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ABSTRACT The development of rolling element bearing fault diagnosis systems has attracted a great deal

of attention due to bearing components having a high tendency toward unexpected failures. However, under

low-speed operating conditions, the diagnosis of bearing components remains a problem. In this paper,

the adaptive resilient stacked sparse autoencoder (ArSSAE) is proposed to compensate for the shortcomings

of conventional fault diagnosis systems at low speed. The efficiency of the proposed ArSSAE model is

initially assessed using the CWRU database. Then, the proposed model is evaluated on actual vibration

analysis (VA) and acoustic emission (AE) signals measured on a bearing test rig at low operating speeds

(48–480 rpm). Overall, the analysis demonstrates that the ArSSAE model is able to perform an accurate

diagnosis of bearing components under low-speed conditions.

INDEX TERMS Low speed, bearing fault diagnosis, vibration analysis, acoustic emission analysis, adaptive

resilient stacked sparse autoencoder (ArSSAE).

I. INTRODUCTION

Rolling element bearings are commonly used in machin-

ery such as excavators, stackers, swing shovels and steel

mill cranes [1]. These machines are operated at low speeds

due to their heavy weight and large structures. An unex-

pected failure of a heavy machinery bearing may result in

an economic loss and lead to a long period of maintenance.

Recently, many fault diagnosis systems have been focused

on high-speed bearing fault diagnosis using vibration signal

monitoring [2].

In order to prevent such failures, effective fault diagnosis

systems for bearing components operating at low speeds

require further development. Moustafa et al. wrote that an

effective fault diagnosis system has been introduced for

bearing components in high-speed conditions; however, fault

diagnosis in low-speed operation still remains a difficult

problem [3]. According to Caesarendra et al., the range of
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low-speed operation is around 10–600 rpm [4]. The limitation

of vibration analysis (VA) in low-speed operating machine

fault diagnosis has led to the exploration of acoustic emis-

sion (AE) techniques [4], [5]. Caesarendra and Tjahjowidodo

reported that the vibration signature produced at low speed

is masked by a heavy background noise, which makes the

signal more complex and makes it difficult to extract reliable

features from the signal [6]. This is because the vibration

signal is directly proportional to the acceleration of the vibrat-

ing component. However, Xiong et al. achieved satisfactory

performance in diagnosing bearing conditions at a rotation

speed of 230 rpm using EMD denoising and alpha-stable

distribution [7]. In addition, Song et al. proposed a new signal

feature extraction method for bearing conditions under low-

speed operation [8].

AE techniques can be more sensitive than VA in detecting

defects at low operating speed [9]. There are two condi-

tions of the generation of AE signal, as mentioned in [4].

At high speed, the AE signal is generated based on the impact

between the rolling element and the bearing raceway. Mean-
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while, at low speed, the transient elastic wave is generated

based on the interaction of the rolling element and the bearing

raceway. However, the AE signal is difficult to process due

to the high sampling rate, typically up to 10 MHz [10].

Bechhoefer et al. conducted research on improving AE fea-

ture extraction [11]. The authors stated that the AE signal

contains a large volume of data that must be processed,

and the extracted AE features must be selected properly

depending on the application (e.g., bearing or gear). The chal-

lenges and limitations of AE methods have been discussed

by Sikorska and Mba [12]. Attempts to process the AE sig-

nal have been made by several researchers. For example,

Van Hecke et al. resampled the AE signal using a het-

erodyne frequency reduction approach [13]. In addition,

Ruiz-Cárcel et al. diagnosed bearing defects by using a

spectral kurtosis diagram to enhance the fault features in

AE signals [14]. In the past few decades, the AE burst

detection system has been used in bearing fault diagno-

sis [15], [16]. This system could eliminate the difficulty of

processing the continuous AE signal.

