
PhD-FSTM-2020-38
The Faculty of Sciences, Technology and Medicine

DISSERTATION

Defense held on 10/09/2020 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Zach SMITH
Born on 22 April 1990 in Peterborough, (United Kingdom)

DESIGN AND VERIFICATION OF SPECIALISED

SECURITY GOALS FOR PROTOCOL FAMILIES

Dissertation defense committee
Dr Sjouke Mauw, dissertation supervisor
Professor, Université du Luxembourg

Dr Peter Y A Ryan, Chair
Professor, Université du Luxembourg

Dr Rolando Trujillo-Rasúa, Vice Chair
Deakin University

Dr Cas Cremers
Professor, CISPA Heimholtz Center for Information Security

Dr Steve Kremer
Inria Nancy

ii

“The case for my life, then, or for that of any one else who has been a mathematician in the
same sense in which I have been one, is this: that I have added something to knowledge, and
helped others to add more; and that these somethings have a value which differs in degree only,
and not in kind, from that of the creations of the great mathematicians or of any of the other
artists, great or small, who have left some kind of memorial behind them.”

G. H. Hardy

iii

Abstract
Design and Verification of Specialised Security Goals for Protocol Families

by Zach SMITH

Communication Protocols form a fundamental backbone of our modern information
networks. These protocols provide a framework to describe how agents - Computers,
Smartphones, RFID Tags and more - should structure their communication. As a
result, the security of these protocols is implicitly trusted to protect our personal data.

In 1997, Lowe presented ‘A Hierarchy of Authentication Specifications’, formalis-
ing a set of security requirements that might be expected of communication protocols.
The value of these requirements is that they can be formally tested and verified
against a protocol specification. This allows a user to have confidence that their
communications are protected in ways that are uniformly defined and universally
agreed upon.

Since that time, the range of objectives and applications of real-world protocols
has grown. Novel requirements - such as checking the physical distance between
participants, or evolving trust assumptions of intermediate nodes on the network -
mean that new attack vectors are found on a frequent basis. The challenge, then, is to
define security goals which will guarantee security, even when the nature of these attacks
is not known.

In this thesis, a methodology for the design of security goals is created. It is used
to define a collection of specialised security goals for protocols in multiple different
families, by considering tailor-made models for these specific scenarios. For complex
requirements, theorems are proved that simplify analysis, allowing the verification of
security goals to be efficiently modelled in automated prover tools.

v

Acknowledgements
The acknowledgements section of this thesis could easily take up more space than
the thesis itself, were I to give everyone the thanks that they truly deserve.

Thanks to Sjouke, my supervisor, for supporting me these years. I have learned
a lot from him, and some of it related to research, too. His advice and patience as
I fumbled my way through the various problems faced during my stay is greatly
appreciated.

Thanks to the people who worked closely with me. Most notable is Jorge, my
officemate for a majority of my PhD. I think my most productive days were spent with
him, discussing the details of our research. Thanks also to Hyunwoo and Taekyoung
Kwon at Seoul National University, who took a chance inviting me to work with them
after I stumbled into their office, searching for a desk to work at as I raced to meet
a deadline while travelling (the submission in question was later rejected). Finally,
thanks to Ioana, Steve and Helen at the University of Surrey. One of the best parts of
my PhD has been feeling what it is like to work in multiple different roles in these
different groups, and I will treasure this experience greatly. Thanks also to my other
coathors - Rolando, Hugo, Ross, Ihor, Selin, Junghwan, Gyeongjae and Taejoong.

Thanks to the members of the SaToSS group at the University of Luxembourg,
especially the other PhDs, with whom I have formed some close friendships. I am
fortunate to have been in a successful group that continues to grow, to the point where
the list of names is somewhat extensive. Thanks in particular to Cui and Ninghan,
who helped distract me by helping me learn Mandarin Chinese, and to Olga, Alex
and Stas, who have given me useful support and advice.

Thanks to my advisory team - Cas Cremers and Rolando Trujillo Rasua - who
gave me assistance and advice throughout my research. Their guidance in starting
my journey in research was of great help.

Finally, thanks to my mom and my friends, who have given me the support I
needed to make it through these years.

vii

Contents

1 Introduction 1
1.1 Security Protocols . 1
1.2 Security Goals . 2
1.3 Research Questions . 6
1.4 Contributions . 8
1.5 Layout . 9

2 A Multiset Rewriting Model 13
2.1 Fundamentals . 13
2.2 Modelling Methodology . 18

Bibliography 18

I RFID Protocols 23

3 Distance Bounding Protocols 25
3.1 Introduction to Distance Bounding . 26
3.2 Modelling Distance Bounding . 28
3.3 Distance Bounding Security . 36
3.4 Verifying Distance Bounding Protocols 44
3.5 Case Study: TREAD Protocol . 48

4 Relations on Security Properties 53
4.1 Introduction to Relations . 54
4.2 Collusion and Irreversibility . 56
4.3 Post-Collusion Security . 59
4.4 Terrorist Fraud on Distance Bounding Protocols 62
4.5 Case Study: ISO/IEC 14443 Protocols 70
4.6 Results and Conclusions . 73

5 Desynchronisation Resistance 77
5.1 Introduction to Key Updating Protocols 78
5.2 A Framework for Key Updating Protocols 79
5.3 Defining and Proving Desynchronisation Resistance 83
5.4 Case Study: Grouping protocol of Sundaresan et al. 88
5.5 Case Study: A Two Round Grouping Protocol 88

Bibliography 91

viii

II Multiparty Protocols 103

6 Path Protocols 105
6.1 Introduction to Path Protocols . 106
6.2 A Framework for Path Protocols . 108
6.3 Security Goals for Path Protocols . 112
6.4 Case Study: Lightning Network . 117
6.5 A Path-Integral Payment Network Protocol 120
6.6 Tamarin Implementations . 123

7 TLS and Middleboxes 127
7.1 The TLS Protocol Suite . 128
7.2 Middlebox-Enabled TLS Schemes . 130
7.3 Case Study: mbTLS . 135
7.4 The maTLS Protocol . 137
7.5 Security Verification . 147
7.6 maTLS Implementation & Evaluation 148

8 Accountable Proxying 153
8.1 Introduction to LoRaWAN . 154
8.2 Threat Model and Security Goals . 155
8.3 Case Study: LoRaWAN 1.0 . 157
8.4 Case Study: LoRaWAN 1.1 . 161
8.5 A Proposal for a Novel Join Procedure 172
8.6 Conclusions . 176

Bibliography 177

9 Conclusion 187

ix

List of Figures

2.1 Rules which define the Dolev-Yao adversary. 17

3.1 Three timing scenarios of a challenge/response round. 27
3.2 A representation of Hancke and Kuhn’s protocol. 29
3.3 Rules for message deduction. 33
3.4 Start, Intruder and Network rules. 33
3.5 Formalization of Hancke and Kuhn’s protocol. 35
3.6 A protocol rule that leads to incorrect traces. 37
3.7 Prototype of rules that lead to well-formed protocols. 39
3.8 The Tamarin lemma dbsec. 47
3.9 The Tamarin restriction at_most_once. 48
3.10 The Tamarin restriction equality. 48
3.11 The TREAD protocol. 49
3.12 A representation of the TREAD protocol. 49
3.13 A mafia fraud on TREAD with asymmetric encryption. 51
3.14 A distance hijacking on TREAD with symmetric encryption. 51

4.1 The DBToy protocol. 59
4.2 Specification rules of the DBToy protocol. 60
4.3 Decomposing traces with collusion . 60
4.4 Post-collusion attack on Toy protocol . 62
4.5 Output of collusion rule generating tool, run against the Brands-

Chaum protocol . 66
4.6 Identifying Leak collusion rules in a protocol 67
4.7 Applying Collusion Rules . 68
4.8 Mastercard’s PayPass protocol. 71

5.1 The grouping protocol of Sundaresan et al. 89
5.2 Attack on EPC grouping protocol . 90
5.3 Two-rounds grouping proof protocol . 92
5.4 Attack on two-rounds grouping protocol 93

6.1 Example of skipping attack on a path protocol 106
6.2 A simple message forwarding protocol. 108
6.3 Rule specification of example protocol 112
6.4 Statement of the Path Integrity Security Goal 114
6.5 Skipping attack on Lightning payment forwarding protocol 117
6.6 MSC for Path-Symmetric payment network protocol 121
6.7 Rewrite rules for path-symmetric payment network protocol 122

x

7.1 Overview of SplitTLS . 132
7.2 mbTLS handshake phase conclusion and skipping attack 136
7.3 The maTLS protocol . 138
7.4 Middlebox-Enabled TLS approaches . 144
7.5 Numerical evaluation of middlebox-enabled TLS schemes 150

8.1 Threat models considered in our analysis 156
8.2 LoRa 1.02 Join Procedure . 158
8.3 The LoRa 1.1 Join Procedure protocol . 162
8.4 Code Snippet of Tamarin rule for LoRa 1.1 Join Procedure 165
8.5 Hierarchy of Confusion-Freeness and Synchronization Goals 169
8.6 The LoRA 3-AKA+ protocol . 173

xi

List of Tables

4.1 Results of Tamarin Analysis of Distance-Bounding Protocols 74

5.1 Notation used in the protocol of Abughazalah et al. 90

6.1 Results of case studies on message-forwarding protocols 124

7.1 Notation used in describing the maTLS extension 139
7.2 Audit mechanisms for maTLS . 143
7.3 Security goals of maTLS . 148
7.4 Evaluation of maTLS latency over multiple distances 149

8.1 LoRa 1.0 Results . 161
8.2 Main Verification Results for the LoRa 1.1 Join 171
8.3 Main Verification Results for LoRA 3-AKA+ 175

xiii

Layout Notes

Where relevant, boxes such as this one give some context about the research
papers written over the course of preparing this thesis. They include infor-
mation about my personal contributions to the conference publications which
form the foundation of each chapter.

This information may be useful to reviewers of the thesis, but may not be
important for other readers.

Key Statements

At certain locations in this document, key definitions, statements or results
will be emphasised in boxes such as this one.

Code Snippets

Important code examples are provided in code boxes.

Usually these are references to Tamarin code, although
several python and bash utilities were developed in the
course of writing this thesis.

Some expressions, tables, formulae are presented in boxes such as this one, to separate them
from the text body.

1

Chapter 1

Introduction

1.1 Security Protocols

Electronic communications form the backbone of our global networks. These commu-
nications are in turn made up of protocols: standardised instructions for how messages
should be constructed, packaged and sent.

The nature of communication networks means that they are constantly at risk of
adversarial attacks. An attacker might be able to attack the integrity of the crypto-
graphic devices used, or take advantage of minor implementation errors. In many
cases, the consequences of such attacks can be severe - for example, the Heartbleed ex-
ploit [DLK+14] manipulated a message-handling bug in SSL to allow for a malicious
user to read sensitive data on websites including Google, Netflix and Wikipedia.

However, even when we ignore such possibilities, there is still a very large margin
for error. That is, even if we assume that cryptography is perfect, and that agents
always perfectly follow the instructions given to them, it is still not trivial to design
protocols that allow for effective communication while guaranteeing security.

As such, the design and verification of security protocols has been an active area of
research for over 40 years. The field is continually developing, in order to consider
new potential attack vectors and precisely define the requirements to be placed on
different communication systems.

One such domain of interest is in RFID (Radio Frequency Identification) devices.
RFID tags are used in billions of devices worldwide, both for consumer-grade and
industrial applications. Their uses are pervasive in everyday life: appearing in
payment cards, key fobs, and even electronic passports. Meanwhile, on the industrial
side, RFID devices provide a convenient and cheap way to aid the logistics process.

RFID Tags also serve a role in the greater “Internet of Things”. Billions of small-scale
sensors, control devices and automated systems are connected to global networks to
achieve a variety of goals. Low-power devices such as these present new challenges
to protocol designers, as they often have reduced cryptographic capabilities and rely
on radio signals, which can be easily intercepted or disrupted.

The growing scale of the internet also presents new problems in protocol design.
Internet communication (such as the TLS protocol over the World Wide Web) is often
idealised as a two-party setting, where a client and server pass encrypted packets

2 Chapter 1. Introduction

between each other. However, in modern systems, such communications are in fact
dependent on a series of intermediate agents - proxies responsible for establishing
connections with servers around the world, or network appliances that read or modify
content in order to grant new functionality to users. In these situations, a designer
must consider ways to allow for such advancements without weakening the security
of the overall process.

1.2 Security Goals

In order to guarantee that a communication protocol can be both effective and secure,
formal methods present several approaches. By considering a protocol - and the
underlying environment - as a mathematical construction, we can encode not only its
structure but also its intended goals.

Such approaches are naturally limited by the creativity of the mathematical inter-
pretation. The most famous (and oft-repeated) example is that of the protocol of
Needham and Schroeder [NS78], who provided a proof that their design was secure
under a set of assumptions. This proof stood for over 15 years until Lowe [Low96]
demonstrated that a more reasonable set of assumptions lead to a novel vulnerability.

As a result, the verification community has generally moved towards attempts at
standardisation - establishing foundations from which trustworthy analysis can be
performed. This manifests itself in three main forms:

• A choice of language for describing the intended execution of a protocol

• A choice of metalanguage, which describes the security goals of protocols

• An encoding of the capabilities of the adversary seeking to undermine these
goals

There are many influences behind the different models created. These generally form
a tradeoff between several factors:

• Faithfully modelling real implementations of protocols

• Producing languages which can be easily written, interpreted, and reasoned
about

• Integration with computer-aided proof techniques

To this end, there are two main approaches in the domain of formal protocol analysis.
The computational approach, likely originating from techniques used to model security
of cryptographic primitives, attempts to show that an attacker can violate some
security goals with only negligible probability. This is often done by comparing
with an ideal functionality [Gol98], or by “game-hopping”: demonstrating that
breaking the protocol necessarily entails a solution to a hard math problem such as
integer factorisation or the discrete logarithm [Sho04]. To this end, computational

1.2. Security Goals 3

approaches involve modelling specific parameters, such as the length of bitstrings.
By comparison, in the symbolic approach, terms are fully abstracted, and the existence
of attacks is seen as a strict binary possibility (excluding uncertainty). Despite this
increased coarseness, the symbolic model is still extremely powerful, and has been
used to demonstrate vulnerabilities of multiple real-world protocols such as TLS
1.3 [CHH+17] and the 5G infrastructure [BDH+18]. It is for this reason that symbolic
models are the focus of this research.

A notable landmark this line of research is that of Lowe in 1997 [Low97], in which
protocols are modelled using a process algebra known as CSP [Hoa78]. The use of
process algebra to model protocols has since developed greatly thanks to specialised
languages such as the Applied Pi Calculus [RS11]. Meanwhile, alternative approaches
such as those used to reason about Strand Spaces [FJHG99] have been generalised and
applied to more expressive settings, such as Multiset Rewriting Theory [CDM+00].

Despite the multiple models available, the security verification community usually
accepts the Dolev-Yao adversary [DY83] as the de-facto standard. The Dolev-Yao
adversary is assumed to have full control over the communication network - able to
intercept, redirect or modify messages. In most cases, the adversary is also assumed
to be able to corrupt agents, gaining full access to their encryption keys. There are
several reasons why this adversarial model is so commonly used. These include its
relative strength, as well as being able to break down its capabilities into a concise
set of rules (that also describe common network environments), with limited to
no special cases. Alongside this adversarial model, most symbolic models avoid
probability-related problems by making the Perfect Cryptography Assumption: that the
adversary is unable to perform or undo encryption without having the associated
keys, with similar assumptions for other primitives such as hash functions.

Categorising Security Goals

A common theme in all of these modelling scenarios is the use of consistent security
goals - even between different settings. Security goals can be broadly categorised as
being either privacy or authentication goals.

Authentication claims refer to an agent’s belief about how a protocol has been exe-
cuted. Aliveness, generally the weakest of such goals, is the notion that the intended
communication partner is (or was) present at some point during the execution. Agree-
ment represents the idea that the two parties both have the same view of specific terms
(for example, the encryption key generated at the end of a key exchange protocol).
Finally, synchronisation goals, first introduced by Cremers et al. [CMdV06], refine
agreement further by requiring that messages were indeed exchanged at the correct
times and in the correct order. This distinction is significant when considering some
classes of attacks (most notably, preplay attacks).

Privacy goals relate to the adversary’s ability to learn specific information, or to
differentiate between terms. For example, vote privacy refers to the attacker’s ability to
deduce how agents have voted in an election, whilst untraceability describes the ability
to detect if the same (or different) agents have performed two disjoint executions of

4 Chapter 1. Introduction

the same protocol. These goals are generally verified by examining if an attacker can
differentiate between two slightly different scenarios.

Security Goals for Advanced Adversaries

The Dolev-Yao adversary is traditionally considered to be the strongest possible tra-
ditional adversary [Cer01]. However, much consideration has been put into attacker
models that are stronger still. These are often formed by weakening the perfect
cryptography assumption, considering the capability of the adversary to exploit side
effects or eventually break cryptographic primitives.

Perhaps the first of such security goals was forward secrecy [Gün89], which refers to
the idea that the session data of a protocol should be secure even if a long-term key is
compromised. Cremers and Basin [BC10] proved that forward secrecy against the
traditional Dolev-Yao adversary is equivalent to normal secrecy against an enhanced
adversary (who can corrupt secret keys outside of a specific ‘test’ run).

Since then, several similar security goals have been investigated - following the
theme of guaranteeing traditional authentication goals against empowered adver-
saries. This topic is becoming increasingly relevant with the advent of post-quantum
systems [Ber09], where devices such as Shor’s algorithm [Sho94] suggest that many
cryptographic primitives that we rely upon will eventually become broken. Such
avenues of research include post-compromise security [CGCG16], which discusses
the potential for future security even after a secret key is revealed, as well as post-
breakdown security [BFG19], which generalises this idea to all cryptographic primi-
tives (including, for example, hashing).

Instead of changing assumptions about the security of cryptographic primitives,
another approach considers changing assumptions about the honesty of agents. The
Dolev-Yao adversarial model typically assumes that agents are either fully honest
- following their specifications perfectly, or otherwise corrupt, completely under
adversarial control. However, such assumptions may not be accurate. Multiparty
computation schemes often consider the notion of “honest-but-curious” [KS05] agents,
who will not disrupt the execution of a protocol but may attempt to misbehave in
order to learn more information than intended. Even Shamir’s Secret Sharing [Sha79],
a seminal work from 1979, admits an attack in which several agents may collaborate
to break the integrity of the system [TW89]. A common problem with describing these
kinds of vulnerabilities is in dealing with ways to correctly formalise the security
definitions, as well as enumerating the possibilities of how a protocol could go wrong.

Security Goals for Advanced Protocols

Despite these various adversarial models, the underlying authentication goals that
system designers seek to verify are usually the same. This is in stark contrast to
privacy goals - where minor changes (either in the semantics of the protocol execu-
tion model, or in the precise wording of the security goal) can give highly varying

1.2. Security Goals 5

results [DKR07]. However, as the scope of security protocols grows, we are starting
to see that the limited set of definitions available may not be fully sufficient.

One such domain where traditional authentication goals fail is in distance bound-
ing protocols. These protocols, originally introduced by Brands and Chaum [BC93],
are designed to guarantee the physical proximity of a Prover to a Verifier. This is
important for devices such as payment cards or electronic keys, where an attacker
must not be able to simply relay radio signals. These protocols are also becoming
increasingly relevant with the advent of smart vehicles and the so-called convoy
problem [LB06], where a self-controlling vehicle must choose who to receive posi-
tioning data from. Models of these protocols must consider not only traditional
authentication requirements, but also a way of describing the locations of agents.

Many authentication-style properties also implicitly assume statelessness of the under-
lying system. This means that each execution of the protocol can be seen as a blank
slate, using only long-term unchanging keys or freshly generated values. However,
in order to achieve goals such as forward secrecy, a common practice is to use stateful
data - such as updating counters or keys. Stateful protocols present new risks, in
dealing with situations in which shared data could become mismatched or reset. Such
scenarios are referred to as desynchronisation attacks. Desynchronisation resistance is a
liveness property: it is required that the protocol can always eventually successfully
continue, regardless of the actions of the adversary.

Finally, many protocols are traditionally considered to be two-party processes. How-
ever, modern communication networks are often more intricate. Intermediate agents
may exist, either as proxies who are responsible for forwarding messages to the correct
parties, or as middleboxes, who might read or modify messages in order to add func-
tionality to a system. As such, an endpoint may have security requirements beyond
those regarding the correspondence with their final partner. For example, they may
wish to ensure that intermediate agents such as firewalls or content filters are not
inadvertently skipped past. Further, the intermediate agents themselves may have
some security requirements - this is most notable in payment networks such as the
Bitcoin Lightning Network [PD16], in which a party may only be willing to forward
a payment if they can be confident that they will receive their share of the transaction
fee.

Automated Verification

A key advantage of many modelling approaches is the assistance of automated
proving tools. Such tools allow for increased confidence in the thoroughness of
analysis, and allow for rapid verification, often without significant user interaction.

Originally, general-purpose model checkers such as FDR (Failures-Divergences Re-
finement) [Ros94] were adapted to support the requirements of security protocols.
However, such approaches often run into problems in modelling the network adver-
sary. Since the adversary traditionally has the ability to intercept and inject messages,
as well as the ability to gain and infer knowledge, there is a large risk of a state space
explosion.

6 Chapter 1. Introduction

As a result, a range of modern tools have been developed, specifically designed for
handling security protocols. These tools are built upon the same powerful solving
techniques, but with additional considerations in order to improve the efficiency of
analysis.

Although the use of tool support can make life significantly easier for analysing a
range of protocols, it can also impose additional restrictions on the user. We are
constrained by the language supported by the tool, both in modelling the protocol
and in any associated security claims.

Especially in the symbolic setting, a significant concern is in over-abstracting a
protocol’s description, or in failing to model the algebraic properties of the primitives
used. For example, the Scyther [Cre08] tool supports only a fixed equational theory.
Much effort has been put into adding faithful representation of operators such as
exclusive-or [DHRS18] into verification tools, and modern work demonstrates that
even some of our assumptions about how cryptographic primitives such as signature
schemes operate can be innacurate [JCCGS19].

Often these restrictions are a necessary measure in order to ensure that the tool
behaves well. The ideal functionality of a verifier is that it should be sound: it will not
report incorrectly report attacks - as well as complete: if there is an attack, the tool will
find it. A corollary of the Halting problem [BM82] tells us that no proof tool can be
simultaneously sound, complete and terminating. That is, in order to guarantee that a
tool will terminate on all inputs, the designer must be willing either for it to report
false vulnerabilities, or for it to miss some attacks.

Different tools handle this problem in different ways. ProVerif [Bla01], a tool based on
the Applied Pi Calculus, overapproximates security goals, meaning that it sometimes
cannot be sure if an attack is legitimate. Many tools are only able to consider bounded
environments (e.g. a maximum number of sessions or messages), especially those
focusing on privacy goals, such as DeepSec [CKR18]. This can affect completeness -
indeed, a result of Millen shows that for any n it is possible to construct a protocol
that is secure for n sessions and insecure for n + 1. The Tamarin Prover [MSCB13]
instead opts to ensure both soundness and completeness by sacrificing termination -
meaning that results can be trusted, but a user has no guarantee that the analysis of
their protocol will ever finish.

In many of these cases it is the responsibility of the person modelling a protocol to
justify the implicit assumptions made in this translation. As such, a focus of this
work is to evaluate families of protocols, rather than individual protocols at a time.
By building a common framework within which to perform analysis, we can be sure
that protocols are handled equally, under a shared set of assumptions.

1.3 Research Questions

The relatively recent wave of verification tools has granted opportunities for ground-
breaking progress in the symbolic analysis of security protocols. These new tools

1.3. Research Questions 7

allow for symbolic implementations of protocols which follow the original specifica-
tion more closely than was previously possible.

However, although we can model the behaviour of these protocols, it is not always
immediately clear how to define their intended security goals. A common approach
is to look at historical attacks on related protocols and attempt to actively describe
these. However, this can lead to scenarios in which novel attacks are missed - a
good example of this is the “discovery” of the Distance Hijacking class of attacks on
Distance Bounding protocols [CRSC12], which was not considered in early research.

Instead, our focus should be on attempts to translate the idealised outcomes of these
protocols directly into our formal models - or to create these descriptions ourselves in
situations where they are lacking. In addition, we should strive to be precise with the
assumptions we make during the modelling process.

Our first objective in this direction is in the translation process: demonstrating the
ability to produce results in a symbolic language that immediately relate to the
physical problems of real-world settings.

Research Question 1

Can we translate problems faithfully from other domains into the language of
proving tools, in order to produce accurate results?

The relevance of this question is demonstrated in Distance Bounding protocols, where
the most precise security claims must consider physical attributes such as the distance
between participants.

Clearly such translations require the abstraction of some details, and this is not
possible without simplifying assumptions. Similarly, it is known that some goals -
particularly those related to liveness properties - are significantly more difficult to
directly (dis)prove for any given protocol. This motivates the next question:

Research Question 2

Can we prove results about the relationships between different security goals
in a restricted model?

This direction is inspired by Lowe’s hierarchy, which shows a set of universal relations
between different authentication goals. For example, it is known that any attack
trace which violates the security goal known as recent aliveness must necessarily also
break weak aliveness, for all protocols. Here, our intent is to reduce the scope of these
comparisons. By making precisely-defined assumptions about the structure of the
protocols for analysis, complex security goals can be broken down into individual
properties. In addition, we investigate the relations between security goals on a
protocol-by-protocol basis.

These considerations are relevant for Terrorist Fraud attacks on Distance Bounding
protocols, a novel scenario in which a prover temporarily deviates from their spec-
ification (for example, to issue a one-time access key to a partner). In this case, the

8 Chapter 1. Introduction

security goal is to demonstrate that it is impossible to temporarily misbehave without
causing irreversible damage to the security of the protocol.

Our last goal is to construct a methodology for defining new security claims. Exami-
nation of several modern protocols demonstrates the need not only for extensions of
well-established authentication requirements, but also the formalisation of new goals.

Research Question 3

Can we define new security goals for modern protocols, that truly capture their
intended purpose?

We will investigate several domains where such new definitions are needed. The
first is in Key-Updating protocols, and the analysis of Desynchronisation Resistance.
Such liveness properties form an active area of research for automata and other
processes [AS87], but are often neglected in security analysis. Further, we look at
extensions of the classic authentication goals to proxied protocols.

Methodology

To solve the problems presented above, the following approach is taken:

• A minimal symbolic security model is defined

• For individual application domains, a series of extensions are created for this
model. These extensions introduce new syntax to the model in order to describe
the specific problem, alongside semantic restrictions on how the new additions
are applied

• Results about the structure of protocols inside these extended models are proven.
These include results about how the model relates to implementations in other
settings, or grant additional implications to security claims

• These results are used to allow us to prove advanced security claims more easily,
by embedding the models inside the specification language of an automated
verifier (in this case, the Tamarin prover tool)

1.4 Contributions

The main contributions of this thesis are as follows:

1. We present a faithful translation from the Distance Bounding model of Basin
et al. [SSBC09] to one inside the Tamarin Prover. The Causality-Based Distance
Bounding property is defined and proven to be equivalent to the Secure Distance
Bounding definition of Basin et al. under a set of simplifying assumptions. As a
result, the verification process is transformed from a largely manual one, using
a theorem prover, to an almost entirely automatic process.

1.5. Layout 9

This simplified process is then put to use by performing an extensive survey of
Distance Bounding protocols in the literature, identifying several vulnerabilities
in industry protocols including the PayPass protocol for Mastercard [EMV18]

2. We further the work of Lowe [Low97] and Cremers et al. [CMdV06] in de-
scribing relations between security properties, this time arguing on the level of
individual protocols rather than a universal quantifier. In particular, we intro-
duce the notion of irreversibility, which represents the idea that any deviation
from a protocol specification that breaks one security goal irreversibly breaks
another in future executions.

Further, a Desynchronisation Resistance property is defined for key-updating
protocols. This property, though not directly verifiable, is shown to be implied
by a combination of smaller goals in our specific setting.

3. We develop a series of security definitions for multiparty protocols. The pro-
tocols examined are those in which messages are passed through a series of
intermediate agents. These include the LoRaWAN protocol suite and other
proxied communications such as payment networks or onion routing systems.
The main security properties introduced are those of indirect agreement, which
states that an endpoint can be confident of their partner’s execution of the pro-
tocol even if they are not directly communicating with them, and path integrity,
which guarantees that messages flow correctly along a fixed route.

4. We design, implement and verify the maTLS protocol, an extension to the
TLS protocol suite. This protocol is designed to actively support middlebox
participation during TLS, allowing them to contribute functionality to endpoints
in a way which guarantees the novel security goals defined above.

1.5 Layout

In Chapter 2 the main model which is used throughout the thesis is introduced, as well
as more insight into the modelling approaches used. The rest of the thesis is split into
two main parts. Part I, RFID Protocols, contains the first two contributions, addressing
the first two research questions. Part II, Multiparty Protocols, contains the second
two contributions, addressing the last research question. Throughout this document,
several indepth case studies have been highlighted, in order to demonstrate the
applicability of the underlying theory. This includes several “real-world” protocols
that are in active deployment, such as the PaySafe contactless payment protocol, the
Bitcoin Lightning Network, and the LoRaWAN IoT protocol suite.

Part I

Chapter 3 examines the problem of distance bounding protocols. This necessitates an
extension of our model that considers agents’ physical position. The seminal work of
Basin et al. is translated into this model in a provably faithful way, while abstracting
away the notions of time and location.

10 Chapter 1. Introduction

In Chapter 4, we take a step back, investigating relations between security goals
on protocols. The idea of protocol deviations is introduced, representing (sometimes
temporary) changes in the structure of transition rules. This motivates the definition
of irreversibility of a protocol: that temporary deviations may lead to long-term
consequences. Using this new theory, we return to Distance Bounding protocols,
to look at a special class of attacks known as Terrorist Fraud. This allows for an
extensive and thorough survey - not only of protocols from the literature, but also
several industrial standards.

Chapter 5 builds on the idea of relations on security properties. Our focus is swapped
to key-updating protocols, stateful systems in which agents periodically update their
encryption keys. Such techniques are used in grouping protocols, which attempt to
simultaneously authenticate multiple RFID tags. Desynchronisation Resistance - the
notion that keys can never become out-of-sync - is defined. Instead of proving such a
challenging liveness property directly, Desynchronisation Resistance is shown to be
an implication of a collection of more readily verifiable goals.

Part I is written using the content of three published conference papers, all
co-authored with Sjouke Mauw, Jorge Toro-Pozo and Rolando Trujillo-Rasua.
Chapter 3 is based on the IEEE S&P 2018 Paper “Distance-bounding protocols:
Verification without time and location” [MSTPTR18b], for which Jorge Toro-
Pozo was the main author. The chapter is re-structured to highlight the Tamarin
code implementations, and the related work is extended to discuss recent
results from the literature.
Chapter 4 is based on the ACM CCS 2019 Paper “Post-collusion security
and distance bounding” [MSTPTR19], for which Jorge Toro-Pozo was the
main author. The theory section of the chapter is expanded, formalising and
expanding the notion of collusion resistance as an irreversibility property,
as well as a discussion of the feasibility of brute-force style approaches for
analysing protocol deviations.
Chapter 5 is based on the ESORICS 2018 Paper “Automated Identification of
Desynchronisation Attacks on Shared Secrets” [MSTPTR18a], for which I was
the main author.

Part II

Chapter 6 introduces the notions of path-based protocols and gives definitions used
as a foundation for the following work. Path integrity - the idea that messages must
flow between multiple agents in a specific order - is formally defined, and a survey of
several protocols from multiple different domains is made.

Chapter 7 and Chapter 8 form two extended case studies into specific multiparty
settings. Chapter 7 considers the case of TLS extended with middleboxes, introducing
a new protocol named maTLS alongside a set of verified security goals. Chapter 8
looks instead at the LoRaWAN protocol family for IoT devices, where an extremely
fine-grained model is used to highlight vulnerabilities.

1.5. Layout 11

Part II is written using the content of three research papers.
Chapter 6 is based on work with Hugo Jonker, Hyunwoo Lee and Sjouke
Mauw, for which I am the main author.
Chapter 7 is based on the publication “maTLS: How to Make TLS middlebox-
aware” [LSL+19], coauthored with Hyunwoo Lee, Junghwan Lim, Gyeongjae
Choi, Selin Chun, Taejoong Chung and Taekyoung Kwon at the NDSS Sympo-
sium 2019.
Chapter 8 is based on the EuroS&P 2020 paper “Extensive Security Verification
of the LoRaWAN Key-Establishment: Insecurities & Patches”. This work was
a result of a collaboration with Ioana Boreanu, Steve Wesemeyer and Helen
Trehearne.

Finally, Chapter 9 contains some conclusions relating to the overall thesis and the
work contained therein, including a discussion of future avenues of research.

In addition to the papers listed above, I was also a contributing author to the
ESORICS 2019 Paper “Breaking Unlinkability of the ICAO 9303 Standard for
e-Passports Using Bisimularity” [FHMS19], with Ihor Filimonov, Ross Horne
and Sjouke Mauw. The content of the aforementioned paper is not included in
this thesis, as it does not fit with the underlying discussion of authentication
properties.
I was also a contributor to several poster sessions at workshops. The content
of these posters is subsumed by the papers that followed them, and so they are
not mentioned here.

13

Chapter 2

A Multiset Rewriting Model

At the core of any symbolic analysis is a transition system, which mimics
the true execution of the program. In this chapter we introduce the model
that serves as a foundation for the work throughout this thesis.

Here, the transition system of choice is based upon multiset rewriting
theory. Informally, at any time, the state of a protocol’s execution is stored
as a collection of facts. A set of rules - describing both the protocol’s
intended behaviour, and the actions of the adversary - change these facts
over each run of the protocol.

The language we use can be considered as a subset of that supported by the
Tamarin automatic verifier [MSCB13][The18]. Indeed, this is by design,
allowing us to directly encode all of the protocols we will consider. However,
we intentionally use only a small part of the full expressiveness of the tool
at any given time. This will enable us to prove results about the behaviour
of protocols built in each of the extended models we will consider over the
course of the thesis.

This chapter is organised as follows. Section 2.1 contains an introduction to multiset
rewriting theory and its application to modelling communication protocols. Sec-
tion 2.2 introduces the core methodology used throughout the thesis: the concept of
extensions to the base model, and reasoning about protocols built in them.

2.1 Fundamentals

In this section we give an overview of the multiset-rewriting model that will be used
throughout this work. We introduce the use of rules to transition between different
potential execution states of a protocol, and describe how these transitions can be
used to describe security goals. In later sections we will augment this model: adding
additional notation to describe how transitions may occur, or new ways in which a
protocol might be specified or analysed.

14 Chapter 2. A Multiset Rewriting Model

We begin with an order-sorted algebra. We define two top-level sorts msg and Fact,
and subsorts pub, fresh, const such that

const < pub < msg

fresh < msg

We write x : y to indicate that the term x is of type y. We will usually use the following
symbols for terms of various types:

• ‘a’ : const

• A : pub

• x : fresh

• m : msg

We allow for collections of function symbols Σmsg∗,msg and Σmsg∗,Fact, which map a
sequence of type msg (or its subsorts) to either another msg or a Fact. For simplicity
we denote Σmsg∗,msg by Σ and Σmsg∗,Fact by F.

As we are working in an abstract model, function symbols are not evaluated, and in-
stead the application of functions can lead to terms of containing several components.
For example, we may have a term m = f (x, y), in which case we call the symbols x
and y subterms of m.

Atoms (i.e. undecomposable terms) can represent names (unassigned expressions),
or variables (assigned values). A term is said to be ground if it contains no variables.
A substitution, σ, is a (partial) function from variables to ground terms of the same
sort (or a subsort). A substitution is applied to a term by applying it to each subterm.
Given a term t and a substitution σ, we say that the substitution σ grounds t if the
resultant term tσ is a ground term.

We allow for an equational theory E over terms of (sub)type msg. E is a collection
of equations lhs = rhs. For convenience we assume that E is subterm-convergent: for
each equation we have that rhs is either a subterm of E or a constant. Two terms s
and t are said to be equivalent modulo E if a series of equations can be applied to s or
t (or both) such that the resulting terms s′ and t′ are equal. We reserve the following
collection of function symbols Σ, with equational theory E:

• Σ = 〈 〉/2, f st/1, snd/1, h/1,
aenc/2, adec/2, sdec/2, senc/2, pk/1

• f st(〈x, y〉) = x

• snd(〈x, y〉) = y

• sdec(senc(m, k), k) = m

• adec(aenc(m, pk(k), k)) = m

2.1. Fundamentals 15

Intuitively, the aenc and adec functions model asymmetric encryption and decryption,
with senc and sdec corresponding to the symmetric case. We will write {x}k to denote
encryption when the kind is apparent from the context. Similarly, when possible, we
will often omit the pair operators 〈 and 〉when terms are clearly paired, for readability
reasons. h denotes a hash function with no attached equational theory.

We reserve the following fact symbols with corresponding intuition:

• Net /1: A message on the communication network

• K /1: Adversary knowledge of a term

• Pk /2, Ltk /2: A public/private keypair

• ShKey /3: A shared encryption key

Protocol Specification

Thusfar, our discussion has been restricted to terms of type msg. We now divert our
attention to Facts. From now on we assume that we are working over multisets where
all terms are of type Fact. A State, S, is a multiset where all of the terms are ground,
and models the current execution state of a protocol. Each run of a protocol will begin
with an empty state, which then transitions into future states through a series of rules.

A rule r is defined by a triplet of multisets r : L E−→ R. Given a state S, and a
substitution σ, we can apply the rule r if:

• σ is a grounding substitution for L

• Lσ ⊂ S

In this case, the state S′ is produced by removing the submultiset of S equal to Lσ,
and replacing it with Rσ.

The elements of Eσ are known as the event facts of the rule instance. By convention,
we assume that the set of event fact symbols is disjoint to the set of other fact symbols.

For convenience, we will sometimes use the prefix ! in fact symbols to indicate that
the fact is persistent. Persistent facts are never removed from a state as a result of
rule execution (if they appear on the left hand side of a rule, we assume they also
appear on the right hand side). They model reusable assets, such as encryption keys
or adversary knowledge.

A simple example of a rule is given in Dec_Fwd below, in which an agent (whose
name will instantiate the variable A), detects a message on the network encrypted
with their public key, and decrypts it before forwarding on the result.

Dec_Fwd :=

[
Net({m}pk(k))

! Ltk(A, k)

]
−→
[

Net(m)
]

16 Chapter 2. A Multiset Rewriting Model

Notationally, event facts will be written on top of the arrow between the premises
and conclusions of a rule. In this case, Dec_Fwd is defined to have no event facts –
Figure 2.1 contains some examples of rules containing event facts.

When a rule is applied, the terms Eσ are appended to the trace, τ, an indelible ordered
history of event markers. At the start of any execution, τ0 = φ, the empty sequence.
After the execution of a rule r, the resulting event facts are added along with a
discrete time marker ti, e.g. Event(x)@t1. Time markers are assumed to be increasing
- the event facts generated by two separate rule executions must have two different
time markers. We will freely quantify over time markers e.g. ∀ti when there is no
ambiguity, and will make use of ordering of time markers (e.g. ti < tj).

We reserve the following special rule Fresh:

Fresh :=
[
−

]
−−−→

[
Fr(x : fresh)

]

This rule allows for the creation of freshly generated random variables, for example
for use in creating encryption keys. We further require that the Fresh rule is the
only way in which a Fr fact can be created. Note that in general this means that the
adversary cannot know the value of any term generated by the Fresh rule, unless it
is later released as part of a message.

A protocol, P, is given by P = (R,F, Σ, E), a tuple of rules, facts, functions and an
equational theory. We will assume that R, F, Σ and E contain all the reserved elements
indicated in this section (including the adversary rules below), except when stated
otherwise. We define Traces(P) as the set of all (valid) traces that can be constructed
as a result of executing the rules from R along with the associated material from the
other protocol components. Similarly, we define U(Σ) to be the set of all states that
can be created as the consequence of a set of rule executions on P. Finally, given a
specific execution of a protocol, we define lastState(τ) to be the state at the end of
this execution.

Adversary Model

The network adversary is also defined in terms of multiset rewriting rules. The basis
of these is the Dolev-Yao [DY83] adversary. The set of these rules, Adv, is given in
Figure 2.1.

The Dolev-Yao adversary is capable of blocking or modifying any messages received
on the network, modelled by the Block and Inject rules. The Funf rule allows the
adversary to derive new terms by applying function symbols to known terms, and
Adv_Pub and Adv_Fr allow the adversary to deduce public and (previously unused)
fresh terms. Finally, Corrupt rule models agents who are fully under the control of
the adversary – we use the Corrupt fact to additionally indicate that a specific agent
is corrupted. Typically, security claims will be made modulo corruption (i.e. we are
only concerned with traces in which the fundamental agents are honest).

2.1. Fundamentals 17

Inject :=
[

!K(x)
]
−→
[

Net(x)
]

Block :=
[

Net(x)
]K(x)−−→

[
!K(x)

]

Adv_Pub :=
[−]K(A)−−−→

[
!K(A : pub)

]

Adv_Fr :=
[

Fr(x)
]K(x)−−→

[
!K(x)

]

Funf :=




!K(x1)
!K(x2)

. . .


K(f (x1,x2,...))−−−−−−−−→

[
!K(f (x1, x2, . . .))

