szemi-
monadikus term atiré rendszereket. Ezutdn, megmutatjuk, hogy a linearis
altalanositott szemi-monadikus term &atir6 rendszerek effektiven megérzik a
regularitast. (Ez azt jelenti, hogy meg tudjuk adni a leszdrmazottak fanyelvét
felismerd faautomatat is, a kiindulé reguldris fanyelvet felismer6 faau-
tomatdbol és a term atir6 rendszer szabdlyaibdl.) Az eredmény segitségével
adunk egy 1j jellemzését a felismerhet6 fanyelveknek.

A tovabbiakban bebizonyitunk néhany eldonthetdségi és eldonthetetlen-
ségi eredményt a regularitdst effektiven meg6rz6 term Aatiré rendszerekre
és az altaldnositott szemi-monadikus term &tiré rendszerekre vonatkozé-
an. Tobbek kozott megmutatjuk, hogy a regularitst effektiven megérzd
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tetszéleges term atird rendszerrdl eldonthetd, hogy lokalisan konfluens-e.

A fenti fogalmakat és eredményeket atvissziik a sztring atiré rendszerekre
is, mivel egy sztring atiré rendszer tekinthet6 gy, mint egy specidlis term
atiré rendszer.

A disszertdcié tovabbi részében fatranszformdtorokra vonatkozd eldont-
hetdségi kérdéseket vizsgdlunk meg. A fatranszformdtorok szamos tipusat
definidaltak és vizsgaltdk a T70-es évek eleje 6ta. Mi a determinisztikus
top-down, a determinisztikus bottom-up és a determinisztikus reguldris-
elérenézésti top-down fatranszformatorokat tekintjiik.

Elészor adunk egy egyszert bizonyitast arra, hogy a linedris determi-
nisztikus top-down fatranszformatorok injektivitasi problémaja eldonthetd.
Ezutan bebizonyitjuk, hogy nem linedris esetben az injektivitdsi probléma
mar a homomorfizmus fatranszformatorok esetében is eldonthetetlen.

A fatranszformdtorok altal indukdlt fatranszformécidk bindris reldcidk
fak felett, igy a fatranszformaciok kompozicidja, amelyet o-rel jeloliink, a
szokdsos médon definidlhat6. Megmutatunk néhdany kompozicids és tartal-
mazasi eredményt fatranszformdacio osztalyokra, amelyek koziil a legfontosab-
bak: DT® = DT o LDB, LDT® ¢ LDT o DB és DT ¢ LDT® o H. Itt DB
jeloli a determinisztikus bottom-up, DT a determinisztikus top-down, H
pedig a homomorfizmus fatranszformécidk osztalyat. Az L prefix jelenti a
linearitast és az R fels6index pedig a reguldris-elérenézést.

Ezen eredmények és a korabban ismert kompozicids és tartalmazdsi
eredmények (féleg J. Engelfriet, Filép Zoltdn és Viagvolgyi Sandor
eredményei) felhaszndldsdval adunk egy linedris idejii algoritmust, amelynek
segitségével tetszbleges két, a { DT®, LDT® DT,LDT,DB,LDB,H, LH }
halmazbdl vett fatranszformacié osztdlyokbdl kompoziciéval képzett, osztdly
kozotti tartalmazas eldonthet6.

Végiil, Osszegezziik a disszertdcié eredményeit és mutatunk néhéany
megoldatlan problémdt a regularitdst meg6rz6 term &atiré rendszerekre
vonatkozdan.

A disszertdcié eredményei a kovetkez6 harom cikkben jelentek meg:

e 7. Filop, P. Gyenizse, On injectivity of deterministic top-down tree
transducers, Information Processing Letters, 48 (1993) 183-188.

e P. Gyenizse, S. Vagvolgyi, Composition of Deterministic Bottom-up,
Top-down, and Regular Look-ahead Tree Transformations, Theoretical
Computer Science, 156 (1996) 71-97.
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e P. Gyenizse, S. Vagvolgyi, Linear Generalized Semi-monadic Rewrite
Systems Effectively Preserve Recognizability, Theoretical Computer
Science, 188 (1997), megjelenés alatt.

Szeretnék koszonetet mondani témavezetdmnek, Dr. Fiilép Zoltdnnak,
aldozatos munkdjdért, hasznos utmutatdsaiért és értékes tandcsaiért. Sze-
retném megkoszonni Dr. Vagvolgyi Sdndornak a sok szakmai konzultdcidt
és a felbecsiilhetetlen segitséget, valamint Ddnyi Gdbornak és Berndtsky
Laszlénak a disszertacid elolvasisa kozben felmertilt észrevételeiket és meg-
jegyzeseiket.
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