
RESEARCH ARTICLE

Model-based test case prioritization using

selective and even-spread count-based

methods with scrutinized ordering criterion

Muhammad Luqman Mohd-ShafieID, Wan Mohd Nasir Wan-Kadir*,

Muhammad Khatibsyarbini, Mohd Adham Isa

Department of Software Engineering, School of Computing, Faculty of Engineering, Universiti Teknologi

Malaysia, Johor Bahru, Johor, Malaysia

* wnasir@utm.my

Abstract

Regression testing is crucial in ensuring that modifications made did not introduce any

adverse effect on the software being modified. However, regression testing suffers from

execution cost and time consumption problems. Test case prioritization (TCP) is one of the

techniques used to overcome these issues by re-ordering test cases based on their priori-

ties. Model-based TCP (MB-TCP) is an approach in TCP where the software models are

manipulated to perform prioritization. The issue with MB-TCP is that most of the existing

approaches do not provide satisfactory faults detection capability. Besides, their granularity

of test selection criteria is not very good and this can affect prioritization effectiveness. This

study proposes an MB-TCP approach that can improve the faults detection performance of

regression testing. It combines the implementation of two existing approaches from the liter-

ature while incorporating an additional ordering criterion to boost prioritization efficacy. A

detailed empirical study is conducted with the aim to evaluate and compare the performance

of the proposed approach with the selected existing approaches from the literature using the

average of the percentage of faults detected (APFD) metric. Three web applications were

used as the objects of study to obtain the required test suites that contained the tests to be

prioritized. From the result obtained, the proposed approach yields the highest APFD values

over other existing approaches which are 91%, 86% and 91% respectively for the three web

applications. These higher APFD values signify that the proposed approach is very effective

in revealing faults early during testing. They also show that the proposed approach can

improve the faults detection performance of regression testing.

1.0 Introduction

Regression testing assures that the changes made to a particular software system did not pro-

duce any adverse impacts on the software [1]. Unfortunately, regression testing suffers from

several notable issues. One of them is the execution cost. Regression testing is among the cost-

liest phases in the software development life cycle [2]. About 80 percent of the testing budget is

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mohd-Shafie ML, Wan-Kadir WMN,

Khatibsyarbini M, Isa MA (2020) Model-based test

case prioritization using selective and even-spread

count-based methods with scrutinized ordering

criterion. PLoS ONE 15(2): e0229312. https://doi.

org/10.1371/journal.pone.0229312

Editor: Seyed Reza Shahamiri, Manukau Institute

of Technology, NEW ZEALAND

Received: September 16, 2019

Accepted: February 3, 2020

Published: February 21, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0229312

Copyright: © 2020 Mohd-Shafie et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data files for

replication can be downloaded from: https://doi.

org/10.7910/DVN/5LZ51B.

http://orcid.org/0000-0001-6988-8851
https://doi.org/10.1371/journal.pone.0229312
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229312&domain=pdf&date_stamp=2020-02-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229312&domain=pdf&date_stamp=2020-02-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229312&domain=pdf&date_stamp=2020-02-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229312&domain=pdf&date_stamp=2020-02-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229312&domain=pdf&date_stamp=2020-02-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0229312&domain=pdf&date_stamp=2020-02-21
https://doi.org/10.1371/journal.pone.0229312
https://doi.org/10.1371/journal.pone.0229312
https://doi.org/10.1371/journal.pone.0229312
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/5LZ51B
https://doi.org/10.7910/DVN/5LZ51B


spent on it [3]. According to a statistic by Memon, Gao [4], every day at Google, 150 million

tests are run on more than 13 thousand projects that require 800 thousand builds. In this cir-

cumstance, even with modern test frameworks that re-run predefined tests, the execution cost

will still be unbearable if the entire test suite needs to be executed. Another problem in regres-

sion testing is regarding time consumption. According to Elbaum, Kallakuri [5], a report of an

industrial collaborator stated that one of its products containing 20,000 lines of code requires

seven weeks for the entire test suite to be carried out. These issues will surely prevent regres-

sion testing from running effectively. One of the side effects is in terms of performance of

faults detected. Consider a situation where regression testing needs to be halted abruptly

because of cost or deadline issue; significant faults located in the neglected test cases will be left

undetected.

Various solutions have been proposed by researchers to overcome the issues mentioned

earlier. Yoo and Harman [1] classified the approaches that can increase the effectiveness and

efficiency of regression testing into three main categories. They are test suite minimization

(TSM), test case selection (TCS) and test case prioritization (TCP). Approaches in TSM

remove any obsolete or unessential test cases permanently from the test suite [6]. TCS

approaches pick relevant test cases from the test suite according to certain criteria [7]. Last but

not least, TCP approaches reorganize test cases from the original test suite into a prioritized

test suite. The prioritization is done according to a specified purpose given that the test cases

that contribute the most to the purpose are given the highest priorities [8].

There are several reasons why an approach based on TCP is proposed in this study over

other categories mentioned earlier. TSM, although saves a lot of cost by reducing test suite

size, possesses a risk where significant test cases that reveal faults might be permanently elimi-

nated [1, 2]. This issue can surely compromise the fault detection capability of a test suite. TCS

on the other hand only selects necessary test cases without removing the needless ones. How-

ever, TCS also suffers the same issue as TCM where prominent test cases that reveal faults

might be omitted [2]. Using TCP, not a single test case is neglected and test cases that have the

possibilities of addressing the specified objective are prioritized first. This technique is advan-

tageous because if testing needs to be stopped, at least the most important test cases have been

executed.

One way of categorizing TCP approaches is to divide them into code-based and model-

based approaches [9]. The vast majority of TCP approaches are code-based. Although very

popular, code-based TCP exhibits several disadvantages that will be discussed in Section 2.

MB-TCP was first proposed by Korel, Tahat [10]. In their study, the system models are utilized

to prioritize test cases rather than the source code. One of the reasons why an MB-TCP

approach is proposed in this study is because of cheaper execution cost over the code-based

approach [10].

The aim of this study is to propose an MB-TCP approach that can improve the effectiveness

of regression testing in terms of performance of fault detection. This approach is called

Enhanced Model-based Prioritization using Selective and Even-spread Count-based Methods

Combination with Scrutinized Ordering Criterion (SESOC). SESOC improves the existing

approaches in terms of fault detection performance by combining several of those approaches

while adding a new ordering criterion to increase the granularity of test selection criteria. The

finite state machine (FSM) is utilized as the system model to be manipulated for prioritization

in this study. The prioritization effectiveness of SESOC is evaluated by benchmarking it with

the performance of the existing MB-TCP approaches in the literature that utilized FSM as the

model. For this purpose, the average of the percentage of faults detected (APFD) metric is

used. This study is an extension of the previous work done by Shafie and Kadir [11]. In this

present study, the proposed approach is refined by providing a more comprehensive

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 2 / 27

Funding: The authors would like to express their

deepest gratitude to Research Management Center

(RMC), Universiti Teknologi Malaysia (UTM) and

Ministry of Higher Education Malaysia (MOHE) for

their financial support under the Research

University Grant Scheme (Vot number Q.

J130000.2516.19H64).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0229312


elaboration. More objects of study are also included so that better insights can be obtained

about the effectiveness of the proposed approach.

In summary, there are three contributions to this study. The first one is an enhancement of

existing MB-TCP approaches using FSM. The existing MB-TCP approaches using FSM, selec-

tive test prioritization (STP) proposed by Korel, Tahat [10] and the even-spread count-based

test prioritization proposed by Tahat, Korel [12], are enhanced by combining their implemen-

tations while also adding a new criterion to increase the granularity of selection criteria hence

boosting the performance of prioritization. Secondly, a new prioritization criterion is intro-

duced called the degree of code changes. Using this criterion, the priority of each test case will

be more detailed, thus, enabling the significance of each test to be further analyzed. The third

contribution is a detailed experiment that is conducted to evaluate and compare the perfor-

mance of the proposed approach with selected existing approaches in the literature.

The remainder of this paper is organized as follows. In Section 2, a comprehensive elabora-

tion of each related domain is shown. Then, Section 3 shows the related works in MB-TCP.

Next, a detailed elaboration regarding SESOC is presented in Section 4. After that, the details

of the conducted experiment are shown in Section 5. Lastly, the conclusion and future recom-

mendations are discussed in Section 6.

2.0 Background

In this section, further clarifications regarding MBT, FSM, and MB-TCP are presented.

2.1 Model-based testing

The aim of testing in the context of software engineering is to show whether the behaviours of

an actual software system is the same as the expected behaviours or vice versa [13]. Generally

speaking, fault detection is the main goal of testing which is done by searching dissimilarities

between the actual and the planned behaviours of the system under test (SUT), as indicated by

its requirements. Shafique and Labiche [14] stated that software testing by spotting its execu-

tions on valued inputs is probably the most commonly used verification technique in the eval-

uation of an SUT. MBT is a branch of software testing under black-box testing that relies on

the behaviour models that visualize the expected behaviours of a SUT. In other words, the test

oracle problem is addressed in MBT by constructing the test oracle using the behaviour models

[15]. MBT extends testing automation from test design to test execution by making use of

automatic test generation and execution from the model [16]. MBT can save testing cost

because SUT behaviour models are utilized for automatic test case generation, unlike conven-

tional testing where each test case must be coded by the test engineer [17]. In addition, these

generated test cases can be executed automatically using a test automation tool to alleviate the

human oracle cost problem. Most approaches in MB-TCP generate test cases using the same

procedure as MBT. Therefore, it is crucial to comprehend the MBT process.