]

Corrupt_Ltk :=
[

!Ltk(A, k)
]Corrupt(A)−−−−−−→

[
!K(k)

]

Corrupt_L :=
[

!ShKey(A, B, k)
]Corrupt(A)−−−−−−→

[
!K(k)

]

Corrupt_R :=
[

!ShKey(A, B, k)
]Corrupt(B)−−−−−−→

[
!K(k)

]

FIGURE 2.1: Rules which define the Dolev-Yao adversary.

Security Goals

Security goals of a protocol are given in terms of first-order logic formulae on the set
of traces of the protocol. Intuitively, they indicate that certain events can or cannot
happen, or that they occur in a certain order. These goals are defined in terms of
event facts.

As a simple example, consider the following protocol in Alice-Bob notation:

A −→ B : {x, y}kAB

B −→ A : {y, x}kAB

In this protocol, A sends a pair of encrypted terms to B, who reverses their order
and sends them back. A reasonable security claim for this protocol might be “The
value x is either unknown to the adversary, or one of A or B is corrupt". This could
be expressed as:

∀τ ∈ Traces(P), ∀ti, ∀A, B, x : msg :

Secret(A, B, x)@ti =⇒
!∃ta | K(x)@ta ∨
∃tb | Corrupt(A)@tb ∨
∃tc | Corrupt(B)@tc

Often the event facts in security claims contain unassigned names, and therefore
can be instantiated with a range of values. The faithfulness of security claims to the
protocol they are modelling is thus dependent on the correct placement and usage of
such event facts within the protocol specification.

18 Chapter 2. A Multiset Rewriting Model

2.2 Modelling Methodology

One potential risk with encoding protocols in this model is that important event
markers or rules may not always be correctly applied. This may not be an issue for the
analysis of individual protocols - where the person performing the implementation
can ensure that the model is faithful to the spirit of the specification. However, as
much as possible, we would like to reason about all protocols within a specific setting.

To do this, we will define extensions to our base model, which introduce new facts,
event facts, and rules - describing the structure of protocols, or providing new ad-
versarial capabilities. More significantly, for these extensions, we will give a for-
malisation of well-formedness for protocols modelled inside them. This definition of
well-formedness will differ from case to case, but will aim to fulfill the following
goals:

• Intuitive Application of Event Facts: Enforcements should be placed on the
usage of event facts in rules to ensure that they match the intuition of the
security goals associated with them.

• Controlling Protocol Setup: For protocols which require setup (e.g. where
users have encryption keys established before the protocol begins), this is
handled in a way that matches the assumptions of the real-world system.

• One-to-oneness: Given a specification written in a simple notation (e.g. Alice-
and-Bob, or a message sequence chart), there should be a unique representation
of this protocol in the extended model (up to simple transformations).

Generally, well-formedness will be broken down into a collection of simple assump-
tions about the structure of rules in a protocol. For example, in Chapter 5, we define
key uniqueness, which intuitively requires that each encryption key generated in a
trace is distinct. This manifests itself as a statement about the presence and usage of
the ShKey fact in rules.

The benefits of restricting to our analysis to protocols which follow our well-formedness
goals are as follows:

1. We can ensure that the semantic interpretation of a security claim actually
matches its real-world intent.

2. We can prove results about security claims inside the model - either how they
relate to each other, or to claims made in similar models.

3. It allows for improved automation of the verification process. Knowing that
protocols must (by definition) share parts of their structure allows us to re-use
parts of the specification code.

We will see each of these advantages demonstrated over the course of the rest of the
thesis.

19

Bibliography

[AS87] Bowen Alpern and Fred B Schneider. Recognizing safety and liveness.
Distributed computing, 2(3):117–126, 1987.

[BC93] Stefan Brands and David Chaum. Distance-bounding protocols. In
Workshop on the Theory and Application of of Cryptographic Techniques,
pages 344–359. Springer, 1993.

[BC10] David Basin and Cas Cremers. Modeling and analyzing security in
the presence of compromising adversaries. In European Symposium on
Research in Computer Security, pages 340–356. Springer, 2010.

[BDH+18] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf
Sasse, and Vincent Stettler. A formal analysis of 5G authentication.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1383–1396. ACM, 2018.

[Ber09] Daniel J Bernstein. Introduction to post-quantum cryptography. In
Post-quantum cryptography, pages 1–14. Springer, 2009.

[BFG19] Jacqueline Brendel, Marc Fischlin, and Felix Günther. Breakdown
resilience of key exchange protocols: NewHope, TLS 1.3, and hybrids.
In European Symposium on Research in Computer Security, pages 521–541.
Springer, 2019.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based
on Prolog Rules. In CSF’01, pages 82–96, 2001.

[BM82] Robert S Boyer and J Strother Moore. A mechanical proof of the
unsolvability of the halting problem. Technical report, Texas Univ
At Austin Inst For Computing Science And Computer Applications,
1982.

[CDM+00] Iliano Cervesato, Nancy Durgin, John Mitchell, Patrick Lincoln, and
Andre Scedrov. Relating strands and multiset rewriting for security
protocol analysis. In Proceedings 13th IEEE Computer Security Founda-
tions Workshop. CSFW-13, pages 35–51. IEEE, 2000.

[Cer01] Iliano Cervesato. The Dolev-Yao intruder is the most powerful at-
tacker. In 16th Annual Symposium on Logic in Computer Science—LICS,
volume 1, 2001.

20 BIBLIOGRAPHY

[CGCG16] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On post-
compromise security. In 2016 IEEE 29th Computer Security Foundations
Symposium (CSF), pages 164–178. IEEE, 2016.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A comprehensive symbolic analysis of TLS 1.3. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1773–1788. ACM, 2017.

[CKR18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. Deepsec:
Deciding equivalence properties in security protocols theory and
practice. In 2018 IEEE Symposium on Security and Privacy (SP), pages
529–546. IEEE, 2018.

[CMdV06] Cas JF Cremers, Sjouke Mauw, and Erik P de Vink. Injective syn-
chronisation: an extension of the authentication hierarchy. Theoretical
Computer Science, 367(1-2):139–161, 2006.

[Cre08] Cas JF Cremers. The scyther tool: Verification, falsification, and analy-
sis of security protocols. In International Conference on Computer Aided
Verification, pages 414–418. Springer, 2008.

[CRSC12] Cas Cremers, Kasper B Rasmussen, Benedikt Schmidt, and Srdjan
Capkun. Distance hijacking attacks on distance bounding protocols.
In 2012 IEEE Symposium on Security and Privacy, pages 113–127. IEEE,
2012.

[DHRS18] Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, and Ralf Sasse. Au-
tomated unbounded verification of stateful cryptographic protocols
with exclusive OR. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pages 359–373. IEEE, 2018.

[DKR07] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Symbolic bisimu-
lation for the applied pi calculus. In International Conference on Foun-
dations of Software Technology and Theoretical Computer Science, pages
133–145. Springer, 2007.

[DLK+14] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson,
Michael Bailey, et al. The matter of heartbleed. In Proceedings of the
2014 conference on internet measurement conference, pages 475–488. ACM,
2014.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the security of public
key protocols. IEEE Trans. Information Theory, 29(2):198–207, 1983.

[EMV18] EMVCo. EMV Contactless Specifications for Payment Systems, Book C-2,
Kernel 2 Specification, Version 2.7. April 2018.

BIBLIOGRAPHY 21

[FHMS19] Ihor Filimonov, Ross Horne, Sjouke Mauw, and Zach Smith. Breaking
unlinkability of the icao 9303 standard for e-passports using bisimi-
larity. In European Symposium on Research in Computer Security, pages
577–594. Springer, 2019.

[FJHG99] THAYER Fábrega, F Javier, Jonathan C Herzog, and Joshua D
Guttman. Strand spaces: Proving security protocols correct. Jour-
nal of computer security, 7(2-3):191–230, 1999.

[Gol98] Oded Goldreich. Secure multi-party computation. Manuscript. Prelim-
inary version, 78, 1998.

[Gün89] Christoph G Günther. An identity-based key-exchange protocol. In
Workshop on the Theory and Application of of Cryptographic Techniques,
pages 29–37. Springer, 1989.

[Hoa78] Charles Antony Richard Hoare. Communicating sequential processes.
In The origin of concurrent programming, pages 413–443. Springer, 1978.

[JCCGS19] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse.
Seems legit: Automated analysis of subtle attacks on protocols that
use signatures. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 2165–2180. ACM, 2019.

[KS05] Lea Kissner and Dawn Song. Privacy-preserving set operations. In
Annual International Cryptology Conference, pages 241–257. Springer,
2005.

[LB06] Christine Laurendeau and Michel Barbeau. Threats to security in
DSRC/WAVE. In International Conference on Ad-Hoc Networks and
Wireless, pages 266–279. Springer, 2006.

[Low96] Gavin Lowe. Breaking and fixing the needham-schroeder public-key
protocol using FDR. In International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, pages 147–166. Springer,
1996.

[Low97] Gavin Lowe. A hierarchy of authentication specification. In CSF’97,
pages 31–44, 1997.

[LSL+19] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi, Selin
Chun, Taejoong Chung, and Ted Taekyoung Kwon. matls: How to
make TLS middlebox-aware? In NDSS, 2019.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The
TAMARIN prover for the symbolic analysis of security protocols. In
International Conference on Computer Aided Verification, pages 696–701.
Springer, 2013.

[MSTPTR18a] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-
Rasua. Automated identification of desynchronisation attacks on

22 BIBLIOGRAPHY

shared secrets. In European Symposium on Research in Computer Security,
2018.

[MSTPTR18b] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-
Rasua. Distance-bounding protocols: Verification without time and
location. In IEEE Symposium on Security and Privacy, S&P’18, May
21–23, 2018, San Francisco, California, USA, may 2018.

[MSTPTR19] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-
Rasua. Post-collusion security and distance bounding. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2019.

[NS78] Roger M Needham and Michael D Schroeder. Using encryption for
authentication in large networks of computers. Communications of the
ACM, 21(12):993–999, 1978.

[PD16] Joseph Poon and Thaddeus Dryja. The Bitcoin lightning network:
Scalable off-chain instant payments, 2016.

[Ros94] Bill Roscoe. Model- checking CSP. 1994.

[RS11] Mark D Ryan and Ben Smyth. Applied pi calculus. 2011.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[Sho94] Peter W Shor. Algorithms for quantum computation: Discrete loga-
rithms and factoring. In Proceedings 35th annual symposium on founda-
tions of computer science, pages 124–134. Ieee, 1994.

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in
security proofs. IACR Cryptology ePrint Archive, 2004:332, 2004.

[SSBC09] Patrick Schaller, Benedikt Schmidt, David Basin, and Srdjan Capkun.
Modeling and verifying physical properties of security protocols for
wireless networks. In 2009 22nd IEEE Computer Security Foundations
Symposium, pages 109–123. IEEE, 2009.

[The18] The Tamarin Team. The Tamarin User Manual, 2018.

[TW89] Martin Tompa and Heather Woll. How to share a secret with cheaters.
journal of Cryptology, 1(3):133–138, 1989.

23

Part I

RFID Protocols

25

Chapter 3

Distance Bounding Protocols

In the first part of this thesis we focus on the application domain of com-
munication protocols for RFID devices. Small, highly portable RFID tags
have enabled a variety of novel applications for short range interactions,
including access control, payment systems and tracking services.

The design of these protocols is affected by the physical properties of these
tags in two main ways. Firstly, many protocols implicitly (or explicitly)
carry authentication requirements conditional on physical properties of the
tags - such as their location, or machine-readable data printed on the device.
This presents a challenge in constructing models which attempt to capture
these details. Secondly, RFID tags are often restricted in their capability
for storage and computation. As a result, their protocols often involve
different cryptographic primitives to those seen in traditional network
communication. Although this does not affect the choice of security goals
directly, it can lead to new attack vectors and enables fine-grained models
which can faithfully represent these primitives.

In this chapter, we closely examine the application domain of Distance
Bounding protocols. These protocols attempt to mitigate the risk of relay
attacks, in which an attacker forwards a radio signal far beyond an RFID
tag’s intended radius.

The work in this chapter is based on the IEEE S&P 2018 Paper “Distance-
bounding protocols: Verification without time and location” [MSTT18].
The content here is restructured to highlight the Tamarin code that was devel-
oped while researching this topic. In partiular, the appendices which cover
modelling specifics have been pushed earlier in the chapter. In addition, some
of the results from the paper are delayed until the next chapter, which extends
the model presented here. The related work has been updated.
My main contribution to this paper was in translating the model (which uses
an extension of the Cremers-Mauw model) into the Tamarin specification
language used in our analysis of protocols in the literature.
Special thanks to Alexandre Debant and Prof. Stephanie Delaune, whose
comments on both the paper and the codebase helped improve it greatly.

26 Chapter 3. Distance Bounding Protocols

3.1 Introduction to Distance Bounding

The increasing availability of miniature devices capable of wireless communication
allows for a vast range of new additions to our day-to-day lives. Passive RFID chips
embedded in credit cards or passports, as well as transmitters in devices such as car
keys, allow for authentication protocols to be run using radio signals at a distance.

However, contactless communication is known to be vulnerable to relay attacks [DGB87a].
In such a scenario, an adversary relays the verbatim messages that are being ex-
changed, for example by using a radio retransmitter.

Relay attacks are mostly used to break communication protocols with a bounded read
range, such as smartcards (2-10 cm) or car keys (10-100 m). By simply relaying, an
adversary is able to establish a long-range communication between two contactless
tokens, which otherwise wouldn’t be possible. This has been used, for example, by
Francillon et al. [FDC11] to break the passive keyless entry system of various modern
cars.

These attacks are not covered by standard authentication security goals. Indeed, mes-
sages are correctly exchanged by the intended parties. However, security violations
occur as a result of the owner of a device either not intending to perform the protocol,
or possibly not being aware that it is taking place at all. For example, in the case of
passive RFID tags, an attacker who is able to get close enough to power a tag can
seamlessly relay messages from it to a distant recipient.

To face relay attacks, Desmedt et al. [BBD+91, BD90] introduced the notion of
distance-bounding protocols, and the first such protocol was designed by Brands and
Chaum [BC93]. Distance-bounding protocols use the round-trip time (RTT) of one or
more challenge/response rounds to provide an upper bound on the distance between
a prover and a verifier (see Figure 3.1a). Through this scheme, security verification
translates into the validity of the actual prover-to-verifier distance in comparison
with the RTTs. More precisely, in a secure distance-bounding protocol, if the prover-
to-verifier distance is d and the RTT is ∆t, then it must hold that d ≤ 1

2 ∆t · c, where
c denotes the maximum network transmission speed (for radio-waves, this is the
speed of light). This intuition is supported by the physical fact that no message can
be transmitted at a speed higher than c.

In the context of distance-bounding protocols, their security has traditionally been
verified over the years by accounting for their resistance to three types of attack:
mafia fraud [DGB87a], distance fraud [Des88], and terrorist fraud. Resistance is
measured in terms of probability of success of the adversary in a given adversary
model [ABK+11, DFKO11, BV14]. For example, the chance of an attacker to correctly
guess the proper response in each round determines the overall likelyhood of an attack
succeeding. However, this probabilistic analysis based on attack-resistance does not
seem to be a promising verification scheme, as new attacks might be discovered in
the future.

A clear and convincing demonstration of this style of analysis is given by Cremers
et al. [CRSC12]. In this work, the authors prove several protocols to be vulnerable
to distance-hijacking attacks while they were previously considered secure as they

3.1. Introduction to Distance Bounding 27

V P

chal∆t

resp

V P

chal
∆t′

resp

V P

resp
chal

∆t′′

(a) (b) (c)

FIGURE 3.1: Three timing scenarios of a challenge/response round.

resisted the then-existing attack types (mafia, distance and terrorist frauds).

Unfortunately, although the desired properties of a distance-bounding protocol can
be precisely defined in current security models, it is not necessarily straightforward to
verify that a given protocol satisfies these properties. On the one hand, computational
models [DFKO11, BMV13] typically lead to manual and complex security proofs. On
the other hand, symbolic models [SSBC09, CRSC12] rely on using adapted versions of
higher-order theorem-proving tools such as Isabelle/HOL [NPW02], which require a
high degree of user intervention. This means that verifying the security of a distance-
bounding protocol in the existing symbolic models requires not only a considerable
amount of expertise, but also a significant time investment.

This chapter argues that the notions of time and location are indeed not needed to spec-
ify and verify the security of distance-bounding protocols. Surprisingly enough, such
protocols can be verified by considering the causal order of events in protocol traces,
similarly to authentication properties like aliveness and synchronization [CM12]. The
intuition behind this observation is illustrated in Figure 3.1.

Figure 3.1 shows a regular challenge/response round, in which prover P can only
respond to verifier V’s challenge after having received the challenge. Therefore, 1

2c ·∆t
determines an upper bound on the distance d between V and P. Now, suppose that,
due to a vulnerability of the protocol, P is able to predict the appropriate response
before having received the challenge (Figure 3.1b). This means that he will be able to
send his response “too early”, leading to a shorter round-trip time ∆t′ < ∆t and thus
to a smaller and incorrect distance calculated by V. Thus, if the protocol is insecure
because P can preempt the response, P has sufficient knowledge to create the response
before reception of the challenge. Now our main observation is that (assuming that
there is no other causal relation between sending the challenge and P’s knowledge),
P could even have sent the response before V sent the challenge (Figure 3.1c). From a
causal point of view, this means that if there is a trace in which P sends its response
before P receives the challenge, there must also be a trace in which P sends the
response before V sends the challenge. Hence, a flaw in the protocol translates into
such a wrongly ordered trace, which can be discovered through an analysis that does
not consider time.

The rest of the chapter is organised as follows:

• In Section 3.2, we review the related work on modelling distance-bounding
protocols. We focus our attention on an adaptation of the security model of
Basin et al. [BCSS09, SSBC09], creating an equivalent formalisation in a model

28 Chapter 3. Distance Bounding Protocols

similar to that of Cremers-Mauw. We then formally define a security goal
named secure distance-bounding.

• Then, in Section 3.3, we analyse the semantic domain and formulate a number
of basic properties that provide a sufficient characterization of the semantics
to prove our main result. These definitions are used to formulate a notion of
causality-based secure distance-bounding, in which the notions of time and location
have been removed. We then prove this definition is in fact equivalent to the
previously defined notion of secure distance-bounding.

• In order to validate our results, we demonstrate an implementation of causality-
based secure distance-bounding in Tamarin [MSCB13]. We discuss some of the
modelling details required to perform the translation into this tool.

• Finally, a case study is provided on the TREAD distance-bounding protocol
to demonstrate the applicability of the analysis in a more in-depth fashion, in
Section 3.5.

The model developed in this chapter is extended further in Chapter 4, which also
contains the results of an extensive security survey of distance-bounding protocols.

3.2 Modelling Distance Bounding

In this section we introduce distance bounding protocols. Subsection 3.2 presents a
discussion of the first distance bounding protocols, as well as their security goals. In
Subsection 3.2, strategies for the security analysis of distance bounding protocols are
presented, including some of the most recent work. Finally, Subsection 3.2 contains
an in-depth analysis specifically of the work of Basin et al. [BCSS09]. We express
their model (which makes use of continuous event timings) in a syntax which will
form the basis of the rest of this chapter.

Foundations

Distance-Bounding Protocols.
The first distance-bounding protocol was designed by Brands and Chaum [BC93]
and it is composed of three phases. The slow phase (a.k.a. initial phase, setup phase) is
where the parties agree on the parameters of the session, such as nonces. Then the
fast phase (a.k.a. critical phase, distance-bounding phase, timed phase) is executed,
consisting of a number of challenge/responses rounds, where the verifier measures
the round-trip times. Finally, a verification phase (a.k.a. final phase, authentication
phase) takes place, in which the verifier makes a decision on whether the prover
successfully passed the protocol. This is done by checking the correctness of all
round-trip times and the prover’s proof of knowledge of a valid signature.

Another well-known distance-bounding protocol was proposed by Hancke and Kuhn
in [HK05]. An abstraction of this protocol is shown in Figure 3.2. The first two

3.2. Modelling Distance Bounding 29

secret k

V

secret k

P

nonces NV , C nonce NP

NV

NP

C

h(k,NV , NP , C)

P is close

FIGURE 3.2: A representation of Hancke and Kuhn’s protocol.

messages compose the initial phase of the protocol, where the verifier V sends his
nonce NV to the prover P who replies back with his nonce NP. Then the fast phase
starts (represented by dashed arrows) with V sending his challenge C to P whose
response is h(k, NV , NP, C), where k is the shared secret key between V and P and h
is an irreversible cryptographic function. The verification phase is represented by
V’s claim that “P is close". The protocol seems to be secure, as for an attacker (who
could be an untrusted prover) to pass the protocol, he must know either the verifier’s
challenge in advance or the shared secret key between the verifier and the intended
prover. However, due to the particular choice of h, a mafia-fraud attacker successfully
passes the protocol with a non-negligible probability of (3/4)|C| (see [HK05] for
further details).

One of the main differences between Brands and Chaum’s protocol and Hancke and
Kuhn’s protocol is as follows. In the former, the fast phase messages do not rely
on long-term secret keys whereas in the latter protocol, such a reliance does exist.
Various protocols have been proposed following this characteristic of Brands and
Chaum’s approach, e.g. [RC10, CBH03, MPP+07, ABG+17, CGdR+15] whilst others
employ Hancke and Kuhn’s design, such as [AT09, TMA10, MTT16a, KA09, MP08].

Attacks on Distance-Bounding Protocols.
Although distance-bounding protocols solved the problem of relay attacks to some
extent, more sophisticated attacks have emerged, such as mafia fraud, distance fraud,
terrorist fraud and distance hijacking.

Mafia-fraud attacks were introduced in [DGB87a], in which a dishonest agent A uses
an honest prover P to provide a verifier V with a false upper bound on the distance
between V and P. Some authors consider mafia-fraud attacks to be the same as
relay attacks. Others, however, classify mafia-fraud attackers stronger than relay
attackers by assuming that the former can manipulate/modify the messages, rather
than simply relaying them.

30 Chapter 3. Distance Bounding Protocols

A distance-fraud attacker [Des88] is a dishonest prover A whose goal is to provide a
verifier V with a false upper bound on V’s distance to A. In particular, for this type
of attack, A does not use any other prover to perform his attack.

More sophisticated attacks are terrorist fraud and distance hijacking. Terrorist-fraud
attacks were first discussed in [Des88] in which the attacker prover A cheats on the
upper bound on the distance between a verifier V and a dishonest prover P, without
learning P’s secret key material. Distance hijacking was introduced by Cremers at al.
in [CRSC12], in which a dishonest prover A makes use of honest provers in order to
provide a verifier V with a false upper bound on the distance between V and A.

Analysing Distance Bounding Security

Probabilistic Security Analysis.
The work by Avoine et al. [ABK+11] introduces a framework that explores the adver-
sary’s capabilities and strategies and the influence of provers’ abilities to tamper with
their devices. New concepts in the distance-bounding field are introduced such as
black-box and white-box models.

The concepts sketched in [ABK+11] were soon formulated in computational mod-
els. For example, Dürholz et al. formalized the classical frauds (except for distance
hijacking) by using an adversary model that does not allow for corrupted veri-
fiers [DFKO11]. Boureanu, Mitrokotsa, and Vaudenay introduced a more general
model [BMV13] by allowing adversaries to interact with multiple provers and veri-
fiers, hence capturing distance hijacking [CRSC12].

Mauw, Toro-Pozo, and Trujillo-Rasua [MTT16a, MTT16b] developed a probabilistic
analysis of the security of a class of distance-bounding protocols in terms of mafia
fraud. This class includes distance-bounding protocols that do not have a final verifi-
cation phase and are based on precomputation (e.g. [HK05, AT09, GAA11, KKBD12,
KA11, MTT16a, MP08, TMA10]). They proposed a set-of-automata representation of
protocols that allows the analyst to generically compute the success probability of
mafia-fraud attacks.

Symbolic Security Analysis.
Meadows et al. [MPP+07] propose a formal framework to verify distance-bounding
protocols. Their approach does not particularly deal with multi-prover scenarios,
therefore neither distance-hijacking nor terrorist-fraud attacks are detected.

The first formal framework for distance-bounding protocols with multi-prover scenar-
ios was proposed by Malladi et al. [MBK10], along with a software tool. They analyse
the signature-based Brands and Chaum’s protocol and find an attack in which an
adversary who is not in the vicinity of the verifier still passes the protocol. They call
this attack the farther adversary scenario. Moreover, to solve the security issue they
found, they observed that including the prover’s identity in the signature would
make the protocol no longer vulnerable to farther adversary attacks.

Basin et al. [BCSS09, SSBC09] introduced a simple yet powerful formal approach for
distance-bounding verification. Their model captures dishonest prover behaviors

3.2. Modelling Distance Bounding 31

and, by extension, distance-fraud and distance-hijacking attacks, of which the latter
was referred to as impersonation attacks. Their implementation of the formalization is
written in the higher-order logic theorem prover Isabelle/HOL [NPW02]. Similarly
to Malladi et al. [MBK10], they prove that the signature-based Brands and Chaum’s
protocol can be fixed by explicitly adding the prover’s identity to the responses in the
fast phase.

In [CRSC12], Cremers et al. extended Basin et al’s model to capture bit-level message
manipulation on wireless networks, introduced as overshadowing in [PTDC11]. Sup-
ported by this, they proved that including the prover’s identity (neither by XOR-ing
it with the challenge responses nor by using secure channels) in Brands and Chaum’s
protocol does not solve its vulnerability to distance hijacking.

Several symbolic approaches have been created to remove the dependence of timing
data from security analysis. Chothia et al. [CdRS18] classify attacks on distance
bounding protocols based on configurations of locations of honest and dishonest
provers. They build a tool which takes a distance bounding protocol and produces a
machine-verifiable protocol specification in Proverif for each possible configuration
of agent locations. Debant et al. [DD19, DDW19] construct a model in an extended
process calculus, which is then embedded inside the Proverif tool directly.

Our work also uses a symbolic approach that abstracts away the use of time and loca-
tion. Our focus is on making a model that allows protocols to be rapidly implemented
and verified.

The Model of Basin et al.

We now describe the formalism of Basin et al. [BCSS09, SSBC09] which is the basis
for our work. The formalism employs logic theories to handle inductively-defined
sets of traces that represent the protocol’s executions. It considers execution traces
that consist of a sequence of timed-events, e.g. denoting the sending and reception of
messages, where timestamps represent the point in time at which the events occurred.

Agents and Messages.
The set of agents is denoted by Agent, and {Honest,Dishonest} is a partition of the set
of agents into honest and dishonest agents.

During a protocol execution, agents exchange messages through the network. Basic
messages are agent names (Agent), nonces (Nonce), and constants (Const). More
complex messages can be defined by using atomic messages as the arguments of a
function, by pairing them together into a single message or by denoting an encrypted
message. Formally, the set of messages Msg is defined by the following grammar,
where atom ∈ Const ∪ Agent ∪ Nonce and f ∈ F are terminal symbols and F is a
countably infinite set of function symbols.

Msg ::= atom | (Msg,Msg) | {Msg}Msg | f (Msg) .

The term (m1, m2) denotes the pairing of messages m1 and m2. Further, {m1}m2

32 Chapter 3. Distance Bounding Protocols

stands for the encryption of m1 with the key m2. An agent’s signature on a message is
represented by the encryption of the message with the secret key of the agent. Finally,
f (m1) indicates the output of the function f on the input m1. Functions with multiple
arguments can be represented through pairing of arguments.

Agents’ cryptographic keys are denoted by the functions pk : Agent→ Msg, sk : Agent→
Msg and sh : Agent× Agent → Msg that indicate the asymmetric public key of an
agent, asymmetric secret key of an agent and the symmetric shared key of two agents,
respectively. Lastly, the function _−1 : Msg→ Msg maps an encryption key onto the
corresponding decryption key, and vice-versa.

The set B = {sk, pk, sh, _−1} ⊆ F is the set of basic functions and its functions are
assumed to satisfy that sh(A, B) = sh(B, A), pk(A)−1 = sk(A) and sk(A)−1 = pk(A);
for all A, B ∈ Agent. In addition, we assume that k /∈ {pk(A), sk(A)} implies k−1 = k;
for all k ∈ Msg and A ∈ Agent. These assumptions represent the properties for
symmetric and asymmetric encryption/decryption.

Events and Traces.
An event denotes an agent’s action, such as sending or receiving a message, or an
agent’s security claim. We define the set of events Ev via the following grammar, for
A, B ∈ Agent.

Ev ::= sendA (Msg) [Msg] | recvA (Msg) |
claimA (B,Ev,Ev) .

Given messages m1 and m2, and agents A and B, sendA (m1) [m2] indicates that A has
sent the message m1 and updated the agent’s local state with the message m2, and
recvA (m1) means that A has received m1. In the original model, claiming events have
the form claimA (B, d), where d ∈ R is a distance value. This allows an agent A to
claim that another agent B is within a radius of length d, which is computed based
on the round-trip time of a message exchange. We will make the message exchange
explicit, and use claimA (B, e1, e2) where e1 and e2 are the events used to compute the
round-trip time and, by extension, the distance bound d.

We define the sets Send,Recv ⊆ Ev of all send and receive events, respectively. The
function actor : Ev → Agent maps events onto their corresponding actor agent (i.e.,
the instance of A from the syntax). We extend this notation by using actor (τ), for
a given trace τ, to refer to the set {actor (e) | (t, e) ∈ τ}. We require for an event
claimA (B, e1, e2) that actor (e1) = actor (e2) = A.

A trace τ is a finite sequence of timed-events τ ∈ (R× Ev)∗, representing the execu-
tion of a protocol.

Agents’ Knowledge.
As the trace evolves, agents may gain knowledge by receiving messages from other
agents. At the beginning of a protocol execution, every agent is provided with
an initial knowledge consisting of all agents’ names and constants, his own nonces
and secret keys, and all public keys. We use the function init : Agent → P (Msg) to

3.2. Modelling Distance Bounding 33

m ∈ init (A)

m ∈ dmA (τ)

(t, recvA (m)) ∈ τ

m ∈ dmA (τ)

m1 ∈ dmA (τ)
m2 ∈ dmA (τ)

(m1, m2) ∈ dmA (τ)

m ∈ dmA (τ)
f ∈ F \ B

f (m) ∈ dmA (τ)

(m1, m2) ∈ dmA (τ)
i ∈ {1, 2}

mi ∈ dmA (τ)

m ∈ dmA (τ)
k ∈ dmA (τ)

{m}k ∈ dmA (τ)

{m}k ∈ dmA (τ) k−1 ∈ dmA (τ)

m ∈ dmA (τ)

FIGURE 3.3: Rules for message deduction.

ε ∈ Tr (P) Start

τ ∈ Tr (P) A ∈ Dishonest
t ≥ maxt(τ) m ∈ dmA (τ)

τ · (t, sendA (m) []) ∈ Tr (P) Int

τ ∈ Tr (P) t ≥ maxt(τ)
(t′, sendA (m) [s]) ∈ τ

t ≥ t′ + d (A, B) /c
τ · (t, recvB (m)) ∈ Tr (P) Net

FIGURE 3.4: Start, Intruder and Network rules.

represent the initial knowledge of an agent:

init (A) = Agent∪ Const∪NonceA ∪ {sk(A)} ∪
{pk(B) | B ∈ Agent} ∪ {sh(A, B) | B ∈ Agent},

where NonceA denotes the set of nonces for a given agent A ∈ Agent. We assume that
{NonceA|A ∈ Agent} forms a partition of the set Nonce.

Given an agent A and a trace τ, dmA(τ) denotes the set of all deducible messages from
a trace τ. This set is inductively defined by the rules in Figure 3.3.

Network and Intruder.
For a given protocol P , the set of possible traces Tr (P) is inductively defined by
the Start rule (Start), the Intruder rule (Int), the Network rule (Net) and the rules
specifying the protocol. The Start, Intruder and Network rules are depicted in
Figure 3.4.

The rules make use of the function maxt : (R× Ev)∗ → R, defined as maxt(τ) =

max(t,e)∈τ{t}, yields the latest time at which an event of τ occurred. The expression
d(A, B) gives the distance between two agents A and B based on an uninterpreted

34 Chapter 3. Distance Bounding Protocols

function l : Agent→ R3, which associates each agent to a location in the real coordi-
nate space R3. It is worth remarking that this interpretation of location assumes that
agents are static, including dishonest agents.

The Start rule states that the empty trace ε is always part of the set of traces. The
Intruder rule enables a dishonest agent, typically known as the intruder or the adver-
sary, to inject (by sending) on the network any of his deducible messages. Finally, the
Network rule establishes that a message m sent by and agent A can be received by
an agent B without violating a time/location constraint that we describe in the next
paragraph. This constraint is actually what makes this model particularly different
from standard security models.

The Network rule also enforces that a message sent by an agent A and received by an
agent B at times t′ and t, respectively, must satisfy d(A, B) ≤ (t− t′) · c. In this way
the physical law that messages cannot travel faster than the speed of light is made
explicit. Observe that message loss is captured by not applying the network rule for a
given sending event.

Protocol Specification.
A protocol is specified by a set of rules similar to the rules in Figure 3.4. Two syntactic
restrictions (whose semantic interpretations will be given in Section 3.3) are applied:

• Neither the premises nor the conclusion of a protocol rule contain references
to dishonest agents. This means that the behavior of dishonest agents is fully
specified by the intruder rule.

• The premise of a protocol rule cannot contain events whose actors are not the
same as the actor of the event in the premise of the rule. That is to say, agents
are unaware of what other agents do. They can interact exclusively through the
network rule.

Example 2.1 (Hancke and Kuhn’s protocol). Figure 3.5 shows the formalization of Hancke
and Kuhn’s protocol [HK05] (see the representation in Figure 3.2). The first four rules in
Figure 3.5 correspond to the four transmissions that take place in the protocol. The receiving
events are derived from the network rule. The last rule from Figure 3.5 refers to the claim
event for the property secure distance-bounding represented as “P is close" in Figure 3.2.

The function used : (R× Ev)∗ → P (Msg) defined as used(τ) =
⋃

(t,e)∈α subt(cont (e)), is
utilized to make sure that newly generated nonces are fresh, where subt : Msg → P (Msg)

indicates the set of atomic messages that are sub-terms of a given message and cont : Ev→
Msg gives us the content of a given event. The function subt is recursively defined as follows.

subt(m) =





subt(m1) ∪ subt(m2) if m = (m1, m2)

subt(m1) ∪ subt(m2) if m = {m1}m2

subt(m1) if m = f (m1)

{m} otherwise .

Example 2.1 also illustrates the purpose of the information in square brackets at the
end of the send actions. In this case, it is implicitly used to define the notion of a
session, by extending the send actions with the random nonces from that session.

3.2. Modelling Distance Bounding 35

τ ∈ Tr (P) V ∈ Honest t ≥ maxt(τ)
NV ∈ NonceV \ used(τ)

τ · (t, sendV (NV) []) ∈ Tr (P)

τ ∈ Tr (P) P ∈ Honest t ≥ maxt(τ)
(t′, recvP (NV)) ∈ τ NP ∈ NonceP \ used(τ)

τ · (t, sendP (NP) [NV]) ∈ Tr (P)

τ ∈ Tr (P) V ∈ Honest t ≥ maxt(τ)
(t′, sendV (NV) []) ∈ τ

(t′′, recvV (NP)) ∈ τ C ∈ NonceV \ used(τ)
τ · (t, sendV (C) [NV , NP]) ∈ Tr (P)

τ ∈ Tr (P) P ∈ Honest t ≥ maxt(τ)
(t′, sendP (NP) [NV]) ∈ τ (t′′, recvP (C)) ∈ τ

τ · (t, sendP (h(sh(V, P), NV , NP, C)) []) ∈ Tr (P)

τ ∈ Tr (P) V ∈ Honest tw ≥ maxt(τ)
u = sendV (C) [NV , NP]

v = recvV (h(sh(V, P), NV , NP, C))
(tu, u) ∈ τ (tv, v) ∈ τ

τ · (tw, claimV (P, u, v)) ∈ Tr (P)

FIGURE 3.5: Formalization of Hancke and Kuhn’s protocol.

Further, it is used to specify in which order the events of a session will have to be
executed.

Security Properties.
The model uses claim events as placeholders to indicate where a security property
needs to be satisfied. In this paper we focus on the property of secure distance-
bounding, which is syntactically represented by claims of the form claimV (P, u, v),
where V, P ∈ Agent and u, v ∈ Ev. A claim event claimV (P, u, v) intuitively means
that the agent V believes that the events u and v can be used to correctly compute an
upper bound on his distance to P.

As the Intruder rule suggests, dishonest agents might disclose their secret key material
by sending them out. This means that two dishonest provers might be indistinguish-
able to a legitimate verifier. In other words, a verifier V cannot securely decide
whether a particular dishonest prover P is close, as another dishonest prover P′ could
have obtained all P’s secrets and therefore P′ can impersonate P. This leads to the
following statement: V cannot claim that “P is close" but V can claim that “someone
who knows P’s secrets is close", at most. To capture this notion, we define the relation
≈ ⊆ Agent× Agent as:

≈ = {(A, A) | A ∈ Honest} ∪Dishonest×Dishonest.

We use A 6≈ B to indicate that (A, B) /∈ ≈. By considering the relation ≈, we provide
next a formal definition of secure distance-bounding.

36 Chapter 3. Distance Bounding Protocols

Definition 2.2 (Secure distance-bounding). A protocol P satisfies secure distance-
bounding if and only if:

∀τ ∈ Tr (P) , V, P ∈ Agent, u, v, w ∈ Ev, tw ∈ R :

(tw, w) ∈ τ ∧ w = claimV (P, u, v) =⇒
∃tu, tv ∈ R, P′ ∈ actor (τ) :

(tu, u) ∈ τ ∧ (tv, v) ∈ τ ∧ P ≈ ¶′ ∧
d(V, P′) ≤ c

2
(tv− tu) . (3.1)

A distance-bounding protocol is secure if the occurrence of a claim event claimV (P, u, v)
in a protocol execution implies that V has correctly computed an upper bound on his
distance to either P (if P is honest) or some dishonest agent P′ (if P is dishonest).

Our definition of secure distance-bounding slightly differs from the original one
provided by Basin et al., but the difference is merely notational, allowing us to cleanly
formulate our main result. Note that claim events are formulated in such a way that
they relate to a single challenge/response pair. Thus, similar to Basin et al’s approach,
we will need to include several claim events if the fast phase cannot be abstracted to
a single challenge/response pair.

3.3 Distance Bounding Security

In this section we use the specification model of Basin et al. as a starting point in order
to construct a new framework. This framework has the advantage of considering
only time only in a discrete way – comparing only the order of events and not
their timings. We first define a set of well-formedness rules for specifying distance
bounding protocols using this language. We produce a new security definition for
distance bounding in this setting, and finally prove that under our assumption set
this definition is in fact equivalent to the secure distance bounding security goal of
Basin et al. .

An important characteristic of the approach presented previous section is that security
protocols are specified using the same type of derivation rules as used for the defi-
nition of the general semantics of the system. Consequently, protocol specifications
are much more liberal than in comparable formal approaches that define a domain
specific language for the definition of protocols. Alternative approaches, like the one
by Cremers and Mauw [CM12] provide a dedicated protocol specification language
and impose syntactical or semantical constraints to prevent users from specifying
meaningless or simply undesired protocols.

An example of a protocol rule that may be considered undesirable is the one in
Figure 3.6. It specifies that after reception of the message Hello at time t, agent A
sends a message Hi back at time t − 1. This is clearly an infringement of a time
consistency property, because it leads to the trace (1, recvA (Hello)) · (0, sendA (Hi) []).

The solution proposed by Basin et al. is to consider only those traces that have non-
decreasing timestamps for subsequent events. In our approach we will take this line

3.3. Distance Bounding Security 37

τ ∈ Tr (P) A ∈ Honest
Hello,Hi ∈ Const (t, recvA (Hello)) ∈ τ

τ · (t− 1, sendA (Hi) []) ∈ Tr (P)

FIGURE 3.6: A protocol rule that leads to incorrect traces.

of reasoning one step further, in that we will define a number of assumptions that a
proper semantics should satisfy and that are sufficient to derive our main result. We
will argue that these properties are valid for the semantics from the previous section,
under the assumption of a class of “reasonable” protocol specifications.

Basic Properties of the Semantics

In line with the previous example, the first property that we formulate is time consis-
tency. It states that events of a trace are timestamped in non-decreasing order.

Property 3.1 (Time consistency). A protocol P satisfies time consistency if for every trace
τ = (t1, e1) · · · (tn, en) ∈ Tr (P), it holds that t1 ≤ · · · ≤ tn.

The second property that we consider is speed-of-light consistency. It states that all
traces satisfy the restrictions of the speed of light. In particular, this means that the
time between the sending of a message by agent A and the reception of this message
by agent B must be equal to or larger than the distance between the two agents
divided by the speed of light.

Because this definition requires the correspondence between a send event and its
related receive event, we define the relation ; ⊆ Send× Recv as follows:

; =
{
(e, e′) ∈ Send× Recv | cont (e) = cont

(
e′
)}

.

The relation ; defines whether an event e′ is a receive event that could have occurred
as consequence of the send event e. As followed from its formulation, ; is not a
one-to-one relation. This lines up with the fact that it does not need to be the case
that there is a unique send event that triggers a given receive event. In the semantics
above, the relation ; can be easily derived from the application of the Network rule
in Figure 3.4.