In recent years, deep learningmodels have been introduced

to overcome the limitations of the traditional fault diagnosis

system. The traditional system utilizes two common machine

learning models: an artificial neural network (ANN) and a

support vector machine (SVM). In general, it is necessary

to properly extract and select features for ANN and SVM

models so that they can be accurately classified [17]. The

shallow architecture of traditional machine learning is only

applicable for feature classification purposes [18]. In con-

trast, deep learning architecture is capable of extracting and

designing the input data automatically using each layer of

the deep network. This process could eliminate the need for

manual feature extraction and feature selection, which are

time-intensive. Liu et al. emphasized that deep learning out-

performs any other traditional machine learning techniques

in term of automated feature processing [19]. Deep learning

techniques as applied to bearing fault diagnosis systems are

rapidly being developed and it is able to deal with multiple

types of input data as listed in Table 1. There are three types

of input data that can be summarized from the literature

analysis: statistical features, time domains and images of

time-frequency transformation.

Among deep learning models, the stacked sparse autoen-

coder (SSAE) has shown promising performance in various

applications such as medical imaging processing [20]–[22],

speech recognition [23] and human activity recognition [24].

Several authors highlighted that SSAE performance is

highly dependent on its architecture hyperparameter and

human expertise is required to determine the exact values

for hyperparameters or performance will suffer [25]–[27].

In addition, there is no standard procedure to determine the

number of hidden nodes and layers in an SSAE network.

At present, the SSAE’s hyperparameter and hidden node

number has been successfully optimized using metaheuris-

tic algorithm as mentioned in the following research [28].

Wang et al. mentioned the effects of autoencoder hidden

TABLE 1. Application of deep learning model on different input data.

layer numbers on the model performance [29]. For example,

Liu et al. used three hidden layers of SSAE network to

diagnose bearing condition based on STFT image classifi-

cation [30]. Ahmed et al. and Sun et al. stacked two layers

of SAEs to extract a significant feature from a processed

bearing signal [31], [32]. Chen and Li combined two hidden

layers of SAEs and three hidden layers of DBNs so that

a significant feature could be automatically extracted from

the input data [33]. Meanwhile, Di and Wang discussed the

varied prediction accuracies produced with different numbers

of hidden layers [34].

In this paper, a novel method called an adaptive resilient

stacked sparse autoencoder (ArSSAE) is proposed in order to

deal with the aforementioned problems. The proposed model

is applied to analyze three types of input data: time-frequency

images, time domains and statistical features from VA and

AE signals. The capability of themodel to deal with the online

dataset and experimental dataset has been studied.

The rest of the paper is organized as follows. Section II dis-

cusses the sparse autoencodermodel and Section III describes

improvements to it. Section IV discusses the preliminary

analysis using the proposed model on the online database.

Section V presents the experimental study on the bearing test

rig. Sections VI and VII discuss the results and conclude the

paper, respectively.

II. STRUCTURE OF STACKED SPARSE AUTOENCODER

An autoencoder network is based on a symmetrical three-

layer network to learn high-level data representation.

The model can be trained in an unsupervised manner.
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The basic autoencoder network contains encoder and decoder

functions. The hidden representation (h ∈ Rk ) is mapped

using the encoder function h = f (w1x + b). The decoder

function x̂ = g (w2h+ b) reconstructs the hidden repre-

sentation to produce an output that has approximately equal

characteristics to the original input. The loss function of an

autoencoder is defined in Eq. 1:

J (W , b) =
1

2

∥

∥hw,b (x) − y
∥

∥

2
, (1)

where J (W , b; x, y) represents the mean square error.

The sparse autoencoder (SAE) is another variant of autoen-

coder which enforces a constraint onto the hidden units to

discover interesting features in the data [42]. The sparse

autoencoder loss function is described in Eq. 2:

Jsparse (W , b) = J (W , b) + β

n
∑

j=1

KL(ρ‖ρ̂j), (2)

where KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1−ρ

1−ρ̂j
represents

the sparsity penalty term, β is a weight of the sparsity penalty

term, ρ is the sparsity parameter and ρ̂j is the average activa-

tion of the hidden unit. The overall loss function of a stacked

sparse autoencoder is shown in Eq. 3:

E = Jsparse (W , b) + Jweight (W , b) , (3)

where Jweight (W , b) = λ
2

nl
∑

l=1

sl−1
∑

i

sl
∑

j

(

W
(l)
ij

)2
is a weight

decay term to prevent the network from overfitting.

