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Study on the biological effects of irradiation has become important nowadays. Mathematical modeling is one of

the interests among researchers due to its ability to explain the dynamics process of the irradiation. Some physical

parameters cannot be evaluated from the empirical data. Therefore, the aim of this work is to estimate parameters

of the model of irradiation effects on bystander cells using optimization approaches. We employ two algorithms:

Nelder-Mead Simplex (NMS) (which is the local optimizer) and Particle Swarm (which is the global optimizer). We

compare the eficiency of two optimization algorithms in optimizing the parameter values of the model. 50 sets

of parameters have been estimated and all sets are able to match the model simulation and the experimental data

with the least Sum-Squared Error (SSE). The graph of model simulation using a set of the estimated parameters

from both optimization algorithms shows a good it with the experimental data. The overall results indicate that

NSM is better than Particle Swarm (PS) optimization in the aspect of time computing, while there is no signiicant

difference in the score of SSE and converging iteration to the least SSE.

© 2019 The Author(s). Published by TAF Publishing.

I. INTRODUCTION

The mathematical modeling framework is often developed

by considering the understanding of the biological phe-

nomenon, intuition and assumptions. There must be sev-

eral parameters introduced into the mathematical model

that describes the assumptions of the phenomenon inves-

tigated. The determination of the parameters’ values be-

comes challenging when doing the process of model simu-

lation of the biological phenomenon [1, 2]. Even though pa-

rameters, such as kinetic rate constants, can be measured

from experimental methods [1], but in modeling of the bi-

ological system, most of the model parameters cannot be

measured directly [3]. The unknown parameters that de-

scribe the empirical measurement can be estimated by us-

ing few approaches such as optimization technique, statisti-

cal methods, and state observers [2, 4, 5]. Parameter itting

plays an important role in the process of monitoring the ac-

curacy of a mathematical model.

Fig. 1. Difference between the experimental measure-

ments, yi (xi) and corresponding model simulation

data ŷi (xi)

As shown in Figure 1, parameter itting identiies the pa-

rameter value so that the model’s simulation will match

with the experimental data. In this paper, the objective

function used in the procedure of parameter itting is called
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SSE, which is deined as follows:

SSE =
∑

[yi (xi)− ȳi (xi)]
2

(1)

where yi is the experimental data, ŷi is the model simula-

tion data, and i = 1, 2, . . . , n is for n available experimental

data set [6]. The experimental data of bystander cells used

in this paper is the same as the experimental data used in

[7]; see Figure 2.

The SSE minimization Equation 1 is achieved by using the

optimization method. The NMS and PS optimizations are

employed by considering Equation 1 as the objective func-

tion. Here are some studies involving NMS and PS algo-

rithms.

Fig. 2. Experimental data (SF vs. D) of targeted cells and by-

stander cells [7]

In [8] studied the NMS optimization routine for large-scale

problems. They implemented a parallelization towards

the sequential algorithm of NMS optimization using a dis-

tributed memory implementation. This improvement gave

large speedups for computing the NMS optimization for

large-scaleproblemsand reducing time-consumption toob-

tain the result. In [9] employed NMS optimization in order

to minimize the stages of operational ampliiers used as il-

ter circuits. In the area of electronics engineering, circuit

miniaturization is able to reduce the size of the appliance,

power consumption, and increases system reliability. They

also compared the NMS optimization with PS optimization

and genetic algorithm optimization and showed that PS op-

timization is the best for their problem.

In [7] used NMS optimization in estimating the value of pa-

rameters in the case of high dose effects of irradiation on

the targeted cells. Then in [10] showed that NMS optimiza-

tion ismuch superior to theGenetic Algorithm in inding the

least SEE between themodel simulation data and the exper-

imental data. In[11] studied thedistance to theGalactic cen-

ter determined by G, K, and M stars. The distance from the

Sun to the center of Galaxy,R0, is a fundamental parameter

for theGalactic structure. The kinematical equations of con-

dition contain parameter R0, which is in the denominator,

making the equation nonlinear. Since the NMS algorithm is

a good method dealing with a nonlinear problem, the NMS

algorithm has determined the parameters in the nonlinear

kinematical equations of conditionwith the least square er-

ror.