Property 3.2 (Speed-of-light consistency). A protocol P satisfies speed-of-light con-
sistency if for every trace τ = (t1, e1) · · · (tn, en) ∈ Tr (P) the following holds: for all
j ∈ {2, . . . , n}, if ej ∈ Recv, then there exists i ∈ {1, . . . , j − 1} such that ei ; ej and
tj − ti ≥ d

(
ei, ej

)
/c.

Even though we define Properties 3.1 and 3.2 for protocols, we will also use them
in relation to traces. Thus we will talk about time consistency and speed-of-light
consistency of a given trace, with the obvious interpretation.

The formulation of the remaining properties requires the notion of untimed traces,
or simply a sequence of (untimed) events. The projection π(α) of a trace τ =

38 Chapter 3. Distance Bounding Protocols

(t1, e1) · · · (tn, en) ∈ (R × Ev)∗ is the untimed trace e1 · · · en ∈ Ev∗. Likewise, the
projection of the set of traces is defined as π(Tr (P)) = {π(τ) | τ ∈ Tr (P)}. We say
that two traces α and β are content-wise equal, denoted τ ∼ τ′, if π(α) = π(β).

The third property states that traces are built inductively by appending events.

Property 3.3 (Prefix-closure). A protocol P is prefix-closed if for every γ = σ · e ∈
π(Tr (P)), it holds that σ ∈ π(Tr (P)).

The fourth property expresses that the notion of time is only used for the verifier’s
decision-making process on whether the prover passed the protocol or not. Time will
not be used to make any other decision during the execution of the protocol (e.g.,
to take a different branch depending on the time). This means that any trace can be
retimed, as long as it still satisfies time consistency and speed-of-light consistency.

Property 3.4 (Time-unawareness). A protocol P is time-unaware if for every trace τ ∈
Tr (P) the following holds: for all time consistent and speed-of-light consistent traces β ∈
(R× Ev)∗, τ ∼ β implies β ∈ Tr (P).

Different agents only interact through the network via sending and receiving events.
As a consequence, a non-receive action can only be triggered by the actor agent’s
own preceding actions and another agent’s actions in between can be disregarded or
delayed. This leads to the fifth property, locally-enabled events. We use untimed events
in order to easily express that the resulting trace σ · e′ might require a re-timing of
event e′.

Property 3.5 (Locally-enabled events). A protocol P satisfies locally-enabled events if
for every γ = σ · e · e′ ∈ π(Tr (P)) such that e′ /∈ Recv and actor (e) 6= actor (e′), it holds
that σ · e′ ∈ π(Tr (P)).

The locally-enabled events property allows non-receive events to move left in a trace
under specific conditions. The next property expresses when a receive event can be
appended to a trace.

Property 3.6 (Transmission-enabled events). A protocol P satisfies transmission-enabled
events if for every γ = σ · e ∈ π(Tr (P)) and every e′ ∈ Recv such that e ; e′, it holds
that γ · e′ ∈ π(Tr (P)).

Agents in the model are universally quantified. Therefore, in a given trace we can
replace an agent by another and still obtain a valid trace, as long as both agents are
either honest or dishonest. An agent substitution is denoted by A 7→ B where A and
B are agents. Given a message m ∈ Msg, m[A 7→ B] represents the substitution of all
occurrences in m of A by B. We extend substitutions onto events and traces in the
obvious way.

Property 3.7 (Substitution-closure). A protocol P is substitution-closed if for every σ ∈
π(Tr (P)) and every A, B ∈ Agent such that {A, B} ⊆ Honest or {A, B} ⊆ Dishonest, it
holds that σ[A 7→ B] ∈ π(Tr (P)).

Observe that e ; e′ implies e[A 7→ B] ; e′[A 7→ B]. We say that a protocol is
well-formed if it satisfies the seven properties mentioned above.

3.3. Distance Bounding Security 39

τ ∈ Tr (P) A ∈ Honest t ≥ maxt(τ)
prem1 prem2 · · · premp

(t1, e1) ∈ τ (t2, e2) ∈ τ · · · (tq, eq) ∈ τ

τ · (t, e) ∈ Tr (P)

FIGURE 3.7: Prototype of rules that lead to well-formed protocols.

Validity of the Properties

As stated in the beginning of the current section, the mechanism for specifying
protocols is too liberal to ensure the well-formedness properties. Therefore, we use a
restricted format for protocol rules inspired by the example specification of Hancke
and Kuhn’s protocol from Figure 3.5. The restricted format is specified by the rule
prototype in Figure 3.7. We additionally require that p + q > 0, A = actor (e) =

actor (e1) = actor (e2) = · · · = actor
(
eq
)
, e /∈ Recv and none of the premises premi

involve any of the timestamps tj or t. Even though the protocol format is restricted
with respect to the liberal format specified by Basin et al., we conjecture that it is
sufficiently expressive to specify all relevant protocols from literature. We validate
this by specifying a number of protocols in this format and analysing them with our
implementation (see Section 3.3).

Together with the Start, Intruder and Network rules from Figure 3.4, the restricted
format implies well-formedness of the specified protocol. We will briefly argue the
validity of the properties under this restricted format. Time consistency follows
from the precondition t ≥ maxt(τ) in the Intruder and Network rules and in the
restricted protocol rule. Speed-of-light consistency follows from the precondition
t ≥ t′ + d (A, B) /c in the Network rule and the requirement that e /∈ Recv in the
restricted protocol rule. Prefix-closure follows from the precondition τ ∈ Tr (P) in
all rules, together with the fact that the conclusion extends this trace with a single
event. Time-unawareness follows from the fact that in the construction of the traces
any time t ≥ maxt(τ) is allowed for the next event, as long as speed-of-light consistency
is satisfied. The property locally-enabled events follows from the requirement that a
rule only concerns a single actor. The transmission-enabled events property follows
directly from the Network rule. Substitution-closure expresses the (implicit) universal
quantification over agents’ names in all rules.

Causality-Based Verification

Given the definitions and properties from the previous sections, we can now formu-
late the notion of causality-based secure distance-bounding and prove that it is equivalent
to the original definition of secure distance-bounding from Definition 2.2. The main
feature of this new formulation is that it is causality-based, i.e., it only takes into
account the relative occurrence of events, while ignoring the actual timestamps of the
events and agents’ locations.

This new formulation strongly relates to authentication properties, such as aliveness
(see [CM12]). It states that for every claim that prover P is in the vicinity of verifier

40 Chapter 3. Distance Bounding Protocols

V, due to a challenge event u and the reception of its corresponding response event v
in the fast phase, agent P (or a conspiring agent, if P is dishonest) must have been
active in between these two events. The main difference with Definition 2.2 is that we
require the prover to be active, instead of measuring the time between u and v.

Definition 3.8 (Causality-based secure distance-bounding). A well-formed protocol P
satisfies causality-based secure distance-bounding if and only if:

∀σ ∈ π(Tr (P)), V, P ∈ Agent, u, v ∈ Ev :

claimV (P, u, v) ∈ σ =⇒ ∃i, j, k ∈ {1, . . . , |σ|} :

i < j < k ∧ u = σi ∧ v = σk ∧ P ≈ actor
(
σj
)

. (3.2)

In Definition 3.8 we formalize our causality-based notion of secure distance-bounding.
This formulation impacts only the security analysis in the design stage. It does not
affect the runtime behavior of the agents executing the protocol. In particular, the
verifying agent still has to measure the round-trip time of the message exchanges in
the fast phase.

In the remainder of this section, we develop the proof that the causality-based def-
inition is equivalent to the secure distance-bounding property from Definition 2.2.
To do so, we first present a few lemmas that follow from the basic properties of the
semantic domain described in Section 3.3. They will prove useful when deriving our
main result.

Given two events e, e′ ∈ Ev, we use d (e, e′) /c as a shorthand notation for d (actor (e) , actor (e′)) /c.
Also, we say that two timed-events (t, e), (t′, e′) ∈ R× Ev satisfy the time/location
constraint if |t′ − t| ≥ d (e, e′) /c. For example, all pairs of events used in the net-
work rule satisfy this constraint. In addition, we define the predicate ψ (τ), where
τ is a trace, that holds if all pairs of consecutive timed-events on τ satisfy the
time/location constraint. Likewise, we say that timed-trace β is a subsequence of a
timed-trace τ = (t1, e1) · · · (tn, en), denoted by β v τ, if there exist m ∈ {0, . . . , n} and
{w1, . . . , wm} ⊆ {1, . . . , n} such that w1 < · · · < wm and β = (tw1 , ew1) · · · (twm , ewm).

In Lemma 3.9 below, we demonstrate that for any well-formed protocol P, any valid
timed-trace τ · (t, e) ∈ Tr (P) must contain a subsequence β that is also a valid trace
in P, and contains (t, e) and ψ (β). We use |.| to denote the length of a (timed or not)
trace, in terms of the number of events.

Lemma 3.9. Then the following holds:

∀τ ∈ Tr (P) , (t, e) ∈ R× Ev : τ · (t, e) ∈ Tr (P) =⇒
∃β ∈ Tr (P) : (t, e) ∈ β ∧ β v τ · (t, e) ∧ ψ (β) .

Proof. We will proceed by induction over |τ|. The base case |τ| = 0 trivially holds by
setting β = (t, e). So, let n ∈N \ {0} and assume by the induction hypothesis that the
lemma holds for all τ ∈ Tr (P) with |τ| < n. Now, let τ = (t1, e1) · · · (tn, en) ∈ Tr (P)
and (t, e) ∈ R× Ev such that γ = τ · (t, e) ∈ Tr (P). Let us analyse the two cases:

Case 1 (e ∈ Recv) From Property 3.2 we have that there exists i ∈ {1, . . . , n} such that
ei ; e and t− ti ≥ d (ei, e) /c. Consider τ′ = (t1, e1) · · · (ti−1, ei−1). Then, from the

3.3. Distance Bounding Security 41

induction hypothesis (given that |τ′| = i− 1 < n and τ′ ∈ Tr (P) due to Properties 3.3
and 3.4) it follows that there exists β′ ∈ Tr (P) with (ti, ei) ∈ β′ such that β′ v τ′

and ψ (β′). Thus, ψ (β′) along with t− ti ≥ d (ei, e) /c give us that ψ (β′ · (t, e)) and
β′ · (t, e) is time and speed-of-light consistent.

Now, from Property 3.6 we derive π(β′) · e ∈ π(Tr (P)). On the other hand, β′ ·
(t, e) ∼ β′′ for some β′′ ∈ Tr (P) such that π(β′) · e = π(β′′). Finally, Property 3.4
gives us β′ · (t, e) ∈ Tr (P).
Case 2 (e /∈ Recv) Let i be the largest number in {1, . . . , n} such that actor (ei) =

actor (e). If i does not exist, then from Property 3.5 we obtain that e ∈ π(Tr (P)) and
therefore (t′, e) ∈ Tr (P) for some t′ ∈ R. Hence, as (t, e) is time and speed-of-light
consistent, Property 3.4 gives us (t, e) ∈ Tr (P) as (t, e) ∼ (t′, e). Further, ψ ((t, e))
trivially holds, which leaves us with the remaining case in which i exists.

Let τ′ = (t1, e1) · · · (ti, ei). Then, from the induction hypothesis (given that |τ′| =
i− 1 < n and τ′ ∈ Tr (P) due to Properties 3.3 and 3.4) it follows that there exists
β′ ∈ Tr (P) with (ti, ei) ∈ β′ such that β′ v τ′ and ψ (β′). Thus, ψ (β′) along with
t− ti ≥ d (ei, e) /c = 0 give us that ψ (β′ · (t, e)) and β′ · (t, e) is time and speed-of-
light consistent.

Now, from Property 3.6 we derive π(β′) · e ∈ π(Tr (P)). On the other hand, β′ ·
(t, e) ∼ β′′ for some β′′ ∈ Tr (P) such that π(β′′) = π(β′) · e. Finally, Property 3.4
gives us β′ · (t, e) ∈ Tr (P).

Lemma 3.10 below is an extension of Lemma 3.9. It states that if a valid trace τ satisfies
ψ (τ), then not only any pair of consecutive events in τ satisfy the time/location
constraint but also any pair of events in τ. The proof follows from the application
of the triangle inequality d (e, e′) /c+ d (e′, e′′) /c ≥ d (e, e′′) /c, for all e, e′, e′′ ∈ Ev,
given that d models physical distances.

Lemma 3.10. Suppose we have τ ∈ Tr (P) such that ψ (τ). Then for all (t, e), (t′, e′) ∈ τ

it holds that |t− t′| ≥ d (e, e′) /c.

Proof. Let τ = (t1, e1) · · · (tn, en) and i, j ∈ {1, . . . , n}. Assume without loss of gen-
erality that i < j. Given that ψ (τ) we have that tx − tx−1 ≥ d (ex−1, ex) /c for all
x ∈ {i + 1, . . . , j}. Hence,

tj − ti = (tj − tj−1) + (tj−1 − tj−2) + · · ·+ (ti+1 − ti)

≥ d (ei, ei+1) /c+ d (ei+1, ei+2) /c+ · · ·+
d
(
ej−1, ej

)
/c. (3.3)

Thus, by applying the triangle inequality in Equation 3.3 above, we obtain tj − ti ≥
d
(
ei, ej

)
/c.

The last lemma of this section concerns agent substitutions. We extend Property 3.7
from the set of untimed-traces π(Tr (P)) of a given protocol P to the set of timed-
traces Tr (P). The lemma proves that, given a protocol’s valid trace τ = (t1, e1) · · · (tn, en),
it is possible to replace an agent A by another agent B (under certain conditions de-
scribed in the lemma) to obtain another valid trace τ′ = (t′1, e′1) · · · (t′n, e′n) such that

42 Chapter 3. Distance Bounding Protocols

the difference between t′i and ti only depends on the number of events before the i-th
event on τ that were executed by A. Consequently, the time-difference between two
events of τ where A does not act is equal to the time-difference between the corre-
sponding events of τ′. This is actually a strong result because it implicitly shows that
event-intervals where the prover does not act cannot be used to securely upper-bound
the prover-to-verifier distance.

Lemma 3.11. and τ = (t1, e1) · · · (tn, en) ∈ Tr (P). Let A ∈ actor (τ), B ∈ Agent \
actor (τ) such that either {A, B} ⊆ Honest or {A, B} ⊆ Dishonest. Then there exists
µ ∈ R≥0 such that τ′ = (t′1, e′1) · · · (t′n, e′n) ∈ Tr (P) where for all i ∈ {1, . . . , n} it holds
that:

e′i = ei[A 7→ B] and t′i = ti + µ · qi, where

qi =
∣∣{j ∈ {1, . . . , i− 1} | actor

(
ej
)
= A

}∣∣+ si, and

si = 1 if (A = actor (ei) ∧ ei ∈ Recv) , or otherw. si = 0.

Proof. Consider the set R = {B} ∪ actor (τ) and µ = max
X∈R
{d (A, X) /c}. We will

proceed to prove that τ′ ∈ Tr (P). To do so we will first prove time and speed-of-light
consistency for τ′.

Time consistency For all i ∈ {1, . . . , n − 1}, we have that qi+1 ≥ qi and therefore
t′i+1 − t′i = ti+1 − ti + µ · (qi+1 − qi) ≥ ti+1 − ti ≥ 0.

Speed-of-light consistency Let j ∈ {1, . . . , n} such that ej ∈ Recv. Also, as τ is
speed-of-light consistent, we derive that there exists i < j such that ei ; ej and
tj − ti ≥ d

(
ei, ej

)
/c. Hence, given that e′i ; e′j, it becomes sufficient to prove that

t′j − t′i ≥ d
(

e′i, e′j
)

/c. Let us consider the three cases:

1. A = actor (ei). In this case qj ≥ qi + 1 because ei /∈ Recv. Therefore t′j − t′i ≥
tj − ti + µ ≥ d

(
e′i, e′j

)
/c as µ ≥ d

(
e′i, e′j

)
/c.

2. A 6= actor (ei) and A = actor
(
ej
)
. In this case we have again qj ≥ qi + 1 as

ej ∈ Recv, and it follows analogously to the previous case.

3. A /∈ {actor (ei) , actor
(
ej
)
}. This case gives us actor (ei) = actor (e′i) and actor

(
ej
)
=

actor
(
ej
)
. Thus, d

(
ei, ej

)
/c = d

(
e′i, e′j

)
/c and therefore t′j − t′i = tj − ti + µ ·

(qj − qi) ≥ tj − ti ≥ d
(
ei, ej

)
/c = d

(
e′i, e′j

)
/c.

Thus, τ′ is time consistent and speed-of-light consistent. Consider now σ = π(τ).
From Property 3.7 we have that σ[A 7→ B] ∈ π(Tr (P)). Therefore, there exists
γ ∈ Tr (P) such that π(γ) = σ[A 7→ B]. Finally, given that γ ∼ τ′, from Property 3.4
we obtain τ′ ∈ Tr (P).

Theorem 3.12. A well-formed protocol P satisfies secure distance-bounding (Defini-
tion 2.2) if and only if P satisfies causality-based secure distance-bounding (Defini-
tion 3.8).

3.3. Distance Bounding Security 43

Proof. We will proceed by proving Sufficiency (i.e., Equation 3.1⇒ Equation 3.2) and
Necessity (i.e., Equation 3.2⇒ Equation 3.1):

Sufficiency Assume Equation 3.1 holds and Equation 3.2 does not. Our goal is to
reach a contradiction. The statement that Equation 3.2 does not hold is equivalent
to stating that there exist σ = σ1 · · · σn ∈ π(Tr (P)), V, P ∈ Agent, u, v ∈ Ev and
l ∈ {1, . . . , n} such that σl = claimV (P, u, v) and:

∀i, j, k ∈ {1, . . . , n} :

u = σi ∧ v = σk ∧ i < j < k =⇒ P 6≈ actor
(
σj
)

. (3.4)

Consider now the following sets:

IK = {(i, k) ∈N×N | σi = u ∧ σk = v},
J = {j ∈N | ∃(i, k) ∈ IK : i < j < k},

{G1, . . . , Gg} = {G ∈ actor (σ) | P ≈ G}.

If P is honest, then the set {G1, . . . , Gg} consists of the singleton {P}, otherwise it
contains all dishonest agents acting in σ.

Let Eve, Charlie ∈ Agent\ actor (σ) be two different agents such that {P, Eve, Charlie} ⊆
Honest or {P, Eve, Charlie} ⊆ Dishonest.

Consider the sequence of traces σ1, . . . , σg+1 ∈ π(Tr (P)) such that σ1 = σ and
for all i ∈ {1, . . . , g}, σi+1 = σi[Gi 7→ Eve]. The fact that σ1, . . . , σg+1 ∈ π(Tr (P))
follows from the substitution-closedness property. Hence, let e1 · · · en = σg+1, i.e., the
trace resulting from σ after the successive substitutions of all agents G1, . . . , Gg by E.
Therefore N ⊆ Agent exists such that:

actor (e1 · · · en) = {V, E} ∪ N and

∀E ∈ N : Eve 6≈ E. (3.5)

Let t1, . . . , tn ∈ R such that (t1, e1) · · · (tn, en) ∈ Tr (P). Observe that the ti’s exist
because e1 · · · en ∈ π(Tr (P)). Hence, from Equations 3.1 and 3.5 and given that
el = claimV (Eve, ei, ek) for some (i, k) ∈ IK, we derive that δ ∈ R≥0 exists such that:

d(V, E) + δ =
c

2
max
(i,k)∈IK

{tk − ti}. (3.6)

From Lemma 3.11 we have that there exist µ ∈ R≥0, (t′1, e′1) · · · (t′n, e′n) ∈ Tr (P)
and q1, . . . , qn ∈ N such that for all i ∈ {1, . . . , n}, e′i = ei[Eve 7→ Charlie] and
t′i = ti + µ · qi (see the construction of the qi’s in Lemma 3.11). On the other hand,
from Equation 3.4 we have that ∀j ∈ J : E 6= actor

(
ej
)
. Therefore

∀(i, k) ∈ IK : t′k − t′i = tk − ti. (3.7)

44 Chapter 3. Distance Bounding Protocols

Furthermore, given that {Eve, Charlie} ⊆ Honest or {Eve, Charlie} ⊆ Dishonest, it
holds that:

actor
(
e′1 · · · e′n

)
= {V, Charlie} ∪ N and

∀C ∈ N : Charlie 6≈ C. (3.8)

Again, e′l = claimV
(
Charlie, e′i, e′k

)
for some (i, k) ∈ IK, so from Equations 3.1 and 3.8

we derive:
d(V, Charlie) ≤ c

2
max
(i,k)∈IK

{t′k − t′i}. (3.9)

Finally, from Equations 3.6, 3.7 and 3.9 we derive that d(V, Charlie) ≤ d(V, E) + δ.
This is a contradiction, as δ does not depend on Charlie who is an arbitrary agent from
the same set as P in Honest or Dishonest. Therefore we can always find Charlie such
that his distance to V is larger than d(V, E) + δ.

Necessity Assume Equation 3.2 holds. We will prove that Equation 3.1 holds as well.
Let σ ∈ π(Tr (P)) and τ ∈ Tr (P) such that σ = π(τ). Let V, P ∈ Agent, u, v, w ∈ Ev

and tw ∈ R such that (tw, w) ∈ τ and w = claimV (P, u, v). Also, let β ∈ Tr (P) such
that β v τ, (tw, w) ∈ β and ψ (β). Observe that β exists because of Lemma 3.9.

From Equation 3.2 and given that π(β) ∈ π(Tr (P)), we have that there exist tu′, tv′ ∈
R, P′ ∈ Agent and (t, e) ∈ β such that P′ = actor (e), tu′ ≤ t ≤ tv′, (tu′, u) ∈ β,
(tv′, v) ∈ β and P ≈ P′. Hence, Lemma 3.10 gives us:

tv′ − tu′ = (tv′ − t) + (t− tu′) ≥ d(e, v) + d(u, e)
c

= 2d
(
V, P′

)
/c,

which proves Equation 3.1 as (tu′, u) ∈ β v τ, (tv′, v) ∈ β v τ and (tw, w) ∈ β v
τ.

The result obtained from Theorem 3.12 means that, within the semantic domain
described in Section 3.3, the secure distance-bounding property can be verified by
simply analysing the ordering of events in the traces. Therefore, the notions of
time and location are indeed unnecessary for the symbolic verification of distance-
bounding protocols.

3.4 Verifying Distance Bounding Protocols

We implemented the causality-based definition of secure distance-bounding in the
Tamarin [MSCB13] tool. This allowed us to automatically verify the (in)security
of multiple distance-bounding protocols and their variations. In this section we
discuss some of the considerations made when performing this translation. Later, In
Section 4.6, the full results of the Tamarin analysis of a range of protocols from the
literature is presented.

3.4. Verifying Distance Bounding Protocols 45

When considering distance hijacking, our security analysis is consistent with the
analysis performed by Cremers et al. in [CRSC12]. That is to say, in general protocols
based on the Brand and Chaum’s design are vulnerable to this type of attacks, whereas
those based on Hancke and Kuhn’s are not. In addition, we observed that protocols
following Hancke and Kuhn’s approach seem to be resistant not only to distance
hijacking but also to mafia and distance frauds.

Tamarin Implementations

Our method compares well with the Isabelle/HOL implementation of Basin et al.
While our approach is fully automatic, proving a protocol insecure with Isabelle/HOL
requires user-assistance to prove the existence of an attack trace. In addition, the
code complexity of a protocol when implemented in Isabelle/HOL tends to be much
larger. For example, the implementation of Brands and Chaum’s protocol consists
of 185 lines of Tamarin code, whilst the Isabelle implementation (including attack
trace) takes 653. Tamarin is not guaranteed to terminate for all claims, but in our case
study no such problems arose, with all protocols taking less than 20 seconds (< 6 on
average) to either successfully verify or provide an attack trace.

The definition of the causality-based secure distance-bounding property is not imme-
diately compatible with the specification model that Tamarin uses. We note the
following factors:

1. The definition uses a claim event that refers specifically to other events (which
mark the start and end of the fast phase). This requires that we can successfully
select terms which will bind these events to the specific session being analysed.

2. The specification language partitions agents into the sets Honest and Dishonest

of honest agents (who attempt to perfectly follow the protocol’s intended ex-
ecution) and dishonest agents (who are willing to make use of other rules in
order to violate security properties). Tamarin carries no understanding of the
intended execution of a protocol. Further, Tamarin does not inherently carry
the notion of agents, although they are trivially modelled by public variables.
The sending of messages by the adversary is modelled using built-in rewriting
rules that are often not straightforward to write claims around.

3. The security property is dependent on the identity of the actor of an event: i.e.
the agent who performed the action. Tamarin does not explicitly attach an
identity to a rewriting rule’s application, as a consequence of agents not being
an inherent feature of Tamarin.

These issues were addressed as follows:

1. In order to model claim events, state facts containing session data were used. In
particular, the VerifierComplete(params) state fact was added to all rewrite rules
designed to symbolise that the verifier role believes they successfully completed
the protocol with session data params. The term params is built from all session

46 Chapter 3. Distance Bounding Protocols

data added to the protocol in the order that it is added. This necessarily includes
two public variables to model the identities of the prover and verifier, as well
as at least one fresh variable used in the protocol execution. However, different
protocols make use of different numbers of fresh variables, so the number of
them inside this state fact varies slightly. The state facts StartFastPhase(data)
and EndFastPhase(data) model the start and end of the fast phase as defined by
the protocol specification. Note that in protocols involving pre-commitments,
the verifier is not fully aware of the value of all of the session data at the start or
end of the fast phase, and so it is not necessarily the case that params and data
will be equal. However, the subterms of data are a strict subset of the subterms
of params.

Assuming that the session data of a protocol is different between different runs
of the protocol, the subterms of the VerifierComplete fact refer unambiguously
to the corresponding state facts for the denoting fast phase. If a protocol does
not have different session data between executions, it is trivially vulnerable to
replay attacks.

2. Agents are modelled in protocol specifications as public terms. Rewrite rules
are included to model an agent receiving any secret keys or other information
they have at the start of a protocol’s execution. In this case, we see facts of the
form Ltk(A, k), denoting that the agent A has key k. Additional rewrite rules
are added for the corruption of agents (in which a fact containing a secret key is
sent on to the network, revealing the identity of the agent), and also to model a
corrupt agent sending a message on the network. This is important for adding
state facts to symbolise the adversary acting during the fast phase.

3. For the secure distance-bounding claim to make sense the identity of the prover
must be used in the protocol in some way: either their identity is used in a
message, or the prover possesses a long-term secret key used in a calculation.
This could be for symmetric or asymmetric encryption, or in some cases for
signed hashes. Any multiset rule that uses an agent’s identity (or carries session
data from an earlier rule in the protocol which does) is marked with the state
fact Action(agent).

With these in mind, the Tamarin lemma dbsec is defined in Figure 3.8. This lemma can
be understood as meaning that whenever a verifier reaches the end of their protocol
execution, one of three following events is possible:

1. The verifier is corrupt: they have revealed their long term secret key to the
adversary, making their claim invalid.

2. Between the start and end of the fast phase, the agent P that the verifier believes
is close performed some action.

3. The agent P that the verifier believes is close has revealed their long term secret
key to the adversary. Between the start and end of the fast phase, some corrupt
agent (who may be P or another agent who has revealed their long-term key)
performed an action.

3.4. Verifying Distance Bounding Protocols 47

Dbsec lemma

lemma dbsec:
"
All P V m n #t. (
VerifierComplete(P, V, m, n)@t) ==>
(

Ex #tc.
Corrupt(V)@tc

)|(
Ex #t1 #t2 #t3.

StartFastPhase(V, m)@t1 &
Action(P)@t2 &
EndFastPhase(V, m)@t3 &
(#t1 < #t2) &
(#t2 < #t3) &
((#t3 < #t) | (#t3 = #t))

)|(
Ex CAgent #t4 #t5 #t6 #t7.

StartFastPhase(V, m)@t5 &
EndFastPhase(V, m)@t7 &
Corrupted(P, V)@t4 &
CAction(CAgent)@t6 &
(#t5 < #t6)&
(#t6 < #t7)&
((#t7 < #t) | (#t7 = #t))

)
"

FIGURE 3.8: The Tamarin lemma dbsec.

Note that #t, the time of the claim for dbsec security, marks the end of the protocol
execution. It may be the case that #t = #t3, the time when the Verifier receives the
response in the fast phase.

Our implementations of the protocols also involve a number of reachability lemmas.
These lemmas are not related to the main dbsec lemma, but instead prove that the
protocol has been implemented in such a way that the various stages of the protocol
can be reached as per their intended execution. If the end of the protocol is not
reachable, then the dbsec property is trivially true.

Finally, the protocol implementations include some trace restrictions. These are claims
that are assumed to be true when Tamarin constructs proofs for the lemmas. The
main restrictions used are at_most_once (Figure 3.9) and equality (Figure 3.10).

The restriction at_most_once is used to ensure that a single agent (or pair of agents)
may only be given a single long term key (or shared key, respectively), and the
restriction equality serves to verify that an equation holds: typically used in the case
of verifying that a signature lines up with the message it is intended to be signing.

48 Chapter 3. Distance Bounding Protocols

Uniqueness restriction

restriction at_most_once:
"
All A #t1 #t2.
Once(A)@t1 & Once(A)@t2 ==>
(

#t1 = #t2
)
"

FIGURE 3.9: The Tamarin restriction at_most_once.

Equality restriction

restriction equality:
"
All a b #t1. Eq(a, b)@t1 ==> a = b
"

FIGURE 3.10: The Tamarin restriction equality.

3.5 Case Study: TREAD Protocol

The TREAD protocol was claimed to satisfy various security properties, making use
of the computational model DFKO introduced in [DFKO11]. Relaying on this model,
a proof is given to show probabilistic resistance1 against mafia-fraud, distance-fraud,
terrorist-fraud, and distance-hijacking attacks. However, by using our framework,
we have identified mafia-fraud and distance-hijacking attacks on this protocol.

TREAD consists of three phases (see Figure 3.11). First, the prover P generates
two nonces α and β, and creates the message σ = α|β|idpriv(P), where idpriv(P) is
an anonymous group identity. This message is signed by P and sent encrypted to
the verifier V, together with P’s identity idpub(P). Upon reception, V decrypts the
message and verifies the signature. If correct, V finishes the first phase by sending a
random nonce m of size n to P. The second phase is a standard n-round fast phase
wherein V sends a random bit ci with i ∈ {0, . . . , n− 1} and P replies back with αi

if ci = 0, with βi ⊕mi otherwise. The protocol finishes successfully if all responses
during the fast phase are correct and the round-trip times are below a predefined
threshold (third phase).

To symbolically verify TREAD, we transform the fast phase into a single challenge-
response message exchange (see Figure 3.12). We also ignore details that are irrelevant
to our security analysis, such as the anonymous identity of the prover, and upgrade
bitwise operations to stronger cryptographic primitives, such as a hash function.
Overall, our goal is to obtain an abstraction of the original protocol such that every
attack found in the abstraction can be mapped back onto the original protocol.

1No attack succeeds with non-negligible probability.

3.5. Case Study: TREAD Protocol 49

Verifier V Prover P
k−1: dec. key k: enc. key

Slow phase
Pick α, β ∈ {0, 1}2n
σ = {α|β|idpriv(P)}sk(P)

e,P←−−−−−−−−−−−−−− e = {α|β|σ}k
Pick m ∈ {0, 1}n m−−−−−−−−−−−−−−→

Fast Phase
for i = 0 to n− 1

Pick ci ∈ {0, 1}
Start Clock

ci−−−−−−−−−−−−−→
ri =

{
αi if ci = 0

βi ⊕mi if ci = 1
ri←−−−−−−−−−−−−−

Stop Clock
store ∆ti

Final phase
If all ri’s and ∆ti’s

are correct,
then OutV = 1;

else OutV = 0
OutV−−−−−−−−−−−−−−−→

FIGURE 3.11: The TREAD protocol.

k−1

V

k

P

nonces α, βnonces m, c

σ = {α, β}sk(P)

{α, β, σ}k, P
m

c

f(c,m, α, β)

P is close

FIGURE 3.12: A representation of the TREAD protocol.

50 Chapter 3. Distance Bounding Protocols

TREAD can be instantiated with either a symmetric or an asymmetric encryption
scheme. We thus specified in Tamarin two variants of the TREAD protocol: one
where k is a symmetric key and another one where k is an asymmetric key. In the
second variant, Tamarin finds a simple man-in-the-middle attack that violates the
secure distance-bounding property. The attack is depicted in Figure 3.13 and works as
follows. An intruder I initiates a session with the prover P by requesting P to prove
proximity. P then sends the message ({α, β, {α, β}sk(P)}pk(I), P) to I. Now the intruder
decrypts the received message, learns the nonces α and β, and re-encrypts the message
with the public key of the verifier. Next, the intruder starts a session with a legitimate
verifier V with goal of impersonating P. To do so, I sends ({α, β, {α, β}sk(P)}pk(V), P)
to V. Then V checks that the signed message {α, β}sk(P) indeed corresponds to P, and
sends back two nonces m and c. The attack ends with the intruder correctly replying
to the challenges with f (c, m, α, β).

Observe that the attack described above and depicted in Figure 3.13 not only breaks
standard authentication properties such as agreement and synchronization [Low97,
CM12], but also the secure distance-bounding property as follows. Assume P is far
from V and the intruder wants to convince V that P is close. To do so, the intruder
just needs to be close to V and executes the attack above. Note that the fast phase
corresponds to the events containing the messages c and f (c, m, α, β), which the
intruder can successfully produce without relaying.

Interesting enough, if k is a symmetric key the described mafia-fraud attack does
not work. The reason is that the intruder does not know the secret key shared
between P and V. Thus the intruder is prevented from re-encrypting the message
received from P with the correct key. Nevertheless, a distance-hijacking type of attack
exists irrespective of the encryption scheme. The attack is represented in Figure 3.14.
Assume an honest prover P is close to the verifier V, while the intruder I is far from
V. As before, P executes the protocol to prove its proximity to I. This allows I to
learn α and β. Thus I starts a session with V by using the nonces α and β from P. At
this point, V believes I is a legitimate prover and accept its signature. During the fast
phase, P, which is close to V, receives the challenge (supposedly from I) sent by V
and replies correctly. Then V receives the response f (c, m, α, β) (supposedly from I)
from P who is close to V, and finishes the protocol with I correctly.

Neither of the two described attacks are possible when considering the adversary
model used by the authors of the TREAD protocol, because their model does not
allow for “malicious” verifiers. In their model an honest prover will fail to initiate a
communication with an untrusted verifier as the first message in each attack will not
be sent. This adversary model is weaker than other models that are more common in
the distance-bounding literature.

3.5. Case Study: TREAD Protocol 51

V

Intruder

I P

nonces α, βnonces m, c

σ = {α, β}sk(P)

{α, β, σ}pk(I), P
{α, β, σ}pk(V), P

m

c

f(c,m, α, β)

P is close

FIGURE 3.13: A mafia fraud on TREAD with asymmetric encryption.

V P

Intruder

I

nonces α, βnonces m, c

σ = {α, β}sk(P)

{α, β, σ}sh(I,P), P

σ′ = {α, β}sk(I)

{α, β, σ′}sh(V,I), I
m

c

f(c,m, α, β)

I is close

FIGURE 3.14: A distance hijacking on TREAD with symmetric encryp-
tion.

53

Chapter 4

Relations on Security Properties

Lowe demonstrated a hierarchy of security properties: the idea that certain
goals strictly dominate others. For example, any protocol that satisfies
recent aliveness necessarily satisfies weak aliveness. In this chapter we
generalise this approach in two main dimensions.

First, we consider relations between security goals on the protocol level,
rather than being universal over all protocols. This is important for being
able to prove results about families of protocols which share common prop-
erties or requirements. Second, we consider a novel relation in the form of
irreversibility. Intutively, we capture the idea that violation of one security
goal inevitably leads to violation of another.

We find a natural application of this theory by extending the analysis of
Distance Bounding protocols from Chapter 3. A well-documented class
of attacks on such protocols is known as Terrorist Fraud. These attacks
result from a prover colluding with the adversary - temporarily deviating
from their protocol specification in order to fool the verifier. This gives a
clear contrast to the traditional corruption model given by the Dolev-Yao
adversary, which is binary in nature.

We define an authentication property modelling post-collusion security,
which is a natural application of irreversibility on protocols extended by col-
lusion rules. This then allows for a definition for Terrorist Fraud resistance,
which is used for a thorough survey of protocols in the literature.

This chapter extends the work in the ACM CCS 2019 Paper “Post-collusion
security and distance bounding” [MSTPTR19]. In particular, some of the
underlying theory developed while working on this paper has been added.
An additional section is added to highlight the concept of relations between
security goals, highlighting irreversibility (and thus collusion resistance) as a
special case. Further, some additional discussion is given on the feasibility of
brute force approaches to solving the general case of the security of protocol
mutations.

54 Chapter 4. Relations on Security Properties

4.1 Introduction to Relations

There are many well known descriptions of relations between security properties. The
most distinct of these is a hierarchical one: recent aliveness is a “stronger" property
than weak aliveness, in that any attack on weak aliveness is necessarily also an attack
on recent aliveness.

Relations such as these are defined on a global level – that is, the relation exists
regardless of the protocol being examined. Further, for a majority of protocols certain
other relations hold: for all but the most trivial protocols, an attack on key secrecy
will entail an attack on some agreement property.

In this chapter, we will define a relation between security goals whose edges change
on a per-protocol basis. In addition, we will look at how the truth value of a security
goal can change over slight variations of a protocol, by extending the Dolev-Yao
adversary.

In some cases, the Dolev-Yao model has been shown to be too coarse-grained. This
is because this model assumes that agents can be categorised as being either honest:
those who precisely follow their protocol specification; or compromised: those who
deviate from their protocol specification as desired by the adversary. We will now
investigate the idea of agents who cannot be classified in either group.

For example, covert adversaries [AL10, FY92, CO99] are agents who are willing to cheat
by deviating from the protocol specification, as long as the cheating would not be
detected. One might think of an online gaming platform, in which some players
secretly cooperate to cheat against other players, whilst avoiding being caught, or
else face consequences such as being thrown out of the platform.

A common concern in the study of multiparty computation protocols is that of an
honest but curious party, who might break some protocol rules in order to gain more
information, but still protect the overall integrity of the protocol (e.g. ensuring that
the result of the computation is still correct). In some cases, this might involve
collaboration between parties, which we classify as collusion in our model.

Variations of the Dolev-Yao threat model capturing more refined dishonest behaviour
have been studied [AL10, FY92, BRS16, BC14, BC10, CCG16], which have led to re-
thinking the security models to properly account for such fine-grained adversaries.
Such models attribute dishonest behaviour to the adversary’s compromise capabili-
ties, but in some scenarios such behaviour might not be ruled by the adversary, but
rather by the protocol’s participants themselves. For example, a given agent might
choose to deviate from the protocol specification, but only if certain guarantees are
met in later executions of the protocol. Would a university student willingly, due to
certain benefit, lend their campus access card to a university-external friend? The
student’s decision might be conditional on their assertion that their friend will not be
able to later access the campus, after the card has been returned to its owner. Would
a user of a video streaming platform utilize a VPN extension to fool geo-location
restrictions? The user’s decision might be based on whether they are certain that the
VPN extension is not malicious and will not cause irreversible harm.

4.1. Introduction to Relations 55

In this paper we refine the traditional Dolev-Yao adversary model in order to capture
collusion. Collusion refers to any deviation of the protocol specification by agents
who are not under control of the adversary. Furthermore, we introduce the notion
of post-collusion security, which refers to security guarantees about claims made in
execution sessions initiated after the collusion. Informally, one can interpret the
relation of these two notions as follows: post-collusion security allows the potential
colluding agents to decide whether colluding is worth it. After all, what the agents
gain out of colluding must outweigh the collateral effect that such collusion might
have on themselves. On the other hand, a protocol designer might aim to increase
the cost of collusion.

A related notion was introduced by Cohn-Gordon et al. [CCG16], called post-compromise
security, that looks at the timeline of the compromise actions and their impact in the
security of future protocol sessions. As motivated earlier, collusion differs from
compromise in that compromise is an action performed by the adversary in order to
exert control over the protocol, whilst collusion represents a deliberate choice of the
agent involved.

In post-compromise security, the compromise is ruled by the adversary, regardless of
the (future) consequences on the compromised agent. Post-collusion security, instead,
allows the agents to base their choice of collusion on post-collusion guarantees. One
can think of “not getting caught”, in the online gaming example given earlier, as the
post-collusion guarantee. In Section 4.2 we give further technical differences between
post-compromise and post-collusion security.

Our notion of post-collusion security finds a straightforward application in distance-
bounding protocols [BD90, BC93], which are security protocols that aim to guarantee
physical proximity. These protocols are used in RFID and NFC technologies, with
numerous applications in secure systems such as contactless payment and access
control. Post-collusion security allows us to formally analyse a non-trivial type of
attack on distance-bounding protocols known as terrorist fraud [DGB87b]. In this
attack, agents collude to falsely prove proximity for one run of the protocol, whereas
no further false proximity proofs can be issued without further collusion.

Contributions.
The contributions of this chapter are:

• We provide a formal symbolic model based on multiset rewriting systems that
captures collusion in security protocols, which represents non-compromised
agents deviating from their given protocol specification.