The sparse autoencoder (SAE) network is stacked up to

several numbers, and the softmax network is located on top

of the stacking sparse autoencoder network. In this study,

the combination of stacking SAE networks and softmax is

called SSAE architecture, where the stacking of the SAE

network represents the hidden layer of the whole network.

Softmax is a classifier that aims to classify the features that

were processed by the sparse autoencoder. The mathematical

model of the softmax classifier is shown in Eq. (4):
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where θ1, θ2, . . . , θk ∈ Rn+1 are the model parameters and

1/
k
∑

i=1

e
θTj x

i

normalizes the distribution to ensure that the sum

is equal to one.

III. PROPOSED MODEL OF BEARING FAULT DIAGNOSIS

SYSTEM

In this section, the proposed model is developed in order

to deal with current problems as reported in the literature

analysis. The first problem is that advance fault diagnosis

systems for bearing fault diagnosis are limited under low-

speed operating conditions. Second, several studies have

found that AE outperforms vibration for monitoring bearing

components at low operating speeds. However, a paper has

been published on the application of vibration at an operating

speed of 230 rpm where the fault diagnosis can be performed

at low speed condition using vibration signal [7]. Third, there

are three types of input data that can be fed into the deep

learning model depending on the deep learning networks and

machinery applications. Each type of input data (e.g. statisti-

cal features, time domains and images of time-frequency) will

provide a different number of features. At present, each type

of input data needs a different set of deep learning models,

which require human intervention to manually change the

architecture of the model depending on the input data charac-

teristics. The performance of the machine learning model is

heavily dependent on the quantity and quality of the features.

The modified architecture of the original autoencoder is

constructed as illustrated in Fig. 1. The structure of the

ArSSAE should have flexibility in processing any type of

dataset in order to eliminate dependency on any particular

feature extraction and feature selection methods. The devel-

oped model should also be robust and able to address the

current problems of bearing fault diagnosis. First, the resilient

back-propagation (Rprop) algorithm is implemented on the

ArSSAE network to reduce the training time of the model

Then, the ArSSAE hyperparameters (e.g., the number of hid-

den nodes, weight decay parameter λ′, sparsity parameter ρ,

and weight of sparsity penalty term β) are optimized using

the differential evolution (DE) optimization method. Based

on studies reviewed by Ab Wahab et al., DE is among the

best optimization methods [43]. The details of the DE and

resilient algorithm implementation in the SSAE network can

be referred to the following works [28]. To solve the hidden

layer problem discussed in the preceding section, we devel-

oped a stacking layer of SAEs depending on the feature size

as an initial reference configuration. However, the model may

change the number of stacking layers if the initial hidden

layer does not provide an accurate prediction. Determining

the number of layers contained in a deep learning model

is a problem that requires a trial and error process, and

it is sometimes based on intuition. The common problems

of deep learning models are computer processing load and

time. The SSAEmodel suffers from two computational costs:

i) computational processing for training the SSAE network

and parameters (e.g. weight and bias); and ii) computational

processing for optimizing the SSAE hyperparameters. Thus,

we used DE and Rprop to reduce both costs by avoiding

unnecessary computational processing, because the amount

of computational processing required is directly proportional

to the size of the network. The proposed model algorithm and

flowchart are presented in Table 2 and Fig. 2 respectively.

A. DIFFERENTIAL EVOLUTION

In order to solve the hyperparameter selection problem dis-

cussed in the preceding section, DE is utilized to automate
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FIGURE 1. Proposed diagnosis system.

the process. The DE operator employs the sequence of muta-

tion, crossover and selection. In addition, DE naturally alters

its search behavior from exploration to exploitation as the

population evolves due to its self-referential mutation. The

selection process determines the vectors that will survive for

the next generation.