In [12] used the PS algorithm technique to identify the un-

known parameters of a single diodemodel of the solar pho-

tovoltaic module. Solar energy is directly converted to elec-

tricity through a static medium called photo-voltaic. In or-

der to predict the performance of a photo-voltaic systembe-

fore being installed, a reliable and accurate model with cor-

rect parameter value is essential. The result showed that

the PS optimization algorithm is able to tackle the problem.

In [13] used the PS algorithm to estimate all parameters of

an anaerobic glucose digestion model. The results showed

that the values of most estimated parameters were close to

the reported data. By applying the estimated parameters,

the glucose anaerobic glucose digestionmodel matched the

experimental data.

In [14] presented a novel approach to the problem ofmodel

checking cyber-physical systems. The model was trans-

formed into an optimization problem by designing an ob-

jective function that measures how close a state is to the

violation of a property. The minimization of the objective

functionwas achieved by PS optimization. The PS optimiza-

tion of the model checker quickly found a bug in the con-

troller that could cause the rover to collidewith an obstacle.

Another research done by [15] used PS optimization and

the Genetic Algorithm to optimize the parameters of a three

degree-of-freedom model representing the response of the

human body to vertical vibration. The optimization result

indicated that both optimizations gave close it to experi-

mental data. They also found that PS optimization is much

faster and provides lower mean error than the Genetic Al-

gorithm.

Recently, [7] proposed amathematicalmodeling on the irra-

diation effects on non-targeted cells. The interested reader

can refer to [16, 17, 18] for the information on the phe-

nomenon of irradiation bystander effects towards cells. In

[7], the procedure of parameter itting on the model had

been done by using PS optimization. Thus, the intention

of this paper is to employ another optimization algorithm

that is NMS optimization to be compared with the results

from PS optimization. Both optimization algorithms will be

compared in terms of SSE value, converging iteration to the
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lowest SSE and the computational time. The signiicance of

the indings can be useful in determining which optimiza-

tion algorithm is the best for estimating the parameters of

the model proposed.

II. METHODOLOGY

A. Mathematical Model of Irradiation Effects on By-

stander Cells

The model proposed by [7] contains 8 parameters which

are ϑ,DC , a1, a2, p, Vmax,KM, and τ. The parameter ϑ is

the Double-Strand Breaks (DSBs) induction coeficient in

bystander cells, DC is the characteristic sensitivity of the

targeted cells, al is the death rate due to mis-repair DSBs,

α2 is the death rate due to two DSBs located close enough

to form lethal chromosomal aberrations, p is probability

of repair 1 DSBs, Vmax is the maximum repair rate, KM is

the Michaelis-Mentan constant where Vmax is halved and

τ is the repair delay duration. The boundaries for all pa-

rameters are obtained from [7] as listed in Table 1. In the

procedure of parameter estimation, the parameter will be

estimated within these boundaries.

TABLE 1

LIST OF PARAMETER BOUNDARIES [?]

Parameter Lower Boundary Upper Boundary

ϑ 1.8 C−1 9.7 C−1

DC 0.003 Gy 3 Gy

α1 0.0277 h−1 20.79 h−1

α2 0 h−1 0.005 h−1

p 0 1

Vmax 0.1 h−1 3 h−1

KM 0 5

τ 0.05 h 6 h

B. Optimization Algorithms

Optimization is a mathematical discipline that is concerned

with inding themaximumorminimumof a function, possi-

bly subject to constraints [19]. The optimization algorithm

can be either a local optimizer or a global optimizer, de-

pending on the design and construction of the algorithm

[20]. Local optimizer means that the algorithm attempts

to ind a local minimum, and there is no guarantee to get

the global minimum for the problem. A local minimum of a

function is a point where the function value is smaller than

or equal to the value at nearby points, but possibly greater

than at a distant point. In contrast, a global minimum is a

point where the function value is smaller than or equal to

the value at all other feasible points. However, there are

some cases (convex problems like linear programs) where

the local minimum found will, in fact, be the global mini-

mum. There can bemany local minimawhich are not global

minima [20]; see Figure 3.