The process of MBT explained here is referred from Utting, Pretschner [13]. Firstly, test

models are built from the specification documents or informal requirements of the SUT by the

test engineer. How they are created depends on the type of SUT. For this particular study, web

application (web app) is the SUT and the way it is modelled using FSM is explained in Section

5.1. It is important to note that the test models must be simpler (more abstract) compared to

the SUT which mean they are easier to inspect, change and retain. Otherwise, the effort to vali-

date the models would be equivalent to validating the SUT itself.

FSM is commonly used to model system behaviours in MBT and is utilized in this research.

Javed, Minhas [18] conducted a systematic literature review (SLR) study of MBT for web app

and they concluded that majority of the identified MBT approaches are based on FSM and

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 3 / 27

https://doi.org/10.1371/journal.pone.0229312


several other behavioural models like activity diagram, state diagram and extended FSM

(EFSM). Furthermore, Sabbaghi and Keyvanpour [19] conducted a study to review the most

used state-based models in MBT. They also stated that FSM is widely used in MBT alongside

EFSM, state diagram, timed automata and Markov usage model. These review studies proved

that the FSM model is frequently used in performing MBT. FSM is a good choice for perform-

ing testing and prioritization because it can be exploited to generate abstract test cases which

later can be run on the actual system during testing. Although this model is an abstraction of

the system itself, crucial details are not abstracted out which makes it executable on its own.

Therefore, this model is sufficiently precise to be used as a foundation for generating good

abstract test cases. The next section presents a detailed explanation of this model.

The second step in MBT is to decide on the test selection criteria. This step is done to drive

the automatic test case generation so a good quality test suite can be generated. After deciding

the criteria of test selection, they are transformed into test case specifications in the third step.

Test case specifications formalize the notion of test selection criteria and make them opera-

tional. The fourth step in MBT is where a set of abstract test cases is generated, which aims to

satisfy all of the test case specifications. An automatic test case generator is utilized in this step

to develop a test suite given the models and the test case specifications.

Finally, the test suite is ready to be run in the fifth step. This step is done manually by a per-

son or by a test execution environment that supports the ability to execute the tests and record

their verdicts automatically. During the execution process, test inputs are first concretized and

then sent to the SUT. Next, the resulting concrete outputs from the SUT are abstracted to

obtain the high-level actual results. These actual results will be compared with the expected

results or in this case, the abstract test cases, to determine their verdicts. These concretization

and abstraction processes are handled by a component called an adapter. Fig 1 illustrates the

overall process of MBT with the corresponding steps labelled.

Nevertheless, there are some limitations in using MBT approach for testing. One of them is

that the success of testing depends on the quality of the artefacts used for creating the test

model [20]. This means that if incomplete or incorrect software artefacts are used, their defects

will propagate to the constructed test model and affect the generated test cases. However, this

issue could be countered because the test model illustrates the behaviours of the software sys-

tem better compared to the artefacts like specification documents or informal requirements.

Therefore, if the test model is validated first, the defects introduced in the software artefacts

could be identified and fixed before they spread to the testing phase. Another issue that needs

to be considered when using MBT is about the cost. This cost includes the knowledge and

expertise needed to create and maintain the test model and also to implement the automation

of test case generation and execution. However, these expenses are mostly needed during the

early phase of testing. When the recurring maintenance phase begins, the full benefits of MBT

will be utilized.

2.2 Finite state machine

The finite state machine (FSM) is a model of computation. It can change from one state to

another given that there are some external inputs which it can respond to. This model is usu-

ally applied to replicate sequential logic in computer programs. It is utilized in many modern

machines that carry out fixed order of actions depending on the sequence of responses pro-

vided. Some examples of these machines are vending machine, combination lock and elevator.

The formal definition of FSM is a 5-tuple S = (S,I,O,hs,s0), where S denotes a nonempty

finite set of states with the designated initial state s0, I and O denote the nonempty finite input
and output alphabets respectively, and hs�I×S×S×O is a transition relation [21]. An FSM can

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 4 / 27

https://doi.org/10.1371/journal.pone.0229312


be illustrated using a directed graph called a state diagram. States are depicted by vertexes

(node) with the edges (arrows) as the transitions that connect between two vertexes. Each edge

is associated with a specific input which when triggered, changes the machine from its current

state to the next one set by that edge. Fig 2 shows the FSM model for an Online Jewellery Store

which is later used in the experimentation.

Fig 1. MBT overall process (adapted from Utting, Pretschner [13]).

https://doi.org/10.1371/journal.pone.0229312.g001

Fig 2. FSM model of Online Jewellery Store.

https://doi.org/10.1371/journal.pone.0229312.g002

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 5 / 27

https://doi.org/10.1371/journal.pone.0229312.g001
https://doi.org/10.1371/journal.pone.0229312.g002
https://doi.org/10.1371/journal.pone.0229312


2.3 Model-based test case prioritization

Test case prioritization (TCP) is a regression testing technique that re-orders test cases from

the original test suite according to a specified objective where test cases that most serve the

objective are given the highest priorities [22]. The interpretation of the TCP problem suggested

by Elbaum, Malishevsky [23] is considered in this study:

Given: T, a test suite; PT, the set of permutations of T; f, a function from PT to the real num-

ber. Problem: Find T’ 2 PT such that

ð8T 00ÞðT 00 2 PTÞðT 00 6¼ T 0Þ½f ðT 0Þ � f ðT 00Þ� ð1Þ

In this interpretation, PT serves as the set of all anticipated orderings of T, while f is the

function when implemented to any of the ordering, creates an award value for it. In short, the

interpretation expects that higher award values are preferable than the lower ones. The func-

tion f is the most crucial part that represents the approach used to prioritize test cases. There

are a number of possible goals when referring to prioritization in this context. Elbaum, Mal-

ishevsky [23] also stated some of the goals in their study which are:

• To increase the rate of early fault detection when executing the test suite.

• To escalate the code coverage under test at a faster pace when executing the test suite.

• To boost the credence in the system’s reliability at a faster rate.

• To increase the possibility of identifying faults associated with a particular code modification

quicker in the testing process.

In this study, only the “rate of early fault detection when executing the test suite” objective

is focused.

Over time, numerous approaches for TCP have been proposed. One way of categorizing

the existing TCP approaches is to divide them into code-based and model-based types [9]. In

code-based TCP, prioritization is done by utilizing the source code information. Most of the

TCP approaches proposed in the literature are code-based. From an SLR conducted by Khatib-

syarbini, Isa [24], only five percent out of 80 studies collected regarding TCP are model-based

approaches. Furthermore, Catal and Mishra [2] found out that the most investigated prioriti-

zation method was coverage-based which is 40 percent of all the various approaches they had

gathered. Coverage-based is another term for code-based TCP where the more code coverage

of the software system is achieved by a test suite, the more chances faults can be revealed earlier

during testing. The downside of code-based prioritization is the requirement of code knowl-

edge to prioritize test cases which means prioritization cannot begin until the source code is

available. Another drawback is that most of them are language dependent so the testing pro-

cess will become troublesome in cases where the program is written in diverse programming

languages [25].

On the other hand, MB-TCP exploits the models of the software system to carry out priori-

tization. Generally, any kind of TCP approach that manipulates the system models in its imple-

mentation can be categorized as MB-TCP. Some examples of system model are use case

diagram, sequence diagram, state machine diagram and activity diagram. The key advantage

of MB-TCP is that execution of the system models is quicker compared to the execution of the

system code itself during testing [10]. Because of the high abstraction level of system models,

capturing the system’s behaviours and structures are less complicated compared to using the

source code [12]. Therefore, MB-TCP is considerably inexpensive, resource-wise and time-

wise compared to code-based TCP [10]. Despite that, MB-TCP also has its own weaknesses.

One of the major flaws is its dependence on the correctness and completeness of the system

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 6 / 27

https://doi.org/10.1371/journal.pone.0229312


models [26]. More limitations are shown when the related approaches in MB-TCP are dis-

cussed in Section 3.

2.3.1 Model-based test case prioritization using finite state machine. MB-TCP

approaches using FSM model in this study including the proposed approach are for a class of

modifications where only the source code of the SUT is altered and not the models. For such

class of modifications, there will be no distinction between two versions of the model because

they are not changed. This circumstance usually happens because many changes required in a

software system are caused by insignificant bugs or technical glitches. These changes do not

require modifications in the model because the model only focuses on the behaviours and

structures of a software system while abstracting out the underlying processes and details

related in the source code [12]. Modifications in the data structure and enhancing the effi-

ciency of the coding are some examples that do not require modifying the models.

When these modifications are done to the coding, the developers identify the transitions in

the model that are affected by them. These transitions are called modified transitions. It is

fairly straightforward to recognize modified transitions that are associated with source code

modifications. This is because model transitions are usually translated into functions in the

source code [27]. Therefore, if any modification is made in a function, all transitions that link

to this function will be labelled as modified transitions. The identification of these modified

transitions in the model is very important because this information will be utilized during the

prioritization process.