In the mutation process, a mutant vector Vi,G is generated

by multiplying the amplification factor as in Eq. (4):

Vi,G = Xr i1,G
+ F .(Xr i2,G

− Xr i3,G
), (5)

where i = 1, . . . ,NP, r1r2r3 are random numbers, r1 6=

r2 6= r3 6= i, x is a decision vector and F is an amplifica-

tion factor ([01]) that determines the differential variation of

(Xr i2,G
−Xr i3,G

). The process continues with the crossover step.

In the crossover operators, the offspring takes the probability

1 − Cr from the mutant vector Vi,G of the current popula-

tionX . The parent vector is combined with the mutated vector

using Eqs. (6) and (7) to produce trial vector U :

Ui,G+1 =
(

U1i,G+1,U2i,G+1, . . . ,UDi,G+1

)

(6)

and

Uji,G

{

Vji,G+1 if (rand i,j [0, 1] ≤ Crorj = jrand )

Xji,G otherwise.
(7)

where j = {1, 2, . . . ,D, Cr[0, 1] is the predefined crossover

rate constant, rand i,j [0, 1] is the random number and

jrand (1, 2, . . . ,D) is randomly chosen to ensure Uji,G gets at

least one component from Vi,G.

The next step involves the selection process for choosing

a vector between (Ui,G+1) and (Xji,G) for the next generation

G + 1. In an optimization problem, a vector with a higher

fitness value is chosen using Eq. (8):

Xi,G+1 =

{

Ui,Gf
(

Ui,G
)

< f (Xi,G+1)

Xi,Gf
(

Ui,G
)

≥ f (Xi,G+1).
(8)

In the DE algorithm, there are several control parameters,

such as the scale factor F , the crossover rate Cr and the

population number NP, that need to be set. Storn and Price

recommended that the parameters should be [0.5,1], [0.8,1]

and 10D for scale factor, crossover rate and population num-

ber respectively [44]. In this paper, the DE parameters are set

as follows: F = 0 : 8,Cr = 0 : 7,NP = 50 and a maximum

generation number Gmax = 100 is chosen as the termination

criterion.

B. RESILIENT BACK-PROPAGATION ALGORITHM (RPROP)

The back-propagation algorithm updates the SSAE network

parameters (e.g., weights and bias) in order to minimize the

error function. Rprop has a faster speed of convergence and

higher accuracy than other backpropagation algorithms [45].

It also has a different weight update routine compared to

other methods. The algorithm updates the weight by consid-

ering the sign of the error gradient. The weight is updated

via Eq. (9):

1ij (t) =



























η+1ij (t − 1) , if
δE

δwij
(t − 1) .

∂E

∂wij
(t) > 0

η−1ij (t − 1) , if
δE

δwij
(t − 1) .

∂E

∂wij
(t) < 0

1wij (t − 1) , otherwise.

(9)

The component 1ij is decreased by a factor of η− when the

partial derivative ∂E/∂wij changes its sign from one iteration

to the next consecutive one. The component 1ij is increased

by a factor of η+ when the element of ∂E/∂wij maintains

its sign from one iteration to the next consecutive iteration.

In this study, the η+ value is 1.2 while the η− value is 0.5 as

described in [46]. The weight will update its direction based
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TABLE 2. The algorithm of ArSSAE model bearing specification.

on Eq. (10):

1wij (t) =











−1ij, if δE
δwij

> 0

+1ij, if δE
δwij

< 0

0, otherwise.

(10)

The details of the mathematical and algorithm explanation

can be found in [46].

FIGURE 2. Flowchart of the adaptive SSAE model for bearing fault
diagnosis.

IV. PRELIMINARY ANALYSIS OF PROPOSED MODEL

USING BEARING ONLINE DATABASE (CWRU)

The proposed model was initially tested with a standard bear-

ing database from CaseWestern Reserve University (CWRU)

[47]. This data has been used by many researchers to test

their proposed models of bearing fault diagnosis systems.