• We introduce the notion of post-collusion security, which refers to the validity
of security claims made in protocol sessions initiated after the collusion. We
provide a concrete formulation of this notion that can be easily implemented in
protocol verification tools such as TAMARIN [MSCB13].

• Our definitions are used to provide a formal description of the sophisticated
terrorist fraud on distance-bounding protocols. Further, we develop a TAMARIN-
based framework for verification of such type of protocols that exhaustively

56 Chapter 4. Relations on Security Properties

accounts for all classes of attack from literature.

• We conduct a security survey of over 25 protocols, which include industrial
protocols based on the ISO/IEC 14443 standard. We propose computer-verified
fixes for the vulnerabilities encountered in these protocols.

Organisation.

This chapter is organised as follows. In Section 4.2 we discuss the idea of collusion
rules: creating variants of a protocol to model dishonest agents. Section 4.3 uses
these extensions to define Post-Collusion security – which describes the irreversible
consequences of certain protocol deviation rules. Next, in Section 4.4 we use this
theory to return to the domain of Distance Bounding protocols from the previous
chapter, using it to model the class of attacks known as Terrorist Fraud. Section 4.5
contains a case study of several industrial protocols used for card payments. Finally,
Section 4.6 contains results from this chapter and the previous one – a large survey of
distance bounding protocols from the literature.

4.2 Collusion and Irreversibility

In this section we introduce the idea of protocol deviations. We start by introducing
related work from across the literature, and then introduce our own definition of
well-formed collusion rules.

Related Work

In this section we describe some works in which the authors analyse alternative
adversary models that modify the Dolev-Yao capabilities. We pay special attention to
existing symbolic verification frameworks for distance-bounding protocols, which is
the main application field of our findings.

Alternative Adversary Models.
In 2010, Basin and Cremers [BC10] proposed a model in which they formally defined
several extensions to the Dolev-Yao adversary. These extensions were used to analyse
a variety of protocols against adversaries of varying strength [BC14]. As a result,
they identified new attack vectors in key-exchange protocols such as KEA+ [LM06],
Naxos [LLM07] and the MQV protocol family [Kra05].

In [BRS16] the authors provide a formalism to model and reason about human
misbehaviour. A set of rules describe an untrained human, who is willing to perform
arbitrary actions but follows a set of guidelines, such as “private keys must be
kept secret”. The TAMARIN tool is used to automatically analyse security protocols
involving human errors.

Cohn-Gordon et al. introduced post-compromise security in [CCG16], defined as
an agent’s security guarantees about a communication with their peer, even if their

4.2. Collusion and Irreversibility 57

peer has been already compromised. They analysed two types of compromise: weak
and total. Weak compromise corresponds to temporary adversarial control of an
agent’s long-term keys in form of a cryptographic oracle, which outputs the result of
a crypto-operation , without revealing the long-term keys. Post-compromise security
has been recently used in [CCG+18] to analyse group messaging protocols.

The adversary model for post-compromise security is similar to that of post-collusion
security in that they both allow for dishonest behavior not conceived by the Dolev-
Yao adversary. Yet, they differ in that weak compromise is controlled by the adversary
regardless of the compromised agents’ will, whilst collusion is the agents’ deliberate
choice. This choice can be based on whether or not certain post-collusion guarantees
are met. Furthermore, Cohn-Gordon et al. ’s post-compromise security focuses on
stateful protocols, such as authenticated key-exchange (AKE) and messaging protocols.
Our post-collusion security notion can be applied, but is not limited to this type of
protocol. In addition, our approach is oriented to symbolic security analysis, whereas
theirs uses a computational approach. As a result, our methods can be more smoothly
implemented in state-of-the-art verification tools for analysing complex protocols.

Collusion can also be considered in the context of adveraries other than Dolev-Yao, or
even with no adversary at all. Tompa and Woll [TW86] present an attack on Shamir’s
secret sharing [Sha79], based on the principle of colluding agents. In the domain of
multiparty protocols, Hirt and Maurer [HM97] give a classification of how different
agents may deviate from their specification (e.g. ‘honest-but-curious’ participants, or
may collude between each other. Syverson et al. [SMC00] build upon an adversary
model (named “Machiavelli”) which does not directly corrupt agents, but instead
manipulates them through an extensive collection of collusion rules. We build upon
these papers, by looking at the impact on security after collusion occurs, and to make
progress towards identifying the key deviations from the protocol specification that
will result in “successful” collusion within certain domains.

Collusion

This section is dedicated to providing a formal description of the notions of collusion,
which is an extension to the adversary model, and post-collusion security, which is a
security model under the extended adversary.

More precisely, in Section 4.2 we extend the adversary model with collusion rules,
which express ways in which non-compromised agents can deviate from the protocol
specification.

Collusion Rules

In the traditional Dolev-Yao compromise model, agents are assumed to be either
compromised (a.k.a. corrupt, dishonest) or non-compromised (a.k.a. honest). Non-
compromised agents follow precisely the protocol specification, whilst compromised
agents deviate from it as pleased by the adversary.

58 Chapter 4. Relations on Security Properties

We refine the traditional Dolev-Yao compromise model so that agents can collude
in order to provide false proof to their communication partners of a certain claim’s
validity. Collusion refers to non-compromised agents’ deviation from their protocol
specification. The basic deviation consists of leakage of session data, cryptographic
oracles, reuse of nonces, or state reveals.

For example, assume Alice is running an authentication protocol (supposedly) with
Bob. Consider also a third party Charlie who, in cooperation with Bob, impersonates
Bob when communicating with Alice. Bob could trivially achieve this by giving all his
secret keys to Charlie. But, does Bob really have to do so in order to deceive Alice?
Not necessarily. Indeed, Bob can provide Charlie (possibly in advance) with all the
messages that Charlie needs to successfully complete a protocol session with Alice,
posing as Bob. Such aid by Bob is what we call collusion, and we call Bob a colluding
agent.

One example of a deviation is an encryption oracle, which can be modelled as follows:

EncOracle :=

[
In(m),
Shk(I, R, k)

]
Collusion()−−−−−−→

[
Out(senc mk)

]
.

The rules that extend the protocol specification to model collusion are called collusion
rules. By convention, and also to syntactically distinguish legitimate protocol rules
from collusion rules, we will assume that all collusion rules have an action fact of the
form Collusion(). We denote by C ⊆ R the universe of all collusion rules. We restrict
the set of collusion rules by requiring them to not prevent agents from completing
legitimate protocol runs.

Definition 2.1 (Valid Extension). Let P ⊆ R \ C be a protocol and C ⊆ C be a set of
collusion rules, we say that P′ = P ∪ C is a valid extension of P if:

∀α ∈ Traces(P′), i, x.

(Start(x) ∈ αi ∧ @j. End(x) ∈ αj) =⇒
∃β. α · β ∈ Traces(P′) ∧ End(x) ∈ β|β|.

Definition 2.1 states that collusion rules do not create points of no-return during
execution. That is to say, agents must always be able to complete their runs even if
they have colluded.

Other than this requirement of not preventing termination, we place no other restric-
tions on collusion rules. Besides leakage rules or function oracles (as demonstrated),
we also allow for more esoteric deviations, such as re-use of fresh values, or passing
of messages between multiple colluding protocol participants (and not an adversary
or fully compromised agent).

This means that protocol extensions may be defined which, for example, have a
colluding agent behave identically to a corrupt agent – by leaking their long-term
encryption keys. However, we will see in the following section that these cases do
not play a significant role in our definitions. Importantly, our results following from
post-collusion security will involve quantifying over all extensions that satisfy a given

4.3. Post-Collusion Security 59

shared k

V

shared k

P

fresh n fresh m

senc(m, k)

n

RTT f(n,m, P)

P is close

FIGURE 4.1: The DBToy protocol.

property (violation of a security goal). We will build a definition of Terrorist Fraud
resistance which intuitively says that any collusion rule which leads to violation of
security goals is indistinguishable from full corruption.

4.3 Post-Collusion Security

In this section we introduce the notion of post-collusion security. We informally
define it as follows.

Definition 3.1 (Informal). Post-collusion security is the guarantee of security claims made
in sessions initiated after collusion occurs.

The remainder of this section is intended to formalise the above informal definition
of post-collusion security. To illustrate our definitions and intuitions, we will use the
Toy protocol, as follows:

Example 3.2 (The DBToy Protocol). Figure 4.1 depicts the DBToy protocol, which works as
follows. The prover P encrypts a fresh name m with the shared key between P and the verifier
V. Then P sends the encrypted message to V. Hence, the fast phase starts with V sending the
fresh name n as the challenge, to which P must reply with f (n, m, P). If P replies correctly
and on time, then V declares P as being close. The specification rules of DBToy are shown in
Figure 4.2.

To identify claims made in sessions initiated after the collusion, which we call post-
collusion claims, we must make sure that all sessions before or while the (last) collusion
occurred are complete. The reason for this is that an agent who makes a security
claim cannot always decide whether their communication partner is still acting on
a run initiated before or during the collusion. That is, a claim by Alice about her

60 Chapter 4. Relations on Security Properties

KeyGen :=
[
Fr(k)

]
−→
[
Shk(V, P, k)

]

KeyRevV :=
[
Shk(V, P, k)

]Compromise(V)−−−−−−−−−→
[
Out(k),
Compromise(V)

]

KeyRevP :=
[
Shk(V, P, k)

]Compromise(P)−−−−−−−−→
[
Out(k),
Compromise(P)

]

DBInject :=
[
In(m),Compromise(X)

]
−→
[
Send(X, m)

]

DBSend :=
[
Send(X, m)

]Send(X,m),Action(X)−−−−−−−−−−−−→
[
Net(m),Out(m)

]

DBRecv :=
[
Net(m)

]Action(Y),Recv(Y,m)−−−−−−−−−−−−→
[
Recv(Y, m)

]

P1 :=
[
Fr(m), Shk(V, P, k)

]Start(m)−−−−−→
[
Send(P, senc mk),
ProvSt1(P, m)

]

V1 :=
[
Fr(n), Shk(V, P, k),
In(senc mk)

]
Start(n),Send(V,n)−−−−−−−−−−→

[
Out(n),
VerifSt1(V, P, n, m)

]

P2 :=
[
ProvSt1(P, m), In(n)

]End(m)−−−−→
[
Send(P, f (n, m, P))

]

V2 :=
[
VerifSt1(V, P, n, m),
Recv(V, f (n, m, P))

]
DBSec(V,P,n, f (n,m,P)), End(n)−−−−−−−−−−−−−−−−−−→

[]

FIGURE 4.2: Specification rules of the DBToy protocol.

communication with Bob is a post-collusion claim if both Alice and Bob have completed
their runs that started before or while Bob performed the collusion action(s). That way,
we make sure that Alice makes her claim in a session initiated after Bob’s collusion
action.

Consider a trace t = t1 · · · te · · · ti · · · tn, and an index e such that all collusion actions
(if any) occurred before e. If all runs initiated before e were completed before e too,
then we call the security claims made after e post-collusion claims. See Figure 4.3 for
a graphical representation. Note that every claim that occurs after a post-collusion
claim is also a post-collusion claim.

1 ne i

complete runs post-collusion

FIGURE 4.3: A trace t = t1 · · · te · · · ti · · · tn can be broken down into a
pre-collusion trace consisting of completed runs (e.g. before e), and a
second subtrace containing post-collusion claims (e.g. a claim made in

ti).
Below, in Definition 3.3 we formulate post-collusion security, in which we use the
following helper predicates on sequences of sets of ground facts:

complete(l) ⇐⇒ ∀i, x. (Start(x) ∈ li =⇒ ∃j. End(x) ∈ lj),

nocollusion(l) ⇐⇒ @j. Collusion() ∈ lj.

In words, complete(l) holds if all runs initiated in l are also completed in l; nocollusion(l)
means that no collusion actions occurred in l. We note that the complete() predicate
gives a strong divide between the complete runs and the post-collusion runs. How-
ever, we assert that for interleaved traces (i.e. those in which there is always an active

4.3. Post-Collusion Security 61

session), there is an equivalent trace which satisfies the predicate. Intuitively, sessions
between unrelated agents have no causal dependence and so can be reordered. This
leaves only series of sessions by the same agents. In the case that an agent may be
participating in multiple sessions simultaneously, we must require that all of them
are finished before we can make post-collusion claims. This is because we cannot
guarantee that a collusion action taken in one session will necessarily only lead to
attacks in that session - for example, an agent may collude by acting as a function
oracle that can be used in any one of their active sessions.

We now define post-collusion security:

Definition 3.3 (Post-collusion Security). Given a protocol P, a valid extension P′ of P, and
a security property ϕ, we say that P′ is post-collusion secure with respect to ϕ, denoted
P′ |=? ϕ, if:

∀t ∈ Traces(P′), e ∈ {1, . . . , |t|}.
(complete(t1 · · · te) ∧ nocollusion(te+1 · · · t|t|))

=⇒ ∀i > e. ϕ(t, i). (4.1)

We write P′ 6|=? ϕ to indicate that P′ |=? ϕ does not hold.

Post-collusion security is really a statement about reversibility. Informally, we are
told that the damage caused by a protocol deviation (for example, that it breaks ϕ) is
ultimately temporary. Eventually, the protocol will be able to return to its original
security guarantees, as long as no further collusion occurs.

As Figure 4.4 shows, Toy ∪ {Leak_ni} is not post-collusion secure with respect to
non-injective agreement, i.e.

Toy∪ {Leak_ni} 6|=? ni_agreement. (4.2)

The attack works with two consecutive sessions, in which a compromised agent Eve
can re-use the messages senc nik and ni from the first session to impersonate I in the
second session. Observe that the second claim is a post-collusion claim, as the first
session is complete and no collusion occurred in the second session.

The impact of post-collusion security can depend on the circumstances in which a
given protocol is deployed. We see from the Toy protocol that the effects of collusion
can cause an irreversible change to the truth value of future authentication claims.
Thus, a legitimate agent playing the initiator role would not want to collude with a
“friend” by giving them their nonce ni, as this would lead to impersonation. On the
contrary, suppose a given protocol is post-collusion secure with respect to a desirable
authentication property. Then, an agent can issue their one-time keys to their friends
if desired, confident that these friends will not be able to re-use this information for
later authentication.

62 Chapter 4. Relations on Security Properties

shared k with I

R

shared k with R

I Eve

fresh nifresh nr

senc(ni, k) ni

senc(nr, ni)

h(nr)

agree ni, nr

fresh nr′

senc(ni, k)

senc(nr′, ni)

h(nr′)

agree ni, nr′

FIGURE 4.4: An MSC showing that the Toy protocol with collusion,
represented by the dashed arrow, is not post-collusion secure with

respect to non-injective agreement.

4.4 Terrorist Fraud on Distance Bounding Protocols

In this section we use post-collusion security to develop a symbolic formulation of
terrorist fraud in distance-bounding protocols.

Formalising (Resistance To) Terrorist Fraud

We informally define terrorist fraud as follows.

Definition 4.1 (Informal). Terrorist fraud (TF) is an attack in which a remote and non-
compromised prover P colludes with a close and compromised prover A to make the verifier
believe that P is close. Conditionally, A (or any other compromised prover) must not be able
to attack the protocol again without further collusion.

The dbsec property allows us to detect attacks in which the proving party is compro-
mised, such as distance fraud [Des88] and distance hijacking [CRSC12]. However,
dbsec is too fine-grained for modelling terrorist fraud, as we require the distant and
colluding prover to be non-compromised (in the case of a compromised prover, col-
lusion actions do little to aid the adversary). In line with this reasoning, we define
below a property weaker than dbsec, that is conditional on non-compromise of both

4.4. Terrorist Fraud on Distance Bounding Protocols 63

prover and verifier:

dbsec_hnst(t, l) ⇐⇒
∀V, P, C, R. DBSec(V, P, C, R) ∈ tl =⇒

(∃i, j, k. i < j < k ∧ Send(V, C) ∈ ti ∧
Action(P) ∈ tj ∧ Recv(V, R) ∈ tk) ∨

(∃i. Compromise(V) ∈ ti ∨ Compromise(P) ∈ ti).

Intuitively, a trace satisfies dbsec_hnst if, whenever a verifier V believes a prover P is
close, P took some action between the verifier sending the challenge ch and receiving
reponse rp.

We formally define next resistance to terrorist fraud, a property formulated by means of
post-collusion security with respect to dbsec_hnst.

Definition 4.2 (Resistance to Terrorist Fraud). A protocol P ⊆ R \ C is resistant to
terrorist fraud if every valid extension P′ of P that breaks dbsec_hnst is not post-collusion
secure with respect to dbsec_hnst, i.e.

P′ 6|= dbsec_hnst =⇒ P′ 6|=? dbsec_hnst.

Observe that resistance to terrorist fraud is a property on protocols rather than on
traces. Further, terrorist fraud uses the negation of post-collusion security. This is
because in a terrorist fraud attack, the colluding prover wishes to allow their partner
to complete the protocol only whilst they are cooperating.

Note that Terrorist Fraud resistance is defined only for a single security property,
dbsec_hnst. In fact, it is a special case of the following:

Definition 4.3 (Irreversibility Relation). Given a protocol P ⊆ R \ C, and two security
goals ϕ1 and ϕ2, we say that ϕ2 is irreversible after violating ϕ1 in P if every valid
extension P′ of P that breaks ϕ1 is not post-collusion secure with respect to ϕ2, i.e.

P′ 6|= ϕ1 =⇒ P′ 6|=? ϕ2.

Informally, this irreversibility relation tells us that any protocol extension that breaks
ϕ1 inevitably leads to a system in which ϕ2 does not hold.

Heuristics for Brute-force Verification of Irreversibility

Definition 4.2 is quantified over all (valid) extensions of a collection of protocol rules.
As such, it can present obstacles in providing proofs of security, as the number of
extensions is at least exponential in the complexity of the protocol. Indeed, attempting
to fully automate this process is an open problem which is also considered by other
approaches [BC14, BRS16].

64 Chapter 4. Relations on Security Properties

In this subsection we present a heuristic approach for automating the analysis of
collusion-resistance, with an implementation for considering the special case of
distance-bounding protocols.

Intuition.

Our approach is as follows:

1. We define classes of possible collusion rules that a partially-honest agent may
take. For example:

• Subterm Leakage: Disclosing a subterm of a message that would previ-
ously be inaccessible to the adversary

• Function Oracles: Performing functions such as signing or encrypting on
behalf of the adversary without revealing the associated keys

2. For each possible collusion within each collusion class, we define a rule that
specifies this deviation from the protocol specification (marking it with the
appropriate Collusion facts)

3. For each combination of collusion rules we build a version of the protocol
containing these collusion actions.

4. We define a “lower-bound” security goal: violation of this goal should be
equivalent to full agent compromise. For example, an agent should never
perform collusions that lead to violations of key secrecy.

5. (Automated) analysis is run against each variant of the protocol. An attack
is found if there is a variant which satisfies the lower-bound security goal,
but not the desired security goal (here, post-collusion security with respect to
dbsec_hnst).

This approach is not exhaustive, as we are limited by the creativity of the modeller
with respect to designing classes of collusion rules. As such, although it can iden-
tify attacks, it cannot verify security. However, it can provide increasing levels of
confidence as our analysis becomes more fine-grained.

Handling Complexity.

The complexity of this analysis is a major concern. Although distance-bounding
protocols are relatively simple compared to many web-based protocols (for example),
the cost of running analysis against a number of variants exponential in size to the
protocol’s complexity is daunting. As we analyse more variants, we are also at risk of
accidentally constructing versions of the protocol that are subject to non-termination
or similar problems in our automated tools. To help with this, some heuristics can be
applied:

4.4. Terrorist Fraud on Distance Bounding Protocols 65

• Flagging rules that do not need to be considered for analysis. In the case of
distance bounding, our key security claims are all made by agents in the Verifier
role. As such we are uninterested in the actions of colluding Verifiers: only fully
honest or corrupt ones.

• Pruning the search space based on prior results. We can be sure that the addition
of collusion rules will only make the protocol weaker. As such, if a collusion
rule is found that leads to a violation of our lower-bound security property, we
need not analyse any variant of the protocol that includes this rule.

• Choosing a smart ordering system for examining variants. On a simple level,
analysing at most one variant at a time is most likely to weed out individual
collusion rules that lead to violations of our lower bound. On the other hand,
maximising the set of collusion rules active as much as possible means we are
more likely to find an attack (even if only one of the collusion actions is in fact
relevant to the attack).

• Using cluster computing to parallelize analysis. Although analysis tools often
support running across numerous threads, using a cluster computer to delegate
analysis of specific combinations of collusion rules might present an efficiency
advantage. As well as improving the rate at which the full search space is cov-
ered, this also potentially presents advantages in identifying collusion classes
which lead to non-termination of the tool without halting the overall verification
process.

Implementation.

To judge the effectiveness of this approach, we built a command-line tool using the
scripting language Python. This tool parses a Tamarin protocol specification file,
identifies potential locations for “leak” rules, and builds a variant for each. It then
invokes Tamarin against these variants in order to identify all possible combinations
of collusion actions that lead to Terrorist Fraud attacks on a given protocol. We
implemented all but the last of the above techniques to improve execution time.

An example output of the tool is given in Figure 4.5. Figures 4.6 and 4.7 show some
code snippets from the tool.

The tool proves effective against simpler distance-bounding protocols, where the
execution time of the original protocol is only a few seconds. In these situations, even
a tenfold increase in analysis time is quite tolerable for analysis that considers only
leakage rules.

Notably, we discover that for the distance-bounding protocols covered by our analysis,
it is sufficient to consider only collusion rules involving subterm leakage in order to
identify any attacks. However, as the complexity of a protocol increases, it seems
feasible that potential attacks will involve more advanced collusion rules.

66 Chapter 4. Relations on Security Properties

FIGURE 4.5: Output of collusion rule generating tool, run against a
simplified version of the Brands-Chaum protocol.

4.4. Terrorist Fraud on Distance Bounding Protocols 67

def identify_subterm_leak_mutations(self):
"""
Finds all possible subterm leak rules for a protocol
"""
mutations_out = []
for rule in self.rules:

outFound = False
for fact in rule.output:

if fact.name == "Net":
outFound = True

if not outFound:
continue

if rule.is_trusted():
continue

undisclosed_vars = rule.find_undisclosed_subterms()
for var in undisclosed_vars:

mutations_out.append(("leak", rule, var))

return mutations_out

def find_undisclosed_subterms(self):
"""
Finds undisclosed subterms in Net messages for a rule
"""
output_terms = set()

for fact in self.output:
if fact.name == "Net":

allV = find_all_subterms(fact.terms)
discV = find_disclosed_subterms(fact.terms)
undisclosed_variables = allV.difference(discV)
output_terms |= undisclosed_variables

return output_terms

FIGURE 4.6: Identifying Leak collusion rules in a protocol

68 Chapter 4. Relations on Security Properties

def build_mutated_protocol(protocol, mutations):
"""
Applies a list of mutations to a protocol
"""
output_protocol = copy.deepcopy(protocol)

for mutation in mutations:
if mutation[0] == "leak":

output_protocol.apply_leak_mut(mutation[1], mutation[2])
...

return output_protocol

def apply_leak_mut(self, rule, undisclosed_var):
"""
Create a subterm-leakage collusion rule for a protocol
"""
new_mutRule_needed = True
for mutRule in self.mutatedRules:

if mutRule.name == rule.name+"_leak_mutation":
new_mutRule_needed = False
undisclosed = mutRule.find_undisclosed_variables()
if undisclosed_var in undisclosed:

mutRule.output.append(Fact("Net", undisclosed_var))

if new_mutRule_needed:
mutRule = copy.deepcopy(rule)
mutRule.name += "_leak_mutation"
mutRule.output.append(Fact("Out", undisclosed_var))
self.mutatedRules.append(mutRule)

FIGURE 4.7: Applying Collusion Rules

4.4. Terrorist Fraud on Distance Bounding Protocols 69

Ideal Implementations for TF-Resistance

To deal with this completeness issue for the problem of proving terrorist fraud
resistance, we introduce the notion of a least-disclosing message. Such message
is a knowledge-minimal message that the adversary needs, in order to produce
the fast phase response upon reception of the challenge. For instance, if C is the
verifier’s fast phase challenge, and the prover’s fast phase response can be written
as f (C, z1, . . . , zn) for some z1, . . . , zn ∈ term such that λC. f is either injective or
constant, then a least-disclosing message is 〈z1, . . . , zn〉. Such message can lead, in
some cases, to the disclosure (directly or not) of the long-term keys. To better illustrate
the least-disclosing notion, le us consider again the DBToy protocol.

Theorem 4.4. DBToy is resistant to terrorist fraud.

Proof. Let DBToy′ be a valid extension of DBToy such that DBToy′ 6|= dbsec_hnst. Thus,
there exist t1 · · · tl ∈ Traces(DBToy′), and n, m, V, P ∈ TΣ, and i, k ∈ {1, . . . , l} with
i < k, such that:

Send(V, n) ∈ ti ∧ Recv(V, f (n, m, P)) ∈ tk ∧
DBSec(V, P, n, f (n, m, P)) ∈ tl ∧
(@j ∈ {i + 1, . . . , k− 1}. Action(P) ∈ tj) ∧
(@j ∈ {1, . . . , l}. Compromise(V) ∈ tj) ∧
(@j ∈ {1, . . . , l}. Compromise(P) ∈ tj), (4.3)

Hence, because of Equation 4.3 above and given the fact that Recv(V, f (n, m, P)) can
only occur due to the rule DBNet (see Figure 4.2), we derive that:

∃c, j ∈ {1, . . . , k− 1}, C.

(Send(C, f (n, m, P)) ∈ tj ∧ Compromise(C) ∈ tc). (4.4)

Equation 4.4 implies that ∃w < k. K(m) ∈ tw. This means that DBToy′ has a collusion
rule in which m is given away.Notice that m (or equivalently (m, P)) is indeed a
least-disclosing message because of the following two reasons: m is needed by the
adversary to break dbsec_hnst, and m is atomic (i.e. it cannot be learned by pieces).
But, if the adversary knows m, then they can use a compromised prover to run again
the protocol with V on behalf of P, by using the messages senc mk and f (n2, m, P)
in that order, where n2 is V’s (new) challenge. This reasoning can be formalized as
follows.

Given that DBToy′ is valid (see Definition 2.1) we have that e ≥ l, and tl+1, . . . , te exist
such that:

t1 · · · tl · · · te ∈ Traces(DBToy′) ∧ complete(t1 · · · tl · · · te). (4.5)

70 Chapter 4. Relations on Security Properties

Now, l2 ≥ e, and te+1, . . . , tl2 , and n2, and i2, k2 ∈ {e + 1, . . . , l2 − 1} exist such that:

t1 · · · tl · · · te · · · tl2 ∈ Traces(DBToy′) ∧
Send(V, n2) ∈ ti2 ∧ Recv(V, f (n2, m, P)) ∈ tk2 ∧
DBSec(V, P, n2, f (n2, m, P)) ∈ tl2 ∧
(@j ∈ {i2 + 1, . . . , k2 − 1}. Action(P) ∈ tj) ∧
(@j ∈ {1, . . . , l2}. Compromise(V) ∈ tj) ∧
(@j ∈ {1, . . . , l2}. Compromise(P) ∈ tj). (4.6)

Therefore, from Equations 4.5 and 4.6 we deduce that DBToy′ 6|=? dbsec_hnst, which
completes the proof1.

The reasoning about the least-disclosing messages is supported by the observation
that any follow-up, collusion-free trace which the adversary can lead to with less
knowledge, they can also lead to with further knowledge.

4.5 Case Study: ISO/IEC 14443 Protocols

The ISO/IEC 14443 standard is used in more than 80 contactless smart cards. Within
our case studies, we analysed 3 protocols based on this standard. Those protocols are:

• NXP’s MIFARE Plus2 (versions X and EV1) with proximity check (patent [TDJM+11])
with worldwide applications in public transport, access management, school
and campus cards, citizen cards, employee cards, and car parking.

• PaySafe [CGdR+15], which is a distance-bounding-enabled version of Visa’s
contactless payment protocol payWave (in qVSDC mode) [EMV18b].

• PayPass [EMV18a], which is Mastercard’s contactless payment protocol with
relay resistance.

To demonstrate our analysis, we examine the PayPass protocol, represented in Fig-
ure 4.8. The analyses of the other two protocols are analogous. In the context of these
protocols, the verifier R is the reader terminal and the prover C is the card.

PayPass is a relay-resistance-enabled version of the EMV3 payment protocol imple-
mented in Mastercard’s contactless cards. EMV (which stands for Europay, Master-
card and Visa) has become the international standard for smart cards/chips payment
protocols.

In a regular EMV session, a transaction is initiated by the exchange of SELECT and
SELECTED commands along with the selected EMV applet that will be used for the
transaction (PayPass in this case). Then, the terminal issues the GPO command to

1A TAMARIN proof for a given DBToy′ is also available in our repository.
2https://www.mifare.net/en/products/chip-card-ics/mifare-plus
3https://www.emvco.com

https://www.mifare.net/en/products/chip-card-ics/mifare-plus
https://www.emvco.com

4.5. Case Study: ISO/IEC 14443 Protocols 71

counter ATC
shared KM

R

counter ATC
shared KM

C

fresh UN
fresh amount

fresh nC
Timing info ti

SELECT, PayPass

SELECTED

GPO

AIP, AFL

EXCHANGE RRD, UN

nC, ti

READ RECORD

GENERATE AC, UN , amount , . . .

KS:=senc(ATC ,KM)
AC :=MAC(KS,amount,ATC ,UN)
SDAD :=sign(〈nC,UN ,AC ,ti〉,skC)

SDAD ,AC ,ATC

C is close

FIGURE 4.8: Mastercard’s PayPass protocol.

inform the card on the terminal’s capabilities. The card then responds to this com-
mand with the Application Interchange Profile (AIP) and Application File Locator
(AFL) which indicate the card’s capabilities and the location of data files, respectively.
Then, the terminal issues the GENERATE_AC command, which includes an Unpre-
dictable Number UN, the amount of the transaction, the currency code, and other
data. The cards responds with the Application Cryptogram (:), the Signed Dynamic
Application Data (SDAD) and the Application Transaction Counter (ATC). The : is a
the result of keyed-MAC on the transaction information whose key is an encryption
of the Application Transaction Counter (ATC, equal to the number of transactions
previously made by the card) with a long-term symmetric key shared between the
terminal and the card. The : is the proof of the transaction, which can be verified by
the card issuer. The SDAD is the card’s signature of the transaction information.

To ensure the EMV protocol satisfies relay resistance, after the AIP and AFL commands,
the terminal issues the new Exchange Relay Resistance Data EXCHANGE_RRD com-
mand, along with the Terminal Relay Resistance Entropy number (which equals
UN). This message initiates the fast phase of the protocol. The card must respond
on time with their nonce nC (Device Relay Resistance Entropy) and three timing esti-
mates: minimum time for processing, maximum time for processing and estimated
transmission time.

When modelling the PayPass protocol in TAMARIN, and also the other ISO/IEC
14443 protocols, we made the following abstractions: (1) the timing information is
considered a nonce; and (2) we did not model any exchanged messages that are fully

72 Chapter 4. Relations on Security Properties

composed of constant terms, e.g. the first message (SELECT, PayPass).

As Table 4.1 shows, PayPass satisfies dbsec_hnst, which means that it does resist
mafia fraud and in particular, relay attacks. Indeed, defending against relay is a
fundamental security goal of this protocol. However, PayPass fails to defend against
distance fraud [Des88] and distance hijacking [CRSC12]. Those attacks refer to a
remote and compromised card which successfully tricks the reader into believing
they are co-located, and thus the reader accepts the transaction.

One might argue that those attacks are irrelevant for payment systems. After all,
it is the compromised card’s owner’s bank account which ends up being charged.
However, suppose an attacker has acquired the payment card of a victim and wishes
to cause them harm. After compromising the card, they might place a concealed
device near the checkout area of a store that performs a distance hijacking attack
using the compromised card. Shoppers at the store would then perform transactions,
believing that they were paying for products, whilst in fact all payments came from
the one corrupted card. The attacker could even mix in several transactions of their
own, which would be indistinguishable from the honest shoppers. As a result of
this “Robin Hood” style attack, the victim will be charged for these illegitimate
transactions with no clear perpetrator.

Fixing the ISO/IEC 14443 Protocols.
As before, we will focus on the PayPass protocol. A distance fraud attack is possible
on this protocol, as there is no causal relation between the fast phase challenge and
response. That is, the fast phase response can be produced prior to reception of the
challenge. One possible way to resolve this is to include the reader’s nonce UN within
the card’s response.

Although this approach does prevent distance fraud, it does not prevent distance
hijacking. To prevent the latter, we must bind the fast phase messages to the card’s
identity. We do so by adding to the card’s fast phase response, besides UN, the card’s
signature on the nonce nC. Thus, the card’s fast phase response becomes:

(nC, ti, sign nCskC, UN) .

This modification results in a protocol PayPass_Fix that satisfies dbsec. Observe that
the signature sign nCskC can be computed prior to the fast phase, so it does not delay
the card’s response.

The very same solution of adding (sign nCskC, UN) into the card’s fast phase response
works for both the PaySafe and MIFARE Plus protocols as well. Though, to keep
consistency with the usage of cryptographic operations in the case of the latter
protocol, we propose a keyed-MAC message MAC(KM, nC, ‘1’, ‘2’) instead of the
signature sign nCskC. As before, the keyed-MAC message can be computed prior to
the fast phase.

The modified protocol PayPass_Fix does not resist terrorist fraud, because the card’s
leakage of (nC, ti, sign nCskC) prior to the fast phase leads to a valid attack. To prevent
terrorist fraud, we propose to further modify the PayPass protocol by changing the

4.6. Results and Conclusions 73

card’s fast phase response and SDAD messages so that they become:

(nC, ti, f (UN, nC ⊕ KM)) and sign (UN, :)skC,

respectively; where f is an irreversible function. The referred modification on PayPass
results in a protocol PayPass_FixTF that satisfies dbsec and resists terrorist fraud.

Similar constructions can be performed on PaySafe and MIFARE Plus in order to
repair them. The TAMARIN models and security proofs of the two versions of each
protocol are available in our repository. We give two different repaired versions of
each protocol in order to leave the choice up to the requirements of the application
system. For example, if terrorist fraud is not a critical issue, then the first modification
(i.e. Protocol_Fix) is suggested over the second one (i.e. Protocol_FixTF) as the latter
modifies the standard more “aggressively”. We do always suggest the first modified
version over the original protocol, regardless of the application.

Other modifications for the ISO/IEC 14443 protocols that make them resistant to
terrorist fraud possibly exist, and likely all of them (like ours) would require major
changes to the standard. For example, the composition of the SDAD message would
likely have to be modified due to the occurrence of the card’s nonces within it.
Furthermore, we conjecture that if the card’s nonces (e.g. nC) can be inferred from
passive observation of the execution, then versions of the protocols in question that
resist terrorist fraud would be vulnerable to relay attacks, thus violating a primary
security goal of these protocols.

4.6 Results and Conclusions

A Survey of Distance Bounding Protocols

We conducted verification in TAMARIN of a number of distance-bounding protocols
from the literature. For each of them, we verify whether it satisfies dbsec_hnst (without
collusion), whether it satisfies dbsec (also without collusion) and whether it resists
terrorist fraud (Definition 4.2). The results are shown in Table 4.1.

We remark that the Tree-based, Poulidor, Hancke and Kuhn’s and Uniform protocols
have equivalent Tamarin implementation as their symbolic formalization is the same.
Similarly, the Brands and Chaum’s (BC) protocol versions with Fiat-Shamir and
Schnorr identification schemes have also the same representation. When verifying
these two versions of the protocol, we found a distance-fraud attack against them.
However, as the authors have pointed out, such an attack is no longer possible if a
challenge/response causal relation is used during the fast phase, such as the XOR
operation employed in the signature-based version of the protocol.

To identify the type of attack against a given protocol, we make two observations:
(1) if the protocol does not satisfy dbsec_hnst, then a mafia fraud exists; and (2) if
the protocol satisfies dbsec_hnst but it does not satisfy dbsec, then a distance fraud
and/or a distance hijacking exist. In this second case, it is highly recommended
to run TAMARIN in interactive mode and inspect the trace invalidates the property

74 Chapter 4. Relations on Security Properties

Protocol
Satisfies Satisfies Resists

dbsec_hnst dbsec TF
Brands-Chaum
- Signature id. X × × (!)
- Fiat-Shamir id. X × × (!)
CRCS
- Non-revealing sign. X X ×
- Revealing sign. X × ×
Meadows et al.
- f := (NV , P⊕ NP) X × ×
- f := NV ⊕ h(P, NP) X (!) X (!) × (!)
- f := (NV , P, NP) X (!) X (!) × (!)
Lookup-based

X X ×
- Tree
- Poulidor
- Hancke-Kuhn
- Uniform
Munilla-Peinado X X × (!)
Kim-Avoine X X × (!)
Reid et al. X X X (!)
MAD (one way) X × ×
DBP X (!) X (!) X (!)
Swiss Knife X X X (!)
UWB
- PKI × (!) × (!) X (!)
- keyed-MAC × (!) × (!) X (!)
WSBC+DB X (!) × (!) × (!)
Hitomi X (!) X (!) × (!)
TREAD
- Asymmetric × (!) × (!) X (!)
- Symmetric X (!) × (!) X (!)
ISO/IEC 14443
- PaySafe X (!) × (!) × (!)
- MIFARE Plus X (!) × (!) × (!)
- PayPass X (!) × (!) × (!)

TABLE 4.1: Results of Tamarin Automated Analysis of Distance-
Bounding Protocols. (!) indicates a result is novel, or differs from

previous analysis.

4.6. Results and Conclusions 75

dbsec in order to visually assert the existence of the attack. Further details on this can
be found in our repository. Out of the analysed protocols, only three protocols are
distance-bounding secure and resist terrorist fraud. These protocols are Reid et al.
’s [RNTS07], DBPK [BB05], and Swiss Knife [KAK+08]. A total of nineteen protocols
were found vulnerable to terrorist fraud.

The authors of UWB impulse radio based protocol [KLT10] do not give precise
specifications of their secure channel. Hence we employed two schemes: asymmetric
encryption/decryption and a message authentication code (MAC). We found a mafia
fraud against each variation. Such attack is not reported in [KLT10], as the authors
only consider verbatim relay.

For each one of the protocols reported as not resistant to terrorist fraud, the valid
extension used to invalidate Equation 4.3 is the prover’s leakage of the least-disclosing
message, whose notion was discussed in 4.4. For each protocol P reported as resistant
to terrorist fraud, one of the following three cases occurred:

1. P 6|= dbsec_hnst and P 6|=? dbsec_hnst, thus P′ 6|=? dbsec_hnst for any valid
extension P′ of P, because traces(⊆)Traces(P′). The protocols of this type are
TREAD [ABG+17] with asymmetric encryption, and both versions of UWB [KLT10].

2. Every valid extension P′ of P such that P′ 6|= dbsec_hnst leads to replay of an
attack on dbsec_hnst, therefore P′ 6|=? dbsec_hnst. The protocol of this type is
TREAD [ABG+17] with symmetric encryption.

3. Every valid extension P′ of P such that P′ 6|= dbsec_hnst leads to disclosure of
the symmetric key shared by the prover and verifier, therefore P′ 6|=? dbsec_hnst.
The protocols of this type are Reid et al. [RNTS07], DBPK [BB05], and Swiss-
Knife [KAK+08].

The proofs of terrorist fraud resistance of the four protocols from the last two cases
were constructed by following the semi-automatic approach based on least-disclosing
messages, applied to the DBToy protocol proof of Section 4.4. It is a semi-automatic
approach, because TAMARIN alone cannot faithfully verify that Definition 4.2 holds
for any protocol. This is because of the complexity of handling the universal quantifier
over all valid collusion extensions. However, a simple manual proof analogous to
that of the DBToy protocol, in combination with the tool successfully led to security
proofs of the referred protocols.

On average, a TAMARIN model of a protocol consists of about 260 lines of code, out
of which 170 are of generic code, approximately. On a modern laptop, the verification
of all lemmas for a given protocol takes about half of a minute on average and a few
seconds in most cases – some specific protocols with complex equational theories such
as the exclusive-or operator take the prover additional time to analyse, increasing
the average. All (in)security proofs were constructed without any proof oracles for
speeding up the verification.

76 Chapter 4. Relations on Security Properties

Conclusions

We have addressed symbolic analysis of security protocols in the presence of colluding
agents. Colluding agents are agents who are not under full control of the adversary,
yet they are willing to deviate from the intended protocol execution with the goal
to invalidate a given property. By looking at different use-cases, we observe that
post-collusion security may or may not be a desirable goal. This is because the risk
of irreparable damage to the security of a protocol may motivate agents to avoid
collusion.

We proposed a concrete symbolic formulation of post-collusion security that can be
implemented in state-of-the-art protocol verification tools such as TAMARIN. We used
our definition to illustrate that leakage of session data can lead to impersonation of
agents. This is particularly interesting in the context of authentication properties in
which agents, by leaking only session-fresh data, enable the adversary to successfully
break the authentication property in every session thereafter. By means of post-
collusion security, we provided the first formal symbolic definition of (resistance
to) the sophisticated terrorist fraud attack against distance-bounding protocols. By
using our theoretical model and the TAMARIN tool, we provided computer-verifiable
proofs of the (in)security of over 25 distance-bounding protocols that account for all
classes of attacks, as given by the literature on distance bounding. To the best of our
knowledge, this is the most extensive and sound set of security/vulnerability proofs
within this research subject.