3.0 Related works

In this section, several existing MB-TCP approaches in the literature with their identified limi-

tations are discussed. Al-Herz and Ahmed [28] proposed an approach named Degree Measure

Method (DMM). This approach utilizes the Object Relation Diagram (ORD) model which

represents the design structure of a web app. DMM ranks components according to their fan-

in degree, then prioritizes test cases based on the rank of components. In this context, fan in

degree means the number of components that lead to the component in consideration. The

logic behind this approach is that most of the other components will fail to get the required

services if this high fan-in degree component malfunctions [28]. The weakness of this

approach is the assignment of priority when two components have the same fan-in degree.

The possibility of situations where two components might get similar priorities is high because

the granularity of test selection criteria is quite low in this approach. Their proposition to

address this drawback is by assigning additional criteria such as component type and fan-in

edge type.

Another approach in MB-TCP is proposed by Sapna and Mohanty [26] that uses the struc-

tural aspects of the use case diagram and activity diagram. In their approach, both diagrams

are used as the input for prioritization. The process starts with capturing data from all use case

diagrams to calculate use case priority. Next, scenarios are extracted from activity diagrams

and weights are assigned to their nodes and edges. The weight of path (scenario) is calculated

and finally prioritized by totalling the sum of the priorities starting at level 1 of the schema and

moving down by adding the weights of all the nodes up to the scenario weight. The downside

in this approach is its dependence on the correctness and completeness of the use case diagram

and activity diagram. For example, if the activity diagram is not complete, there will be possi-

bilities where some requirements are not captured. As a result, the scenarios will not be gener-

ated and this will affect the overall prioritization.

Furthermore, an approach called model dependence-based test prioritization was proposed

by Korel, Tahat [10] that utilizes FSM to perform prioritization. This approach was elaborated

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 7 / 27

https://doi.org/10.1371/journal.pone.0229312


by them in further details in their extended version of studies for modification made both in

the software system and models and for modification for which models are not modified (only

source code is modified) [12, 29]. Concisely, this approach does model dependence analysis to

determine the patterns of how added and deleted transitions connect with the modified model

and lastly utilizes this information to prioritize test cases. Despite that, this approach increases

execution time because it gathers extra information and needs more analysis compared to

other approaches proposed by them. Furthermore, the whole model execution trace must be

stored to compute the interaction patterns, thus raising resources usage.

Another example of MB-TCP approach that uses FSM model is STP [10]. In this approach,

high priorities are given randomly to tests that execute modified transitions in the model. The

limitation in this approach is that only prioritizing test cases based on their number of modi-

fied transitions randomly is insufficient and does not have a significant impact on improving

fault detection. Another example of an FSM based approach is basic frequency-based prioriti-

zation (BFP). In this approach, the frequency of modified transitions traversed by a test case is

considered. Tests that traverse greater frequency of modified transitions will be assigned

higher priorities compared to tests that traverse lower frequency of modified transitions. The

drawback of this approach is that modified transition frequencies of test cases are not a good

type of information to be used for prioritization.

In addition to that, there is also an FSM based approach called even-spread count-based

test prioritization [12]. In this approach, all modified transitions are given the same chances to

be covered during testing. This approach can provide a good prioritization result, however, it

can still be improved so that better prioritization result can be generated. Many MB-TCP

approaches using FSM also did not have a good granularity for selecting test cases to be priori-

tized. This low level of granularity will prevent these approaches from getting good prioritiza-

tion results. These limitations in MB-TCP approaches that utilize FSM show that refinement

can be added to improve the effectiveness of early fault detection. These limitations also moti-

vate the current study to propose an approach that can improve the prioritization effectiveness

of the existing MB-TCP approaches using FSM.

4.0 Proposed approach

In this section, the proposed MB-TCP approach which is called SESOC is explained in detail.

Firstly, the overview of SESOC is presented. Then, the implementation process is explained.

Lastly, an example implementation of SESOC in prioritizing test cases is demonstrated.

4.1 Overview

The proposed approach is a combination of the STP approach and even-spread count-based

test prioritization approach proposed by Korel, Tahat [10] and Tahat, Korel [12]. In addition,

a newly introduced criterion is applied to further scrutinize the prioritization of test cases.

This approach also tries to overcome the downsides mentioned in the related MB-TCP

approaches in the earlier section. Firstly, to provide a model that can support correct and com-

plete traceability to the system, the FSM is chosen. This model is advantageous because it gives

an understandable visual representation of various types of behaviour associated with transi-

tions. It is also utilized numerously to illustrate systems at a higher level of abstraction for bet-

ter comprehension and traceability. Secondly, an additional criterion is introduced which is

called the degree of code changes to increase the granularity of test selection criteria and pre-

vent the confrontation of situations where two nodes having the same degree of importance.

Lastly, this proposed approach will be both simple and comprehensible yet providing a solid

and reliable prioritization result.

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 8 / 27

https://doi.org/10.1371/journal.pone.0229312


The idea of SESOC is that higher priorities are assigned to tests that execute more modified

transitions in the model while balancing the number of executions of modified transitions dur-

ing testing. A modified transition will also be assigned a degree of code changes and the higher

the degree of code changes of a transition, the higher its priority will be. Ultimately, tests with

modified transitions that have high degree of code changes executed the least number of times

will be given higher priorities. Based on the explanation above, the approach is named

Enhanced Model-based Prioritization using Selective and Even-spread Count-based Methods

Combination with Scrutinized Ordering Criterion or SESOC for short. As stated earlier in Sec-

tion 2.3.1, SESOC is utilized for a class of modifications where only the source code is changed

and the models stay unchanged. Therefore, this approach is appropriate to be used for finding

bugs that might be introduced during the maintenance phase of a software development life

cycle.

4.2 Process

Fig 3 depicts the framework of the proposed SESOC approach. At first, two inputs are

required. They are the original test suite generated from the MBT process and the modified

transition information. Using these two inputs and the introduced degree of code changes, the

transition scores for all transitions are calculated. This process is the first process depicted as

P1 in Fig 3. Then, the second process, represented as P2 in Fig 3, is done. In this particular pro-

cess, test case score for each test case is calculated. Then, the test cases are ranked and divided

Fig 3. SESOC framework.

https://doi.org/10.1371/journal.pone.0229312.g003

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 9 / 27

https://doi.org/10.1371/journal.pone.0229312.g003
https://doi.org/10.1371/journal.pone.0229312


into high-rank and low-rank test cases in the third process represented as P3 in Fig 3. Next,

the high-rank test cases are further scrutinized for high priority test cases to increase the gran-

ularity of test selection criteria, represented as P4 in Fig 3. After that, the prioritized high-rank

test cases are combined back with the low-rank test cases to obtain the prioritized test suite.

This prioritized test suite is the output of SESOC implementation. The next paragraph dis-

cusses the implementation of SESOC in further detail.

In the first process, represented by P1 in Fig 3, each modified transition Tj2MT will be

given a transition score, ScT(Tj) based on its degree of code changes, where T is a transition, j
is the modified transition number and MT is a set of all modified transitions. This is the first

process in the framework. Degree of code changes is calculated by identifying how many lines

of source code associated with a transition that are modified and assigning the number of

modified lines as the score for that transition. In this context, a modification includes addition,

deletion and change. Recall that in the earlier explanation about MB-TCP using FSM in Sec-

tion 2.3.1, if any modification is made in a function of coding, all transitions that refer to this

function will be labelled as modified transitions. For example, suppose in a function there are

two lines of code where modifications are made, and the transition associated with that func-

tion is T1, then ScT(T1) = 2. For transitions that are not modified, their scores will simply be

zero.

The second step, depicted by P2 in Fig 3, is to calculate the test case score, Sct(ti) by sum-

ming all the scores of modified transitions traversed by that test case. This is the second pro-

cess in the framework. Eq 2 shows the calculation to determine a test case score.

SctðtiÞ ¼
XJ

j¼1

ScTðTjÞ;Tj 2 AðtiÞ ð2Þ

where A(ti) is a set of modified transitions executed by a test ti, i is the test case number, j is the

modified transition number and J is the total number of modified transitions traversed by test

case ti. After the scores for all test cases have been calculated, the test cases with zero Sct(ti) are

isolated and treated as low-rank test cases because they do not traverse any modified transi-

tion. This is because faults are unlikely to be located at the functions that are not modified. The

other test cases with non-zero Sct(ti) are treated as high-rank test cases. This isolation of high

and low-rank test cases is the third process in the framework shown by P3 in Fig 3.

Then, the fourth process, represented by P1 in Fig 3, is done. The test case in high rank with

the highest Sct(ti) is appended into the last position of the prioritized test suite, TSP. In an

unlikely event of more than one test case having the highest score, one is randomly chosen

between them. Then, a set E that contains the modified transitions that have been appended

into TSP is determined. After that, Sct(ti) for each test case is updated. For updating the test

case score, if a test case in high rank contains the modified transitions in set E, then the transi-

tion scores of those modified transitions in the test case will be eliminated. For example, ini-

tially A(t6) = {T1,T2},ScT(T1) = 2 and ScT(T2) = 1, therefore Sct(t6) = 3. Assuming that another

test case is appended to TSP and set E is updated where E = {T1}, the updated score will be ScT
(t6) = 1.