Three types of datasets statistical features, time domains and

kurtogram images were created from the vibration signal. The

experimental setup is shown in Figure 3, and the data used in

this study was recorded at a sampling rate of 48 kHz.We used

the 1770–1800 rpm dataset with 10 different types of bear-

ing conditions that contained three different fault severities

(0.007-inch, 0.014-inch and 0.021-inch). The time domain

was segmented using a length of 1600 data points for time

domain data preparation. Ten statistical features—amplitude,

root mean square, standard deviation, energy, kurtosis, skew-

ness, crest factor, impulse factor, margin factor and shape

factor—were extracted from the segmented time domain.

For the third types of input data, the segmented signal was

transformed into a kurtogram. Each of the bearing conditions
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FIGURE 3. CWRU bearing testing platform.

TABLE 3. Optimization results of the proposed model based on the
CWRU database.

was sampled 100 times for training samples and 50 times for

testing samples.

The analysis results are shown in Table 3. According to

the results, the model achieved satisfactory performance on

all types of datasets. The analysis proved that kurtograms can

be used for bearing fault diagnosis. Typically, the analysis

of time-frequency transformation relies on human interpre-

tation to examine the fault characteristics. In this study, the

kurtogram pattern was recognized based on the ArSSAE

model. The ArSSAE demonstrated its effectiveness in mining

the important features from the datasets. The number of

SAE layers was initially calculated based on the feature

boundary set in the algorithm. The model initially used four

layers of SAE networks for time domain data. However,

the model obtained the best classification prediction using

two SAE layers. According to the results, the model achieved

an accurate classification of statistical features and kurtogram

images based on the initial hidden layer configuration. The

classification result indicates that fault diagnosis using the

proposed model is highly accurate.

V. EXPERIMENTAL SETUP

This section covers the experimental setup of the machin-

ery fault simulator by Spectraquest. As illustrated in Fig. 4,

the main components of the experimental rig include a 1
2

horsepower (hp) motor, a motor controller and a rotor located

on the middle of the shaft. A Rexnord link-belt ball bearing

with Centric-LokCL and Shurlokmounting collars were used

for the duration of the experiment. The machine was operated

at a range of low-speed operating conditions from 48 rpm

(0.8 Hz) to 480 rpm (8 Hz). The AE sensor was placed near

FIGURE 4. Experimental configurations.

the bearing housing and the accelerometer was located radi-

ally at the bearing housing. The AE instrumentation involved

an AE sensor (PKWDI model) with an operating frequency

range of 200–850 kHz, a single channel USB AE node and

AEwin software. The AE system used in this research pro-

duced an AE burst waveform when the energy exceeded the

threshold level. The setup of AE software acquisition was

based on [48]. The AE hit bursts were obtained for a duration

of 30 seconds.

The VA analysis involved two accelerometers, OROS data

acquisition and NVgate software. The data was recorded

in 30-second increments with a 25.6 kHz sampling rate.

To simulate the bearing defect conditions, nine types of

defects were introduced on the Rexnord bearing as shown

in Fig. 5. Figs. 5(a), 5(b) and 5(c) represent the defects located

on the outer race, inner race and ball bearing respectively.

In addition, three types of combination defects were intro-

duced on the bearing component: an outer racewith inner race

defect, an outer race with ball bearing defect and an inner race

with ball bearing defect. For these, a defect size of 0.06 inches

was used. The details of the bearing condition are illustrated

in Table 4.

A. BEARING DEFECT FREQUENCY ANALYSIS

In order to validate the bearing conditions, the frequency

spectrum of the defect was studied, and the result is shown

in Fig. 6. The analysis of the frequency spectrum involves

a rotation speed of 480 rpm and bearings with 0.06-inch

defects. The calculation of bearing component defect fre-

quency can be seen in Table 4. The defect frequency of

inner race, outer race and ball are 39.6 Hz, 24.384 Hz

and 30.384 Hz respectively. As can be seen in Fig. 6, the

defect frequency of every bearing component is similar to

the calculated frequency from the bearing defect equation.
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FIGURE 5. Bearing samples used in the experiment: a) outer race defect,
b) inner race defect, and c) ball defect.

TABLE 4. Bearing specifications.