Fig. 3. Local and global minima

Mathematically, given a feasible region Ω for local optimiza-

tion, suppose a local minimum f* = f (x*)with a local mini-

mizer x* ε Ω, the value of f* is the smallest in some feasible

neighbourhood. If f = f(x) is also a local minimumwith a lo-

cal minimizer× Ω, there exists an ε > 0 such that f ≤ f* with

|x* - x| ≤ ε. For global optimization, suppose a global mini-

mum f (x*) with a global minimizer x* Ω, the value of f (x*)

is the smallest over all feasible points. That is f(x*) ≤ f(x) for

all× in Ω [19].

1) The NMS optimization: The NMS is a local optimiza-

tion that was developed by [21], and it has been widely

used in solving problems with irregular objective func-

tions. NMS optimization is able to counter indetermina-

cies, kinks, discontinuities and local solutions in functions

being evaluated [8]. NMS optimization minimizes a func-

tion of n parameters (f(x), x = [x1, x2, ..., xn]) by comparing

function evaluations at the n+1 vertices of a general sim-

plex [x(1), x(2), ..., x(n+1)], and updating theworst vertex by

moving it around a centroid. The simplex may be thought

of as a polygon with n+1 vertices. If n = 2, the simplex is a

triangle. If n = 3, the simplex is a tetrahedron [22]. In this

work, a built-in MATLAB routine called “fminsearchbnd” is

used due to its function as the NMS optimization. The basic

geometry in the NMS optimization algorithm is relection,

expansion, contraction and shrinking.

2) PS optimization: The PS is a global optimization that

was developed by Kennedy and Eberhart [23], and it has

subsequently developed in thousands of scientiic papers

[24]. PS optimization gained signiicant popularity due to

its simple structure andhighperformance [25]. PS is swarm
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intelligence inspired by the group behaviour of animals, for

example, bird locks or ish schools. It is a population-based

algorithm, that is, it represents the state of the algorithm by

a population, which is iterativelymodiied until termination

criteria are satisied. A reader can refer to [7] for the details

on the algorithm of PS optimization. For solving practical

problems, the number of particles in a swarm population

is usually chosen between 10 and 50. Using many particles

required will cause too many function evaluations per iter-

ation [26]. In this work, a built-in MATLAB function called

“particleswarm” is used due to its function as the particle

swarm optimization.

III. RESULTS AND DISCUSSION

A. Parameter Estimation using NMS and PS Optimiza-

tion

We estimated 50 sets of parameter values (sample set, n =

50) using the NMS optimization. Meanwhile, the results of

parameter itting using the PS optimization are taken from

[7] for the purpose of comparison. The statistical analysis

on the results of 50 sets of estimated parameters involved

the mean, the standard deviation, the conidence interval

and the correlation. Table 2 provides the average value of

the result of 50 sets of parameter values obtained by both

optimization algorithms.

TABLE 2

THE SAMPLE MEAN VALUE (X̄ ) OF EACH ESTIMATED PARAMETER, SSE, AND CORRELATION (R)

Parameter Optimization Result of NMS Result of PS by [7]

ϑ(C−1) 3.5746 3.8001

DC(Gy) 1.6483 1.6694

α1(h
−1) 8.4933 10.0548

α2(h
−1) 0.0024 0.0014

p 0.8358 0.8614

Vmax(h
−1) 1.8832 1.9514

KM 3.1561 2.5126

τh 1.3067 2.0053

SSE 0.0067 0.0053

Correlation (r) 0.9773 0.9825

The average value of SSE tends to be zero. The NMS and

PS optimization successfully optimized the model’s param-

eter valueswith a reasonably small value for the differences

between the model’s simulation data and the experimental

data. The details on the correlation value (r) will be dis-

cussed in Section 3.1.4.

1) Sample standarddeviation: It is also important to inves-

tigate the variations of all parameters based on 50 sets of

estimated parameters. The sample standard deviation, s, is

ameasure of how the data is clustered about themean [27].

The sample standarddeviation is calculated for eachparam-

eter for both optimizations, as shown in Table 3.