Subsequently, the remaining test cases in high rank are checked if all of their Sct(ti) = 0. If

yes, all of them are appended randomly into the last position of prioritized TSP. If no, then the

next test case in high rank with the highest Sct(ti) is put into TSP same as the first step in the

fourth process until the updating and checking steps. The process continues looping until all

test cases in high rank are ordered in TSP. Lastly, test cases in low rank that traverse no modi-

fied transition are ordered randomly at the end of TSP. Fig 4, quoted and altered from the pre-

vious work of Shafie and Kadir [11], shows the flowchart of the SESOC algorithm. P1, P2, P3

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 10 / 27

https://doi.org/10.1371/journal.pone.0229312


and P4 at the left-hand side reflect the corresponding processes that are in parallel with the

processes in the framework shown in Fig 3.

4.3 Example

Suppose an example where MT = {T1,T2,T3,T4,T5}, TS = 〈t1,t2,t3,t4,t5,t6,t7,t8,t9,t10〉 where TS is a

test suite containing 10 test cases and A(t1) = {T1,T2,T3}; A(t2) = {T3,T4,T5}; A(t3) = {T3,T4}; A
(t4) = {T5}; A(t5) = {T1}; A(t6) = {T1,T2}; A(t7) = {T2,T4}; A(t8) = {T2,T3,T4}; A(t9) = Ø; A(t10) =

Ø. Assuming that the transition score ScT(Tj) for each modified transition is calculated where

ScT(T1) = 2; ScT(T2) = 1; ScT(T3) = 1; ScT(T4) = 1; ScT(T5) = 3, then the test case score Sct(ti)
for each test case is calculated where Sct(t1) = 4; Sct(t2) = 5; Sct(t3) = 2; Sct(t4) = 3; Sct(t5) = 2;

Sct(t6) = 3; Sct(t7) = 2; Sct(t8) = 3; Sct(t9) = 0; Sct(t10) = 0.

Fig 4. Flowchart of SESOC (quoted and altered from Shafie and Kadir [11]).

https://doi.org/10.1371/journal.pone.0229312.g004

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 11 / 27

https://doi.org/10.1371/journal.pone.0229312.g004
https://doi.org/10.1371/journal.pone.0229312


Based on the Sct(t) values, it can be observed that Sct(t2) has the highest value, therefore, it

will be appended first, TSP = 〈t2〉. Next, the set E where modified transitions that have been

appended into TSP is determined where E = {T3,T4,T5}. Then, the test case score Sct(ti) for each

test case is updated where Sct(t1) = 3; Sct(t2) = 0; Sct(t3) = 0; Sct(t4) = 0; Sct(t5) = 2; Sct(t6) = 3;

Sct(t7) = 1; Sct(t8) = 1; Sct(t9) = 0; Sct(t10) = 0. Based on the updated Sct(ti) values, it can be

observed that Sct(t1) and Sct(t6) have the highest value. Therefore, one random test case

between these two is appended into TSP and assuming that t1 is chosen, then TSP = 〈t2,t1〉. This

event is very unlikely to happen in a real-world situation considering the complexity and size

of the test suite. Then, set E will be updated where E = {T3,T4,T5,T1,T2}. The updated test case

score will be Sct(t1) = 0; Sct(t2) = 0; Sct(t3) = 0; Sct(t4) = 0; Sct(t5) = 0; Sct(t6) = 0; Sct(t7) = 0; Sct
(t8) = 0; Sct(t9) = 0; Sct(t10) = 0. Considering that all test cases scores are 0, they are appended

randomly in TSP. The remaining test cases which traverse no modified transition in TS will be

selected randomly to be appended in TSP. Therefore, a possible prioritized test suite will be

TSP = 〈t2,t1,t3,t4,t5,t6,t7,t8,t9,t10〉.

5.0 Experiment framework

In this section, an experiment is conducted with the aims to evaluate and compare the effec-

tiveness of early fault detection of SESOC with the selected existing approaches in the litera-

ture. The scope of this experiment is determined by describing its objective. The template for

goal definition is followed by the one that was originally presented by Basili and Rombach

[30]. A more detailed description of this template can be found in Wohlin, Runeson [31]. For

this experiment, the goal summary is shown below:

Analyze the MB-TCP approaches using FSM

for the purpose of evaluation

with respect to effectiveness in prioritizing fault detecting tests

from the point of view of the software tester

in the context of web app testing.

5.1 Objects of study

Web apps are utilized as objects of study in this experiment. Therefore, the justifications of

their usage are presented in this section. Nowadays, modern web apps are intricate and highly

interactive. They have complicated interfaces and various back-end software elements that are

integrated in many ways [32]. Web-based systems also tend to scale rapidly and go through

frequent alterations because of new technological opportunities and users feedbacks [33].

Because of these circumstances, the iterative development process based on continuous

changes and rapid prototyping is a very good choice for web app development [34]. Neverthe-

less, cost issue could occur during the regression testing because of the continuous testing in

this development model. Therefore, TCP is a suitable technique to be applied here because it

prioritizes faults revealing test cases thus increasing efficiency in this rapid development

environment.

Secondly, web apps are utilized because they can be modelled using FSM by representing

them in the form of states and transitions between states [32]. States can be associated with

page validations where the user is currently browsing. On the other hand, a transition can be

associated with clicking buttons, entering texts or whatsoever actions, that when triggered by

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 12 / 27

https://doi.org/10.1371/journal.pone.0229312


the user, changes the state of the web app. Therefore, MB-TCP using FSM is suitable for web

app testing and deduces the reasons why web apps are chosen in this study.

In MB-TCP, the FSM model of a software system is required to generate the test cases for

testing purpose. The software system itself that contains faults is also required to measure the

approaches’ prioritization effectiveness. Unfortunately, system models for real-world commer-

cial software with their respective software systems are not available freely [12, 29], and not to

mention that this study requires an FSM model specifically. In addition, most of the MB-TCP

studies in the literature created their own system models for testing and did not make them

available to the public domain for other researchers to utilize as datasets.

Consequently, this study made use of web apps that are available in the public domain as

the objects of study. The FSM models for these web apps are created during the experiment.

Three web apps are obtained from Sanjeev [35]. They are Online Jewellery Shopping, Car

Rental System and Blood Bank Management System. These three are selected because they

represent web apps of different sizes. From this difference, the effect on the prioritization result

can be analyzed. All of them were included with their essential files and databases so that they

can be executed in localhost for testing purpose. Based on their interfaces and functionalities,

these open source web apps are similar and reflect those web apps from actual industrial use.

Table 1 shows the characteristics of the selected web apps that are of interest in this study.

The number of states and number of unique transitions refer to those in the FCM models of

these three web apps. From these numbers, it can be observed that the three models have dif-

ferent sizes. Only unique transitions are counted in because there are many similar transitions

that are used by different states. These similar transitions will execute the same functions in

the implementation so the effect of modifications in a function will affect the similar transi-

tions equivalently. Therefore, these similar transitions are treated as only one transition. The

last column refers to the lines of code (LOC) in all project files for each web app excluding

blank and comment lines, calculated using the cloc tool [36]. More information regarding the

models and the source code are available in the repository [37].

5.2 Independent variable

The independent variable is the MB-TCP approach using FSM with six treatments consisting

of five distinct approaches from Korel, Koutsogiannakis [27], Tahat, Korel [12] and SESOC

itself. The five approaches are STP, basic count-based prioritization (BCP), round-robin

count-based prioritization (RCP), basic frequency-based prioritization (BFP) and round-robin

frequency-based prioritization (RFP). A brief explanation of these five approaches is provided.

They were selected based on our latest SLR work that reviewed existing MB-TCP approaches

[8]. To ensure a fair comparison, only approaches that utilized theh FSM model were chosen.

Approaches that utilized other types of model implemented different prioritization criteria

depending on the information provided from the model. For that reason, comparison with

them was not made because it could affect the internal validity of the experiment.

In STP, high priorities are given to tests that executed modified transitions in the model,

meaning that if a test traverses at least one modified transition in its execution, that test will be

Table 1. Characteristics of the selected web apps.

Web App Number of Web Pages Number of States (FCM model) Number of Unique Transitions (FCM model) LOC

Online Jewellery Shop 14 11 16 22684

Car Rental System 13 16 28 24668

Blood Bank Management System 16 19 32 28663

https://doi.org/10.1371/journal.pone.0229312.t001

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 13 / 27

https://doi.org/10.1371/journal.pone.0229312.t001
https://doi.org/10.1371/journal.pone.0229312


given high priority. Otherwise, low priorities are given to tests that traverse no modified transi-

tion in their execution. The order of tests for both high priority and low priority groups in TSP
is done randomly.

For BCP, the main information used is the number of unique modified transitions tra-

versed by a test. The idea is that tests that traverse a greater amount of unique modified transi-

tions will be assigned higher priorities compared to tests that traverse lower amount of unique

modified transitions. RCP is quite similar to BCP but with a slight distinction. The fundamen-

tal of this approach is that using the BCP approach, one test case is picked from the first prior-

ity group with the most unique modified transitions, then another one is picked from the

second priority group with the second most unique modified transitions and so on. When the

last priority group with only one unique modified transition has been reached, the selection

goes back to the first priority group and continues again. This order of selection repeats until

all tests that traversed at least one modified transition are picked. Only then the tests with no

modified transition traversed are selected randomly into the end of TSP.