Figs. 6(d), 6(e) and 6(f) show a spectrum of combination

defect frequencies of inner with outer race, ball with inner

race and ball with outer race respectively. Both amplitudes of

the defect frequencies can be seen clearly on the spectrum.

In summary, the analysis further proved that the defect was

located at the right bearing component.

FIGURE 6. Bearing defect frequency.

B. DATA PREPARATION

In this study, six types of datasets were used to validate

the proposed model: AE statistical features, AE kurtogram,

AE burst waveforms (AE time domain), VA statisti-

cal features, VA kurtogram and VA segmented signals

(VA time domain). The data preparation details are summa-

rized in Table 5. For the first type of input data, the length

of the AE and VA time domain represents the number
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TABLE 5. Details of data preparation.

of features. As mentioned in the preceding section, the

AE system provided a burst signal with a length of 1024 data

points. Meanwhile, the continuous VA signal was segmented

into lengths of 2025 data points. Ten statistical features were

extracted from the sliced VA signals including kurtosis, skew-

ness, margin factor, impulse factor, crest factor and shape fac-

tor. Meanwhile, eleven statistical features were obtained from

the AE system: amplitude, counts, duration, energy, absolute

energy, signal strength, average signal level, rise time, root

mean square, average frequency and counts to peak. Then,

the AE burst and the segmented VA signal were transformed

into kurtogram. The training dataset was sampled 100 times

for each bearing condition, and the testing dataset was sam-

pled 50 times for each bearing condition. Thus, 1000 and

1300 data samples represent the 10 and 13 classes training

sets respectively, whereas 500 and 650 data samples represent

the 10 and 13 classes testing sets.

VI. RESULTS AND DISCUSSION

The results of the experiments are presented in this section.

In the first subsection, the comparative study of AE and

VA signal features based on SVM model performance is

discussed. The second subsection discusses the performance

of the proposed model, the ArSSAE. In the last subsection,

the comparative study between the proposed model and the

SVM model is discussed.

A. COMPARATIVE STUDY OF AE AND VA STATISTICAL

FEATURES BASED ON SVM MODEL PERFORMANCE

The initial analysis involved a comparative study between AE

and VA statistical features using SVMmodels. Instead of per-

forming a manual analysis of the statistical features, we used

the SVM model to compare which signals provided more

significant features. At first, the SVM model was analyzed

with three dataset conditions: one set of 0.03-inch data (four

classes), one set of 0.06-inch data (four classes) and one set

of 0.09-inch data (four classes). For a four classes dataset,

the SVM model is needed to diagnose the defect accord-

ing to the location of the defect in the bearing component.

Figs. 7 and 8 show the SVM classification accuracy for AE

and VA statistical features respectively. The SVM model

reached approximately 60 to 100% classification accuracy

for 0.03-inch, 0.06-inch and 0.09-inch defects on AE signals.

FIGURE 7. SVM result on AE statistical features.

FIGURE 8. SVM result on VA statistical features.

Meanwhile, the model reached around 40 to 95% accu-

racy for VA signals. Next, the SVM was tested with the

0.06-inch combined dataset (seven classes), and the result is

shown in Figs. 7–8 for both signals. The seven classes con-

tained one normal bearing, three single defects and three com-

binations of defects. Classification accuracywas significantly

greater using AE features than VA features when the rota-

tional speed was less than 360 rpm. The SVMmodel was also

evaluated on datasets representing 10 and 13 bearing fault

conditions, and the result is shown in Fig. 9. The 10 classes

dataset contained all defect conditions except combinations

of defects. Meanwhile, the 13 classes dataset contained

all available bearing conditions, as listed in Table 4. The

SVM model produced higher classification accuracy on the

AE signal’s features compared to VA signal’s features. It is

worth mentioning that the performance of the SVM model

increased when the rotational speed increased. Moreover, the
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FIGURE 9. SVM classification on 10 and 13 classes.

FIGURE 10. ArSSAE result between AE and VA analysis for 10 classes.

accuracy of the SVM model declined with an increase in the

number of classes.