Our verification reports that for the vast majority of the analysed protocols at least one
attack exists. The vulnerable protocols include protocols based on the ISO/IEC 14443
standard such as Mastercard’s PayPass [EMV18a], Visa’s payWave with distance-
bounding [CGdR+15], and NXP’s MIFARE Plus with proximity check [TDJM+11].
Finally, we proposed fixes for these protocols and provide computer-verifiable se-
curity proofs of the repaired protocols. The proposed fixes form demonstrative
examples that could be used to improve proximity-based secure systems that follow
the standard, or may even form guidance for a future version of the standard itself.

77

Chapter 5

Desynchronisation Resistance

Key-updating protocols form a class of communication protocols in which
participants change their encryption keys between executions. There are
several formally demonstrated security properties which demonstrate the
benefits of such protocols. For example, forward privacy prevents an at-
tacker from learning about past sessions, even after compromising a partici-
pant. However, such protocols are presented with a new problem: requiring
participants to synchronise their key updates and maintain consistent
states.

As a result, a new family of attacks has arisen. In some cases, the adversary
may cause agents to update their keys in an improper manner, preventing
them from correctly interpreting communcations from their partner. This
kind of Denial-of-Service attack is called a desynchronisation attack. Such
attacks allow an adversary to prevent future runs of a communication
protocol, stopping the protocol from achieving its intended purpose.

Key updating protocols are frequently used for RFID devices. One such
domain is in grouping protocols, in which multiple provers attempt to
simultaneously prove their presence to a verifier. These are often deployed
in the supply chain, where key updates allow for untraceability - preventing
an attacker from identifying shipments from the radio communication
performed during the protocol.

In this chapter we introduce a framework for describing key-updating
protocols. Within this model we give a definition for desynchronisation
resistance. Finally, we prove a set of under- and over- approximations of
desynchronisation resistance, given in terms of verifiable security proper-
ties.

The work in this chapter is based on the ESORICS 2018 Paper “Automated
Identification of Desynchronisation Attacks on Shared Secrets” [MSTPTR18].
Some content that was cut from the paper for conciseness has been re-added.

78 Chapter 5. Desynchronisation Resistance

5.1 Introduction to Key Updating Protocols

Modelling key-updating protocols presents an additional challenge because they are
intrinsically stateful. This can cause issues in analysis because of explosions in the
state space. Further, desynchronisation resistance - ensuring that the protocol can
always meaningfully continue - is a liveness property, which are known to have a
significant computational complexity.

A significant obstacle is present in analysing key-updating protocols in that they
are inherently stateful. That is, information is carried between sessions, and our
security goals must respect this. This can cause problems in analysis due to the
explosion of the state space. Indeed, reachability queries are in general an undecidable
problem [DLM04, Bla11].

Existing formalisms of desynchronisation resistance.

Desynchronisation represents a class of attacks that are not covered by traditional
definitions. A protocol that is impervious to such attacks is said to be desynchronisation
resistant, and while there is a strong intuitive understanding of what this property
means, there are few attempts at formal definitions in the literature.

A recurring theme in desynchronisation resistance is the idea of safety in absence of
the adversary. This is comparable to the work on post-compromise security by Cohn-
Gordon et al. [CCG16] discussed in the previous chapter. Indeed, post-compromise
security is usually a (sometimes unintended) side effect of key updating protocols,
particularly those that involve key updates using session data. This is often not the
case for RFID protocols, which tend to use deterministic updates such as hashing the
previously used key.

There exist a variety of works that either claim a form of desynchronisation re-
sistance [SDZ13, LXC14, JJ13, SAKM15] or provide a desynchronisation attack on
published protocols [KP09, LW07, SZ16]. Both types of papers only provide an infor-
mal treatment of the topic, without automated tool support. Only few papers provide
a formal definition of a desynchronisation attack or desynchronisation resistance. We
will briefly discuss two of these approaches, namely the work of Van Deursen et al.
[vDMRV09] and the work of Radomirović and Dashti [RD15].

Van Deursen et al. [vDMRV09] introduce desynchronisation in the context of RFID
protocols. They say an RFID reader owns a tag if it knows a secret key allowing it
to authenticate the tag in absence of the adversary. A protocol is then said to be
desynchronisation resistant if being owned is an invariant property. For example, if
there is a time t such that a tag T is owned by a reader R, then at time t + 1 there must
exist some reader R′ (who may be the same or different to R) which ‘owns’ T. The
authors demonstrate how existing RFID protocols violate their definition. They do
not provide, however, any means for formally verifying that it holds for an arbitrary
protocol.

A second existing approach that relates to desynchronisation resistance is the work on
derailing attacks by Radomirović and Dashti [RD15]. In a derailing attack, a protocol is

5.2. A Framework for Key Updating Protocols 79

led away from its intended execution by an adversary. Reachable states in the protocol
are labelled as safe, unsafe, or transitional, describing whether a desirable ‘success’
condition is reachable from the current point. A protocol is said to be susceptible to
derailing attacks if there exists a reachable state S such that in absence of the adversary,
there are no safe states that are reachable from S.

Contributions.
In this chapter, a formal definition of desynchronisation resistance is given in terms
of the traces of a security protocol. The definition we provide can be seen as an
extension of the two theories above. Like Radomirović and Dashti, our definition
concerns the reachability of certain states, and an examination of the transitions
between them. Like Deursen et al., the knowledge of secret keys is an important
factor in our definitions. However, we go further by providing a set of conditions
for key-updating protocols that allows for automated verification (or falsification) of
desynchronisation.

Although traditional security protocol verification tools allow for reachability queries,
they lack inherent support for the liveness properties that we are verifying. As such, we
provide under- and over- approximations in the form of verifiable security properties.

Organisation.

This chapter is organised as follows. In Section 5.2 we introduce a set of definitions
for reachability and desynchronisation-resistance, and build a framework for key-
updating protocols by breaking them down into a setup phase and subsequent
rounds of execution. In Section 5.3, we demonstrate upper- and lower- bounds for
desynchronisation resistance within our framework, allowing us to identify attacks
(or verify) protocols. Sections 5.4 and 5.5 contain two case studies of these bounds,
identifying attacks on key-updating protocols from the literature.

5.2 A Framework for Key Updating Protocols

In this Section we enhance our framework for modelling protocols from Section 2.1
in order to build a framework for describing key-updating protocols. In particular,
we will introduce reachability. Reachability is a property describing the ability of
the protocol to transition from a given state to some desirable situation. Indeed, all
authentication security goals we consider are in some sense reachability goals.

In particular, we will refine an intuitive definition of reachability into progressively
stronger versions, before introducing our definition of desynchronisation resistance.
The intuition behind desynchronisation is that the protocol reaches a state from
which it can no longer proceed in a meaningful way. From this it follows that a
desynchronisation resistant protocol is one in which the adversary cannot prevent
the protocol from completing, but rather only delay it.

We begin as follows:

80 Chapter 5. Desynchronisation Resistance

Definition 2.1 (State Reachability). Given a protocol P = (R,F, Σ, E), a set of rules
W ⊆ R and two states S, S′, we say that S′ is reachable from S avoiding W, denoted by
S ¬W S′, if:

∀τ ∈ Traces(P). lastState(τ) = S =⇒
∃τ′ ∈ Traces(P).τ v τ′ ∧ lastState(τ′) = S′ ∧ rules(τ′ \ τ) ∩W = ∅.

Note that we pay particular attention to the idea of reachability avoiding certain rules.
We wish to show that no matter which actions an adversary takes, it is possible for
the execution of a protocol to continue once the adversary becomes inactive. As such,
we use ¬Adv to denote reachability in absence of the adversary (i.e. without any
adversary rules), and for the particular case when no rules are forbidden.

Given a protocol P and a state S ∈ U(Σ) we define the set of states reachable from S
as reachable(S) = {S′ ∈ U(Σ) | S S′}. Overloading notation, we define the set of
states reachable by P as reachable(P) =

⋃
τ0

reachable(S0).

Next, the notion of reachability is extended from the context of states to the context
of event facts.

Definition 2.2 (Event Reachability). Let P be a protocol, S ∈ U(Σ) a state, W a set of
rules and E an event fact. We say that E is reachable from S avoiding W, denoted by
S ¬W E, if:

∃S′ ∈ U(Σ). (S ¬W S′) ∧ (|E|S < |E|S′).

Intuitively, given a trace τ that contains S, it is possible to extend τ in such a way that
the event fact E is reached. Like before, we will write S E to indicate S ¬∅ E.

Reachability captures the idea that a desired state or event can be achieved once.
However, we desire that our protocol not only be able to successfully complete once,
but arbitrarily many times. To do this, we need a definition stronger than standard
reachability. Similar to the End(x) event fact from the previous chapter, define the
Complete event fact as follows:

• Complete(pub, pub) indicates that the first agent believes they have successfully
completed a run of the protocol with the second.

Desynchronisation occurs when two agents who were originally able to finish a
protocol execution lose this ability.

Definition 2.3 (Desynchronisation Resistance). A protocol P is desynchronisation
resistant if:

∀A, B : pub, P ¬Adv Complete(A, B) =⇒
(
∀τ ∈ Traces(P). firstState(τ) = S0 =⇒

lastState(τ) ¬Adv Complete(A, B) ∨
Corrupt(A) ∈ τ ∨
Corrupt(B) ∈ τ

)
.

5.2. A Framework for Key Updating Protocols 81

Intuitively, if A and B are able to complete the protocol once without any actions
being performed by the adversary, then they will always be able to do this, except
in the case that one of the participants been corrupted, giving secret data to the
adversary.

A Sequential Key Updating Environment

In order to simplify our search space, we now introduce the notion of starting states.
Intuitively, we will split our protocol rules into a “preparation” phase: where keys
between agents are established and corruption is determined, and an “execution”
phase: in which the protocol actually takes place.

By their nature, key-updating protocols are such that each execution of the protocol
will leave us in a state that is reducible to a starting state. We will assume that
protocols have a mechanism in place for handling execution being aborted part-way
through – for example, because the communication partner has gone out of range or
offline.

Recall that a protocol specification is defined by a tuple P = (R,F, Σ, E). We provide
next a framework composed of Σ, E, and F. Depending on the protocol, it may be
necessary to extend the equational theory. The set of rules R is a consequence of the
protocol being examined.

We use the standard function symbols and equational theory from Section 2.1.

Σ = {senc : msg×msg→ msg, sdec : msg×msg→ msg,

aenc : msg×msg→ msg, adec : msg×msg→ msg,

pk : msg→ msg, h : msg→ msg}.
E = {sdec(senc(msg, key), key) = msg,

adec(aenc(msg, pk(ltk)), ltk) = msg}.

We require the following set of linear facts:

ShKey(pub, pub, 〈msg, . . .〉), Session(pub, pub, 〈msg, . . .〉),

, and event facts:

AddKey(pub, pub, msg), DropKey(pub, pub, msg),

Complete(pub, pub)

The facts ShKey and Session provide information about the knowledge of an agent.

82 Chapter 5. Desynchronisation Resistance

Session facts are used to store session data for a single execution of the protocol.
ShKey facts represent their long term knowledge, in the form of communication
keys for use with a named partner. Note that unlike our models in the rest of the
document, we do not assume that the ShKey fact is persistent: we will allow it to
change as agents update their shared keys. This is represented by rules which have
an instance of the ShKey fact in both the pre- and post-conditions, with the inner
values (i.e. the subterm of shape 〈msg, . . .〉) being updated.

The AddKey and DropKey event facts are used to mark changes to an agent’s keystore.
Intuitively, they are used to mark an agent’s key update actions on the trace. We will
formalise this later.

We now introduce the notion of a starting states as the subset of all reachable states,
conditional on satisfying a series of conditions. We are indifferent as to the series of
rules that lead to these states – intuitively, a starting state indicates a situation where
the protocol could immediately begin an honest execution, and there are no active
sessions.

Definition 2.4 (Starting States). The set of starting states Sstart is the set composed of all
S0 ∈ U(Σ) that satisfy the following conditions:

(i) @x : msg. Net(x) ∈ S0,

(ii) @A, B : pub, y : msg. Session(A, B, y) ∈ S0,

(iii) ∀A, B : pub, k1, . . . , kn : msg. ShKey(A, B, 〈k1, . . . , kn〉) ∈ S0 =⇒
@l1, . . . , lm : msg, 〈k1, . . . , kn〉 6= 〈l1, . . . , lm〉. ShKey(A, B, 〈l1, . . . , lm〉) ∈ S0,

(iv) ∀A, B : pub, ki : msg.

ShKey(A, B, 〈. . . ki . . .〉) ∈ S0 =⇒ AddKey(A, B, ki) ∈ S0,

(v) ∀A, B : pub, k : msg. AddKey(A, B, k) ∈ S0 ⇐⇒
∃k1 . . . kn : msg. ShKey(A, B, 〈. . . k . . .〉) ∈ S0 ∨ DropKey(A, B, k) ∈ S0

(vi) ∀A, B : pub, k : msg.
(
ShKey(A, B, 〈. . . k . . .〉) ∈ S0 ∧ ((S0, K) ` k)

)
=⇒

Corrupt(A) ∈ S0 ∨Corrupt(B) ∈ S0.

We note the following intuitions behind the above requirements:

1. A starting state may not contain messages.

2. A starting state may not contain session data.

3. An agent stores only one set of keys for use with each potential communication
partner.

4. If a starting state contains an agent A who stores a secret key ki for communicat-
ing with an agent B, then there is a corresponding AddKey fact showing that A
has added this key.

5.3. Defining and Proving Desynchronisation Resistance 83

5. If a starting state contains an AddKey fact, then either the corresponding agent
has that key in their knowledge, or there is also a corresponding DropKey fact.

6. If a starting state contains an agent A who stores a secret key ki for communi-
cating with an agent B, and the adversary knows the value ki, then either A or
B is corrupt.

We point out that a starting state does allow for instances of the Complete event fact.
This does not interfere with any reachability claims, as these describe the ability to
add new instances of these event facts to the trace.

We grant the adversary the additional power to “cancel” the session of an agent,
causing them to lose any stored session data. For example, this models the ability
of an adversary to block messages sent on the network until an agent assumes their
partner has halted communication. This is modelled by the rule Sess_Cancel, defined
below.

Session(A, B, y)
Sess_Cancel

5.3 Defining and Proving Desynchronisation Resistance

In this section we look at the consequences of building models in the framework
described in the previous section, and show how we can use key updates to describe
an invariant property. We use this to provide ‘lower’ and ‘upper’ bounds to desyn-
chronisation resistance, proving that violating this combination of properties results
in an attack. Note that other choices of environment could be made depending on
the target domain, with comparable results.

We model a synchronous key updating environment, in which a pair of agents each
store a number of secret communication keys to be used with their intended partner.
In an ideal execution, the keys stored by one agent will always correspond to those
stored by their partner.

Given a protocol constructed in the model above, we provide a set of conditions that,
combined, are sufficient to satisfy desynchronisation resistance.

Properties of Key Updating Protocols

We start with a predicate stating whether two agents share a common key in a given
state. Let P be a protocol and S ∈ reachable(P). We say that two agents A and B have
a common key in S, denoted CommonKeyA,B(S), if and only if:

∃k1, . . . , kn, l1, . . . , lm : msg.
(
{k1, . . . , kn} ∩ {l1, . . . , lm} 6= ∅ ∧

ShKey(A, B, 〈k1, . . . , kn〉) ∈ S ∧ ShKey(B, A, 〈l1, . . . , lm〉) ∈ S
)

.

84 Chapter 5. Desynchronisation Resistance

Now we define reachability conditional on a common key as the property of a protocol
that two agents are able to complete the protocol with each other in absence of the
adversary if and only if they have a common key.

Property 3.1 (Reachable Conditional on Common Key). We say that P satisfies comple-
tion conditional on a common key if:

∀S0 ∈ Sstart, A, B : agent,

S0 ¬Adv Complete(A, B) ⇐⇒ CommonKeyA,B(S
0).

We assert that any reasonable protocol should be able to resume from any state in
which a pair of agents still share at least one key between them. As such, our aim is
to show that a sufficient condition for desynchronisation resistance for is that two
agents sharing a common key is an invariant property – no sequence of actions (short
of corruption) can cause an agent to “forget” the last key shared by their partner,
and so a pair of communication partners always have at least one key to resume
correspondence with after adversarial interference ends.

With this in mind, we now define several other properties describing the nature in
which the shared keys used by agents in a protocol are updated. Property 3.2 and
Property 3.3 give syntactic requirements on protocols. In particular, we require that a
protocol’s specification is consistent in the way that ShKey linear facts are modified
with respect to the addition of the AddKey and DropKey event facts. We also make
the assumption that an agent always stores the same number of encryption keys for
communicating with their partner.

Property 3.2 (Well-Formed Key Updates). A protocol P satisfies Well-Formed Key
Updates if the following two conditions hold for all rules r ∈ R:

AddKey(A, B, k) ∈ rhs(r) ⇐⇒
(
∃ k1 . . . kn, l1 . . . lm. ShKey(A, B, 〈k1 . . . k . . . kn〉) ∈ rhs(r) ∧

ShKey(A, B, 〈l1 . . . lm〉) ∈ lhs(r) ∧ ∀ i. li 6= k
)

,

DropKey(A, B, k) ∈ rhs(r) ⇐⇒
(
∃ k1 . . . kn, l1 . . . lm. ShKey(A, B, 〈k1 . . . k . . . kn〉) ∈ lhs(r) ∧

ShKey(A, B, 〈l1 . . . lm〉) ∈ rhs(r) ∧ ∀ i. li 6= k
)

.

Note that this definition, along with the assumption that the number of encryption
keys stored by a party is constant, implies that there cannot be any rules which
contain only ShKey() terms on one side. Otherwise, the consumption (or addition) of
this fact would change an agent’s number of stored keys.

Next we define the Key Conservation property. It states that every agent must keep the
same number of keys during the execution of the protocol. We also require each rule
to consider at most a single shared key fact.

Property 3.3 (Key Conservation). A protocol P = (Σ, E, R, Sstart) satisfies Key Con-
servation if for every rule r ∈ R, and every A, B : agent, k1, . . . , kn : msg, there exists an

5.3. Defining and Proving Desynchronisation Resistance 85

instance of ShKey(A, B, 〈k1, . . . , kn〉) on the left-hand side of r if and only if there is some
l1, . . . , ln : msg such that the right-hand side of r contains ShKey(A, B, 〈l1, . . . , ln〉).

Next we define Key Uniqueness as the notion that a given encryption key will only
be generated at most once. Once discarded by an agent they will never re-use it,
nor can a different pair of agents ever (intentionally or otherwise) generate the same
encryption key.

Definition 3.4 (Key Uniqueness). A protocol P satisfies Key Uniqueness if for every
τ ∈ Traces(P) and every A, B, A′, B′ : agent and every k : msg with {A, B} 6= {A′, B′} it
holds that:

AddKey(A, B, k) ∈ τ =⇒
|AddKey(A, B, k)|τ = 1∧ |AddKey(A′, B′, k)|τ = 0.

We next describe the properties of Key Preparedness and Key Resilience. Together with
Key Uniqueness, these are the main security requirements that are to be verified.
Intuitively, they provide a semi-strict ordering on the key updates of paired agents.

Definition 3.5 (Key Preparedness for agents A and B). A protocol P satisfies Key
Preparedness for agents A and B if

∀τ ∈ Traces(P), ∀k : msg,

AddKey(A, B, k) ∈ τ =⇒ AddKey(B, A, k) ≤τ AddKey(A, B, k).

Definition 3.6 (Key Resilience for agents A and B). A protocol P satisfies Key Resilience
for agents A and B if

∀τ ∈ Traces(P), ∀k : msg,

DropKey(A, B, k) ∈ τ =⇒
DropKey(B, A, k) ≤τ DropKey(A, B, k).

The second case in the Key Resilience claim accounts for the trivial case of a starting
state containing DropKey facts for which we cannot be sure of the source.

Desynchronisation Resistance

We note that the above properties are verifiable, either by examination of the protocol
specification (3.1, 3.2, 3.3), or through verification of traces in an automated prover
tool (3.4, 3.5, 3.6) . We denote the properties as WF, KC, KU, KP and KR respectively
for Well Formedness, Key Conservation, Key Uniqueness, Key Preparedness and Key
Resilience.

Theorem 3.7 (Sufficiency). Let P = (Σ, E, R, Sstart) be a protocol that satisfies Prop-
erties 3.1, 3.2, 3.3 and Definition 3.4. P satisfies desynchronisation resistance if for all
S0 ∈ Sstart and all agents A, B such that
CommonKeyA,B(S

0), one of the following conditions holds:

86 Chapter 5. Desynchronisation Resistance

• Key Preparedness (Definition 3.5) for agents A and B holds, and Key Resilience
(Definition 3.6) for agents B and A holds, or

• Key Preparedness (Definition 3.5) for agents B and A holds, and Key Resilience
(Definition 3.6) for agents A and B holds.

Before we begin the proof of Theorem 3.7, we provide some helper lemmas. We
define the strip() function, which allows us to transform a state into a starting state.

Definition 3.8 (Strip Function). We define the function strip(), which maps from states
to states. We define strip(S) to be the multiset that is equal to S, but with all instances of
Session, K and Net removed.

Lemma 3.9. Let P be a protocol which satisfies Key Conservation (Property 3.3) and Well-
Formed Key Updates (Property 3.2). Suppose S ∈ reachable(P). Then strip(S) is a starting
state of this protocol, as per the requirements of starting states in Definition 2.4.

Proof. Points (i), (ii) and (vi) are immediate from the absence of corresponding facts.
(iii) is a consequence of Key Conservation, (iv) and (v) from Well-Formed Key Updates.

Lemma 3.10. Let P be a protocol which satisfies Key Conservation (Property 3.3) and Well-
Formed Key Updates (Property 3.2), and τ a trace of P with final state S. Suppose γ is a trace
of P with starting state strip(S) that contains no adversary rules. Then γ · τ ∈ Traces(P) is
a trace extension of τ.

Proof. Suppose γ = (strip(S), r1σ1 . . . rnσn). We claim that the series of rule applica-
tions r1σ1 . . . rnσn are valid from the state S. Indeed, the rule application r1σ1 can be
dependent only on ShKey facts, as these are the only linear facts which can be in a
starting state. These facts exist in both S and strip(S). By the same logic, the rest of
the series of applications are also valid.

Theorem 3.7 . Assume that the agents A and B are not corrupt. Without loss of gener-
ality, we assume the first case holds - that we have Key Preparedness for A and B,
and Key Resilience for B and A.

Our proof proceeds in two steps. First, we show that the common key predicate is
sufficient to ensure completion from any state, not just the starting states:

∀S ∈ reachable(P),

CommonKeyA,B(S) =⇒ S ¬Adv Complete(A, B).

Secondly, we show that the common key property is invariant:

∀S ∈ reachable(P), r ∈ R,

(CommonKeyA,B(S) ∧ S rσ−→ S′) =⇒ CommonKeyA,B(S
′).

From these two claims, the result will immediately follow. To show the first point,
we use the strip() function from Definition 3.8. Note that if A and B have a common

5.3. Defining and Proving Desynchronisation Resistance 87

key in S, then they have a common key in strip(S). Then, by Lemma 3.10, the claim
follows.

For the second point, we must show that for any rule application rσ in which a
DropKey event fact is added, the common key predicate is preserved. Indeed, the
well-formedness properties of Property 3.2 ensure that these are the only possible
rule applications which can affect the predicate.

Suppose we have S ∈ reachable(P) such that CommonKeyA,B(S), and a rule ap-
plication rnσn. We split into the cases when DropKey(A, B, k) is added, or when
DropKey(B, A, k) is added. Suppose now rnσn adds DropKey(A, B, k), then:

KC
=⇒ ∃k′ : msg . rnσn adds AddKey(A, B, k′)
KP
=⇒ ∃i < n . riσi adds AddKey(B, A, k′)
KU
=⇒ @j . rjσj adds DropKey(A, B, k′)
KDR
=⇒ @m . rmσm adds DropKey(B, A, k′)

=⇒ ShKey(B, A, 〈. . . , k′, . . .〉) ∈ S

and so now k′ is a common key after the rule application. Therefore the Common
Key predicate is preserved.

Suppose instead rnσn adds DropKey(B, A, k), then:

KDR
=⇒ ∃i < n . riσi adds DropKey(A, B, k)
WF
=⇒ ∃j < i . rjσj adds AddKey(A, B, k)
KU
=⇒ @l 6= i . rlσi adds AddKey(A, B, k)

=⇒ ShKey(A, B, 〈. . . , k, . . .〉) 6∈ S

and so k was not a common key before the rule application. Therefore since S
contained some key k′ that was a common key, so does the state after the rule
application, and so the common key predicate is preserved.

Theorem 3.7 provides a set of sufficient conditions to ensure that a protocol in our
model satisfies desynchronisation resistance. We provide one example of a necessary
condition to satisfy desynchronisation resistance: any protocol that fails to meet this
condition also fails to provide resistance against desynchronisation attacks.

Theorem 3.11 (Necessity). Let P = (Σ, E, R, Sstart) be a protocol that satisfies Proper-
ties 3.1, 3.2, and 3.3. Let S0 ∈ Sstart and ShKey(A, B, k) ∈ S0 (i.e. A stores exactly one
key for B) and assume P does not satisfy Key Preparedness (Definition 3.5) for A and B.
Then P either contains no reachable key update rule applications for A, or it does not satisfy
desynchronisation resistance.

Proof. Suppose P contains at least one key update rule for A. We will construct
a trace from which the Complete(A, B) is no longer reachable without adversary
interference.

88 Chapter 5. Desynchronisation Resistance

Let τ = (S0, r1σ1, . . . , rnσn) be a trace such that rnσn is a key update rule application for
A that violates the Key Preparedness property. Consider the state strip(lastState(τ)).
Note this state is reachable from lastState(τ) through the rules SH_CANCEL and
BLOCK.

By Reachability Conditional on a Common Key (Property 3.1), there exist no traces
starting from strip(lastState(τ)) that lead to the Complete(A, B) event fact without
adversary interference. Thus desynchronisation resistance is violated.

5.4 Case Study: Grouping protocol of Sundaresan et al.

We end this chapter with two case studies that demonstrate the capability of The-
orem 3.11 to identify attacks in an algorithmic manner. The first considers the
grouping protocol of Sundaresan, Doss, and Zhou [SDZ15], but a similar attack also
exists for another RFID grouping protocol, by Sundaresan, Doss, Piramuthu and
Zhou [SDPZ14].

Grouping protocols are a simple multiparty authentication protocol in which several
agents (usually RFID tags) aim to simultaneously prove that they are close to a verifier
(e.g. an RFID reader). These protocols usually do not use strict timing rounds as
in the distance bounding protocols from the previous chapters – instead, the focus
is on proving liveness of multiple parties at the same time. This is important for
use-cases such as shipping cargo, to show that goods are all indeed transported to
the destination together.

In addition, many such protocols also aim to achieve additional security goals such
as having only partial trust in the verifier device (who saves a transcript to be later
checked by a central server). Importantly, many such protocols aim to achieve a
form of unlinkability by using a key-updating step as part of the protocol, in order to
ensure that a tag will not respond the same way to the same challenge twice.

Figure 5.1 shows the intended execution of the protocol. This protocol forms a proof of
(near-)simultaneous liveness by having each tag perform its cryptographic operations
on the previous tag’s output. Each tag stores only one cryptographic key at a time,
whilst the reader device stores two. In the intended execution, the reader sends two
bundles of data – one mixed with each key – and the tag identifies whether or not it
needs to update its own key based on which packet it is able to correctly deconstruct.

Ultimately, it is this mechanism which leads to an attack. The adversary constructs
a modified replay message, taking advantage of the algebraic properties of the
exclusive-OR function. After a tag runs the protocol once, the adversary blocks
their reply to the reader and transmits the modified replay message. This replay
causes the tag to incorrectly authenticate the adversary as a valid reader, and update
their key past a safe threshold. The intended execution of the protocol, and a trace
which leads to the attack, can be found in Figure 5.2.

5.5. Case Study: A Two Round Grouping Protocol 89

Reader Tag
IDR, k

t
R, k

t+1
R IDR, ktag

Fetch TS , Data from server
Generate nR
D ← Data ⊕ nR
I ← IDR ⊕ h(TS ⊕ nR)
δ1 ← h(IDR ⊕ ktR)⊕ nR
δ2 ← h(IDR ⊕ kt+1

R)⊕ nR
TS ,D,I,δ1,δ2−−−−−−−−−−−−−→

n′ ← δ1 ⊕ h(IDR ⊕ ktag)
if IDR = I ⊕ h(TS ⊕ n′):

if n′ = (n′)t−1: abort
else: ktag ← h(ktag)

else:
n′ ← δ2 ⊕ h(IDR ⊕ ktag)
if IDR 6= I ⊕ h(TS ⊕ n′) or
n′ = (n′)t−1: abort

D ← f(D ⊕ n′)
D⊕n′

←−−−−−−−−−−−−−−

FIGURE 5.1: The grouping protocol of Sundaresan et al.

5.5 Case Study: A Two Round Grouping Protocol

Abughazalah, Markantonakis and Mayes provide a two-round RFID grouping proof
protocol [AMM16], which uses updating keys. An RFID tag stores two updating
keys, for authenticating itself as well as identifying the group that it is a part of.

A system is in place to allow a tag to re-synchronise its group key if it is absent for a
run of the protocol, and does not receive the needed message to cause it to update
its key naturally. However, this system allows for replay attacks to cause a tag to
desynchronise its personal key with that stored by the verifier.

The analysis of the protocol in Tamarin revealed that it fails to satisfy the conditions
of Theorem 3.11, resulting in an attack.

Protocol Description.

The protocol is described in detail in the original paper. Here, we provide a simplified
description of the protocol for the sake of conciseness. For example, the attack
involves communication only between the reader and a single tag, so we focus on
only looking at one tag. We also adopt the slightly adapted notation from Table 5.1.
A diagram of the intended execution of the protocol is provided in Figure 5.3.

Attack Trace Description.

The grouping protocol has the advantage of requiring only two exchanged messages

90 Chapter 5. Desynchronisation Resistance

Reader

IDR, k
t
R, k

t+1
R

Tag

IDR, ktag

Adversary

(TS , D, I, δ1, δ2)

n′ ← δ1 ⊕ h(IDR ⊕ ktag)

ktag ← h(ktag)

Generate nA

DA ← D ⊕ nA

δA ← δ2 ⊕ nA

x← (TS ⊕ nA, DA, I, δ, ∗)

f(D)⊕ n′

x

n′ ← δ ⊕ h(IDR ⊕ ktag)

ktag ← h(ktag)

f(D)⊕ n′

FIGURE 5.2: Attack on EPC grouping protocol

TABLE 5.1: Notation used in the protocol of Abughazalah et al.

IDG The identity of the reader, a secret value
IDT The identity of the tag, a secret value
kG A secret key for the group being tested
kT A secret key for the specific tag being tested
TSt An encrypted timestamp, used in construction

of the proof
nR A fresh (random) nonce generated by the reader
nT A fresh (random) nonce generated by the tag
h(·) A cryptographic hash function

5.5. Case Study: A Two Round Grouping Protocol 91

during its main execution between the reader and tag. However, this results in a
vulnerability which leads to a desynchronisation attacks. The protocol was analysed
in Tamarin, with the server role merged into the reader role. This is because the
reader and server are assumed to have a secure communications channel.

Note that blocking the tag’s message to the reader during a run of the protocol leads
to a situation where the tag updates its secret, but the reader will not. The next time
the protocol runs, the tag will receive the first message from the reader. Regardless
of whether the reader updated the group key kG (which it may have, because of the
presence of other tags in the group completing the protocol), the tag will authenticate
to this message and update its key a further time. This attack is indicated in Figure 5.4.

The protocol in the previous section shows one method of attempting to overcome this
style of attack, by serving a payload encrypted with several keys and conditionally
updating depending on the key used – attempting to ensure that only outdated keys
are updated.

The authors seem aware of this problem, and suggest that it is possible for the server
to calculate future values of the tag’s key in order to prevent desynchronisation.
However, there exists the capability to perform replay former messages, causing the
tag to update its personal key arbitrarily many times.

As mentioned in the protocol paper, each tag stores previous nonces that they success-
fully authenticated to. However, an RFID tag has limited memory capacity - a typical
EPC Generation 2 tag (such as those mentioned in the paper) has around 512 bits
of storage space, meaning that there is very little space to store previously received
nonces.

As such, if an adversary is able to eavesdrop at least two runs of the protocol, a tag
will readily accept a replay of a message from a previous execution. At this point, the
tag will update its key. The adversary can then replay a different message, and repeat
this cycle as long as desired.

92 Chapter 5. Desynchronisation Resistance

Server

IDG, IDT , kG, kT

Reader

IDT

Tag

IDG, IDT , kG, kT

Generate TS t

TS t, IDG, kG

Generate nR

MR
G ← h(IDG, nR, kG)

K ← kG ⊕ h(IDG ⊕ nR)

nR,TS t,MR
G ,K

nR 6= nt−1
R

If MR
G 6= h(IDG, nR, kG)

kG ← K ⊕ h(IDG ⊕ nR)

Generate nT

MG ← h(IDG, nT , nR, kG, IDT)
MT ← h(IDT , nT , nR, kT ,TS t)

kG ← h(kG)
kT ← h(kT)

nT ,MT ,MG

MG = h(IDG, nT , nR, kG, IDT)

nt,MT ,MG

kG ← h(kG)
kT ← h(kT)

FIGURE 5.3: Two-rounds grouping proof protocol

5.5. Case Study: A Two Round Grouping Protocol 93

Reader

IDT

Tag

IDG, IDT , kG, kT

Adversary

Receive TSt1 , IDg , kG1

Generate nR1

MR
G1
← h(IDG, nR1

, kG1
)

K1 ← kG1
⊕h(IDG⊕nR1

)

nR1 ,TS t1 ,MR
G1

,K1

Generate nT

MG1
← h(IDG, nT , nR1

, kG1
, IDT)

MT1
← h(IDT , nT , nR1

, kT ,TS t1)

kG ← h(kG)
kT ← h(kT)

nT ,MT ,MG

Receive TSt2 , IDg , kG2

Generate nR2

MR
G2
← h(IDG, nR2 , kG2)

K ← kG2 ⊕ h(IDG ⊕ nR2)

nR2
,TS t2 ,MR

G2
,K2

kG ← K ⊕ h(IDG ⊕ nR2
)

kG ← h(kG)
kT ← h(kT)

nT ,MT ,MG

nR1 ,TS t1 ,MR
G1

,K1

kG ← K ⊕ h(IDG ⊕ nR1
)

kG ← h(kG)
kT ← h(kT)

nR2 ,TS t2 ,MR
G2

,K2

kG ← K ⊕ h(IDG ⊕ nR2
)

kG ← h(kG)
kT ← h(kT)

FIGURE 5.4: Attack on two-rounds grouping protocol

95

Bibliography

[ABG+17] Gildas Avoine, Xavier Bultel, Sébastien Gambs, David Gérault, Pascal
Lafourcade, Cristina Onete, and Jean-Marc Robert. A terrorist-fraud
resistant and extractor-free anonymous distance-bounding protocol.
In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates,
April 2-6, 2017, pages 800–814, 2017.

[ABK+11] Gildas Avoine, Muhammed Ali Bingöl, Süleyman Kardas, Cédric Lau-
radoux, and Benjamin Martin. A framework for analyzing RFID dis-
tance bounding protocols. Journal of Computer Security, 19(2):289–317,
2011.

[AL10] Yonatan Aumann and Yehuda Lindell. Security against covert ad-
versaries: Efficient protocols for realistic adversaries. J. Cryptology,
23(2):281–343, 2010.

[AMM16] Sarah Abughazalah, Konstantinos Markantonakis, and Keith Mayes.
Two rounds RFID grouping-proof protocol. In 2016 IEEE International
Conference on RFID, RFID 2016, Orlando, FL, USA, May 3-5, 2016, pages
161–174, 2016.

[AT09] Gildas Avoine and Aslan Tchamkerten. An efficient distance bound-
ing RFID authentication protocol: Balancing false-acceptance rate and
memory requirement. In ISC’09, pages 250–261, 2009.

[BB05] Laurent Bussard and Walid Bagga. Distance-bounding proof of knowl-
edge to avoid real-time attacks. In Security and Privacy in the Age of
Ubiquitous Computing, IFIP TC11 20th International Conference on Infor-
mation Security (SEC 2005), May 30 - June 1, 2005, Chiba, Japan, pages
223–238, 2005.

[BBD+91] Samy Bengio, Gilles Brassard, Yvo Desmedt, Claude Goutier, and Jean-
Jacques Quisquater. Secure implementations of identification systems.
J. Cryptology, 4(3):175–183, 1991.

[BC93] Stefan Brands and David Chaum. Distance-bounding protocols (ex-
tended abstract). In Advances in Cryptology - EUROCRYPT ’93, Workshop
on the Theory and Application of of Cryptographic Techniques, Lofthus, Nor-
way, May 23-27, 1993, Proceedings, pages 344–359, 1993.

96 BIBLIOGRAPHY

[BC10] David A. Basin and Cas J. F. Cremers. Modeling and analyzing security
in the presence of compromising adversaries. In Computer Security - ES-
ORICS 2010, 15th European Symposium on Research in Computer Security,
Athens, Greece, September 20-22, 2010. Proceedings, pages 340–356, 2010.

[BC14] David A. Basin and Cas Cremers. Know your enemy: Compromising
adversaries in protocol analysis. ACM Trans. Inf. Syst. Secur., 17(2):7:1–
7:31, 2014.

[BCSS09] David A. Basin, Srdjan Capkun, Patrick Schaller, and Benedikt Schmidt.
Let’s get physical: Models and methods for real-world security pro-
tocols. In Theorem Proving in Higher Order Logics, 22nd International
Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceed-
ings, pages 1–22, 2009.

[BD90] Thomas Beth and Yvo Desmedt. Identification tokens - or: Solving the
chess grandmaster problem. In Advances in Cryptology - CRYPTO ’90,
10th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1990, Proceedings, pages 169–177, 1990.

[Bla11] Bruno Blanchet. Using Horn clauses for analyzing security protocols.
Formal Models and Techniques for Analyzing Security Protocols, 5:86–111,
2011.

[BMV13] Ioana Cristina Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay.
Towards secure distance bounding. In Shiho Moriai, editor, Fast Software
Encryption – 20th International Workshop, FSE 2013, volume 8424 of LNCS,
Singapore, Republic of Singapore, February 2013. Springer. Invited
Talk by Serge Vaudenay.

[BRS16] David A. Basin, Sasa Radomirovic, and Lara Schmid. Modeling human
errors in security protocols. In IEEE 29th Computer Security Foundations
Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages
325–340, 2016.

[BV14] Ioana Boureanu and Serge Vaudenay. Optimal proximity proofs. In In-
formation Security and Cryptology - 10th International Conference, Inscrypt
2014, Beijing, China, December 13-15, 2014, Revised Selected Papers, pages
170–190, 2014.

[CBH03] Srdjan Capkun, Levente Buttyán, and Jean-Pierre Hubaux. SECTOR:
secure tracking of node encounters in multi-hop wireless networks.
In Proceedings of the 1st ACM Workshop on Security of ad hoc and Sensor
Networks, SASN 2003, Fairfax, Virginia, USA, 2003, pages 21–32, 2003.

[CCG16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-
compromise security. In IEEE 29th Computer Security Foundations Sym-
posium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 164–178,
2016.

BIBLIOGRAPHY 97

[CCG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and
Kevin Milner. On ends-to-ends encryption: Asynchronous group mes-
saging with strong security guarantees. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pages 1802–1819, 2018.

[CdRS18] Tom Chothia, Joeri de Ruiter, and Ben Smyth. Modelling and analysis
of a hierarchy of distance bounding attacks. In 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018., pages 1563–1580, 2018.

[CGdR+15] Tom Chothia, Flavio D. Garcia, Joeri de Ruiter, Jordi van den Breekel,
and Matthew Thompson. Relay cost bounding for contactless EMV
payments. In Financial Cryptography and Data Security - 19th International
Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised
Selected Papers, pages 189–206, 2015.

[CM12] Cas Cremers and Sjouke Mauw. Operational Semantics and Verification
of Security Protocols. Information Security and Cryptography. Springer,
2012.

[CO99] Ran Canetti and Rafail Ostrovsky. Secure computation with honest-
looking parties: What if nobody is truly honest? (extended abstract).
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 255–264, 1999.

[CRSC12] Cas J. F. Cremers, Kasper Bonne Rasmussen, Benedikt Schmidt, and
Srdjan Capkun. Distance hijacking attacks on distance bounding proto-
cols. In IEEE Symposium on Security and Privacy, S&P 2012, 21-23 May
2012, San Francisco, California, USA, pages 113–127, 2012.

[DD19] Alexandre Debant and Stéphanie Delaune. Symbolic verification of
distance bounding protocols. In International Conference on Principles of
Security and Trust, pages 149–174. Springer, 2019.

[DDW19] Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling. Symbolic
analysis of terrorist fraud resistance. In European Symposium on Research
in Computer Security, pages 383–403. Springer, 2019.

[Des88] Yvo Desmedt. Major security problems with the “unforgeable" (Feige)-
Fiat-Shamir proofs of identity and how to overcome them. In SECURI-
COM’88, pages 15–17, 1988.