For BFP, the main information used is the frequency of modified transitions traversed by a

test. The difference between count-based and frequency-based is that count-based calculates

the unique number of modified transitions in a test while frequency-based calculates the fre-

quency of modified transitions in a test regardless of whether they are unique or similar modi-

fied transitions. The idea of this approach is similar to BCP. While BCP prioritizes test cases

with the most unique number of modified transitions, BFP prioritizes test cases with the high-

est frequency of modified transitions. In RFP, the criteria for test cases selection will be based

on RCP but the information used will be the frequency of modified transitions traversed by a

test.

5.3 Dependent variable

One of the metrics that is popularly used to evaluate a TCP approach’s effectiveness in early

fault detection is the APFD. Rothermel, Untch [38] and Elbaum, Malishevsky [23] are some of

the earliest studies that mentioned this evaluation metric. They defined APFD as a metric used

to quantify how rapid a prioritized test suite locates faults. The value of APFD result can be

from 0 to 1 where a bigger value shows greater fault detection rate. The equation for calculat-

ing the APFD value acquired from Elbaum, Malishevsky [39] is shown as follows:

APFD ¼ 1 �
TF1 þ TF2 þ . . .þ TFm

nm
þ

1

2n
ð3Þ

Where T represents a test suite consisting of n test cases and F is a group of m faults discov-

ered by T. TFi is the earliest test case in sequence T0 of T which reveals fault i.

5.4 Experiment process

In this experiment, two tools were used to assist in running the experiment, namely GW4E

and Selenium Webdriver. Both tools are based on the Java programming language. GW4E is

the plugin of Graphwalker MBT tool in Eclipse Integrated Development Environment. It

reads directed graphs and generates abstract test cases from them. Selenium Webdriver was

utilized to automate web apps for testing purposes. It acted as an adapter that connected the

abstract test cases generated from GW4E with the actual SUT. The function of the adapter has

been explained in Section 2.1. Fig 5 illustrates the design of the experiment. The experiment

process consists of model design, test selection criteria, test path generation, test execution and

test prioritization. The explanation for each step is presented afterwards.

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 14 / 27

https://doi.org/10.1371/journal.pone.0229312


Firstly, web apps were developed based on the requirements. In this experiment, web apps

that were already developed with complete and working functionalities according to their

requirements were acquired as stated earlier in Section 5.1. These web apps were modelled

using FSM based on their requirements in GW4E. The FSM model for Online Jewellery Store

is shown in Fig 2. The models for the remaining web apps are available in the repository [37].

Then, the criteria for test selection were decided to drive the automatic test generation.

GW4E provided a special rule pattern for the test selection criteria consisting of a generator, a

stop condition and a condition. For this experiment, it was required for the test suite to cover

all the edges available in the model. Therefore, the pattern will be quick_random(edge_cover-

age(100)). quick_random means it will search the shortest paths through a model. edge_cover-

age means that the paths need to be covered are the edges. Lastly, 100 means that it needs to

cover all 100 percent of the edges before stopping.

After model design and test selection criteria were done, the test paths generation can be

executed. This experiment made use of offline path generation where the path generation was

Fig 5. Experiment design.

https://doi.org/10.1371/journal.pone.0229312.g005

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 15 / 27

https://doi.org/10.1371/journal.pone.0229312.g005
https://doi.org/10.1371/journal.pone.0229312


done once and stored in some intermediate format. Subsequently, GW4E utilized the created

FSM model and the defined test selection criteria to generate the test path.

Next, Selenium Webdriver was used to connect the abstract test cases with the web app. Fig

6 shows an implementation snippet of edges and vertexes using Selenium Webdriver for

Online Jewellery Shopping. In v_HomePage vertex, a validation was done to check whether

the current page was really the homepage of Online Jewellery Shopping or vice versa. In

e_ClickSignUpLink edge, the command instructed Selenium Webdriver to click the sign-up

link. All the source code for the Selenium Webdriver implementation is available in the reposi-

tory [37].

After the implementation was completed, faults seeding was done. Faults were seeded man-

ually using a mutation testing technique mentioned by Jia and Harman [40] and Offutt, Lee

[41]. In this experiment, three types of mutation were used, namely value mutation, decision

mutation and statement mutation [42]. The total number of faults seeded for each web app is

shown in the results section. To mitigate the bias of manually seeding the mutants, the line

numbers of the possible locations for seeding mutants were randomly generated. Also, in this

experiment, a modification represented a fault which meant more modifications created more

faults. This approach seems impractical because, realistically, not all modifications done intro-

duce faults. However, this approach was used because it portrayed the assumption that more

modifications mean a higher possibility of introducing faults based on the study from Hassan

[43]. All the web apps source code and the seeded faults information are available in the reposi-

tory [37].

Lastly, the tests were run and their verdicts recorded automatically by a test execution envi-

ronment in Eclipse IDE. For every fault seeded into the SUT, the test suite was executed to the

faulty SUT to reveal which tests passed or failed. In MBT, when a test is run and the actual

SUT does not perform exactly as expected by the test case, the test case will fail which shows

that one or more faults are revealed in the SUT. During the execution, a table of fault matrices

for each web app was completed that tabulated which test cases detected which faults. These

tables are presented afterwards.

To perform prioritization, the abstract test cases were utilized because the modified transi-

tions and states had to be identified and marked in each test case. To do this, faults injection

information was used to pinpoint which parts of the coding that were seeded with faults. Then,

the associated transitions or states of that part of coding in the test cases were identified and

marked as modified transitions or states. Essentially, abstract test cases and modified transition

information were the two inputs needed by the MB-TCP approaches to perform prioritization.

Table 2 shows the modified transitions and states identified for the Online Jewellery Store

Fig 6. Implementation snippet of edges and vertexes using Selenium Webdriver for Online Jewellery Shopping.

https://doi.org/10.1371/journal.pone.0229312.g006

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 16 / 27

https://doi.org/10.1371/journal.pone.0229312.g006
https://doi.org/10.1371/journal.pone.0229312


FSM model. The transition score info was used in SESOC prioritization. Tables for the remain-

ing web apps are available in the repository [37].

Lastly, to get the prioritized test suite, the table of fault matrices and MB-TCP approaches

were utilized. Then, the ordering of test cases from each approach and the fault matrices were

used to calculate the APFD values. Tables 3–5 tabulate the fault matrices for all three web apps.

The rows show the faults while the columns show the test cases. “X” means that the test case

failed or in other words, it detected the fault while “✓” means vice versa. The APFD results are

shown in Section 6.

5.5 Threats to validity

The first issue that can affect the conclusion validity is the size of the sample. This experiment

only made use of three web apps where the number also acted as the sample size. This can pos-

sibly affect the significance test result because the probability value could be higher than 0.05

significance level, thus making it impossible to reject the null hypothesis with strong evidence.

However, based on the observation of the experiment result and the mean rank from Kruskal-

Wallis H test in Section 6, SESOC is clearly more superior than other benchmark approaches

for all web apps. This shows that if the sample size was increased, significant evidence that

SESOC outperformed other benchmark approaches can be achieved. In addition, the statistical

test used in the hypothesis testing was Kruskal-Wallis H. This is a type of non-parametric tests.

It has a quite low statistical power so there are risks that an erroneous conclusion could be

made. To reduce these risks, it was ensured that all the assumptions required to run this test

have been adhered accordingly.

Next is the issue that can affect the internal validity of this experiment. The execution of

this experiment required the assistance of several necessary tools and the implementation of

some required processes. These could add variabilities to the result where other unintended

independent variables might be affecting the dependent variable. To minimize these threats, it

was ensured that the selected tools were appropriate in this experiment so that valid outcomes

were produced. Also, the processes of MBT and prioritization were done carefully to prevent

them from affecting the result. In addition, the constructed FSM models that were used to gen-

erate test cases were considered as correct in the experiment. In reality, it is actually possible

Table 2. Modified transitions and states for the Online Jewellery Store.

Modified Transition Transition Score, ScT(Tj)

v_OrderHistoryPage 1

e_CompleteRegistration 1

e_CompleteCheckout 4

v_ViewProductPage 2

https://doi.org/10.1371/journal.pone.0229312.t002

Table 3. Fault matrices for Online Jewellery Shopping.

Fault Test case

1 2 3 4 5 6 7 8

1 ✓ X ✓ ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ X ✓ ✓ ✓ ✓ ✓

3 ✓ X ✓ ✓ X ✓ ✓ ✓

4 ✓ X ✓ ✓ X X X X

5 ✓ X ✓ ✓ X X X X

https://doi.org/10.1371/journal.pone.0229312.t003

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 17 / 27

https://doi.org/10.1371/journal.pone.0229312.t002
https://doi.org/10.1371/journal.pone.0229312.t003
https://doi.org/10.1371/journal.pone.0229312


that the model itself was incorrectly designed. As a consequence, the generated test cases will

be different and the prioritization process will be affected. In order to reduce the effect of this

threat, the generated test cases were traced back to the requirements of the system to ensure

full coverage. Full coverage means that there is at least one test case that tests a requirement

and all requirements are tested by the test suite.