B. CLASSIFICATION PERFORMANCE OF THE PROPOSED

MODEL (ArSSAE) ON AE AND VA SIGNALS FOR 10 and

13 CLASSES DATASETS

As discussed in the preceding analysis, the proposed ArSSAE

model was developed based on multiple fault conditions.

Therefore, the model was directly evaluated with the 10 and

13 classes datasets. It was fed with six types of datasets

as listed in Table 5, and Fig. 10 shows the analysis result.

For 10 classes, the defect location and defect severity can

be simultaneously diagnosed. According to the assessment,

the classification accuracy of the model depends on the type

of input data. The model had higher performance on the

FIGURE 11. ArSSAE training performance on AE kurtogram (10 classes).

AE time domain compared to the VA time domain when

rotational speed was less than 240 rpm, and it started to reach

a satisfactory result on the VA time domain between 240 and

480 rpm. This demonstrates that the model can mine useful

information from the time domain data. The fault diagno-

sis system based on the time domain is useful to eliminate

the dependency on manual feature extraction from the time

domain signal. According to the statistical feature results,

the model had higher performance on AE than VA features

at rotational speeds of 300 rpm and below. As the speed

increased above 300 rpm, the performance using AE features

was competitive with the performance using VA features.

The classification accuracy of the model declined when using

the vibration signal’s kurtogram. The model produced the

best classification accuracy on the AE kurtogram, where

the model achieved 100% accuracy on all rotational speed

datasets, even at the lowest speed. According to the model

performance, the sample size used throughout the analysis

is sufficient to provide the accurate classification prediction.

By comparison, the model was more sensitive when using the

AE signal’s input data. It is believed that the performance

of the model on vibration signals can be improved with the

implementation of advanced signal processing techniques

as discussed in [49]. By observation, the ArSSAE model

produced a satisfactory performance on the AE kurtogram,

AE time domain and VA time domain.

In order to demonstrate the performance of the model on

the AE kurtogram, VA time domain and AE time domain,

the training performance of the model is visualized as shown

in Figs. 11, 12 and 13 respectively. The model has two

major training processes, namely unsupervised pre-training

and fine-tuning. The training plot is based on the best hyper-

parameters selected by the DE algorithm. The analysis of

AE kurtogram shows that the model required fewer than

700 epochs to reach 0% training error, and a consistent trend

can be seen from the training plot. It can be observed that the

model was only able to reach 0% training error at rotational

speeds above 180 rpm when the model was trained using

the VA time domain. The training performance of the model
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FIGURE 12. ArSSAE training performance on VA time domain (10 classes).

FIGURE 13. ArSSAE training performance on AE time domain (10 classes).

on the AE time domain reached 0% training error on all

rotational speeds, which proved that themodel was capable of

reaching a satisfactory performance during the testing phase.

According to the training plot and the test accuracy produced

by the model, the model did not suffer from overfitting prob-

lem during the analysis. The less accurate classification on

several input data can be caused by the quality of the data

where the model did not reach a satisfactory performance.

Subsequently, the ArSSAE model was evaluated with

another bearing dataset that contained an additional set of

three combination defect samples. Only AE kurtogram and

VA and AE time domains were used because with those

datasets, the ArSSAE model was capable of reaching a sat-

isfactory classification prediction with 10 bearing fault con-

ditions. The bearing’s defect location, defect severity and

defect combination can be simultaneously diagnosed using

the 13 classes dataset. The result is shown in Fig. 14. It can be

observed that there was no significant difference between the

10 and 13 classes results. According to the VA time domain

result, the model started to reach a satisfactory performance

at a rotational speed of 240 rpm, which is similar to the trend

seen with the 10 classes dataset. The model’s performance

on both sets of time domain data slightly decreased with

FIGURE 14. Performance of ArSSAE model on 13 classes datasets.

FIGURE 15. ArSSAE model training performance on AE kurtogram
(13 classes).

the 13 classes dataset. However, 100% classification accu-

racy was only achieved when the model was fed with the

AE kurtogram dataset, even with the additional fault com-

binations. As can be seen, there was no reduction in model

performance on the AE kurtogram, where the classification

accuracy reached 100% for all rotational speeds. The fault

diagnosis system based on image pattern recognition is quite

new and requires further development so that it can be used

for bearing prognosis.