[DFKO11] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. A
formal approach to distance-bounding RFID protocols. In Information
Security, 14th International Conference, ISC 2011, Xi’an, China, October
26-29, 2011. Proceedings, pages 47–62, 2011.

[DGB87a] Yvo Desmedt, Claude Goutier, and Samy Bengio. Special uses and
abuses of the fiat-shamir passport protocol. In CRYPTO’87, pages
21–39, 1987.

98 BIBLIOGRAPHY

[DGB87b] Yvo Desmedt, Claude Goutier, and Samy Bengio. Special uses and
abuses of the Fiat-Shamir passport protocol. In Advances in Cryptology
- CRYPTO ’87, A Conference on the Theory and Applications of Crypto-
graphic Techniques, Santa Barbara, California, USA, August 16-20, 1987,
Proceedings, pages 21–39, 1987.

[DLM04] Nancy A. Durgin, Patrick Lincoln, and John C. Mitchell. Multiset
rewriting and the complexity of bounded security protocols. Journal of
Computer Security, 12(2):247–311, 2004.

[EMV18a] EMVCo. EMV Contactless Specifications for Payment Systems, Book C-2,
Kernel 2 Specification, Version 2.7. April 2018.

[EMV18b] EMVCo. EMV Contactless Specifications for Payment Systems, Book C-3,
Kernel 3 Specification, Version 2.7. April 2018.

[FDC11] Aurélien Francillon, Boris Danev, and Srdjan Capkun. Relay attacks on
passive keyless entry and start systems in modern cars. In Proceedings
of the Network and Distributed System Security Symposium, NDSS 2011,
San Diego, California, USA, 6th February - 9th February 2011, 2011.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity
of secure computation (extended abstract). In Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria,
British Columbia, Canada, pages 699–710, 1992.

[GAA11] Ali Özhan Gürel, Atakan Arslan, and Mete Akgün. Non-uniform
stepping approach to RFID distance bounding problem. In
DPM’10/SETOP’10, volume 6514 of LNCS, pages 64–78, 2011.

[HK05] Gerhard P. Hancke and Markus G. Kuhn. An RFID distance bounding
protocol. In SecureComm’05, pages 67–73, 2005.

[HM97] Martin Hirt and Ueli M. Maurer. Complete characterization of adver-
saries tolerable in secure multi-party computation (extended abstract).
In Proceedings of the Sixteenth Annual ACM Symposium on Principles of
Distributed Computing, Santa Barbara, California, USA, August 21-24, 1997,
pages 25–34, 1997.

[JJ13] Seung Wook Jung and Souhwan Jung. HRP: A HMAC-based RFID
mutual authentication protocol using PUF. In International Conference
on Information Networking (ICOIN), pages 578–582. IEEE, 2013.

[KA09] Chong Hee Kim and Gildas Avoine. RFID distance bounding protocol
with mixed challenges to prevent relay attacks. In CANS’09, pages
119–133, 2009.

[KA11] Chong Hee Kim and Gildas Avoine. RFID distance bounding protocols
with mixed challenges. IEEE Trans. on Wireless Comm., 10(5):1618–1626,
2011.

BIBLIOGRAPHY 99

[KAK+08] Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier
Standaert, and Olivier Pereira. The Swiss-Knife RFID distance bound-
ing protocol. In Information Security and Cryptology - ICISC 2008, 11th
International Conference, Seoul, Korea, December 3-5, 2008, Revised Selected
Papers, pages 98–115, 2008.

[KKBD12] Süleyman Kardas, Mehmet Sabir Kiraz, Muhammed Ali Bingöl, and
Hüseyin Demirci. A novel RFID distance bounding protocol based on
physically unclonable functions. In RFIDSec’11, volume 7055 of LNCS,
pages 78–93. Springer, 2012.

[KLT10] Marc Kuhn, Heinrich Luecken, and Nils Ole Tippenhauer. UWB im-
pulse radio based distance bounding. In 7th Workshop on Positioning
Navigation and Communication, WPNC 2010, Dresden Germany, 11-12
March 2010, Proceedings, pages 28–37, 2010.

[KP09] Gaurav Kapoor and Selwyn Piramuthu. Vulnerabilities in some recently
proposed RFID ownership transfer protocols. In First International
Conference on Networks & Communications, pages 354–357. IEEE, 2009.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure diffie-hellman
protocol. In Advances in Cryptology - CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, pages 546–566, 2005.

[LLM07] Brian A. LaMacchia, Kristin E. Lauter, and Anton Mityagin. Stronger
security of authenticated key exchange. In Provable Security, First Inter-
national Conference, ProvSec 2007, Wollongong, Australia, November 1-2,
2007, Proceedings, pages 1–16, 2007.

[LM06] Kristin E. Lauter and Anton Mityagin. Security analysis of KEA au-
thenticated key exchange protocol. In Public Key Cryptography - PKC
2006, 9th International Conference on Theory and Practice of Public-Key
Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, pages
378–394, 2006.

[Low97] Gavin Lowe. A hierarchy of authentication specifications. In 10th
Computer Security Foundations Workshop (CSFW ’97), June 10-12, 1997,
Rockport, Massachusetts, USA, pages 31–44, 1997.

[LW07] Ticyan Li and Guilin Wang. Security analysis of two ultra-lightweight
RFID authentication protocols. In New Approaches for Security, Privacy
and Trust in Complex Environments, pages 109–120. Springer, 2007.

[LXC14] Qing-Shan Li, Xiao Lin Xu, and Zhong Chen. PUF-based RFID own-
ership transfer protocol in an open environment. In 15th International
Conference on Parallel and Distributed Computing, Applications and Tech-
nologies, pages 131–137. IEEE, 2014.

100 BIBLIOGRAPHY

[MBK10] Sreekanth Malladi, Bezawada Bruhadeshwar, and Kishore Kotha-
palli. Automatic analysis of distance bounding protocols. CoRR,
abs/1003.5383, 2010.

[MP08] Jorge Munilla and Alberto Peinado. Distance bounding protocols for
RFID enhanced by using void-challenges and analysis in noisy channels.
Wireless Communications and Mobile Computing, 8(9):1227–1232, 2008.

[MPP+07] Catherine A. Meadows, Radha Poovendran, Dusko Pavlovic, LiWu
Chang, and Paul F. Syverson. Distance bounding protocols: Authentica-
tion logic analysis and collusion attacks. In Secure Localization and Time
Synchronization for Wireless Sensor and Ad Hoc Networks, pages 279–298.
2007.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The
TAMARIN prover for the symbolic analysis of security protocols. In
Computer Aided Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings, pages 696–701,
2013.

[MSTPTR18] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua.
Automated identification of desynchronisation attacks on shared se-
crets. In European Symposium on Research in Computer Security, 2018.

[MSTPTR19] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua.
Post-collusion security and distance bounding. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2019.

[MSTT18] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua.
Distance-bounding protocols: Verification without time and location.
In 2018 IEEE Symposium on Security and Privacy, S&P 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA, pages 549–566, 2018.

[MTT16a] Sjouke Mauw, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. A class of
precomputation-based distance-bounding protocols. In EuroS&P’16,
pages 97–111, 2016.

[MTT16b] Sjouke Mauw, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. Optimality
results on the security of lookup-based protocols. In Radio Frequency
Identification and IoT Security - 12th International Workshop, RFIDSec 2016,
Hong Kong, China, November 30 - December 2, 2016, Revised Selected Papers,
pages 137–150, 2016.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
- A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[PTDC11] Christina Pöpper, Nils Ole Tippenhauer, Boris Danev, and Srdjan Cap-
kun. Investigation of signal and message manipulations on the wireless
channel. In ESORICS’11, pages 40–59, 2011.

BIBLIOGRAPHY 101

[RC10] Kasper Bonne Rasmussen and Srdjan Capkun. Realization of RF dis-
tance bounding. In USENIX Security’10, pages 389–402, 2010.

[RD15] Sasa Radomirovic and Mohammad Torabi Dashti. Derailing attacks.
In Security Protocols XXIII - 23rd International Workshop, Cambridge, UK,
March 31 - April 2, 2015, Revised Selected Papers, pages 41–46, 2015.

[RNTS07] Jason Reid, Juan Manuel González Nieto, Tee Tang, and Bouchra
Senadji. Detecting relay attacks with timing-based protocols. In Pro-
ceedings of the 2007 ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS 2007, Singapore, March 20-22, 2007, pages
204–213, 2007.

[SAKM15] Keerti Srivastava, Amit K. Awasthi, Sonam Devgan Kaul, and R. C.
Mittal. A hash based mutual RFID tag authentication protocol in
telecare medicine information system. J. Medical Systems, 39(1):153,
2015.

[SDPZ14] Saravanan Sundaresan, Robin Doss, Selwyn Piramuthu, and Wanlei
Zhou. A robust grouping proof protocol for RFID EPC C1G2 tags. IEEE
Trans. Information Forensics and Security, 9(6):961–975, 2014.

[SDZ13] Saravanan Sundaresan, Robin Doss, and Wanlei Zhou. Secure own-
ership transfer in multi-tag/multi-owner passive RFID systems. In
Globecom 2013 - Symposium on selected areas in communications, pages
2891–2896. IEEE, 2013.

[SDZ15] Saravanan Sundaresan, Robin Doss, and Wanlei Zhou. Zero knowl-
edge grouping proof protocol for RFID EPC C1G2 tags. IEEE Trans.
Computers, 64(10):2994–3008, 2015.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[SMC00] Paul Syverson, Catherine Meadows, and Iliano Cervesato. Dolev-Yao
is no better than Machiavelli. In First Workshop on Issues in the Theory of
Security, WITS’00, Geneva, Switzerland, July 7-8, 2000, pages 87–92, 2000.

[SSBC09] Patrick Schaller, Benedikt Schmidt, David A. Basin, and Srdjan Capkun.
Modeling and verifying physical properties of security protocols for
wireless networks. In Proceedings of the 22nd IEEE Computer Security
Foundations Symposium, CSF 2009, Port Jefferson, New York, USA, July
8-10, 2009, pages 109–123, 2009.

[SZ16] Da-Zhi Sun and Ji-Dong Zhong. Cryptanalysis of a hash based mutual
RFID tag authentication protocol. Wireless Personal Communications,
91(3):1085–1093, 2016.

[TDJM+11] Peter Thueringer, Hans De Jong, Bruce Murray, Heike Neumann, Paul
Hubmer, and Susanne Stern. Decoupling of measuring the response
time of a transponder and its authentication, March 2011. US Patent
No. US12994541.

102 BIBLIOGRAPHY

[TMA10] Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. The
poulidor distance-bounding protocol. In RFIDSec’10, pages 239–257,
2010.

[TW86] Martin Tompa and Heather Woll. How to share a secret with cheaters.
In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA,
1986, Proceedings, pages 261–265, 1986.

[vDMRV09] Ton van Deursen, Sjouke Mauw, Sasa Radomirovic, and Pim Vullers.
Secure ownership and ownership transfer in RFID systems. In ES-
ORICS’09, pages 637–654, 2009.

103

Part II

Multiparty Protocols

105

Chapter 6

Path Protocols

For the second part of this thesis, our attention turns to security goals
for multiparty protocols. Traditionally, many such protocols have been
modelled as two-party systems, abstracting away the less relevant parties
and focusing on the interaction between two principal agents. However, an
increasing quantity of modern research has identified the value of avoiding
this coarse-grained approach.

This chapter focuses on the concept of “path protocols”. Such protocols
involve a message being forwarded through a series of connected agents,
who may or may not have access to the message contents. Instead of
analysing the security of the payload, this chapter discusses the problem
of modelling the integrity of the path itself. Though this formally presents
itself as an authentication-style property, the implications of an attack
against path integrity can lead to a variety of consequences depending on
the specific domain.

We highlight three main usecases where path protocols are deployed. In mul-
tiparty TLS, middleboxes augment the ecosystem by granting additional
functionality such as content filtering or redirection. In mixnet protocols,
message forwarding is deployed to grant anonymity to the endpoints. Fi-
nally, payment networks represent a relatively modern class of protocols
in which the path of a message is constrained by an underlying network
topology - the collection of active channels through which a payment can be
routed. Although the purpose of each of these protocol families is different,
we argue that they share a common underlying structure, such that we can
define security goals which are relevant across all domains.

The work in this chapter is based on a paper titled “Taking Shortcuts: Mod-
elling Agent-Skipping Attacks in Message Forwarding Protocols”, which is
currently unpublished.
One of the case studies, regarding TLS, is delayed until the following chapter,
where it has additional relevance.

106 Chapter 6. Path Protocols

6.1 Introduction to Path Protocols

The TLS protocol [DR08, Res18] is used for an overwhelming majority of modern web
communication. TLS users often deploy services such as firewalls or load balancers,
which intercept messages, redirecting or modifying their contents. These entities,
known as TLS middleboxes, necessitate modifications to the TLS protocol in order
to support multiple parties. Currently, the most common approach in handling
this is known as Split TLS [JU12], in which the TLS session is “split" into a series
of completely disjoint sessions between each pair of intermediate agents. Security
concerns about Split TLS [dCdCM16, DMS+17] have lead to new solutions, such as
mcTLS [NSV+15], which propose extensions to the TLS protocol suite.

Mixnets and Onion Routing protocols also involve sending messages along a path.
Such protocols originate from Chaum [Cha81] (in this case, with email in mind).
Modern protocols such as The Onion Router [SDM04] and Sphinx [DG09] are built
in a similar way. A novel application of onion routing is shown in the relatively
new field of payment networks. Perhaps the most notable of these is the Lightning
Network [PD16], proposed in 2016. In this system, Bitcoin transactions are made
dramatically faster through pairs of agents maintaining off-chain payment channels.
A core component of the Lightning Network is the concept of chained payments, in
which an agent can send funds to a peer through a series of such channels.

Several attacks have been highlighted on protocols from each of these domains [KW03,
MMSS+19]. Intuitively, these attacks arise from the use of shortcuts: redirecting or
modifying messages in order to bypass one or more agents in the chain. Although
the structure of these attacks is similar between use cases, the implications can differ
greatly.

FIGURE 6.1: Agents M1 and M3 collude to bypass M2. Dashed lines
indicate out-of-band communication

In order to protect against such attacks, protocols require a notion of path integrity.
Participating parties must be sure that sent messages can flow only in the way that
is intended by the initiating agents. For TLS, the principal agents want to ensure
that their middleboxes are being respected. For example, it must not be possible
to bypass a content filter, lest malicious injected code could reach an endpoint. For
onion-style protocols, the sender wishes to preserve privacy by guaranteeing that
the message travels only between the trusted intermediaries. Finally, for payment
networks, intermediate agents must be assured that if they assist in a payment by
forwarding a message, they are guaranteed to receive their transaction fees during
the resolution stage.

6.1. Introduction to Path Protocols 107

Formal methods have been used to analyse security protocols for some time. Many of
the core definitions stem from the work of Lowe [Low97]. Symbolic models [Bla12]
for analysis of protocols have become popular in recent years due to the increasing
effectiveness of automated verification tools such as Tamarin [MSCB13, The18] and
ProVerif [Bla13].

In this work we present a theory which links together protocols from each of the
different domains under a common framework. Further, we show that each of the
attacks found in the literature can be captured as failure to satisfy one of a small set
of security goals.

Contributions.
Our contributions are as follows:

• We introduce a symbolic framework, built upon the multiset rewriting model,
that can be used to describe the structure of ‘path-based’ protocols.

• We give a formal definition of the path integrity security goal inside this frame-
work.

• We demonstrate the threat posed by message-skipping attacks through case
studies on two next-gen protocols: the mbTLS extension to TLS and the Bitcoin
Lightning Network.

• We provide a collection of models of a range of protocols from the literature
using the Tamarin prover tool, showing the applicability of our framework.

Related Work.
A key focus in the design of Onion routing systems is the consideration of various
security tradeoffs with regards to anonymity features [SB08]. However, our review of
the literature revealed no formal analysis regarding the integrity of a path in such
protocols.

Although significant security analysis has been put into the core TLS protocol
suite [CHH+17, BBK17], the security discussion of middlebox-enabled extensions
is still somewhat limited. Some formal models have been created for accountable
proxying, such as those of Bhargavan et al. [BBD+18, BBF+17]. However, these focus
more on end-to-end authentication guarantees in the presence of proxies, avoiding
discussion of path integrity. They also use the computational setting, rather than a
symbolic model such as the one we present here. The mbTLS [NLG+17] extension for
TLS gives an informal description of path integrity, under a different security model;
that is, all the agents are trusted based on Intel SGX [Int17]. Another middlebox-
oriented TLS extension, maTLS [LSL+19], provides a definition of path integrity for
their specific use-case.

When it comes to payment networks, much thought has been put into improving
their efficiency – both in optimising the discovery of channels on the network, and in
choosing an optimal path for a payment to travel through [RMSKG17, RLT17, PN18].
Malavolta et al. [MMSS+19] describe a wormhole attack on the Lightning network,

108 Chapter 6. Path Protocols

A B C

nonce p

sig = sign(p, skA)

{{p, sig}pkC}pkB {p, sig}pkC

FIGURE 6.2: A simple message forwarding protocol.

similar to those demonstrated on wireless sensor networks [KW03], and propose a
scheme to fix it. Our model can be used to both detect this attack and prove resistance
of their amended version in an automated manner, whilst their proof relies on a
lengthy construction in the computational model. Finally, while Malavolta et al.
give an impossibility result on the existence of secure two-round payment protocols,
we instead show that under our set of assumptions such protocols can indeed be
constructed using only standard cryptographic primitives. The full discussion is
given in Section 6.4.

Recent work by Bursuc and Kremer [BK19] takes steps into modelling aspects of
the Bitcoin cryptocurrency in the symbolic setting. However, to the best of our
knowledge, no attempts have been made to analyse the security of the Lightning
Network using symbolic models.

6.2 A Framework for Path Protocols

In this section we introduce the notion of a path protocol, building on the notation
from the previous section. We break down the structure of a path protocol into a set
of phases, and describe each of these phases as a collection of generic rules. In the
appendices we give several examples of protocols modelled in such a way.

Running Example

Consider the multi-party message forwarding protocol shown in Figure 6.2, which
uses Public Key encryption.

Intuitively, the agent A wants an intermediate agent B to forward a message p to
C. This is achieved by using nested encryption. The protocol is depicted with one
forwarding agent B, but indeed it could be trivially extended for any number of
forwarding agents.

6.2. A Framework for Path Protocols 109

It would be relatively straightforward to model this protocol for a fixed number of
agents, by specifying the value of the message at each step of execution. However,
this design quickly becomes cumbersome as the number of agents grow. Moreover, it
requires a separate model for each number of agents. Instead, we construct a single
model which accounts for any number of agents.

Modelling Multi-Step Messages

We now build a set of rewriting rules which allow us to specify protocols that use
these multi-step messages. Intuitively, such messages are constructed by “wrapping”
layers of encryption on top of each other.

This approach will allow us to define path protocols, which we break down into a
series of phases.

Definition 2.1. Path Protocols (Notion)

A Path Protocol is a protocol in which rules (other than those modelling adversary capabilities)
can be categorised as belonging to one of the following phases:

• Setup Phase: A preliminary phase in which agents’ encryption keys are established

• Construction Phase: An initial agent creates a message from a payload, by configur-
ing it to pass through a series of intermediate agents

• Forwarding Phase: Each intermediate agent receives, repackages and forwards the
message

• Receive Phase: The intended recipient receives the final message and retrieves the
payload.

Throughout the course of our discussion, we will generally use the name p to refer
to the payload – the intended value for the final recipient. The name m will be used
to refer to messages sent between agents – including things like encryption (which
we do model) and header or miscellaneous data (which we do not). We make the
assumption that for each individual session, the payload will always contain some
session data or randomness that makes it unique, and thus suitable as a session
identifier.

Over the course of this section, we build a framework of generic rules which is
sufficient to cover each of the individual phases in Definition 2.1. This resulting set of
rules can be used to describe a large majority of path protocols. We finish with a full
specification of the example protocol from Figure 6.2 in this framework. In Section 6.3
we will discuss extending this model with additional phases to handle certain classes
of protocols with additional requirements.

Setup Phase.

Our execution model begins with the empty multiset. In order for the protocol to
begin, agents must be instantiated and assigned encryption keys. This includes

110 Chapter 6. Path Protocols

asymmetric keys owned by individuals, as well as shared keys between pairs of
agents.

Our models will make use of the Gen_ShKey and Gen_Ltk rules for generating encryp-
tion keys, specified as follows:

Gen_ShKey :=
[

Fr(k)
]
−−−→

[
!ShKey(A, B, k)

]

Gen_Ltk :=
[

Fr(ltk)
]
−−−→




!Ltk(A, ltk)
!Pk(A, pk(ltk))
Net(pk(ltk))




We also allow for the corruption of agents created during the setup phase. We will
assume that the initiating agent in each session is honest, but allow all other agents to
be under full adversarial control.

Construction Phase.

The Construction Phase represents the beginning of a session of the protocol. We
break this down into three rules – a Create rule which determines the payload, a Wrap
rule which modifies the message to pass through an intermediate agent, and finally a
Send rule, in which the message is released onto the communication network.

Implicit in the application of these rules is the notion of a path order. Intuitively, this is
a relation that models the (intended) order in which the message will pass between
protocol participants.

Definition 2.2. Path Order

A Path Order is a total order <π on a (finite) set of public terms. We call the minimal element
A of <π the initial agent, the maximal element E the final agent, and all other elements Mi

intermediate agents.

The construction phase that takes place in each run of the protocol will define the
path order for that execution. As a result, this enables a different path to be chosen
for each session. We assume that our protocols are designed such that paths are
non-repeating (i.e. the path order is always well-defined). A path order need not
include all agent identifiers, and so the path can be of any length. The idea of a path
order allows us to present an informal notion for the Path Integrity security goal that
we will define in the next section.

Definition 2.3. Path Integrity (Notion)

A protocol satisfies path integrity if for every session, for all Mi and Mj such that Mi <π Mj,
if Mj has forwarded the message, then Mi has also forwarded the message.

In order to formalise this notion, we will make use of expected messages. We define the
linear fact Build(p, M, msg), which represents the message as it is being constructed:
the payload p is used as a unique path identifier, while the second and third terms
indicate the current agent being considered as well as the current value of the message

6.2. A Framework for Path Protocols 111

(for example, as successive layers of cryptography are applied). For more complex
protocols, additional parameters may be added to the ShKey fact to track state. The
event fact Add represents that an agent has been added to the path. It is parameterised
by the path identifier, the agent who has been added to the path, and how the
initiating party anticipates the message will be altered as it passes through them (for
example, through de- or re-encryption). The StartBuild event fact is used to mark the
beginning of the protocol execution.

These facts are used by three rules during this phase. In the first rule, the initiating
agent determines the payload to be sent to the other endpoint.The second rule is
repeatedly applied to add new intermediate agents to the path in order, each time
replacing the current ShKey fact with a new version containing any required changes
to the message. Finally, the last rule sends the message on to the network:

[
Fr(p)
!Pk(E, pkE)

]Add(p,E, f (p),‘’)
StartBuild(A,p)−−−−−−−−→

[
Build(p, E, f (p))

]

[
Build(p, Mi, m)

!Pk(Mj, pkJ)

]
Add(p,Mi ,m,g(m))−−−−−−−−−−→

[
Build(p, Mj, g(m))

]

[
Build(p, M1, m)

]
−−−→

[
Net(m)

]

We use anonymous functions f and g to depict how the message is changed – these
are instantiated for each specification based on the protocol in question. For our
example protocol, f is pairing with a signature, and g is asymmetric encryption using
a public key.

The ordering of Add facts in any given trace establishes a path order <π: If the Add
fact for Mi is added to the trace before that of Mj, we have that Mi <π Mj.

Forwarding Phase.

The forwarding phase of the protocol occurs as intermediate agents transceive the
message We model this with the use of the Unwrap rule, in which each intermediate
agent forwards the message.

The exact nature of this forwarding is dependent on the protocol – it may involve de-
or re-encryption, or reading information about how to route the forwarded message.

[
Net(m)

!Ltk(Mi, ltk)

]
Forward(Mi ,m, f (m))−−−−−−−−−−−→

[
Net(f (m))

]

We introduce the Forward fact to denote that the agent has forwarded the message,
including the values it has changed from and to. In a faithful execution of the protocol,
the parameters of these facts should agree with those in the Add facts created in the
Construction phase.

112 Chapter 6. Path Protocols

Receive Phase.

The last step of a protocol is upon the successful receipt of the payload by the
endpoint.

[
Net(f (p))
!Ltk(E, ltkE))

]
Forward(E, f (p),‘’)−−−−−−−−−−→

[
−

]

The Receive rule may include validation of the final payload. For example, in the
example protocol, the final agent must ensure that the attached signature matches
the payload. More advanced validation is discussed in the following section.

Rule Summary

Figure 6.3 shows a set of rewriting rules which model the simple example protocol
from Figure 6.2.

Setup

Gen_Ltk :=
[

Fr(ltk)
]
−−−→




!Ltk(A, ltk)
!Pk(A, pk(ltk))
Net(pk(ltk))




Construction

Create :=




Fr(p)
!Pk(E, pkE)
!Ltk(A, ltkA)




Add(p,E,{p,sign(p,ltkA)}pkE ,‘′)
StartBuild(A,p)−−−−−−−−−−−−−−−−−−→

[
Build(p, E, {p, sign(p, ltkA)}pkE)

]

Wrap :=
[

Build(p, Mi, m)
!Pk(Mj, pk)

]
Add(p,E,m,{m}pk)−−−−−−−−−−→

[
Build(p, Mj, {m}pk)

]

Send :=
[

Build(p, M1, m)
]
−−−→

[
Net(m)

]

Forwarding

Unwrap :=
[

Net({m}pk(ltk))

!Ltk(Mi, ltk)

]
Forward(Mi ,{m}pk(ltk) ,m)
−−−−−−−−−−−−−−→

[
Net(m)

]

Receive

Receive :=




Net({p, sig}pk(ltkE))

!Ltk(E, ltkE))
!Pk(A, pkA)




Forward(E,{p,sig}pk(ltkE) ,‘′)
Equal(verify(sig,p,pkA),true)−−−−−−−−−−−−−−−−→

[−]

FIGURE 6.3: Full set of rewriting rules for the example protocol given
in Figure 6.2.

6.3. Security Goals for Path Protocols 113

6.3 Security Goals for Path Protocols

We introduce three security goals to cover the range of protocols built in the frame-
work from the previous section. The first, Path Integrity, covers the simplest case
of message forwarding protocols. We then extend the framework with Verification-
dependent Path Integrity, in which Path Integrity is made conditional on the receiving
party validating the received message.

Finally, for protocols in which a response message is sent along the original path, we
define Path Symmetry.

Intuition

The intuition behind the structure of our security goals is as follows. Given a specific
protocol session, we assume that a path order <π has been defined by a sequence of
events. We then examine the case that some agent Mi has successfully forwarded the
message. Our goal is satisfied if there is (fundamentally) only one way to fill the gap
between these events: that each intermediate agent Mj such that Mj <π Mi has also
forwarded the message.

These claims can be verified (or falsified) by considering a partial trace that contains
the indicated facts added at specific times. We then reason ‘backwards’, attempting
to reconstruct a sequence of rules from the empty multiset to this state. The secu-
rity property holds if all trace reconstructions necessarily satisfy the postconditions
indicated in the claim.

Path Integrity

We begin by formalising Definition 2.3, the idea of path integrity. This goal represents
the initiating agent’s belief that a sent message will indeed travel through the list of
intermediate agents in the intended path in the correct order. Intuitively, this requires
a correspondence between the order in which agents were named in applications of
the Wrap and Unwrap rules.

Definition 3.1. Path Integrity

We say that a protocol P satisfies Path Integrity if and only if all traces τ ∈ Traces(P) satisfy
the property displayed in Figure 6.4.

Figure 6.4 includes a breakdown of the intuition matching the security property. Note
that we must split the case that an agent has forwarded a message to also consider
that the agent may be corrupt. In this case, it is possible that the adversary could
have forwarded the message on their behalf. In such a situation, the path order is still
preserved, as the message was still forwarded at the correct time.

This definition considers the case where the wrapping functions are applied in the
opposite order to the path through the agents (i.e. the first agent added to the path is
the last to receive the message). This is in line with many onion-based protocols, but

114 Chapter 6. Path Protocols

can be trivially amended to consider the other case by changing the ordering of #tai

and #taj.

Verification-Dependent Path Integrity

The security property defined in the previous section can be seen as on-the-fly security:
if verified, it ensures that path integrity holds even while a message is in-flight. This
is common for onion-style protocols, which use layered encryption such that the
message can only be decrypted in a specific order. However, for many protocols, this
requirement might be too strict – we may want to loosen it to only consider completed
sessions.

This approach is typical in TLS-style protocols [NSV+15, LSL+19, LCS+19], where
an additional verification phase exists to ensure that a session has executed completely.
To account for this case, we extend our model by introducing a new set of rules. Our
security definition is amended to only apply to protocols in which the verification
phase has completed.

Verification Phase.

The verification phase takes place at the end of the protocol execution. We assume that
the final message received by the endpoint can be broken into two main parts: one
containing the session payload (or some function thereof), and another which includes
any additional validation data, such as signatures appended by the intermediate
agents.

We modify the Receive rule to include an instance of the Check(E, f (p), m) fact,
separating these two components. Successive applications of a Verify rule then

∀A, Mi, Mj, pID, fi, ti, f j, tj,
#tai, #taj, #tki, #ts.

(6 ∃#tac. Corrupt(A)@tac) Suppose A is an honest agent
∧ StartBuild(A, pID)@ts who starts a session ID pID

∧Add(pID, Mi, fi, ti)@tai adding agents Mi. . .
∧Add(pID, Mj, f j, tj)@taj . . . and Mj to the path
∧(#ts < #tai < #taj) such that Mj <π Mi

∧
(

Forward(Mi, fi, ti)@tki
)

and Mi has successfully forwarded the message
=⇒ then
∃#tkj. (#tkj < #tki) at some earlier time
∧
(

either:(
Forward(Mj, f j, tj)@tkj

)
Mj forwarded the message

∨
(
∃ #tcj. Corrupt(Mj)@tcj∧ or Mj is corrupt, and
K(〈 f j, tj〉)@tkj

)
the adversary had the necessary knowledge)
to forward the message

FIGURE 6.4: Statement of the Path Integrity security goal, along with
corresponding intuition

6.3. Security Goals for Path Protocols 115

check the validation data added by each intermediate agent in turn. A final rule runs
after all verification steps to confirm successful completion.

[
Check(E, f (p), m)

!Pk(Mi, pkMi))

]
−−−−→

[
Check(E, g(p), l(m))

]

[
Check(E, p, ‘’)
!Pk(A, pkA))

]
Complete(E, f (p))−−−−−−−−−→

[
−

]

As in similar rules, anonymous functions f , g, l are used to denote the changing
values of the payload and validation portions of the message as it is decomposed
between verification steps. These functions are instantiated for individual protocols –
e.g., by stripping off a signature from a chain.

The security definition for Verification-Dependent Path Integrity differs only in the
addition of an event marking that verification was successful at the end of the proto-
col’s execution. This is achieved with the Complete event fact, which appears only
in the final rule of the protocol. As it includes the path identifier it can be readily
associated with the corresponding StartBuild fact.

If necessary, additional security requirements could be placed on this verification
phase – for example, that agents are verified in the same order that the message was
forwarded. This requirement can typically be encoded in the structure of the Verify

rule (e.g. by including a list of agents by intended order alongside the payload in the
packet received by the final party).

Path Symmetry

So far, we have considered only protocols in which a single message is sent between
two endpoints. We now consider protocols containing a response message. For such
protocols, one desired goal may be Path Symmetry. Intuitively, this is the notion that
the reply should follow the same path as the original message. This is particularly
relevant for payment network systems, in which an intermediate agent (who aids in
forwarding a payment) is often only able to claim their transaction fee by reading
a component of the response message. While Path Integrity focuses on ensuring
that a protocol proceeds according to the initiating agent’s plan, Path Symmetry is a
requirement on the execution order for the reply in relation to the original message.

Our model can be readily extended to capture Path Symmetry with the following
approach.

• The Receive rule is replaced with a new Reply rule. If necessary, this rule can
be broken down into several wrapping rules, similar to the Construction phase.

• A new set of rules are defined to represent message forwarding in a Response
phase. These rules make use of Backward facts to represent the expected and
actual messages sent (in the same vein as Forward facts).

116 Chapter 6. Path Protocols

• We assume that honest agents are aware of the “direction” of a message, and will
only assist in the Response phase if they have already forwarded the original
message. This is a consequence of the structure of protocols for which Path
Symmetry is an important goal – in cases where there is no relation between
the original message and its response, the protocol can instead be divided into
two separate executions. For example, a response message might necessarily
contain a hash or signature of the original request. This is modelled by adding
a new linear fact to the Forward rule to model the internal state the forwarding
agent. This rule is used to enforce a functional relationship between the original
message and the reply.

With these modifications in place, we can express path symmetry. Intuitively, this
requires that there be a relationship between the order messages are sent in the
Forwarding and Response phases. Unlike Path Integrity, our definition considers
only pairs of adjacent agents; universal quantification ensures that it indeed applies
to the total path order.

Definition 3.2. Path Symmetry

We say that a protocol P satisfies Path Symmetry if and only if for all traces τ ∈ Traces(P),
the following property holds:

∀Mi, Mj, fi, tj, ti, x, y,

#t fi, #t f j, #tri, .

(6 ∃#tcj. Corrupt(Mj)@tcj)

∧ Forward(Mj, x, tj)@t f j

∧
(
(

Forward(Mi, fi, x)@t fi

∧ Backward(Mi, y, ti)@tri)
∨
(

∃#tci.

Corrupt(Mi)@tci

∧K(〈 fi, x〉)@t fi

∧K(〈y, ti〉)@tri))

∧ (#t fi < #t f j < #tri)

=⇒
∃ f j, #trj. (#t f j < #trj < #tri)

∧ Backward(Mj, f j, y)@trj

The security claim can be seen as being made from the perspective of an intermediate
agent (here, Mj), who wishes to ensure that if they assist in forwarding an incoming
message from Mi, then Mi cannot later forward the return message without Mj’s
continued participation (i.e., a Backward(Mj, . . .) event). As such, security claims do
not directly refer to a path identifier, as an intermediate agent may not be aware of

6.4. Case Study: Lightning Network 117

kAB

A

kDE, x

E
h(x)

kAB, kBC

B

kBC, kCD

C

kCD, kDE

D

{h(x)}kAB {h(x)}kBC {h(x)}kCD {h(x)}kDE

{x}kDEx{x}kAB

FIGURE 6.5: Simplified attack on the Lightning payment forwarding
protocol. Dashed lines indicate out-of-band communication

this value. As with Path Integrity, we split Mi’s actions into two cases. Either Mi

is honest, and performs the message forwarding actions, as expected, or they are
corrupt, and the adversary has the necessary knowledge to perform the message
forwarding on their behalf.

6.4 Case Study: Lightning Network

We now look at the Lightning Network, a second-layer protocol designed to run on
top of the Bitcoin cryptocurrency. The aim of the Lightning Network is to increase
network speeds by resolving many transactions “off-chain”. At its core, this is done
by pairs of agents maintaining an unpublished contract, which describes how funds
are to be allocated between them. Instead of performing transactions on the Bitcoin
ledger, these agents can instead opt to update their shared contract to redistribute the
funds appropriately. In case of payment disputes, the contract can be published to
the blockchain, which contains resolution mechanisms.

First, we give an overview of the payment forwarding protocol. We then demonstrate
a fee-skimming attack, originally discovered by Malavolta et al. [MMSS+19]. Next
we extend their work, by demonstrating that it is possible to build a secure two-round
payment protocol using only simple cryptographic primitives.

Lightning Payment Protocol.

The Lightning Network consists of a collection of nodes which communicate using
a gossip protocol. Any pair of nodes can open a payment channel through a channel
establishment protocol, and may choose to broadcast this information using the
gossip network. As a result, we can consider a graph of all active participants of the
network, where two nodes are connected by an edge if and only if there exists an
open public payment channel between them. The gossip protocol aims to give agents
a complete view of this graph, allowing them to route payments along these edges.

118 Chapter 6. Path Protocols

We assume that all agents have perfect information about the structure of the payment
network, that all open channels are accessible to all honest participants, and that
agents can freely publish to and read from the underlying blockchain whenever
desired. This follows from the security requirements of the gossip protocol and
blockchain (analysis of whether these goals are indeed achieved is considered out of
scope of this work).

The Lightning payment protocol makes use of a cryptographic scheme named Hash
Time-Locked Contracts (HTLC). Fundamentally, HTLCs form a promise that A will
pay B some amount of money if B is able to produce the preimage of a hashed
value h(x) within a certain time limit. Most commonly, the value x is chosen by B,
who then supplies A with the hash as a payment invoice through some off-band
communication. A can then be sure that they are paying the correct person, as only B
can redeem the associated HTLC.

This scheme is central to the design of the chained payment protocol. Suppose A wishes
to send funds to some agent D with whom they do not currently have an active
payment channel. The protocol proceeds as follows:

1. D chooses a value x and sends h(x) to A

2. A chooses some path on the network to D – say, via B and C

3. A opens a HTLC with B, agreeing to pay B if B can produce x from h(x), and
including forwarding data to the remaining agents

4. B creates a new HTLC with C with the same parameters, who then in turn
creates a HTLC with D

5. D is able to reproduce x (as they are the one who chose it), and provides
evidence of this to C, closing the HTLC and claiming the funds

6. C now also knows x, and so can claim the funds from B, who can in turn claim
them from A

The ability of agents to “share” their payment channels to other members of the
system is a key design feature of the lightning network. Generally, this is assumed to
come with fees for using the channel - in particular, if A wishes to send D an amount
of money m, they will instead initiate the protocol with some funds m + t, and each
intermediate agent claims some small share of the transmitted funds as a transaction
fee. Note that funds are committed during the first round of the protocol (the ‘locking’
phase), but are not distributed until the second round (the ‘release’ phase).

As such, the initiating party is concerned with ensuring that the payment follows
their chosen path, in order to minimize fees. Moreover, honest forwarding agents
also benefit from this: if they are skipped over, they are at risk of being denied their
earned transaction fees.

The Lightning Network chained payment protocol also exhibits a skipping attack. It
is detailed by Malavolta et al. [MMSS+19], who name it the “wormhole” attack.

6.4. Case Study: Lightning Network 119

In this attack, a corrupt agent Mi sends a non-adjacent agent Mj the hash preimage
x through an off-band channel on the return journey. Although Mi loses funds (the
HTLC against them is redeemed but they do not turn in x to the next agent in the
chain), Mj gains the equivalent amount, since noone can redeem the HTLC against
Mj them. Further, Mj also gains the transaction fees of every agent in between the
two corrupt agents. The net result is that Mi and Mj skim the transaction fees of the
other agents on the path. These agents may not be aware the attack has even taken
place, instead assuming that the payment failed, allowing the associated HTLCs to
time out.

Figure 6.5 contains a simplified diagram of the skipping attack on the lightning
payment protocol. Note that we abstract the instantiation and later resolution of
HTLCs into individual messages – the actual process requires several messages in
which agents update their shared contracts and issue revocation keys for the previous
versions.

‘Wormhole’-Free Payment Protocols Do Exist.

In addition to demonstrating this attack and designing a new cryptographic primitive
(named an Anonymous Multi-Hop Lock), which is used to amend the protocol,
Malavolta et al. prove ‘wormholes’ cannot be avoided. More specifically:

Theorem 4.1. (Malavolta et al. [MMSS+19, Theorem 1])

For all two-round (without broadcast channels) multi-hop payment protocols there exists a
path prone to the wormhole attack.

Here, “round” refers to interactions between adjacent agents. Thus, a round-trip is
considered to be two “rounds”: one for the forward trip and one for the return trip.

The model used in this paper differs in several aspects from that of Malavolta et al.
(the full model, along with a more formal expression of this result, labelled Theorem
5, is in their paper [MMSS+19]).

The most significant difference relates to agents’ knowledge of the path – in their
model the only starting knowledge is the hashed value h(x) shared between the
two endpoints, and encryption keys shared between adjacent agents on the network.
In our model, we additionally assume that the network topology is known by the
initiating agent. Indeed, this is an intended consequence of the gossip protocol which
underlies the Lightning Network.

Under these assumptions, we present the following results:

Lemma 4.2. Sufficiency

Path Integrity and Path Symmetry are sufficient to ensure that no wormhole attack exists on
a round-trip payment path protocol.

Theorem 4.3. Possibility

There exists a payment protocol with one round trip which does not admit a wormhole attack.

120 Chapter 6. Path Protocols

We argue1 the validity of Lemma 4.2. The security of a payment protocol is conditional
on the following:

• The initiating agent must be able to choose a valid payment path in accordance
with the network topology

• The initiating agent must be assured that the payment proceeds along their
chosen path

• Intermediate agents must be assured that if they forward a payment request
(by opening the associated contracts), they will be compensated if the payment
is successful (by being able to close the contract).

The first point follows from our assumptions about the gossip protocol. The second
is an immediate consequence of Path Integrity. Finally, Path Symmetry ensures the
last point.