Regarding threats to construct validity, the issue is related to the dependent variable which

is the APFD. In the experiment, it is stated that the experiment evaluated the approaches with

respect to their effectiveness in prioritizing fault detecting tests so APFD was used. However,

AFPD does not consider the cost of tests and severity of faults. In theory, when it comes to the

effectiveness of fault detection, the cost of tests and severity of faults should also be taken into

consideration. Therefore, the utilization of APFD could affect the construct validity of the

experiment. This issue will be added in future work to utilize other metrics that can address

the cost of tests and severity of faults such as Cost-cognizant Average Percentage of Faults

Detected [44].

Lastly is to address the threats regarding external validity. The first issue is the web apps

used in this experiment. They are open source web apps that are not in actual commercial use.

Therefore, they might not represent web apps from real-world industries. To mitigate this

threat, web apps that are similar and reflect those web apps from actual industrial were used.

Another treats to external validity is related to the faults seeded. In the experiment, faults were

Table 4. Fault matrices for Car Rental System.

Fault Test case

1 2 3 4 5 6 7 8 9 10 11 12

1 ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ X ✓ X X ✓ ✓ ✓ X ✓ ✓ X

4 ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ X X ✓ ✓ X X ✓ ✓ X

6 ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0229312.t004

Table 5. Fault matrices for Blood Bank Management System.

Fault Test case

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6 ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X X ✓ ✓ X X ✓ ✓ X X X ✓ ✓ ✓ ✓

8 ✓ ✓ X X ✓ ✓ ✓ X X ✓ X ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X ✓ X X ✓

9 ✓ X ✓ ✓ ✓ ✓ X ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓ ✓ ✓ X ✓

10 ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓

12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ X X X ✓ ✓

13 ✓ ✓ ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0229312.t005

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 18 / 27

https://doi.org/10.1371/journal.pone.0229312.t004
https://doi.org/10.1371/journal.pone.0229312.t005
https://doi.org/10.1371/journal.pone.0229312


seeded into the SUT to create failed test cases. In real life industrial environment, it is obvious

that testing is done to find actual faults in the SUT and not seeded faults. This issue will be

mentioned in future work to obtain and utilize systems with actual faults for the experimenta-

tion so that it will reflect an actual industrial environment.

6.0 Results

Tables 6–8 tabulate the number of possible orderings, the highest and lowest APFD values and

the mean APFD values from the three web apps. The first column contains all the associated

approaches. The second column shows the number of possible orderings that can be generated

from each approach. The third and fourth columns exhibit the highest and lowest APFD values

from all the possible orderings of each approach and the chances of getting those values. Lastly,

the fifth column displays the mean APFD of all values from the possible orderings of each

approach. Higher APFD value means better prioritization result. All the raw data of possible

orderings with their respective APFD values are available in the repository [37].

Several interesting observations can be pointed out from these tables. To discuss the num-

ber of possible orderings, the STP approach has the highest number of possible orderings for

all case studies. For the highest APFD column, STP and SESOC both generated the highest

APFD values for Online Jewellery Shopping and Blood Bank Management System with the

values of 0.9125 and 0.9154 respectively. In addition, it can be observed that the highest APFD

and lowest APFD values of SESOC for Blood Bank Management System case study are differ-

ent while for Online Jewellery Shopping and Car Rental System case study, they are the same.

This occurrence is interpreted in the discussion of the results in Section 7.

For Car Rental System, STP and RCP approaches have the highest APFD with the value of

0.8750. However, for chances percentage of highest APFD, SESOC outperforms all the other

approaches with the values of 100%, 100% and 25% for Online Jewellery Shopping, Car Rental

System and Blood Bank Management System respectively. For lowest APFD column, the STP

approach generated the lowest APFD values for all dataset with the values of 0.6375, 0.6012

and 0.5369 respectively. Lastly, for the APFD Mean column, SESOC surpasses all other

approaches with the highest APFD Mean value.

Table 6. The number of possible orderings with their APFD values for Online Jewellery Store.

Approach Number of Possible Orderings Highest APFD (chances %) Lowest APFD (chances) APFD Mean

STP 720 0.9125 (3.33) 0.6375 (2.5) 0.7708

BCP 24 0.8875 (25.0) 0.8125 (25.0) 0.8500

RCP 24 0.8875 (25.0) 0.8125 (25.0) 0.8500

BFP 12 0.8375 (50.0) 0.8125 (50.0) 0.8250

RFP 12 0.8875 (50.0) 0.8375 (50.0) 0.8625

SESOC 24 0.9125 (100) 0.9125 (100) 0.9125

https://doi.org/10.1371/journal.pone.0229312.t006

Table 7. The number of possible orderings with their APFD values for Car Rental System.

Approach Number of Possible Orderings Highest APFD (chances %) Lowest APFD (chances) APFD Mean

STP 40320 0.8750 (0.12) 0.6012 (0.09) 0.7381

BCP 240 0.8393 (2.5) 0.7083 (2.5) 0.7738

RCP 240 0.8750 (2.5) 0.6726 (2.5) 0.7655

BFP 4 0.6964 (25.0) 0.6726 (25.0) 0.6845

RFP 4 0.6964 (25.0) 0.6488 (25.0) 0.6726

SESOC 24 0.8631 (100) 0.8631 (100) 0.8631

https://doi.org/10.1371/journal.pone.0229312.t007

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 19 / 27

https://doi.org/10.1371/journal.pone.0229312.t006
https://doi.org/10.1371/journal.pone.0229312.t007
https://doi.org/10.1371/journal.pone.0229312


Fig 7 represents the boxplots of APFD values for all possible orderings from each approach.

Boxplot was used because it can visualize the dispersion and skewness of data well. The x-axis

represents the web app while the y-axis represents the APFD value. The "X" mark in each box-

plot shows the mean value. The boxplots were clustered into three groups based on web apps.

From the boxplot, STP has the biggest spread while SESOC has the smallest spread. Even

though STP generated orderings with highest APFD values for Online Car Rental, SESOC has

a smaller spread compared to STP for all web apps. This show that the APFD values from all

possible orderings generated from SESOC are more consistent which is better because the

chances of getting those high values are higher compared to STP.

Figs 8–10 show the line graphs of fault detection rate with APFD value for each web app

respectively. The purpose of using the line graph is to visualize how rapid a prioritized test

suite that is generated from an approach can detect all the seeded faults. The title for each

graph is the approach’s abbreviation with the APFD value of a selected ordering that is the

same or nearest to the mean APFD from all the possible orderings. The x-axis represents the

percentage of test suite coverage while the y-axis represents the percentage of faults detected.

From these graphs, a noteworthy observation can be pointed out where line graphs of

SESOC for all datasets show the fastest 100 percent detection of faults. At first, it might seem

in these graphs that if 100 percent detection of faults can be achieved with lesser test suite cov-

erage, the APFD value will be higher. However, this is not always true because it can be

observed that, for example, in STP and BFP graphs for Online Jewellery Shopping, both have

the same test suite coverage for 100 percent detection of faults but their APFD values are differ-

ent. This circumstance is further discussed in Section 7.

Table 8. The number of possible orderings with their APFD values for Blood Bank Management System.

Approach Number of Possible Orderings Highest APFD (chances %) Lowest APFD (chances) APFD Mean

STP 484248 0.9154 (0.02) 0.5369 (0.004) 0.7292

BCP 40320 0.8538 (0.05) 0.74 (0.07) 0.7959

RCP 40320 0.8815 (0.61) 0.5953 (0.07) 0.7144

BFP 40320 0.8477 (0.06) 0.7338 (0.01) 0.7918

RFP 40320 0.8477 (0.06) 0.5677 (0.005) 0.6979

SESOC 480 0.9154 (25.0) 0.9092 (25.0) 0.9123

https://doi.org/10.1371/journal.pone.0229312.t008

Fig 7. Boxplots of APFD for all possible ordering from each approach.

https://doi.org/10.1371/journal.pone.0229312.g007

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 20 / 27

https://doi.org/10.1371/journal.pone.0229312.t008
https://doi.org/10.1371/journal.pone.0229312.g007
https://doi.org/10.1371/journal.pone.0229312


For hypothesis testing in this research, only the mean APFD values of each approach for all

web apps were used as shown in Tables 6–8. All the calculations in the hypothesis testing were

done using IBM SPSS Version 24. In this experiment, SESOC was compared between the exist-

ing MB-TCP approaches using FSM to determine whether it can outperform them. The null

hypothesis is that there are no differences between the APFD values from the existing

MB-TCP approaches using FSM and SESOC while the alternative hypothesis is vice versa. The

initial plan was to utilize the one-way analysis of variance (ANOVA) but several assumptions

were not met, one of them being the assumption that the dependent variable should be roughly

normally distributed for each treatment of the independent variable. Table 9 shows the test for

normality using the Shapiro-Wilk test. SESOC has a significance value that is lower than 0.05

(0.007) which shows that its distribution is not normal.