To prove the superiority of the model on the 13 classes

dataset, the training performance of the model on the

AE kurtogram, VA and AE time domains is illustrated

in Figs. 15, 16 and 17 respectively. The performance of the

model at all rotational speeds was more consistent using the

AE kurtogram compared to theAE andVA time domains. The

model was unable to converge to the lowest training error at

rotational speeds of 48 and 60 rpm using the VA time domain.

The trend provides a helpful indicator of the model behavior
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FIGURE 16. ArSSAE training performance on VA time domain (13 classes).

FIGURE 17. ArSSAE model training performance on AE time domain
(13 classes).

FIGURE 18. ArSSAE model configuration.

during the test analysis where the model did not suffer from

overfitting.

Several factors may contribute to the increase in training

time of the model including number of features, size of data

samples, number of SAE layers in the ArSSAE network and

training process of the DE algorithm. The number of SAE

layers during the classification process is shown in Fig. 18,

where it can be observed that the VA time domain data

required the greatest number of SAE layers. In contrast,

the model used only two layers of the SAE network to gen-

eralize the AE time domain, AE and VA features. The AE

and VA kurtogram required three layers of the SAE network.

Training time increases when more hidden layers are used;

this problem has also been discussed by Wang et al. [42].

Instead of performing a manual iteration from a low hidden

layer to a higher hidden layer, the hidden layer is initially

set based on the size of the data feature, reducing the time

required for manual iteration. The model reduces or increases

the number of hidden layers if the initial hidden layer does

not produce satisfactory classification accuracy. In addi-

tion, the optimization process for hyperparameter selection

and hidden node numbers can eliminate the manual tuning

process.

C. COMPARATIVE ANALYSIS BETWEEN ArSSAE MODEL

AND SVM MODEL

Finally, the performance of the SVM and ArSSAE mod-

els was compared based on statistical features using the

10 classes dataset. The results for the ArSSAE and SVM

models using VA statistical features were similar; the clas-

sification accuracy was around 50–75% and 40–75% respec-

tively. Moreover, the classification accuracy of the ArSSAE

was greater than that of the SVM when the models were fed

with AE statistical features. The ArSSAE model was able

to achieve classification accuracy as high as 94% using AE

statistical features. Both models were observed to achieve

greater accuracy on the AE signal’s input data compared to

the VA signal’s input data. According to the analysis, accu-

rate diagnosis on bearing components cannot be achieved by

simply relying on statistical features, as the result produced is

inconsistent and below a satisfactory diagnosis level. There-

fore, the ArSSAE has an advantage over the SVM because

the ArSSAE can be trained using another type of input data.

VII. CONCLUSIONS

In this research work, an intelligent bearing fault diagnosis

system is proposed. The proposed model, called the adaptive

resilient stacked sparse autoencoder (ArSSAE), was devel-

oped based on the flexibility of its architecture to change its

network structure. The ArSSAE model offers several bene-

fits. First, the model is based on a simple sparse autoencoder

model that is easy to implement, and this model can work

on any type of input dataset. Second, the model provides

automated feature extraction and selection, whichmay reduce

human involvement in selecting the best methods for both

processes. Finally, the proposed model is able to deal with

datasets that contain low numbers of features and data sam-

ples. The ArSSAE model works better on the AE kurtogram

compared to other datasets in terms of training error and

testing prediction.

According to the analysis, the ArSSAEmodel achieved the

objective of the study: to develop a robust and flexible deep

learning model that can be used for bearing fault diagnosis

under low-speed operating conditions. The type of input data

VOLUME 7, 2019 46895



S. R. Saufi et al.: Low-Speed Bearing Fault Diagnosis Based on ArSSAE Model

plays an important role in accurate analysis, and input data

types should be taken into consideration when performing

fault diagnosis. The ArSSAE model’s performance proved

that fault diagnosis using vibration signals under low-speed

operating conditions can be performed at speeds greater

than 180 rpm.
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