Our framework allows us to identify an attack on Path Symmetry for the Lightning
Network. The identified attack is indeed the fee-skimming attack discussed above.
Malavolta et al. present a wormhole-free protocol using an additional round of
communication. They prove the security of their protocol using a game-hopping
proof in the computational model.

We provide a payment network protocol, named Lightning-Sig. This protocol
achieves Path Integrity and Path Symmetry, and thus is not susceptible to a skipping
attack. The design capitalises on the underlying Sphinx [DG09] protocol, which in-
cludes per-hop payloads used to transmit anonymous routing data to each agent. In
particular, we propose extending these per-hop payloads with ephemeral (one-time)
keys used to create a chain of signatures that can be verified by each agent on the
return journey.

Lightning-Sig is presented for exposition rather than as a suggested implementation –
it does not adapt directly to the underlying blockchain structure, and would impose
additional computational and storage costs.

6.5 A Path-Integral Payment Network Protocol

We introduce a structure for a Payment Network protocol which satisfies Path Sym-
metry. As with the model used in the rest of the paper, we assume that the initiating
agent A is aware of the full network topology, and chooses the path accordingly. A
diagram showing the intended execution of the protocol is given in Figure 6.6, for the
case of 4 agents. The transition rules used for this protocol are given in Figure 6.7. It
differs from the Lightning payment forwarding protocol as follows:

• At the start of the protocol, A generates an ephemeral asymmetric keypair
(ei, pk(ei)) to be used by each intermediate agent Mi as well as the endpoint E.

1A full formal proof necessitates a definition of payment, which is beyond the scope of the current
paper.

6.5. A Path-Integral Payment Network Protocol 121

kAB, skA

A

kAB, kBC , skB

B

kBC , kCD, skC

C

kCD, skD, x

D

h(x)

Fresh eA, eB, eC , eD
PHD = {eD}pkD

PHC = {PHD, eC , 〈pk(eD)〉}pkC

PHB = {PHC , eB, 〈pk(eC), pk(eD)〉}pkB

{h(x), PHB}kAB {h(x), PHC}kBC {h(x), PHD}kCD

sigD = sign(x, eD)

{x, sigD}kDE

Verify sigD
sigC = sign(sigD, eC)

{x, sigC}kCD

Verify sigC
sigB = sign(sigC , eB)

{x, sigB}kAB

Verify sigB

FIGURE 6.6: MSC for Path-Symmetric payment network protocol

• The structure of the underlying Sphinx protocol allows A to send secure packets
to each intermediate agent. To each Mi, A sends the private key generated for
them, as well as an ordered list of the public keys after them on the path. For
example, Mi stores the public keys for Mi+1, Mi+2, etc.

• Each agent Mi appends a signature using their ephemeral private key signature
to the hash preimage x on the return journey. The HTLC contract is amended
such that Mi will only disperse payment to Mi+1 if they receive the hash preim-
age x along with a chained signature with each of the keys for Mi+1, Mi+2 . . . in
turn.

Explicitly, in the forward direction, each message consists of two components: the
hash h(x), and a per-hop payload (PHi), which is defined inductively (and reverse to
the path order) as follows:

PHn := {en}pkMn

PHi := { PHi+1,

〈pk(ei+1), pk(ei+2), . . .〉,
ei

}pkMi

The first component is the per-hop payload for the agent after them in the path, the
second is the set of ephemeral public keys after them in the path, and the last is their
ephemeral private key.

The addition of (ordered) signatures to the hash preimage ensures that the return
trip must follow the same path as in the forward direction. Intuitively, the forward

122 Chapter 6. Path Protocols

Setup

Gen_Ltk :=
[

Fr(ltk)
]
−−−→




!Ltk(A, ltk)
!Pk(A, pk(ltk))
Net(pk(ltk))




Gen_ShKey :=
[

Fr(k)
]
−−−→

[
!ShKey(A, B, k)

]

Construction

Create :=




Fr(p), Fr(eE)
!ShKey(D, E, kDE)
!Pk(E, pkE)




Add(p,E,{h(p),PHE}kDE
,‘′)

StartBuild(A,p)−−−−−−−−−−−−−−−→
[

Build(p, A, E, {h(p), {eE}pkE}kDE)
]

Wrap :=




Build(p, A, N, {m, PHX}kNX)
!Pk(N, pkN), Fr(eN)
!ShKey(M, N, kMN)


Add(p,N,m,m)−−−−−−−−→

[
Build(p, A, M, {m, PHN}kMN)

]

Send :=
[

Build(p, A, M, {m}k)
!ShKey(A, M, k)

]
−−−→

[
Net({m}k)
InitState(A, p, pkeys)

]

Forwarding

Unwrap :=




Net({h(x), PHC}kBC)
!Ltk(C, ltk))
!ShKey(B, C, kBC)
!ShKey(C, D, kCD)




Forward(C,m,m)−−−−−−−−−→
[

Net({h(x), PHD}kCD)
FwdState(C, h(x), eC , pk(keys))

]

Reply

Reply :=




Net({h(p), PHE}kDE)
!Ltk(E, ltkE, pkE))
!ShKey(D, E, kDE)


Forward(E,h(p),‘′)Backward(E,‘′ ,p)−−−−−−−−−−−−−−−−−−−→

[
Net({p, sign(p, eE)}kDE)

]

Response

Backward :=




Net({p, sign(p, keys)}kCD)
!ShKey(B, C, kBC)
!ShKey(C, D, kCD)
FwdState(C, h(p), eC , pkeys)




Backward(C,p,p)
Equal(verify(sig,p,pkeys),true)−−−−−−−−−−−−−−−−→

[
Net({p, sign(p, 〈keys, eC〉}kBC)

]

Finish :=




Net({p, sig}pk)
!ShKey(A, B, kAB))
InitState(A, p, pkeys)


Equal(verify(sig,p,pkeys),true)−−−−−−−−−−−−−−−−→

[−]

FIGURE 6.7: Rewriting rules for a payment network protocol that
satisfies path symmetry. Some terms are compressed for space.

journey ensures that only Mi is able to generate the signature from ei, and so any
agent after Mi on the return journey can be assured that Mi did indeed forward the
message.

In addition, this does not significantly affect the privacy of the protocol – the generated
keys are not tied to the identities of the forwarding agents. If necessary, the initiating
agent can also “pad” the message with additional keys for the endpoint to use, such
that agents can not be fully aware of where in the path order they are.

For modelling reasons, we represent signatures with multiple keys by sign(x, 〈k1, k2, ...〉),
allowing agents to insert an additional key into the list used in the signature. We also
assume that the body of a signature is included alongside the signature itself in order
to save space.

We emphasise two key contributions from our approach over the prior work of
Malavolta et al. :

6.6. Tamarin Implementations 123

• We prove that no additional round trips are needed to avoid wormhole attacks on
payment networks

• We demonstrate that no additional cryptographic primitives are needed to achieve
this security

Our models for the Lightning Network are built from the Lightning “Bolt” specifica-
tion [Tea20], which is a continually-updated document. We model communication
between pairs of agents using symmetric encryption, with per-hop payloads en-
crypted using nested asymmetric encryption. The endpoint is assumed to be able to
retrieve the session secret from the hashed value.

6.6 Tamarin Implementations

We implemented our approach from Section 6.3 to perform a security survey of
several path protocols of note from the literature. We created abstract models of these
protocols into our framework, creating adapted implementations inside the Tamarin
prover tool [MSCB13].

We split our analysis into three main families: Middlebox-Enabled TLS, Mixnets
and Payment Networks. We consider onion-style protocols (such as those demon-
strated by Chaum [Cha81]) as part of the Mixnet family – although there can be
some differences on the network layer (such as by batching messages), the message
structure is often very similar. Our reasons for choosing these specific protocols are
as follows:

• Middlebox-Enabled TLS. mcTLS [NSV+15] uses session keys shared between
multiple parties based on their permissions (read, write), rather than their
location in the path. mbTLS [NLG+17] uses unique session keys for each pair of
adjacent agents. maTLS [LSL+19] furthers this scheme with chained signatures
(forming a modification log).

• Mixnets. The original models by Chaum [Cha81] use chained asymmetric
encryption. The TOR [SDM04] ecosystem establishes connections using sym-
metric encryption (with public keys only for key-establishment) - paths are
defined by a connection ID. HORNET [CAB+15] reduces the use of state com-
pared to TOR, by including routing data as part of the message in place of a
connection ID, using a construction based on Sphinx [DG09].

Mixnets generally offer several options for the return path of a message - they
can be symmetrical, or chosen by the initiating agent or recipient. For Path
Symmetry we consider the former case (the latter is treated as two separate
executions).

• Payment Networks. The Lightning Network [PD16] uses per-hop payloads
to conceal routing data, with a term h(x) (and later x) that is shared between
agents. Our exhibited Lightning-Sig protocol extends the return journey with a
chain of signatures created using per-hop data transmitted during the forward
journey.

124 Chapter 6. Path Protocols

Protocol Name Integrity Symmetry
Middlebox-Enabled TLS

- mcTLS [NSV+15] × ×
- mbTLS [NLG+17] × ×
- maTLS [LSL+19] X∗ X∗

Mixnet
- Chaum [Cha81] X X
- TOR – Establishment [SDM04] X X
- TOR – Data Exchange [SDM04] X X
- HORNET [CAB+15] X X

Payment Network
- Lightning [PD16] X ×
- Lightning-Sig X X

TABLE 6.1: Results of case studies on message-forwarding protocols

The results of our analysis can be found in Table 6.1. We give results for Path Integrity
(as per Definition 3.1) as well as Path Symmetry (as per Definition 3.2). For each
protocol we indicate if the security goal is met (X) or violated (×). An asterisk ∗

indicates the goal is dependent on a Verification phase (as in Verification-Dependent
Path Integrity).

We note that for different protocols the most desirable (and indeed the intended)
security goals may differ. For example, Path Symmetry is an important goal for
Payment Networks, but may not be as relevant for Onion-style protocols.

Tamarin Implementation Notes.

We embedded the protocols considered in our case studies into the Tamarin prover
tool. We note several implementation details arising from this translation. Some
decisions were often made in order to reduce the complexity of analysis within the
automated tool, in order to ensure termination and improve execution time. This
comes at a tradeoff of the faithfulness of the model to the intended specification:
unfortunately, some loss of detail is an inevitable consequence of symbolic modelling
and the use of verification tools.

Analysis was performed on a 28-core Xeon server with a 2.6Ghz CPU and 64gb of
RAM. In some cases, additional RAM was required (up to 1TB). An Oracle file was
used to help guide Tamarin’s built-in heuristics.

Firstly, we add some restrictions to follow the intuition laid out in earlier sections.
This includes preventing duplicate agents on a path (i.e. enforcing well-formedness
of the path order).

Secondly, we make use of binding of message types (for example, assuming agents
can deduce that a term is fresh or whether it is headed in the forwards- or backwards-
directions). This reduces the adversary’s capability to introduce confusion-style
attacks, which can significantly complicate analysis.

Finally, we enforce some bounds on the complexity of each execution – in particular,

6.6. Tamarin Implementations 125

the number of agents and number of parallel sessions. In most cases this is set to
5 agents (two endpoints and three intermediate agents) running a single session.
Although the Tamarin prover includes tools for induction arguments, it still struggles
to handle protocols with multiple loops. As such, restricting to the finite case is
unfortunately a necessity. We present the following conjecture:

Conjecture 6.1. Sufficiency of Finite Analysis

There exists n ∈ Z such that for all path protocols, if there is a trace containing a path of
length m > n which violates Path Integrity, then there is also a trace containing a path of
length n which violates Path Integrity.

The intuition for this conjecture is as follows:

• We can view the path as a sequence of agents, and whether or not each is
corrupted

• The structure of the message does not fundamentally change between inter-
mediate agents: hence two adjacent honest agents combined exhibit similar
behaviour to a single honest agent (and likewise for corrupt agents)

• An attack requires at most two corrupt agents, with an honest agent in between
to be skipped

Following this reasoning, the most significant path for analysis is one in which a
single honest intermediate agent is sandwiched in between two corrupt parties. In
theory, other paths which admit attacks can be “reduced” into one of this shape.

127

Chapter 7

TLS and Middleboxes

Middleboxes are widely used for various in-network functionalities, becom-
ing indispensable in the modern internet ecosystem. They can be deployed
for various benefits in terms of performance (e.g., proxies, DNS intercep-
tion boxes, transcoders), security (e.g., firewalls, anti-virus software), or
content filtering (e.g., parental controls). However, the practice of using
middleboxes is not immediately compatible with Transport Layer Security
(TLS) — the de-facto standard for securing end-to-end connections. Since
TLS is designed to provide end-to-end authentication and confidential
communication, middleboxes are not supposed to read or modify any TLS
traffic.

A well-known method for overcoming this limitation is SplitTLS, in which
a TLS session between two endpoints is split into two separate segments
so that a middlebox can decrypt, encrypt, and forward the traffic as a man-
in-the-middle. While SplitTLS allows us to use middleboxes with TLS, it
poses security and privacy risks on both the client and server sides.

In this chapter, several concerns with the current middlebox-enabled TLS
ecosystem are presented. A new solution - named “middlebox-aware TLS”
is presented, which aims to address these concerns. Its feasibility is demon-
strated through experimental analysis, and an analysis is performed against
both traditional end-to-end authentication goals and some protocol-specific
requirements.

The work in this chapter is based on the NDSS 2019 paper “maTLS: How to
Make TLS middlebox-aware” [LSL+19].
My main contribution to this topic was in the formalisation of the security
goals. In addition, I aided in identifying several potential attacks in the protocol
during the design process.
A case study is added (originally written for the paper in the previous chapter),
which demonstrates the necessity of the security features included in the
design.

128 Chapter 7. TLS and Middleboxes

7.1 The TLS Protocol Suite

HTTPS – HTTP over TLS [Res00] is becoming increasingly common, with more than
50% of HTTP traffic being encrypted using TLS [FBK+17, NFL+14]). Middleboxes
enhance HTTP traffic through a variety of methods, but often require access to
the unencrypted message body. As such, there is a need to allow middleboxes to
participate in a TLS session. However, the current de-facto approach remains the
usage of Split TLS: breaking the overall TLS session into a series of completely disjoint
segments.

As a result of this, users are often required to install custom root certificates, which
allows a middlebox to impersonate any server in order to read and modify all HTTPS
traffic. For servers, websites are often required to share their private keys with
some middlebox service providers (e.g., content delivery networks (CDNs)), so that
middleboxes can provide their content to clients with better performance. These
imply that a compromised middlebox may be used to perform critical attacks, either by
abusing custom root certificates to impersonate someone else or by using a shared
private key to impersonate a particular server.

Such vulnerabilities of middleboxes have been reported in several studies [dCdCM16,
DMS+17, WMY18, ORSZ16, TII+18]; for instance, some middleboxes accept nearly all
certificates in spite of certificate validation failures, which gives a chance for another
compromised or malicious middlebox to meddle in the TLS session [dCdCM16,
DMS+17, WMY18]. Similarly, a middlebox that splits a TLS session may support
only weak ciphersuites, which are vulnerable to known attacks such as the Logjam
attack [ABD+15] or the FREAK attack [BBDL+15]. Even worse, it has been reported
that middleboxes are being used to inject malicious code [TII+18, ORSZ16, CCM16];
for example, Giorgos et al. [TII+18] found that 5.15% of proxies inject malicious or
unwanted content into web pages.

Nevertheless, as middleboxes provide crucial benefits to users, content providers, and
network operators, there has been a long thread of studies aiming to accommodate
for middleboxes in secure networking between two endpoints [SLPR15, LSP+16,
PLPR18, HKHH17, LMS+12, Nir12, NSV+15]. These studies can be largely classified
into three main categories: encryption-based, trusted execution environment (TEE)-
based, and TLS extension-based. First, BlindBox [SLPR15] and Embark [LSP+16]
propose the usage of special encryption schemes such as order-preserving encryption
to allow middleboxes to perform their functionality over encrypted packets. Second,
SafeBricks [PLPR18] and SGX-Box [HKHH17] leverage TEEs such as Intel SGX to
make middleboxes trustworthy. Finally, several studies seek to extend the TLS
protocol [NSV+15, LMS+12, Nir12, MWNG12, NLG+17] in order to let middleboxes
intervene during the TLS handshake and perform their functionalities within the
session.

However, these approaches pose several technical challenges and limitations. The
encryption-based approaches depend greatly on their encryption mechanisms; as a
result, their functionalities are limited to pattern-matching or range-filtering. The
proposals leveraging TEEs are only applicable to the middleboxes with specific

7.1. The TLS Protocol Suite 129

hardware that provides secure enclaves. What is worse, neither of them are backward-
compatible (i.e., current middleboxes have to be replaced to adopt such approaches).
The TLS extension approaches are most feasible in the sense that TLS software can be
extended to support the backward compatibility. However, these approaches leave
three issues that have not been comprehensively solved.

First, the proposal of using explicit proxies in IETF [LMS+12] introduces a proxy
certificate to indicate that the certificate holder is a middlebox. However, the client can
only authenticate the next middlebox, not the server or other middleboxes intervening
in the session. Thus, there is still a risk of an unknown middlebox meddling in the
session. Second, mcTLS [NSV+15], TLMSP1, and TLS Keyshare extension2 [Nir12]
use the same symmetric key (and hence the same ciphersuite) across all the split
TLS segments between the two endpoints. As a result, middleboxes that do not
support the specific ciphersuite chosen will not be able to process the TLS traffic.
Furthermore, the middleboxes share the same keystream, which may undermine
security [MWNG12]. Third, none of these proposals except TLMSP allow the client
to know who has sent TLS traffic as well as who has modified it. For example,
in mcTLS [NSV+15], the client cannot check whether the TLS traffic he received
originated from a valid endpoint (e.g., a cache or an endpoint) if there is a middlebox
that modified the message during transit.

Contributions.
In this chapter, we propose an extension to TLS, which ensures middleboxes are
visible and auditable. The starting point is to enable a client to authenticate all the
middleboxes. We first define middlebox certificates, which are signed by certificate au-
thorities (CAs), and used to encrypt the channel for each TLS segment (e.g., between
a client and a middlebox, between middleboxes, and between a middlebox and a
server). The use of middlebox certificates eliminates the insecure practice of users
installing custom root certificates or servers sharing their private keys with third
parties (like CDNs). We also introduce them with middlebox transparency log servers
to make middleboxes auditable. Along with auditable middleboxes, we design the
middlebox-aware TLS (maTLS) protocol, a TLS extension auditing the security behav-
iors of middleboxes. The maTLS protocol is designed to satisfy the following security
goals (to be detailed later): server authentication, middlebox authentication, segment
secrecy, individual secrecy, data source authentication, modification accountability,
and path integrity.

To satisfy these goals, a client authenticates all participants of its maTLS session. That
is, the client verifies the certificates of all the participating middleboxes to prevent
any arbitrary middleboxes from intervening in the session, which we will refer to as
explicit authentication. Moreover, the two endpoints confirm the negotiated security
association of every segment to ensure its confidentiality and integrity, which is called

1Transport Layer Middlebox Security Protocol (https://portal.etsi.org/webapp/WorkProgram/
Report_WorkItem.asp?WKI_ID=52930). The protocol is being discussed in ETSI, and the draft of the
protocol specification is currently unavailable. We refer to the document in a web archive:
https://docplayer.net/88122390-Announcement-of-middlebox-security-protocol-msp-draft-
parts.html

2Note that this is different from the keyshare extension used to negotiate a Diffie-Hellman shared
key in TLS 1.3.

https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=52930
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=52930

130 Chapter 7. TLS and Middleboxes

security parameter verification. Note that a security association consists of a TLS version,
a ciphersuite, and a confirmation of encryption key establishment. Lastly, maTLS
performs valid modification checks, which allows the endpoints of a maTLS session
to verify whether the received messages have been modified only by authorized
middleboxes. This way, maTLS provides auditability of all participants in the session.

We also evaluate the security and performance of maTLS. We define a set of security
goals that middlebox-enabled TLS protocols should aim to achieve. Finally, we
evaluate the feasibility of the maTLS protocol by building an implementation using
OpenSSL and comparing its performance against prior proposals.

Organisation.
In Section 7.2 we discuss the Split TLS approach for enabling middleboxes, and how
it undermines the security goals of TLS. We also discuss some of the other approaches
for overcoming the shortcomings of Split TLS. Section 7.3 contains a case study of
the mbTLS protocol, another proposed approach for enhancing TLS. In Section 7.4
we discuss the requirements (both in terms of security and implementation) of a
middlebox-enabled TLS extension, then present the maTLS extension. Section 7.5
contains a discussion of the formal security goals that should be achieved by such
a protocol. Finally, in Section 7.6, we evaluate an implementation of the maTLS
protocol, and conclude, discussing the hurdles in deployment of such a scheme.

7.2 Middlebox-Enabled TLS Schemes

The TLS protocol [Die08, E. 18], coupled with a Public Key Infrastructure (PKI), is
designed to authenticate endpoints, establishing a secure communication channel
between them. The security goals of TLS are authentication, confidentiality, and
integrity: authentication is confirmation of the identity of the other party, by validating
a certificate chain and verifying a proof-of-possession of the corresponding private
key. In practice, the server is always authenticated from its certificate, while authenti-
cating the client is optional. Confidentiality is a guarantee that the data sent over the
channel is secret to all but the endpoints. Integrity ensures that any third parties do
not modify data on the network.

These security goals are achieved by two components of the TLS protocol suite,
called the handshake and record protocols. The main purpose of the TLS handshake
protocol is to establish a master secret, which will be used for an authenticated
encryption and decryption of the data between two endpoints.

X.509 Certificates.
A digital certificate is an attestation that binds a subject (e.g., a domain name) to
its public key. This binding is guaranteed by a Certificate Authority (CA) with its
signature in the certificate. The certificate authority also possesses its own certificate,
issued by another CA. This results in a chain of certificates terminated with a self-
signed certificate called a root certificate. A certificate receiver validates the certificate
if the receiver trusts the root certificate in the chain and all the signatures in the

7.2. Middlebox-Enabled TLS Schemes 131

certificates can be verified using the public key of the next certificate in the chain (up
to the root certificate).

CAs also indicate that a domain owner satisfies specific suggested requirements. For
example, a domain validation (DV) certificate is issued when a domain owner has
successfully proved its ownership of the domain. To provide stronger assurance
to clients that a certificate has been adequately issued, CAs can require domain
owners to follow a set of stricter criteria in order to obtain extended validation (EV)
certificates.

On the Internet, X.509 [ITU00] is the most widely used format for certificates, which
typically include fields such as the subject, its public key, a serial number, and
the certificate’s validity period. The current version of X.509, version 3, supports
extensions that CAs can add for a variety of purposes; for example, the Server
Alternative Name (SAN) field [CSF+08] is used to allow alternative names of the
certificate holder.

Certificate Transparency.
The PKI trust model has a severe drawback in reality: any CA can issue a certificate
for any domain, potentially exposing users to high risk. There have been security
incidents in which commercial CAs were compromised and issued fraudulent cer-
tificates, allowing attackers to impersonate the actual certificate owner or perform
man-in-the-middle attacks [Com11, Wil15].

To mitigate the risks from CA compromises, Google introduced the Certificate Trans-
parency (CT) system [LLK13], which aims to provide accountability to a PKI. This is
achieved by archiving every certificate into multiple append-only public log servers
so that any entity can monitor and audit a CAs’ operations. Upon submission of
a certificate chain, the log servers return a signed proof called a signed certificate
timestamp (SCT), which can be verified using the public keys of the log servers. An
SCT can be delivered from web servers to the browsers separately or embedded in the
web server’s certificate, via a TLS extension or through OCSP. For example, a browser
might display a lower security indicator if the server’s certificate is not logged on the
CT servers. CT logging became mandatory in Chrome for all certificates issued after
April 2018 [O’B18]. A third party (e.g., a CA) can keep track of CT log servers to see if
there is any mis-issuance of certificates, thus providing auditability of certificates and
accountability of CAs’ certificate issuance. For example, TLSMate’s CertSpotter [SSL]
and Facebook’s CT Monitor [Fac] monitor each log server and alert a domain owner
if a new certificate that binds to her domain name has been issued.

Middleboxes in SplitTLS

We will focus our attention on middleboxes which inspect application data sent over
HTTPS, for the purpose of security or performance. Figure 7.1 illustrates how they
typically intervene in a TLS session. A middlebox intercepts the TLS session, splitting
it into two segments. The middlebox then pretends to be the client while communi-
cating with the server and in turn impersonates the server in its communication with
the client. In the case of multiple middleboxes, they form a chain of TLS segments

132 Chapter 7. TLS and Middleboxes

Client ServerMB MB…

Custom Root Certificate Private Key / Certificate

Client-side

Middlebox

Server-side

Middlebox

Segment

Session

Segment

FIGURE 7.1: Overview of SplitTLS: A client sets up a TLS session
with a server involving multiple middleboxes in-between. During a
TLS handshake, each middlebox splits the TLS session into two TLS

segments.

between the client and server, with each middlebox ultimately playing both the roles
of client and server during each round trip.

Once the end-to-end session is established, the client and the server communicate via
the middleboxes. When a middlebox receives an encrypted message over a segment,
it decrypts the message using the key of the segment. Then, the middlebox performs
its functionality on the decrypted message. Finally, the middlebox encrypts the
message with the key for the next segment and forwards it to the next middlebox (or
the endpoint). Note that we are interested only in those middleboxes that participate
in two segments simultaneously; for instance, we do not consider middleboxes that
play the role of the intended servers to service the content such as edge servers in
CDNs, since they do not always participate in two segments.

Depending on which entity installs the middleboxes and where they are deployed,
we can classify middleboxes into two categories: client-side and server-side. Client-
side middleboxes are employed by users (e.g., anti-virus software) or operators of
client-side networks (e.g., intrusion detection systems). They are located at vantage
points which packets always pass through. For example, a secure gateway, such as
Bluecoat system3, can be situated at the edge of a corporate network to inspect all
the incoming and outgoing packets. Server-side middleboxes are deployed by web
servers or by the contracts between the web servers and middlebox service providers.
They are deployed on a server’s networks, or in clouds that provide middlebox-as-a-
service [SHS+12]. A client typically accesses server-side middleboxes through DNS
routing. For example, when a server employs an outsourced web application firewall,
such as Cloudbric4, he changes the DNS zone file in his authoritative name server
to direct traffic from clients to the firewall. After the firewall’s inspection, the traffic
is then forwarded to web servers or to further middleboxes based on the IP address
configuration in the firewall settings.

3https://www.symantec.com/products/proxy-sg-and-advanced-secure-gateway
4https://www.cloudbric.com/

https://www.symantec.com/products/proxy-sg-and-advanced-secure-gateway
https://www.cloudbric.com/

7.2. Middlebox-Enabled TLS Schemes 133

Also, different techniques are used to intercept TLS sessions, depending on the mid-
dlebox type. For a client-side middlebox, clients are often required to install custom
root certificates into the trusted root certificate store on their devices. Whenever a
middlebox receives a TCP SYN packet sent to the server from the client, it intercepts
the packet, executing a TCP handshake and then performing a TLS handshake with
the client. During the TLS handshake, the middlebox generates a new certificate
on-the-fly with the same common name as the intended server, which is signed by
the private key that corresponds to the custom root certificate. Thus, if an attacker
learns any private key of a custom root certificate, he can impersonate any server to
which the client that trusts the custom root certificate wishes to connect. Furthermore,
as the certificate is not issued by CAs, clients cannot verify its legitimacy by other
means, such as through CT or DANE [SH12]. For server-side middleboxes, web
servers are required to hand over their private keys along with the certificates so that
the middleboxes can service their content. This breaks the fundamental principle of
authentication and weakens the security of the servers, which makes middleboxes
attractive targets for attackers [MWNG12, CCC+16].

Security Problems in SplitTLS.
Although SplitTLS complies with the current TLS practice, several studies have re-
ported that some middleboxes fail to correctly validate certificates, degrade to weaker
ciphersuites, or insert malicious scripts [dCdCM16, DMS+17, TII+18, CCM16]. This
means that fundamental security properties (i.e., authentication, confidentiality, and
integrity) between two endpoints are broken. The client is forced to trust the behavior
of middleboxes, since the security of the session is highly dependent on whether the
middleboxes correctly operate the TLS protocol. We summarize how SplitTLS breaks
the security goals of TLS.

• Authentication: A client cannot authenticate the intended server, as the middle-
box replaces the server’s certificate with a certificate forged by the middlebox.
Even worse, recent studies have shown that some middleboxes do not validate
the certificate of the intended server. For example, PrivDog [Ash15] was known
to accept every certificate without checking its validity, and some anti-virus soft-
ware always generates valid certificates even when it received invalid certificates
from the intended servers (or another middlebox) [dCdCM16, CCM16].

• Confidentiality: Because a middlebox splits the original session into two seg-
ments, the client negotiates the key for the segment with the middlebox, not the
intended server. Thus the middlebox can read or modify all traffic between the
client and the server. Further, the client has no idea of whether the data has been
encrypted (with a strong ciphersuite) after it passes through the middlebox. For
example, when a client sends an HTTPS request to a server by using Nokia’s
Xpress Browser, it forcibly sends all messages to the Nokia’s forward proxy.
Then, this proxy delivers the messages on behalf of the client to the server.
However, the Xpress Browser does not notify the clients that their information
can be read or modified by the proxy [Mey13, Gau13].

• Integrity: SplitTLS cannot guarantee the integrity as a client cannot detect
any modification by a middlebox on her messages with the intended server.

134 Chapter 7. TLS and Middleboxes

For example, Lenovo laptops performed a man-in-the-middle attack to inject
sponsored links on web pages (delivered over TLS) using Superfish [Sep15],
but this injection behavior was not noticeable by the ordinary client.

The above problems take place mainly because it is difficult for a client to detect
which middleboxes meddle in the session and what they do to the traffic. Several
works have demonstrated how these issues, along with the underlying internet in-
frastructure, can lead to large-scale vulnerabilities. Frack et al. [CCC+16] showed
that content providers sharing a private key with a hosting provider (such as CDNs)
may significantly affect the security of the HTTPS ecosystem; an attacker who com-
promises ten hosting providers is estimated to obtain the control of 45% of all content
providers. Lin-Shung et al. [HREJ14] demonstrated that there were a large number
of forged certificates in the wild, most of which were generated by client-side middle-
boxes. They also showed that these certificates can be used to trick victims, who had
installed the root certificates of the forged certificates.

There have been two IETF drafts that highlight the problems with HTTPS middle-
boxes and propose new design principles. Both Nottingham [Not14] and Narayanan [Nar13]
emphasize that endpoints should be aware of middleboxes, and that their modifi-
cations on the messages should be detectable. Therefore, it is necessary to make
middleboxes visible to clients and publicly auditable in order to address the above
security and privacy challenges.

Related Work

There have been multiple proposed schemes for enhancing TLS sessions to support
middleboxes:

1. Explicit Trusted Proxy [LMS+12]: This work proposes that middleboxes
should have their own certificates for authentication. Each middlebox certifi-
cate should be an EV certificate with proxyAuthentication value in the Extended-
KeyUsage field. This makes middleboxes visible with their certificates; however,
endpoints can only authenticate the immediately adjacent middleboxes, and
cannot get any information about the other middleboxes.

2. TLS Keyshare extension [Nir12]: In this protocol, the client initiates a TLS
handshake by sending information about authorized middleboxes to the server.
During the handshake, the middleboxes inspect the TLS handshake message
and notify the endpoints of any unsupported ciphersuites. After the session
is established by the endpoints, the authorized middleboxes receive the ses-
sion key from the endpoints, allowing them to perform their functionality.
Since the same key is shared across all the segments, the keystream is reused,
which weakens overall security. Furthermore, this work does not consider
modification-related properties.

3. TLS ProxyInfo extension [TWE+04]: Each split segment is separately estab-
lished, as in the maTLS protocol. All the middleboxes pass their certificates

7.2. Middlebox-Enabled TLS Schemes 135

and negotiated security parameters with their signatures to the endpoints, who
can authenticate all the middleboxes and confirm security parameters. How-
ever, in this protocol, the endpoints must blindly trust the information about
each segment from each middlebox. Furthermore, data source authentication,
modification accountability, and path integrity are not considered.

4. Multi-context TLS (mcTLS) [NSV+15]: mcTLS aims to restrict the behavior
of middleboxes by applying the least privilege principle. Endpoints generate
two MAC keys for middleboxes: read and write. If a middlebox is authorized
to read and write, it obtains both MAC keys. If it can only read the TLS traffic,
it gets only the read MAC key. All the middleboxes are authenticated from
their certificates. However, as mcTLS uses one session key, it undermines the
security of the session if any of middleboxes involved is a writer. Furthermore,
after modification by a writer middlebox, the receiver cannot know who has
sent the data.

5. Transport Layer Middlebox Security Protoc-
ol (TLMSP): TLMSP is an improved version of mcTLS, which is being stan-
dardized in ETSI. Based on mcTLS, it optionally introduces an audit trail that
records each middlebox’s inbound HMAC and outbound HMAC to check
the modification by the middlebox and the order of the middleboxes in the
chain. However, TLMSP uses a top-down approach, which is not suitable for
incremental deployment.

6. BlindBox [SLPR15] and Embark [LSP+16] allow a monitoring gateway (in the
client’s network) to read TLS traffic without revealing its content to middleboxes
on a third party cloud. To this end, they introduce a secondary channel using a
special encryption technique (such as searchable encryption or order-preserving
encryption). The client communicates with the server over a TLS session, and
delivers the packets to the middleboxes via the secondary channel before the
client sends packets to the server. Private data are not leaked to the middleboxes
in these proposals, but they have two main drawbacks. First, the possible
functionality of middleboxes is limited by the encryption techniques. Second,
they require another round trip to middleboxes over the secondary channel
before sending the data to the other endpoint.

7. SafeBricks [PLPR18], ShieldBox [TKG+18], and SGX-Box [HKHH17] focus on
guaranteeing security and protecting privacy (from middleboxes) by building
middleboxes over a trusted execution environment. The three schemes have
different properties. For example, SafeBricks aims to apply the least privilege
principle to middleboxes by using a type-safe language. ShieldBox seeks
to supports syscalls in an enclave, and SGX-Box offers programmability to
middlebox developers for easy deployment.

136 Chapter 7. TLS and Middleboxes

7.3 Case Study: mbTLS

In this section we perform a case study of the proposed middlebox-enabled TLS
scheme mbTLS [NLG+17]. We highlight a skipping attack, akin to those identified in
Chapter 6, which can be found in several similar related works. This problem arises
from the problem of distributing (and verifying the usage of) keys in a multiparty
setting.

The core structure of the mbTLS protocol is as follows:

• During the mbTLS handshake between a client and a server, middleboxes report
their presence to the endpoints with an additional handshake.

• At the end of the handshake phase, each middlebox is delegated two session
keys for its associated sessions (i.e. one where it acts as a client, and one as a
server) from the endpoint which has deployed them, rather than generating the
keys themselves.

• During the record phase, messages between the endpoints are passed down
the chain of middleboxes, which decrypt then re-encrypt each message (whilst
performing any of their functions on the message body)

The mbTLS scheme assumes that middleboxes are running on hardware enclaves,
such as the Intel SGX framework [Int17]. As a result, the authors assert that middle-
boxes can be seen as trusted agents for the purpose of security analysis. However,
we argue that this is not a realistic security model. Software enclaves are designed to
ensure that software is loaded without modifications after distribution, and is run in
a secure environment. This does not provide any guarantees about security of the
software itself. As such, maliciously designed middlebox software is not protected
against. This means that an attacker could write malware which poses as a service-
providing middlebox (such as an ad-blocker), but instead fulfills some other purpose
(such as leaking data). In addition, we note the existence of several attacks on trusted
execution environments [VBMW+18, BMD+17, VBWK+17, HCP17], suggesting that
even well-intending participants may accidentally leak secret data. Because of this,
we argue that the Dolev-Yao model is more appropriate.

Middlebox Skipping Attack on mbTLS.
The mbTLS protocol admits an attack. In this scenario, a pair of (non-adjacent)
adversary-controlled middleboxes transmit messages between each other, skipping
over other TLS segments in the path. As a result, honest middleboxes are prevented
from performing their functionality.

The structure of the attack is shown in Figure 7.2. The cause of the vulnerability is
that an endpoint cannot detect the difference between a middlebox choosing not
to modify a message, and the middlebox never having received the message at all.
As such, an attacker who controls two (non-adjacent) middleboxes on the path can
simply forward the body of messages from the first to the second. This allows for the
bypassing of service-providing software such as adblockers or content filters.

7.4. The maTLS Protocol 137

(A) The Client and Server assign keys. Here,
M1 and M2 are introduced by the Client,

while M3 is associated with the Server

(B) The Client and Server delegate keys to
their middleboxes for each of the two TLS

(sub)sessions for the chained connection

(C) Intended execution - messages flow
down the pre-established path. Middleboxes
use keys received from the handshake phase

(D) Skipping attack - two collaborating mid-
dleboxes (M1 and M3) forward messages

through an out-of-band channel

FIGURE 7.2: mbTLS handshake phase conclusion and skipping attack

To prevent such an attack, a simple approach is to add some form of read-receipt to
messages, in the form of a MAC or signature from each middlebox in the path. With
such an approach, the endpoints can confirm at the end of the execution that the path
was followed faithfully.

7.4 The maTLS Protocol

In this section we introduce the threat model we consider for designing middlebox-
enabled TLS extensions. With this model in mind, we present the maTLS protocol –
our proposed solution. We also discuss some of the factors to consider when rolling
out such a scheme.

The maTLS protocol consists of two main components: the handshake phase, in
which middleboxes declare their presence to both endpoints and keys are established,
and the record phase, in which data is exchanged.

Trust and Threat Models

Before introducing our threat model, we describe five entities in the networking
architecture.

(1) Client (C): A client refers to a machine or a piece of software (e.g., web browsers),
used by a user, that communicates with middleboxes. We assume the client correctly
performs protocols and is not compromised.

(2) Server (S): A server refers to a machine or a piece of software, operated by a content
provider, that services content based on a client’s request. We assume that the server
to which a client wishes to connect is not malicious or compromised. The client and
the server are collectively referred to as endpoints.

138 Chapter 7. TLS and Middleboxes

(3) Middlebox (MB): a middlebox is a machine or a piece of software, made by a
middlebox service provider. A middlebox is deployed by a network operator, a content
provider, or a user and is located between the client and the server. The endpoints may
not be aware of the middleboxes, their functions, or their states. If the middleboxes are
mis-configured or incorrectly implemented, they may accept invalid certificates, use
deprecated ciphersuites, or attempt to inject unwanted or malicious content [TII+18,
ORSZ16].

(4) Certificate Authority (CA): An organization that issues and revokes certificates. A
CA issues a certificate to a requester after a validation process. In our model, A CA
can be compromised; thus, fraudulent certificates can be issued to an adversary who
can impersonate the server.

(5) Middlebox transparency (MT): A system (similar to CT [LLK13]) that logs certificates,
which can be publicly monitored and audited by any interested parties. Any trusted
CT operator, such as Google, can operate an MT system. The only difference from CT
is that the MT system targets middlebox certificates, which will be detailed in Section
(§7.4). Alternatively, the CT system can be assumed to accommodate middlebox
certificates as well.

We accept the Dolev-Yao model [DY83] in which an active adversary can fully control
the network; that is, the network is untrusted. The adversary can not only capture
messages on-the-fly, but also modify, drop, reorder, or inject messages. Specifically, he
can manipulate middleboxes (e.g., TLS-intercepting WiFi access points), which then
can capture packets, perform crypt-analysis, or patch software to inject malicious
scripts. We do not consider other attacks such as side-channel attacks or denial-of-
service attacks.

Note that we consider both endpoints to be honest, as our primary security goals
revolve around their ability to establish a secure channel. We assume that the client
has chosen their intended communication partner S at the time of initiating the
protocol. However, we do allow for corrupt servers who may attempt to falsely
convince the client that they are S.

maTLS Extension Overview

We now provide an overview of the maTLS protocol, before we later go into some of
the specific details. Table 7.1 contains an overview of the notation that will be used in
this section.

The maTLS Handshake Protocol.
A client performs a maTLS handshake to negotiate accountability keys, to authenticate
the server and middleboxes, and to perform security parameter verification. The
maTLS handshake protocol, which extends TLS 1.2, is shown in Figure 7.4a. In the
first round-trip, the client expresses its preference to perform the maTLS protocol
by adding the Middlebox_Aware extension to the ClientHello message. The client
generates its DH key pair (say, (a, ga)) and inserts the DH public key (ga) into the
extension. Then, the client sends the ClientHello message with the highest possible

7.4. The maTLS Protocol 139

Notation Meaning
C Client
S Server
MBi ith Middlebox in the session (1 ≤ i ≤ n− 1)
ei ith Entity in the session where (e0 =

C, en = S)
segmenti,j The maTLS segment between ei and ej
mi Message sent from ei
a||b a concatenated with b

PRF(a, b, c) Pseudorandom function in [Die08] to de-
rive keys
(a : secret, b : label, c : seed)

Sign(k, m) Signature function on m with a key k
H(m) Hash function on m
Hmac(k, m) Keyed hash-based MAC function with a key k

on m
Ae(k, m) Authenticated encryption on m with a key k
(ski, pki) Entity ei’s (secret key, public key) pair
Certi Entity ei’s certificate
IDi Identity of ei. IDi = H(pki)
g Generator of a DH group
(a, ga) Ephemeral DH key pair

pi,j

Security parameters that includes the ne-
gotiated version, the negotiated cipher-
suite, the hashed master secret, and the
transcript between ei and ej

aki,j
Accountability key of ei established with ej (We
simply write aki when j is fixed in the context)

HMACi The result of Hmac(k, m) by ei
MLi Modification log generated by ei

TABLE 7.1: Notation used in describing the maTLS extension

TLS version and a set of supporting ciphersuites. On receiving the ClientHello, each
middlebox finds the client’s maTLS extension, generates its own DH key pair, and
extracts the list of DH public keys from the maTLS extension. After that, it appends
its own DH public key, and sends the new ClientHello with the DH public keys
toward the client’s intended server. This process is repeated at every middlebox on
the way to the server.