Therefore, the Kruskal-Wallis H test was used instead. Kruskal-Wallis H test is a rank-

based non-parametric test that is used to conclude whether there are any statistical differences

Fig 8. Line graphs of faults detection rate for Online Jewellery Shopping.

https://doi.org/10.1371/journal.pone.0229312.g008

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 21 / 27

https://doi.org/10.1371/journal.pone.0229312.g008
https://doi.org/10.1371/journal.pone.0229312


between two or more treatments of an independent variable on an ordinal or continuous

dependent variable. This test is considered as the alternative to one-way ANOVA in cases

where ANOVA assumptions are not met. All the assumptions needed to run this test have also

been adhered. Table 10 shows the test result using Kruskal-Wallis H for APFD value. The con-

clusion from this hypothesis testing is elaborated in Section 7.

7.0 Discussion

The first interpretation is that STP has the possibility to generate orderings that yield both

highest and lowest APFD values. This can be observed in Tables 6–8 and the boxplots in Fig 7.

The number of possible orderings column for STP in the tables prove that many possible

orderings can be generated using STP. This happens because STP prioritization criteria only

select test cases that traverse modified transitions to be prioritized while those that do not tra-

verse modified transition are assigned last in the prioritized test suite. Thus, there will be many

Fig 9. Line graphs of faults detection rate for Car Rental System.

https://doi.org/10.1371/journal.pone.0229312.g009

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 22 / 27

https://doi.org/10.1371/journal.pone.0229312.g009
https://doi.org/10.1371/journal.pone.0229312


possible orderings that can be generated by STP which can include the best and the worst pri-

oritization. Worst prioritization here only considers for the test cases with modified transi-

tions. If test cases with no modified transition are included, the prioritization could be much

Fig 10. Line graphs of faults detection rate for Blood Bank Management System.

https://doi.org/10.1371/journal.pone.0229312.g010

Table 9. Test for normality using Shapiro-Wilk test.

Approach Degree of Freedom Significance

STP 3 0.391

BCP 3 0.546

RCP 3 0.730

BFP 3 0.435

RFP 3 0.235

SESOC 3 0.007

https://doi.org/10.1371/journal.pone.0229312.t009

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 23 / 27

https://doi.org/10.1371/journal.pone.0229312.g010
https://doi.org/10.1371/journal.pone.0229312.t009
https://doi.org/10.1371/journal.pone.0229312


worse. Therefore, STP approach can be utilized to indicate the worst prioritization and the

best prioritization to be compared with other approaches.

In addition, it is obvious in Tables 6–8 that SESOC outperforms all other approaches in

terms of APFD value. Plus, the chances for SESOC to obtain those high APFD values are also

very convincing. Unfortunately, in Table 7, it seems that the highest APFD value is achieved

by STP and RCP, not SESOC with a difference of 0.0119. However, if the chances are consid-

ered, SESOC has a higher chance of 100 percent to obtain the 0.8631 than STP and RCP with

the chance of 0.12 and 2.5 percent respectively to obtain the 0.8750. This shows that SESOC is

more likely to generate high APFD value than STP if the same number of possible orderings

are to be generated from both approaches.

Also, it is mentioned earlier during the analysis of Figs 8–10 that it is not true that if 100

percent detection of faults can be achieved with lesser test suite coverage, the APFD value will

be higher. This is because some pairs have the same test suite coverage for 100 percent detec-

tion of faults but their APFD values are different. The reason for this is because the calculation

of APFD takes into consideration the number of test cases required until a fault is revealed,

and this is done for all faults. This shows that it is not the test suite coverage to achieve 100 per-

cent detection of faults that is considered when calculating APFD, but the test suite coverage

to reveal each fault which is actually utilized. To prove this, it can be observed that in STP and

BFP graphs for Online Jewellery Shopping, after the first test case is executed (the second dot

in the line), BFP already achieves 80 percent detection of faults while STP just only achieves 20

percent detection of faults. This explains why BFP has higher APFD value than STP.

Furthermore, it is noticed that the highest APFD and lowest APFD values of SESOC for

Blood Bank Management System case study are different while for Online Jewellery Shopping

and Car Rental System, they are the same. This happens because the test suite size is small for

Online Jewellery Shopping and Car Rental System; 8 and 12 test cases to be exact. Because of

that, even though the selection of test cases can vary and different orderings might be pro-

duced, their APFD values are still the same. On the other hand, the test suite size of Blood

Bank Management System is larger with 25 test cases so different possible orderings that could

satisfy the conditions of SESOC will produce different APFD values. It can be concluded here

that the size of the web app also affects the prioritization result obtained. When the web app

size increases, the test suite size also increases, and the APFD values for all possible orderings

generated from SESOC started to spread more as can be seen from the boxplot in Fig 7.

From the hypothesis testing, the Kruskal-Wallis H test showed that there is a weak evidence

of a statistical difference in APFD value among the different approaches, p = 0.119, with a

mean rank APFD value of 6.33 for STP, 11.17 for BCP, 8.17 for RCP, 8.00 for BFP, 6.33 for

RFP and 17.00 for SESOC. Therefore, the null hypothesis cannot be rejected with significant

evidence and must be retained. From the mean rank, SESOC has the highest rank which

showed that the proposed approach is the most effective among other approaches. Unfortu-

nately, the differences between all approaches are not significant because the significance value

Table 10. Test result using Kruskal-Wallis H for APFD value.

Approach Sample Size Mean Rank Significance

STP 3 6.33 0.119

BCP 3 11.17

RCP 3 8.17

BFP 3 8.00

RFP 3 6.33

SESOC 3 17.00

https://doi.org/10.1371/journal.pone.0229312.t010

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 24 / 27

https://doi.org/10.1371/journal.pone.0229312.t010
https://doi.org/10.1371/journal.pone.0229312


is higher than 0.01, 0.05 and 0.1 significance levels. One of the reasons is because of the sample

size, which in this case is the number of web apps, is too small so the data cannot supply

enough evidence that the null hypothesis is false. Therefore, post hoc test to determine which

of these approaches differ from each other cannot be run.

8.0 Conclusion

This study proposes an MB-TCP approach using FSM called SESOC. A brief description of the

related subjects is also provided that include MBT, FSM and MB-TCP. To identify the gaps in

the existing approaches, several related works in MB-TCP are reviewed. Several existing

approaches are also used as the theoretical basis or foundation for SESOC. Then, the proposed

approach is presented that aims at addressing the limitations found in the related works while

improving the effectiveness of early fault detection during testing. A detailed experiment is

conducted to evaluate and compare the effectiveness of early fault detection of SESOC with the

existing approaches in the literature. The results obtained showed that SESOC outperformed

the other approaches in terms of early fault detection. Nevertheless, this research is still far

from perfection.

To improve this research more in the future, some crucial recommendations are suggested.

First is to increase the sample size which is the number of web apps used so that stronger evi-

dence can be obtained to reject the null hypothesis. The future plan also includes benchmark-

ing SESOC with approaches from other categories like machine learning-based TCP or test

case generation. This is so that SESOC effectiveness as an MBT approach can be further evalu-

ated, not just regarding fault detection capability, but also in terms of execution cost of the

approach itself. Finally is to consider the utilization of other metrics that can address the cost

of tests and severity of faults such as Cost-cognizant Average Percentage of Faults Detected to

strengthen the construct validity regarding the effectiveness in prioritizing faults detecting

tests.

Author Contributions

Conceptualization: Muhammad Luqman Mohd-Shafie, Wan Mohd Nasir Wan-Kadir.

Data curation: Muhammad Luqman Mohd-Shafie.

Formal analysis: Muhammad Luqman Mohd-Shafie.

Funding acquisition: Wan Mohd Nasir Wan-Kadir.

Investigation: Muhammad Luqman Mohd-Shafie.

Methodology: Muhammad Luqman Mohd-Shafie, Wan Mohd Nasir Wan-Kadir.

Project administration: Muhammad Luqman Mohd-Shafie, Wan Mohd Nasir Wan-Kadir.

Resources: Muhammad Luqman Mohd-Shafie, Mohd Adham Isa.

Software: Muhammad Luqman Mohd-Shafie.

Supervision: Wan Mohd Nasir Wan-Kadir.

Validation: Muhammad Luqman Mohd-Shafie, Wan Mohd Nasir Wan-Kadir, Muhammad

Khatibsyarbini, Mohd Adham Isa.

Visualization: Muhammad Luqman Mohd-Shafie.

Writing – original draft: Muhammad Luqman Mohd-Shafie.

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 25 / 27

https://doi.org/10.1371/journal.pone.0229312


Writing – review & editing: Muhammad Luqman Mohd-Shafie, Wan Mohd Nasir Wan-

Kadir, Muhammad Khatibsyarbini, Mohd Adham Isa.

References
1. Yoo S, Harman M. Regression testing minimization, selection and prioritization: a survey. Software

Testing, Verification and Reliability. 2012; 22(2):67–120. https://doi.org/10.1002/stvr.430.

2. Catal C, Mishra D. Test case prioritization: a systematic mapping study. Software Quality Journal.

2013; 21(3):445–78. https://doi.org/10.1007/s11219-012-9181-z.

3. Hall T, Beecham S, Bowes D, Gray D, Counsell S. A systematic literature review on fault prediction per-

formance in software engineering. IEEE Transactions on Software Engineering. 2012; 38(6):1276–304.

https://doi.org/10.1109/TSE.2011.103.