TABLE 3

ESTIMATED SAMPLE STANDARD DEVIATION (S)

Parameter Optimization Algorithm

NMS PS

ϑ 1.8534 1.3098

DC 0.3914 0.2085

α1 6.9547 5.3234

α2 0.0017 0.0012

p 0.0884 0.0770

Vmax 0.8993 0.8415

KM 1.3634 1.1546

τ 1.3121 1.5811

The sample standard deviation of parameter 1 is the largest

value compared to the other parameters. This indicates that

the sample of the estimated value for parameter 1 is more

spread out than the other seven parameters.

2) Conidence interval of each parameter: The conidence

interval provides a method to measure the margin of error
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for the populationmean or population proportion [28]. It is

an interval of numbers containing themost plausible values

of the population parameters, i.e., the mean, µ for the en-

tire population is likely to fall in the range. Each parameter

stated in the mathematical model (see Table 1) is deined

as an independent population parameter. The conidence

interval for all eight parameters is calculated. The sample

of each population parameter is n = 50, which corresponds

to 50 runs of NMS and PS optimizations for experimental

data of the survival fraction of bystander cells.

According to [27], if a random sample is taken from a pop-

ulation that has an unknown probability distribution, the

sampling distribution of the sample mean can be approxi-

mately normal with mean µ and variance σ2, given that if

the sample size, n, is large. It is referred to as the central

limit theorem. If n ≥ 30, the normal approximation will be

satisfactory regardless of the shape of population. In cur-

rent case, n = 50 is suficiently large; hence, the conidence

interval takes the form:

Sample mean+ /–[Critical value× Standard error] (2)

Since n is large, the unknown population standard devia-

tion, σ, can be replaced by sample standard deviation, s (see

Table 3).

In this study, 95% of conidence interval is computed in or-

der to test the reliability of the estimated parameters. Thus,

α = 1 - 0.95 = 0.05 and from statistical table of normal dis-

tribution (see [27]), the appropriate value for z0.975 for area

to the left is 1.96. Therefore, the conidence interval can be

written as:

x̄± 1.96
s√
n

(3)

By using Equation 3, the results of the conidence interval

for all parameters are presented in Table 4.

From this calculation, it can be interpreted that the true

value of the average of eachparameter iswithin this interval

with a 95% conidence level. The parameters of the model

are ideally estimated by NMS and PS optimization, with a

95% conidence level. Speciically, if an ininite number of

random samples are collected and (1-α)100% conidence

interval for µ is computed for each sample, (1-α)100% of

these intervals will contain the true value of µ [27]. The es-

timated parameters will be applied to obtain a simulation

data of the model in order to compare the experimental

data.

TABLE 4

95% CONFIDENCE INTERVAL OF PARAMETER

Parameter Optimization Algorithm

NMS PS by [7]

ϑ (3.0609,4.0883) (3.4370,4.1631)

DC (1.5399,1.7568) (1.6116,1.7272)

α1 (5.5656,10.4211) (8.5792,11.5303)

α2 (0.0019,0.0029) (0.0011,0.0018)

p (0.8113,0.8603) (0.8401,0.8828)

Vmax (1.6339,2.1324) (1.7181,2.1846)

KM (2.7782,3.5340) (2.1926,2.8326)

τ (0.9430,1.6704) (1.5671,2.4436)

3) Model simulations using the estimated parameters: As

an illustration, igures of simulation between the model

simulation data and experimental data of bystander cells

are shown in this section.

Fig. 4. Data itting of the experimental data

using a set of estimated parameters

from NMS optimization. The esti-

mated parameters are: ϑ = 3.2791

C−1,DC =1.6592Gy,α1 =0.2168h
−1,

α2 = 0.0049 h−1, p = 0.8708, Vmax

= 2.4481 h−1, KM = 3.6464 and τ

=0.0740h. The SSEvalue is 0.0053and

r = 0.9825

All the results ofmodel simulation (in Figure 4and Figure 5)

using the estimatedparameters showagood it between the

model simulation and the experimental data of bystander

cells. A good it, by means of the SSE value, is close to 0

and r value near to 1. Next, the correlation between the

model’s simulation data and the experimental data will be

discussed.

4) Pearson’s correlation coeficient: Correlation coefi-

cient (r) is statistics that quantify the relationship between

two variables in unit-free terms [29]. The value of r is be-

tween -1 ≤ r ≤ +1. The closer r to +1 shows stronger positive

correlation while the closer r to -1 shows stronger negative

correlation.