4. Memon A, Gao Z, Nguyen B, Dhanda S, Nickell E, Siemborski R, et al., editors. Taming Google-scale

continuous testing. 39th International Conference on Software Engineering: Software Engineering in

Practice Track; 2017; Buenos Aires, Argentina: IEEE.

5. Elbaum S, Kallakuri P, Malishevsky A, Rothermel G, Kanduri S. Understanding the effects of changes

on the cost-effectiveness of regression testing techniques. Software testing, verification and reliability.

2003; 13(2):65–83. https://doi.org/10.1002/stvr.263.

6. Khan SUR, Lee SP, Javaid N, Abdul W. A Systematic Review on Test Suite Reduction: Approaches,

Experiment’s Quality Evaluation, and Guidelines. IEEE Access. 2018; 6:11816–41. https://doi.org/10.

1109/ACCESS.2018.2809600.

7. Zhang L, editor Hybrid regression test selection. IEEE/ACM 40th International Conference on Software

Engineering (ICSE); 2018; Gothenburg, Sweden: IEEE.

8. Shafie ML, Kadir WMW. Model-based Test Case Prioritization: A Systematic Literature Review. Journal

of Theoretical and Applied Information Technology (JATIT). 2018; 96(14):4548–73.

9. Garg R. A Comprehensive Review on Regression Testing Techniques. International Journal of Recent

Research Aspects. 2017; 4(3):44–9.

10. Korel B, Tahat LH, Harman M, editors. Test prioritization using system models. 21st IEEE International

Conference on Software Maintenance (ICSM’05); 2005; Budapest, Hungary: IEEE.

11. Shafie ML, Kadir WMW. Test Case Prioritization based on Extended Finite State Machine Model. Jour-

nal of Telecommunication, Electronic and Computer Engineering (JTEC). 2017; 9(3–3):125–32.

12. Tahat L, Korel B, Koutsogiannakis G, Almasri N. State-based models in regression test suite prioritiza-

tion. Software Quality Journal. 2017; 25(3):703–42. https://doi.org/10.1007/s11219-016-9330-x.

13. Utting M, Pretschner A, Legeard B. A taxonomy of model-based testing approaches. Software Testing,

Verification and Reliability. 2012; 22(5):297–312. https://doi.org/10.1002/stvr.456.

14. Shafique M, Labiche Y. A systematic review of state-based test tools. International Journal on Software

Tools for Technology Transfer. 2015; 17(1):59–76. https://doi.org/10.1007/s10009-013-0291-0.

15. Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S. The oracle problem in software testing: A survey.

IEEE transactions on software engineering. 2014; 41(5):507–25. https://doi.org/10.1109/TSE.2014.

2372785.

16. Sivanandan S, editor Agile development cycle: approach to design an effective model based testing

with behaviour driven automation framework. 20th Annual International Conference on Advanced Com-

puting and Communications (ADCOM); 2014; Bangalore, India: IEEE.

17. Ernits J, Roo R, Jacky J, Veanes M. Model-based testing of web applications using NModel. Testing of

Software and Communication Systems: Springer; 2009. p. 211–6.

18. Javed H, Minhas NM, Abbas A, Riaz FM. Model Based Testing for Web Applications: A Literature Sur-

vey Presented. Journal of Software. 2016; 11(4):347–61. https://doi.org/10.17706/jsw.11.4.347-361.

19. Sabbaghi A, Keyvanpour MR, editors. State-based models in model-based testing: A systematic

review. 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI); 2017;

Tehran, Iran: IEEE.

20. Dias-Neto AC, Travassos GH. A picture from the model-based testing area: concepts, techniques, and

challenges. Advances in Computers. 80: Elsevier; 2010. p. 45–120.

21. Ermakov A, Yevtushenko N. Increasing the fault coverage of tests derived against Extended Finite

State Machines. System Informatics. 2016; 7:23–31.

22. Singh Y, Kaur A, Suri B, Singhal S. Systematic Literature Review on Regression Test Prioritization

Techniques. Informatica. 2012; 36(4):379–408.

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 26 / 27

https://doi.org/10.1002/stvr.430
https://doi.org/10.1007/s11219-012-9181-z
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1002/stvr.263
https://doi.org/10.1109/ACCESS.2018.2809600
https://doi.org/10.1109/ACCESS.2018.2809600
https://doi.org/10.1007/s11219-016-9330-x
https://doi.org/10.1002/stvr.456
https://doi.org/10.1007/s10009-013-0291-0
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.17706/jsw.11.4.347-361
https://doi.org/10.1371/journal.pone.0229312


23. Elbaum S, Malishevsky AG, Rothermel G. Prioritizing test cases for regression testing: ACM; 2000.

102–12 p.

24. Khatibsyarbini M, Isa MA, Jawawi DN, Tumeng R. Test case prioritization approaches in regression

testing: A systematic literature review. Information and Software Technology. 2018; 93:74–93. https://

doi.org/10.1016/j.infsof.2017.08.014.

25. Mahdian A, Andrews AA, Pilskalns OJ. Regression testing with UML software designs: a survey. Jour-

nal of Software Maintenance and Evolution: Research and Practice. 2009; 21(4):253–86. https://doi.

org/10.1002/smr.403.

26. Sapna P, Mohanty H, editors. Prioritizing Use Cases to aid ordering of Scenarios. Third UKSim Euro-

pean Symposium on Computer Modeling and Simulation; 2009; Athens, Greece: IEEE.

27. Korel B, Koutsogiannakis G, Tahat LH, editors. Application of system models in regression test suite pri-

oritization. International Conference on Software Maintenance (ICSM); 2008; Beijing, China: IEEE.

28. Al-Herz A, Ahmed M, editors. Model-based web components testing: a prioritization approach. Interna-

tional Conference on Software Engineering and Computer Systems; 2011; Pahang, Malaysia:

Springer.

29. Tahat L, Korel B, Harman M, Ural H. Regression test suite prioritization using system models. Software

Testing, Verification and Reliability. 2012; 22(7):481–506. https://doi.org/10.1002/stvr.461.

30. Basili VR, Rombach HD. The TAME project: Towards improvement-oriented software environments.

IEEE Transactions on software engineering. 1988; 14(6):758–73. https://doi.org/10.1109/32.6156.

31. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A. Experimentation in software engi-

neering: Springer Science & Business Media; 2012.

32. Andrews AA, Offutt J, Alexander RT. Testing web applications by modeling with FSMs. Software & Sys-

tems Modeling. 2005; 4(3):326–45. https://doi.org/10.1007/s10270-004-0077-7.

33. Ricca F, Tonella P, editors. Analysis and testing of web applications. Proceedings of the 23rd Interna-

tional Conference on Software Engineering; 2001: IEEE Computer Society.

34. Conallen J. Building Web applications with UML: Addison-Wesley Longman Publishing Co., Inc.; 2002.

35. Sanjeev. Phptpoint 2018 [cited 2018 29 March]. Available from: https://www.phptpoint.com/.

36. Danial A. Count Lines of Code 2018. Available from: https://github.com/AlDanial/cloc.

37. Mohd-Shafie ML. Replication Data for: Model-based test case prioritization using selective and even-

spread count-based methods with scrutinized ordering criterion. V1 ed: Harvard Dataverse; 2019.

38. Rothermel G, Untch RH, Chu C, Harrold MJ, editors. Test case prioritization: An empirical study. Inter-

national Conference on Software Maintenance-1999 (ICSM’99); 1999; Oxford, England, UK: IEEE.

39. Elbaum S, Malishevsky AG, Rothermel G. Test case prioritization: A family of empirical studies. IEEE

Transactions on Software Engineering. 2002; 28(2):159–82. https://doi.org/10.1109/32.988497.

40. Jia Y, Harman M. An analysis and survey of the development of mutation testing. IEEE transactions on

software engineering. 2011; 37(5):649–78. https://doi.org/10.1109/TSE.2010.62.

41. Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C. An experimental determination of sufficient mutant

operators. ACM Transactions on Software Engineering and Methodology (TOSEM). 1996; 5(2):99–

118.

42. Do H, Rothermel G. On the use of mutation faults in empirical assessments of test case prioritization

techniques. IEEE Transactions on Software Engineering. 2006; 32(9):733–52. https://doi.org/10.1109/

TSE.2006.92.

43. Hassan AE, editor Predicting faults using the complexity of code changes. Proceedings of the 31st

International Conference on Software Engineering; 2009; Vancouver, BC, Canada: IEEE.

44. Elbaum S, Malishevsky A, Rothermel G, editors. Incorporating varying test costs and fault severities

into test case prioritization. Proceedings of the 23rd International Conference on Software Engineering;

2001; Toronto, Ontario, Canada: IEEE Computer Society.

MB-TCP using selective and even-spread count-based methods with scrutinized ordering criterion

PLOS ONE | https://doi.org/10.1371/journal.pone.0229312 February 21, 2020 27 / 27

https://doi.org/10.1016/j.infsof.2017.08.014
https://doi.org/10.1016/j.infsof.2017.08.014
https://doi.org/10.1002/smr.403
https://doi.org/10.1002/smr.403
https://doi.org/10.1002/stvr.461
https://doi.org/10.1109/32.6156
https://doi.org/10.1007/s10270-004-0077-7
https://www.phptpoint.com/
https://github.com/AlDanial/cloc
https://doi.org/10.1109/32.988497
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1371/journal.pone.0229312