From Table 2, the mean value of the correlation, r, is close

to 1 which corresponds to an excellent linear relationship

between experimental data and model simulation data.
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Fig. 5. Data itting of the experimental data

using a one of estimated parameters

from PS optimization. The estimated

parameters are: ϑ = 2.2072 C−1, DC

= 1.7959 Gy, α1 = 7.2906 h−1, α2 =

0.0020h−1, p= 0.7740, Vmax = 2.1472

h−1, KM = 1.9953 and τ = 0.0510 h.

The SSE value is 0.0051 and r = 0.9830

Fig. 6. Linear correlation plot of model simu-

lation data using the estimated param-

eters from NMS optimization

Fig. 7. Linear correlation plot of model simu-

lation data using the estimated param-

eters from PS optimization

By using the estimated parameters listed in Figures 4 and 5,

the corresponding linear correlation plots of model simu-

lation data versus experimental data are presented in Fig-

ures 6 and 7, respectively.

B. Comparison between NMS and PS Optimization

There are three items discussed regarding the eficiency of

both optimization algorithms. First there is theability of
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both algorithms to optimize the least SSE and the highest

value of r between the model’s simulation and the experi-

mental data. Second, the number of iterations is needed to

converge to the least SSE. Third, there is average time com-

puting for parameter itting procedure. Note that the stop-

ping criteria are set to 150 iterations for both optimization

algorithms.

In Table 2, the average value of SSE is 0.0067 and 0.0053

for NMS and PS algorithm, respectively. The same goes to

the average of correlation value, r. The value of r obtained

by the PS algorithm is slightly higher than the r value ob-

tained by the NMS algorithm. However, there is not much

difference between SSE and r value obtained by both opti-

mization algorithms. For the irst item, both optimization

algorithms are excellent optimizers to themodel developed

by [7].

Next, the second item is the number of iterations needed to

converge to the least SSE. In order to perform a fair com-

parison, the same parameter value of initial guess is used

for both optimization algorithms. The chosen set of initial

guess is parameter set no. 15 in Supplementary File A. The

result is presented in Figure 8. It can be seen that PS opti-

mization is much faster in converging to the least SSE value

compared to NMS optimization. However, when the itera-

tion is reaching 70 and forward, the SSE value is very close

to zero and there is not much difference of SSE score for

both optimization algorithms.

For the third item, the average timeof parameter itting pro-

cedure over 150 iterations is 3.5647 minutes for NMS opti-

mization, while 22.4017 minutes for PS optimization. Note

that both optimization algorithms are run in the same com-

puter speciication for thepurposeof a fair comparison. The

time computing by PS optimization is longer thanNMS opti-

mization. The PS optimization requiresmany function eval-

uations in each iteration, depending on the number of par-

ticle. Every particle in PS algorithm changed position af-

ter one iteration, while in NMS algorithm, there is only one

point changed after one iteration (except shrinking).

Fig. 8. Linear correlation plot of model simulation

data using the estimated parameters from PS

optimization

Between the three items discussed regarding the eficiency

of bothoptimization algorithms, it canbe seen that there is a

huge difference in terms of time computing. The time com-

puting represents the cost that is needed in order to obtain

solution for particular problem. Shorter time computing is

needed in order to save time and electricity usage. Since

there is not much difference for SSE value, r value and con-

verging iteration to the least SSE, it can be concluded that

NMS optimization is better than PS optimization because

NMS optimization only required shorter time computing.

IV. CONCLUSION

In this paper, 50 sets of estimated parameters are computed

in theparameter ittingprocedure. Every set is able to it the

model’s simulation data and the experimental data with a

minimum value of SSE. Not only that, the correlation coef-

icient between the experimental data and simulation data

is close to 1 for every estimated parameter set, indicating

an excellent it between both simulation and experimental

data. The 95% conidence interval for each parameter also

shows that there is a 95% conidence level that the inter-
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val calculated will have the true average of each parameter.

For the comparisonof bothoptimization algorithms, getting

results in a shorter time is essential and then put together

NMS optimization as the better optimization for the model.

For further development, it can be suggested that both al-

gorithms run in a parallel programming interface with high

computer speciications for faster function evaluation [30].
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