The server generates its own DH key pair (say, (b, gb)) and sends the ServerHello
message with the DH public key (gb) and the selected TLS version and ciphersuite
for the maTLS segment. On receiving ServerHello, each middlebox processes the
message as the middlebox do on ClientHello and determines the TLS version and
the ciphersuite to be used in the maTLS segment.

Then, each entity negotiates the TLS version and the ciphersuite with its neighbor
entity for each maTLS segment. Furthermore, both endpoints receive the DH public
keys from all entities and each middlebox has two DH public keys (i.e. the client’s and
the server’s). With their own DH private keys, all entities generate the accountability
keys by using the PRF function defined in [Die08] with the server’s DH public key
and the client’s DH public key as seeds. For a label, one of the input parameters of
the PRF function, we use the string, “accountability key.”

140 Chapter 7. TLS and Middleboxes

(A) The maTLS-DHE handshake protocol on TLS 1.2 (server-only authentication)

(B) The maTLS record protocol with a modification log.

FIGURE 7.3: The maTLS protocol. The maTLS handshake protocol is
responsible for explicit authentication and security parameter verifi-
cation, while the maTLS record protocol executes valid modification

checks.

The ServerCertificate message is sent after the Hello messages. The server sends
its own certificate and each middlebox appends its middlebox certificate. The client
performs explicit authentication in order to accept the server and the middleboxes.
Then, the client maps each accountability key to the corresponding identity, where an
identity is a digest of an entity’s public key. Although the server does not receive the
certificates, the server can identify the client from the accountability key.

After receiving the certificates, each maTLS segment exchanges key materials via the
ServerKeyExchange and ClientKeyExchange messages. Using the key material, all
entities generate shared secrets of the segment.

Finally, Finished messages are exchanged to verify the handshake between two
peers in each segment, followed by a newly defined ExtendedFinished message that
includes security parameter blocks from the server to the client. The client performs
security parameter verification and confirms the proofs of private key possession by
verifying the signatures by processing the ExtendedFinished message.

The maTLS Record Protocol.
The maTLS record protocol provides data source authentication, modification ac-
countability, and path integrity during data exchange. The maTLS record protocol
is illustrated in Figure 7.4b. For each message, the record protocol generates the
data source, initializes an ML, and inserts its source MAC. On receiving the message
and its ML, each middlebox processes the ML as mentioned earlier. A read-only

7.4. The maTLS Protocol 141

middlebox extracts the final HMAC from the ML, performs the HMAC operation
over the previous HMAC to put its fingerprint, and updates the MAC. A writer
middlebox appends the modification MAC to the ML.

Upon receipt of the message, the destination performs valid modification checks by
validating the ML, aborting the connection if there has been an invalid modification
by middleboxes. The destination also verifies the source of the incoming message;
for example, a server can abort the connection if the HTTP request message (over
maTLS) did not originate from the client. Furthermore, since all the middleboxes
in the session leave their own MACs in the ML whenever the data is passed the
middleboxes, the endpoints can confirm whether the order of the middleboxes is
preserved by verifying the MACs with the accountability keys in sequence.

Auditable middleboxes

We now describe an architecture to make middleboxes visible to the endpoints of
TLS sessions. To this end, we define the notion of an auditable middlebox that has its
own middlebox certificate logged in middlebox transparency (MT) servers. Middlebox
certificates are written based on the X.509 format, and then signed by CAs, which
may require middlebox service providers to follow a set of established criteria for
certificate issuance. Like TLS certificates, middlebox certificates could also be mis-
issued, mis-configured, or exploited. To mitigate those attacks, we also introduce MT
log servers where any middlebox certificates can be publicly logged so that interested
parties can monitor and detect unexpected behaviors.

Middlebox Certificates.
The primary purpose of middlebox certificates is to help users authenticate middle-
boxes, by providing information about behaviour of the middlebox. For example,
the role of the middleboxes (e.g., firewall) or permissions (e.g., read or write) can be
included. This information can be added into the format of X.509 certificate with-
out any modification to the existing infrastructure. Below, we itemize the required
information for a middlebox certificate along with the names of the fields.

• Name(s) of the Middlebox Service Provider indicates the name(s) of the mid-
dlebox service provider, which can be specified at the CommonName field.

• Subject (Middlebox) Public Key Info carries the public key and the crypto-
graphic algorithm (e.g., ECC) used to generate the key, which can be specified
at the Subject Public Key Info field.

• Middlebox Information Access contains additional information that can help a
user trust the middlebox. To this end, we define an extension, Middlebox_InfoAccess
where its ASN.1 syntax is defined as follows.

142 Chapter 7. TLS and Middleboxes

Certificate Extension Syntax

Middlebox_InfoAccess :: =
SEQUENCE SIZE (1..MAX) OF Middlebox_Description

Middlebox_Description::= SEQUENCE {
Middlebox_InfoType OBJECT IDENTIFIER,
Middlebox_Info GeneralName}

For example, permission can be one of the Middlebox_InfoType fields, used to
indicate the read or write permission required by the middlebox for TLS traffic.
Similarly, the TypeofService and URL fields can provide additional information
about the middlebox as a form of Middlebox_Description.

Middlebox Transparency

We introduce the notion of a middlebox transparency log server, which publicly
records middlebox certificates. The operation of MT is similar to that of certificate
transparency [LLK13]. It encourages middlebox service providers or CAs to submit
middlebox certificates to the MT log server. Further, once a middlebox certificate is
accepted at the MT log server, the log server returns a Signed Certificate Timestamp
(SCT). A client can check its membership by verifying the SCT with the public key of
the log server.

Properties of Auditable Middleboxes.
We call a middlebox that has a middlebox certificate logged in an MT log server an
auditable middlebox. It provides the following benefits regarding the trustworthiness of
middleboxes:

First, middleboxes now have their own key pairs and can be authenticated from the
endpoints by presenting their valid certificate. Thus, middleboxes now no longer
require (1) content providers to share their private keys or (2) users to install their
custom root certificate.

Second, clients can be assured of the names and properties of middleboxes or mid-
dlebox service providers. This will hold middlebox service providers accountable.
Further, with the help of maTLS, which will be detailed in §7.4, clients can detect if
a middlebox has modified traffic without any authorization. This can be done by
checking the Permission item in the Middlebox_InfoAccess field of the middlebox
certificate, which would encourage middleboxes to have least privileges. For exam-
ple, anti-virus software can be issued with a middlebox certificate with only read
permission to assure users that it will not modify any traffic.

Third, middlebox certificates may require some of the essential X.509 extensions such
as Permission field to be set to critical [ITU00], which explicitly indicates that clients
must refuse the connection if they cannot interpret the extension.

7.4. The maTLS Protocol 143

Fourth, the MT system provides a global set of auditable middleboxes; any inter-
ested parties, such as monitors, auditors, and clients, can check any mis-issued,
mis-configured, or fraudulent certificates.

Fifth, when a middlebox certificate’s corresponding private key is no longer safe
due to security breaches, the middlebox certificate can be revoked, and the revoca-
tion status can be disseminated through existing revocation mechanisms such as
CRL [CSF+08] or OCSP [MAM+99]. Thus, clients can be protected from middleboxes
with security risks by leveraging the existing revocation mechanisms.

Given that the PKI has been suffered from many security issues regarding certificate
management, one might be concerned that introducing additional infrastructure (i.e.,
MT system) could exacerbate the current situation. However, we believe that the
middlebox certificate by itself does not introduce new management problems as it can
be easily integrated into the existing CT architecture. Rather, the use of middlebox
certificates can mitigate the current insecure practices of middleboxes splitting TLS
connections such as installing custom root certificates or sharing private

Middlebox-aware TLS Design

In this section, we describe the maTLS protocol, which is designed to allow mid-
dleboxes to participate in a TLS session. As we have middleboxes equipped with
certificates, we extend the security goals of TLS to the seven objectives below, divided
into three categories. For the sake of exposition, we explain maTLS based on TLS 1.2
with ephemeral Diffie-Hellman (DHE) key exchange in the server-only authentication
mode.

Deployment

In this subsection we discuss some of the strategies for deploying a middlebox-
enabled TLS scheme such as maTLS.

Session Establishment Approaches.
First of all, we explain how a client establishes a maTLS session with the server
through multiple middleboxes. There are two possible approaches to establish a
maTLS session and its segments, as shown in Figure 7.4. In the top-down approach,
the client first establishes a TLS session directly with the server, and the server
determines the security parameters of the session. After that, either or both of the
endpoints should pass the segment keys to the authorized middleboxes via separate
TLS connections. In the bottom-up approach, the client and middleboxes first initiate
TLS segments sequentially up to the server. In this approach, the two participants
of each segment negotiate their security parameters individually, and the session is
eventually constructed from these segments.

In maTLS, we adopt a bottom-up approach for the following reasons. First, an maTLS
session can be partially established even if not all entities support maTLS. For exam-
ple, even if the server does not support maTLS, the client and the next middlebox

144 Chapter 7. TLS and Middleboxes

Mechanism Proof Data Structure Description & Advantages

Explicit
authentication

A sequence of certificate blocks,
including the server certificate
and any middlebox certificates with
their signed certificate timestamps.

The client authenticates the server and middle-
boxes by checking their certificates, and confirms
their names and the middleboxes’ permissions
• No custom root certificate and no private key
sharing
• EV certificates are not degraded due to fabri-
cated certificates
• Support for Certificate Transparency [LLK13]
and DANE [SH12]

Security
parameter
verification

Security parameters of each
maTLS segment including the
TLS version, ciphersuite, and a
transcript of the handshake

The client confirms the confidentiality of each seg-
ment
• Neither a low TLS version nor a weak cipher-
suite is permitted without the client’s knowledge
• The two points of each segment perform a TLS
handshake and establish a segment key

Valid
modification
checks

A modification log that keeps
track of the modifications of
a packet

The client confirms that only authorized entities
can generate or modify messages
• Only an authorized data origin (a server or a
cache proxy) can generate messages
• Only trusted writer middleboxes can modify
messages
• The order of middleboxes is always preserved

TABLE 7.2: Three audit mechanisms of endpoints in maTLS: Ex-
plicit authentication guarantees the authentication of all the partici-
pants. Security parameter verification ensures the confidentiality of
all the maTLS segments. Valid modification checks ensure that only

authorized entities can modify messages.

that supports maTLS can still negotiate security parameters for their segment and
establish a maTLS session. Second, each different maTLS segment can benefit from
using strong ciphersuites or newer TLS version independently because maTLS does
not require all entities to share the same ciphersuite or TLS version. Third, the bottom-
up approach efficiently achieves Individual Secrecy. This is because the two entities
involved in each segment use different random numbers to establish a master secret;
thus, the probability that all the segment keys are identical is negligible.

It is worth noting that most of the top-down approach schemes, such as mcTLS [NSV+15],
TLMSP, and TLS Keyshare extension [Nir12], do not support incremental deployment.
This is mainly because only the server picks the version, ciphersuite, and extensions
that are supported across all entities (i.e., both endpoints as well as middleboxes),
which makes it challenging to deploy them incrementally. Even worse, it is highly
likely that the security level of the session will be decided by the “intersection” of
the security parameters supported by all the entities. Furthermore, the entire ses-
sion needs to use the same shared secret, which undermines the security of the
communication as well.

Among the top-down approach schemes, the only solution that supports incremental
deployment is mbTLS [NLG+17]. If the server does not support mbTLS, the client first
establishes a standard TLS session with the server. Then, the client sends the segment
keys to each middlebox that does support mbTLS. To achieve individual secrecy, the
client generates the different segment keys for all the segments and distributes keys
to the corresponding middleboxes (two segment keys per one middlebox), which is
inefficient.

7.4. The maTLS Protocol 145

(A) Top-down approach: The initial negotiation is performed between two endpoints.
Then the key materials are exchanged with middleboxes.

(B) Bottom-up approach: The two participants of each maTLS segment negotiate security
parameters independently, and then the maTLS session is established by connecting the

maTLS segments.

FIGURE 7.4: Two approaches to establish a TLS session with middle-
boxes. We adopt the bottom-up approach since it efficiently supports

incremental deployment.

Audit Mechanisms.
We propose three audit mechanisms for the clients to audit middleboxes while per-
forming an maTLS session: Explicit Authentication, Security Parameter Verification, and
Valid Modification Checks.

These mechanisms necessitate some data structures for middleboxes, such as signa-
tures or message authentication codes (MACs), to demonstrate accountability for
every message. We prefer to use MACs, as signatures require higher computation
overhead on their generation. Thus, entities will use hash-based message authentica-
tion codes (HMACs) when signatures are not necessary. To this end, we introduce
accountability keys that are to be used as HMAC keys. The accountability key is es-
tablished between the endpoints and middleboxes; thus, each middlebox should
establish one accountability key with each endpoint (two in total), while the client
and the server each need one accountability key for each middlebox, and share one
more key between them.

We overview the audit mechanisms in Table 7.2.

(1) Explicit Authentication guarantees authentication of the server as well as the mid-
dleboxes by validating received certificates. If there are any suspicious middle-
boxes, the maTLS session can be aborted. The server sends its certificate in the
ServerCertificate message during the maTLS handshake. Whenever the middle-
boxes receive this message, each of them simply appends its certificate, so that the
client can receive all the certificates up to the server. As the client receives all the
certificates, she does not need to worry about the degradation of certificate-level due

146 Chapter 7. TLS and Middleboxes

to forged certificates by middleboxes. Similarly, DANE or CT can also be supported
with middleboxes.

When receiving a sequence of certificates, the client should validate all of the certifi-
cates as well as recording the order of the certificates, up to the server.

(2) Security Parameter Verification allows the client to audit the security association of
each maTLS segment, and to confirm the accountability keys as well as their order. To
this end, the middleboxes have to present the security parameters (of each segment),
that is, the chosen TLS version, the negotiated ciphersuite, the hashed master secret,
and a (hashed) transcript of the TLS handshake (i.e., the verify_data in the Finished
message). The selected TLS version and ciphersuite show the degree of confidentiality
of the corresponding maTLS segment. The hashed master secret demonstrates the
uniqueness of segment keys. The transcript, a digest of handshake messages in the
maTLS segment, is used to prove that two entities involved in the segment performed
the handshake without any modification by an attacker.

However, middleboxes could potentially give false information to the client. To
avoid such misbehavior, we propose a security parameter block – an unforgeable
cryptographic proof of security information for each segment. Each block contains
the security parameters and their HMAC value.

The two entities of a maTLS segment, say segmenti,i+1, present the security parameters
of the segment, respectively for cross-verification.

All the entities except the client in the maTLS session generate the security parameter
block. The basic structure of the block is of the following form:

IDi||pi,i+1||Sign(ski, Hmac(aki,0, pi−1,i||pi,i+1))

One entity ei first generates an HMAC over the security parameters in its two seg-
ments, namely segmenti−1,i and segmenti,i+1, and signs on the resultant HMAC. Then,
ei prepends its identifier and the security parameters of the segment in the direction
of the server with the signature. When the block is generated, ei forwards it toward
the client.

For a server (S = en) that is only involved in one segment, i.e., segmentn−1,n, the
server sends IDn||Sign(skn, Hmac(akn,0, pn−1,n)) in which the term corresponding to
pi,i+1 in the above expression is removed.

When the client receives a series of security parameter blocks, it can confirm all secu-
rity parameters negotiated between each entity by verifying the signature of signed
HMACs. Verification fails could be due to modified security parameters, missing or
incorrect order of the middleboxes; thus the client must abort the negotiation process.
Once the client can successfully verify all the security parameters, accountability keys,
the order of the middleboxes in the maTLS session, it can further decide whether
to accept the session based on its policy. For example, the client might abort the
connection if any of the segments is established with a weak algorithm such as an
RC4 [Pop15].

7.5. Security Verification 147

(3) Valid Modification Checks allow a client to audit which entity has modified the
message.

When an entity forwards a message to the next entity it also generates a cryptographic
proof, called a modification log (ML). Basically, it is to compare the incoming and
outgoing message from the entity by attaching (1) a HMAC generated from both
received and sending message using its accountability keys (aki), (2) a digest of the
received message (H(mi+1)), and its identifier (IDi). Assuming that the message is
coming from the server (en) to the client (e0), we can define the ML generated from
the ei, which is denoted as MLi:

IDi||H(mi+1)||Hmac(aki,0, H(mi)||H(mi+1))||MLi+1

Here, we can apply some optimization techniques to reduce the size of the MLs in
specific scenarios. First, the server does not have a prior message, thus the MLn can
be defined as IDn||Hmac(akn,0, H(mn)). Second, when an entity (ei) does not modify
any message (i.e., in the case of a read-only middlebox), we can further reduce the
size of the MLi by (1) simply generating a HMACi from the previous HMACi+1 and
(2) omitting its received digest (H(mi+1)) and even its ID (IDi). Thus, if the client
detects a omitted ID while parsing the received ML, it can assume that the message
has not been modified among the middleboxes with the omitted IDs. For example, if
an entity (ei) receives a message that has never been modified, the ML that the entity
received will be

IDn||Hmac(aki+1,0, Hmac(aki+2,0, · · · , Hmac(akn,0, H(mn))).

Once ei modifies the message, however, the ML produced from ei will be

IDi||H(mi+1)||Hmac(aki,0, H(mi)||H(mi+1))||IDn||HMACi+1,

which implies that the message between the middlebox ei+1 and en has never been
modified.

Once the receiver (i.e., the client in this example) obtains the series of MLs, it can ex-
tract the digests of all the modified messages, track the identifiers of the middleboxes
that performed the write operation, and finally verify each ML using its HMAC.

7.5 Security Verification

In this section we discuss the security goals that we aim to achieve with the maTLS
protocol, as well as the process of building a model for analysis.

148 Chapter 7. TLS and Middleboxes

Security Goal Description

Server
Authentication

When a client believes she has finished a maTLS handshake,
the corresponding server also believes he has established a
session with the client, sharing the same accountability key
data

Segment Secrecy
When a maTLS session is established, the client has cor-
rectly verified the security parameters used in each seg-
ment

Data
Authentication

When a client receives a message during the maTLS record
phase, the hash value from the server is a faithful digest of
the original message

Modification
Accountability

When an endpoint receives a message during the maTLS
record phase, the agent believes that a middlebox has
changed the message if and only if that middlebox did
make a change

TABLE 7.3: Core security goals of the maTLS handshake and record
phase protocols.

Security Goals

Authentication: Similar to the authentication process of TLS certificates, clients
should be able to receive and check the validity of the certificate of the server that
the clients intended to connect. This should hold even when there are middleboxes
splitting the TLS connection between them. Thus, we extend the notion of the
authentication to cover both the intended server and middleboxes, and we call this
property of the maTLS protocol (1) Server Authentication (and equivalently, Middlebox
Authentication).

Confidentiality: Browsers warn a user if her session is negotiated with a low TLS
version or a weak ciphersuite. Thus, each maTLS segment should be encrypted with
a sufficiently high version of TLS and a strong ciphersuite; we apply this requirement
to each maTLS segments, which is called (2) Segment Secrecy. Further, each maTLS
segment should have its own security association (e.g., a unique session key) to
prevent the same keystream from being reused across the overall maTLS session.

Integrity: The notion of integrity can be extended such that only authorized entities
can generate or modify messages depending on their permissions. To this end, we
define (3) Data Authentication, which means that a client should be able to confirm
that a received message has originated from a valid endpoint such as a web server
or cache proxy. Moreover, a client should be able to figure out which middleboxes
have made each modification to the message, ensuring accountability. We call this (4)
Modification Accountability. Moreover, not only the integrity of the messages should
be preserved, but also the order of the middleboxes; the network attacker could also
capture and redirect packets, or bypass some middleboxes. We saw the consequences
of this in Section 7.3 – as such, we require Path Integrity, as from Chapter 6.

7.6. maTLS Implementation & Evaluation 149

Protocol Rules

The protocol rules for maTLS can be divided broadly into three categories. The first
handles the setup rules of the protocol. These represent events such as the registration
of server or middlebox certificates. Second, a set of corruption rules describe the main
ways in which an agent may violate their specification — for example, giving their
long-term private key to the adversary. Finally, the protocol rules describe the actual
actions of the participants.

In order to handle the complexity of analysis, we consider the handshake and record
protocols separately for analysis. That is, we assume that the record phase cannot
begin unless the handshake phase has successfully completed exactly as per the
specification. This assumption arises from the Server Authentication security claims,
which assert that there is full agreement on all terms by the end of the handshake.

Security Claims

With the protocol rules, we modeled the core security goals of maTLS. We describe
our security goals in the form of the first order logic formulae, the intuition behind
which are shown in Table 7.3.

7.6 maTLS Implementation & Evaluation

In this section we evalute an implementation of the maTLS extension, as well as
discussing the implications of attempting to deploy such a scheme.

Experiment Settings.
To demonstrate the feasibility of the maTLS protocol, we implemented it using the
OpenSSL library. Our testbed consists of a client (C), a client-side middlebox (MBC),
a server-side middlebox (MBS), and a server (S). The server-side middlebox and the
server were equipped with an Intel Xeon CPU E5-2676 at 2.40GHz with 1GB memory.
We used a virtual machine with an Intel Core i7 at 2.30GHz and 1GB memory for
the client-side middlebox, and a virtual machine with an Intel Broadwell CPU at
3.30GHz and 1GB memory for the client.

During our experiments, the client and the client-side middlebox were located on a
campus network. We ran tests with the server (and the server-side middlebox) located
at three different locations: in the same country (intra-country testbed), in different
countries but the same region (intra-region testbed), and in different continents (inter-
region testbed). The round-trip times between the two entities in each scenario are
shown in Table 7.4.

After establishing an maTLS session, the client requests an HTML page of 1KB with
an HTTP GET message, respectively, terminating the connection after completing the
download of the corresponding HTTP response. Each plotted value is the average of
100 measurements. We compare the performance overhead of maTLS with those of
SplitTLS and mcTLS [NSV+15].

150 Chapter 7. TLS and Middleboxes

Intra-country Intra-region Inter-region

a

0

200

400

600

800

1000

1200

T
im

e
(m

s)

maTLS
mcTLS
SplitTLS

(A) HTTP Load Time

Intra-country Intra-region Inter-region

a

0

100

200

300

400

500

600

T
im

e
(m

s)

maTLS
mcTLS
SplitTLS

(B) Data Transfer Time

2 4 6 8
Number of middleboxes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e
(m

s)

SPV
EA
VMC

(C) Integrity Verification Time

0 2 4 6 8
Number of middleboxes

 0

 2

 4

 6

 8

T
im

e
(m

s)

(D) CPU Processing Time

FIGURE 7.5: Numerical results reveal that maTLS incurs slightly more
delay, ranging from 10.22ms to 32.52ms against mcTLS and SplitTLS,
mainly due to the signature verification and key generation needed
in the maTLS handshake. (EA: Explicit Authentication, SPV: Security

Parameter Verification, VMC: Valid Modification Checks)

We used an ECDH key exchange algorithm over the secp256r1 elliptic curve for the
accountability keys, the SHA256 function for the hash algorithm, and a SHA256-based
ECDSA for the signature algorithm.

HTTPS Page Load Time.
We first evaluate the time elapsed to fetch an 1KB file from the server in the maTLS
protocol, which is compared to the SplitTLS and mcTLS protocols. Figure 7.5a
summarizes the time taken from starting a TCP handshake to finishing the download
of the content. We observe that the maTLS protocol introduces a slight delay (10.22ms
– 32.52ms) compared to SplitTLS and mcTLS in the general case.

We believe this is mainly due to the message order dependency in maTLS. Unlike
SplitTLS, where each TLS segment is established completely independently, the maTLS
segments are established piecewise sequentially as some signaling messages (e.g.,
ClientHello, ServerHello, ServerCertificate) must be exchanged between the
client and the server through the middleboxes in sequence. Thus, in maTLS, each
middlebox needs to wait until these messages arrive while performing the handshake.

To quantify the overhead that the maTLS record protocol requires, Figure 7.5b shows
the data transfer time, which starts at the client sending an HTTP GET (a single packet)

7.6. maTLS Implementation & Evaluation 151

Testbed C-MBC MBC-MBS MBS − S
Intra-country 1.136ms 4.944ms 0.551ms
Intra-region 1.136ms 35.896ms 0.537ms
Inter-region 1.136ms 192.818ms 0.610ms

TABLE 7.4: Networking Settings. The round-trip times between two
points in each scenario are shown, where C and MBC are in the same

campus, and MBS and S are in the same data center.

and ends at the client receiving an HTTP RESPONSE (a single packet). Interestingly,
we notice that the delay time of the maTLS record protocol is similar to that of
the SplitTLS and mcTLS record protocols. For example, in the intra-region testbed
scenario, the data transfer time is 39.92ms, 39.90ms, and 41.28ms in maTLS, SplitTLS,
and mcTLS, respectively.

From Figures 7.5a and 7.5b, we conclude that the additional maTLS overhead is
mainly due to the setup of a maTLS session, which implies that once the session is
established, maTLS provides similar performance to the others while preserving all
security merits that we have discussed.

Scalability of Three Audit Mechanisms.
Next, we evaluate the scalability of the maTLS audit mechanisms: Explicit Authenti-
cation (EA), Security Parameter Verification (SPV), and Valid Modification Checks
(VMC). Note that the number of required HMAC operations increases linearly with
the number of the middleboxes. Thus we now wish to check the scalability of the
HMAC operations in maTLS for its feasibility. To this end, we increase the number
of middleboxes in the same data center to quantify the computational overhead due
to the audit mechanisms by measuring the validation time for each arriving packet
(Figure 7.5c).

We observe that the overhead of the three audit mechanisms is almost negligible. For
example, it takes 0.195ms to verify security parameter blocks, 0.203ms to validate
certificates, and 0.013ms to check the modification record for two middleboxes. Also,
we observe that the overhead increases linearly with the number of middleboxes; for
each incoming packet, only an extra 0.045ms and 0.063ms overhead is required for
the explicit authentication checks and security parameter verification, respectively. It
is worth noting that the delay of explicit authentication is mainly due to certificate
validation, which accounts for around 95% of the delay. Likewise, signature verifica-
tion accounts for more than 91% of the delay of the security parameter verification.
The overhead for valid modification checks is marginal as it uses HMAC operations
to verify the ML, which turns out to be only 0.026ms, even with 8 middleboxes.
We believe that the auditing mechanisms of maTLS can achieve their goals without
incurring a substantial delay.

CPU Processing Time.
Next, we evaluate the CPU processing time for a maTLS handshake as the number of
middleboxes increases. We place all the middleboxes and the endpoints in the same
data center to minimize the impact of networking delay. As shown in Figure 7.5d, the

152 Chapter 7. TLS and Middleboxes

CPU processing time for the maTLS handshake also linearly increases by on average
0.398ms for each middlebox. This increment is mainly due to the multiplication
operations required to add an ECDH shared secret, and generating accountability
keys using a PRF, which account for 0.367ms (92.2% of the increment) and 0.016ms
(4.0% of the increment), respectively.

Other Implementation Considerations

Incremental Deployment.
The maTLS protocol can be executed even if not all the entities support it. In

other words, a session can have both maTLS segments and TLS segments at the
same time. For example, when a client and two middleboxes support maTLS and
the server does not, maTLS segments can be set up between the client and the two
middleboxes. In this case, the middlebox farthest from the client in the maTLS
segments establishes a standard TLS segment with the server. Following the maTLS
protocol, all the middleboxes in the maTLS segments send their own certificate to the
client. Therefore, the client will receive a bundle of middlebox certificates, but not the
certificate including the server’s name. This will cause the client to issue a warning
message.

To resolve the problem, we require that the farthest middlebox in the maTLS segments
should send not only its middlebox certificate but also the received certificate from
the standard TLS segment. This allows the client to receive the server’s certificate
and thus validate it. Unfortunately, this requires that the client must trust that the
middlebox sent the certificate that it received, and correctly validated the server
certificate in the standard TLS handshake. However, the client can still authenticate
the participating middleboxes and verify their security parameters, which is not be
supported by the current practice.

Abbreviated Handshake.
maTLS supports abbreviated handshakes using session IDs/tickets in TLS 1.2, or
pre-shared keys in TLS 1.3, which need not extend the handshake. A client can
resume a maTLS session using the abbreviated handshake protocol. The middlebox
(closest to the server) can resume its maTLS segment with the server, as it knows the
session ID, pre-shared key, or session ticket. The middlebox, however, does not have
the accountability key shared between the client and the server; thus, the server is
able to detect incorrect session resumptions by verifying the modification log if an
adversary attempts to impersonate the middlebox.

Mutual Authentication.
Like the standard TLS protocol, maTLS also supports mutual authentication by
sending a CertificateRequest message to the client during the TLS handshake. In
this case, the client also sends her certificate upon receipt of the CertificateRequest
message from the server. The middleboxes can simply append their certificates to her
certificates while being forwarded to the server so that both the client and the server

7.6. maTLS Implementation & Evaluation 153

authenticate each other’s certificates. After that, the client and the server each send a
ExtendedFinished message to verify the possession of their private keys.

TLS 1.3 Compatibility.
TLS 1.3 [E. 18] has been recently approved and is expected to be widely deployed.
The maTLS protocol can support TLS 1.3 by adding a ExtendedFinished message
after a server’s Finished message in the server-only authentication mode. The only
difference is that TLS 1.2 requires two round-trips for session establishment, while
TLS 1.3 only requires one and a half round trips. Unfortunately, this means that
individual segments running TLS 1.2 will negate some of the speed-up benefits from
TLS 1.3.

Conclusion

This chapter looked at some of the real-world complications involved in the usage
of the TLS protocol suite. Because of the complexity of such a protocol, no solution
will be intrinsically “simple” – instead, the problem exists in identifying a high-level
solution that meets the needs of users.

We also looked at the idea of agreement between two parties who are not directly
communicating to each other. This kind of property, although simple to define, can
be surprisingly difficult to verify. This is because there are more “points of failure”
during transit: especially in the TLS setting, where messages are usually delivered
in plaintext, and so security must be verified by tracing backwards on the signed
transcript in the final message.

In the next chapter, we will see several strategies towards making the problem of
verifying “indirect agreement" tractable.

155

Chapter 8

Accountable Proxying

The LoRa Alliance represents a collaboration between over 500 compa-
nies, producing a set of standards for IoT devices. The most notable of
their contributions is the LoRaWAN specification for Long Range devices
over a Wide Area Network. Over 80 million connected devices follow the
LoRaWAN specification, meaning that its security is of key interest.

In this chapter, we closely analyse the security of the LoRa Join Procedure,
in which an End Device uses a Join Server to establish channel-keys used
to communicate securely with an Application Server. This protocol is of
particular interest because it is a proxied key exchange: the two endpoints
never directly communicate. In fact, during the LoRa 1.1 Join procedure,
the Application Server is not active at all. Vulnerabilities are highlighted
and discussed with both the LoRa 1.02 and 1.1 specifications. Importantly,
our analysis considers a variety of threat models under differing assump-
tions, in order to cover different deployment scenarios or ambiguities in the
specification.

This chapter demonstrates the complexities of analysing a real-world proto-
col at a very fine granularity: models are derived directly from the specifi-
cation, including details such as counters which can increment and reset.
To overcome the complexity of automated analysis, several techniques are
deployed, including the use of specialised security goals which capture
specific aspects of agreement properties.

The work in this chapter is based on the EuroS&P 2020 paper “Extensive Secu-
rity Verification of the LoRaWAN Key-Establishment: Insecurities & Patches”.
Some parts have been reordered, in order to present the case studies as com-
plete sections. The figures and code snippets have been enhanced.
I contributed to this work through manual analysis of the technical specification
of the protocol, as well as hand-construction of some of the attack traces which
were later verified through Tamarin.

156 Chapter 8. Accountable Proxying

8.1 Introduction to LoRaWAN

In October 2017, the LoRaWAN specification was updated from version 1.02 to
version 1.1, containing significant updates to several sections. However, because
many IoT devices run specialised hardware, the upgrade path has been very slow,
with many devices remaining un-updated.

As such, both the LoRa 1.0 and the LoRa 1.1 specifications remain of interest to
many communities. Although certain security concerns regarding the LoRa Join have
been raised in academic chapters [AF17], in general, there has not been significant
engagement of the LoRa Alliance with the academic, security community. This is
surprising, considering the success of such collaborations in recent years, such as the
formal modelling of TLS 1.3 [CHH+17] before its official release.

Related Work.
There are several published discussions of vulnerabilities of LoRa 1.0 Join [EBPG19,
AF17], using multiple different approaches. On the one hand, one of these [EBPG19]
is semi-formal (using symbolic verification), yet it is arguably not a faithful analysis
of LoRaWAN 1.0, as their modelling is too simplified. On the other hand, [AF17]
performs an empirical analysis of the LoRa 1.0 Join, signalling multiple security issues.
If the LoRa 1.0 Join is not widely scrutinised, there are even fewer assessments of
the security of LoRa 1.1 Join [BPG18, CF19]. The frameworks used in these works do
not always faithfully capture the additional details added in the latest version of the
specification. Concretely, neither [BPG18] nor [CF19], fully consider that the 1.1 Join
is a four party authenticated key-exchange (AKE) protocol. In the case of [BPG18],
not only is it the case that the analysis is treated at the two-party AKE level and that
Join Server is not modelled at all, but the choices of modelling abstractions remove
important details and their specification files found online are incomplete.

At the other end of the spectrum, Canard et al. [CF19] provide a formal, rigorous
cryptographic model. However, they build on the 3ACCE model [BBD+18] (which
is for proxied 3-party AKEs), and fail to fully address the fourth party (i.e., the
Application Server is not fully modelled). Moreover, the 3ACCE model [BBD+18] is
suited for PKI-based AKEs, not for AKEs based on a trusted-server (like the LoRa
Join is).

Objectives.
We aim to analyse the AKE protocols in the LoRa 1.0 and 1.1 Join Procedures, as
faithfully as possible, considering several threat models which accurately portray the
real-world possibilities.

Contributions.
The main contributions of this chapter are as follows:

• We further the symbolic analysis of the LoRaWAN 1.0 AKA protocol, creat-
ing automated proofs of the existence of attacks against the specification that
previously had to be demonstrated by hand [AF17].

8.2. Threat Model and Security Goals 157

• We present a faithful symbolic analysis, far beyond preexisting efforts of this
type [EBPG19, BPG18], of the LoRaWAN 1.1 Join closely following its specification,
in the threat model declared by the LoRa Alliance.

We analyse the of LoRa1.1 Join under multiple threat models, considering the
possibility that the Network Server (which acts as a proxy) may be partially
dishonest.

To our knowledge, this is the first full symbolic analysis of the LoRa 1.1 Join. Using
this analysis, we demonstrate several security violations, including those in
a model which closely follows that of the specification. Following from this,
we discuss the shortcomings, inexactitudes and implications of the current
specification for LoRa1.1 Join.

• Drawing on the above, we propose a new design of LoRa 1.1 Join, which we
call LoRaWAN1.1 LoRA 3-AKA+. This is as backwards-compatible as possible
with the current LoRa 1.1 Join, and we prove using the Tamarin proving tool
that LoRA 3-AKA+ is secure even in our strongest threat model.

Structure.

This chapter is organised as follows. In Section 8.2 the threat model and security
goals are introduced. Sections 8.3 and 8.4 contain case studies of the LoRa 1.02 and
1.1 Join procedures, respectively. In Section 8.5 we present LoRA 3-AKA+, a proposal
for a new Join procedure which addresses the vulnerabilities identified. Section 8.6
contains a discussion of our interactions with the LoRa Alliance during the course of
this security analysis, as well as our conclusions.

8.2 Threat Model and Security Goals

In this section we introduce the threat models used for our analysis, and use them to
define our security goals. The complexity of the LoRa protocol suite means that it is
not tractable to fully model traditional synchronisation or agreement goals, and so
we use our understanding of the protocol structure to define approximations to these
goals that are sufficient to identify attacks on standard authentication goals.

Throughout the rest of this chapter we will refer to the Network Server, Application
Server, Join Server and End Device as NS, AS, JSand ED, respectively.

Threat Models

We consider three threat models, which we name MAS-NS-Secure,MLoRa1.1Spec, and
MNS-weakCorrupt. The intent of these models is to balance, as well as probe, the
trust assumptions and the security requirements made by the LoRa specifications.
Concretely, we differentiate these models based on the amount of trust placed in the
Network Server, as well as the security of channels between NS and the backend.
Figure 8.1 contains a summary of the different threat models.

158 Chapter 8. Accountable Proxying

Channel Security
High Low

NS High MAS-NS-Secure MLoRa1.1Spec
trust Low – MNS-weakCorrupt

FIGURE 8.1: Threat models considered in our analysis

The intent of each of these models is as follows:

• MLoRa1.1Spec is the threat model exactly implied by the LoRa 1.1 specifications
for the Join Procedure. In this case, there is a high level of trust on NS. More
specifically, as per the specs, we consider all parties be honest. As per the specs,
we model the the channels between NS and JS and between AS and JS as secure,
but the channel between NS and AS as insecure, i.e., as the specs do not require
it be secure.

• MAS-NS-Secure has the same level of trust asMLoRa1.1Spec, i.e., the NS and all
other parties are considered honest. However, forMAS-NS-Secure, we consider
the channel between NS and AS to be secure. As a result, MAS-NS-Secure is
a weaker threat model than MLoRa1.1Spec. Security analysis in this model is
arguably adequate, as a proprietary AS might be commissioned with specific
security measures (i.e., authentication, confidentiality and integrity) in its com-
munication with the NS.

• MNS-weakCorrupt is a stronger threat model thanMLoRa1.1Spec. Concretely,MNS-weakCorrupt

is in fact the same as theMLoRa1.1Spec model except that the channel between NS
and JS has become insecure. In particular, inMNS-weakCorrupt, the NS behaves
as per its specification, and the attacker has extra powers only in that it has
compromised the security of the channel between the NS and the JS. Arguably,
this is a weak form of compromising the NS. That is, the modelMNS-weakCorrupt

does not take away this entire trust assumption in the LoRa 1.1 Join (i.e., NS
does continue to behave follow the protocol); instead,MNS-weakCorrupt probes
the implications of even the smallest compromise of this assumption.

In our formal modelling (in Tamarin), insecure channels are implicitly public and
thus accessible to the Dolev-Yao attacker for active manipulation.

So, the MLoRa1.1Spec model is the baseline (in line with the trust and security of
the LoRa specifications), MNS-weakCorrupt is a weakening of trust assumptions in
MLoRa1.1Spec, whereasMAS-NS-Secure is a strengthening of the secure-setup require-
ments inMLoRa1.1Spec.

Threat Models for LoRa 1.0. Note that whilst all the above models apply to the
LoRa 1.1 Join, they do not apply to the LoRa 1.0 Join. Concretely,MNS-weakCorrupt rests
on the security of the channel between NS and JS, but this channel is not present in
the LoRa 1.0 Join (as JS does not exist therein); and in the 1.0 Join, the AS is completely
inactive, soMLoRa1.1Spec andMAS-NS-Secure do not apply.

8.3. Case Study: LoRaWAN 1.0 159

Properties Analysed

For our verification, we encode various agreement and synchronisation proper-
ties [Low97]. Such goals are commonplace for AKE protocols: e.g., weak agreement,
non-injective agreement, injective agreement, synchronisation and secrecy of the
established key (key secrecy, for short). The main difference is that, for LoRa 1.1,
these are extended to encompass not the standard two parties, but rather three or
four parties, as demanded by the LoRa Join procedures.

As we give details of our models, which themselves make the properties more specific,
we further explain the precise nature of certain formulations of our properties.

8.3 Case Study: LoRaWAN 1.0

In this section we perform a case study of the LoRa 1.0 Join procedure. Although the
LoRa specification has been updated to version 1.1, the 1.0 Join is still actively used
by many devices. This is partially due to the difficulty in rolling out updates to IoT
devices, many of which have specialised hardware.

Although the LoRa 1.0 and 1.1 protocols have fundamentally similar goals, the
granularity of our modelling leads to a divergence in our security properties. Notably,
the two protocols have different network layouts, with the latter adding the Join
Server as a separate entity (in 1.0 the Network Server arguably performs the role of
both parties).

Our analysis allows for the first fully formal proof of an attack on the LoRa 1.0 Join
procedure, thanks to the detailed modelling of mechanisms such as resetting counters.

The Join Procedure in LoRa 1.0

We begin by explaining the LoRa 1.0 Join procedure protocol. We use as a reference
the LoRa 1.0.2 version of the Join Procedure [SLE+]).

The LoRa 1.0 Join considers only three active roles, End Devices (ED), a Network Server
(NS), and the backend Application Server (AS). The protocol makes use of a single
long-term shared key, denoted AppKey. The Application Server is not active during
the Join protocol, instead receiving the derived AppSKey from the Network Server.

In the LoRa 1.0 Join the DevNonce and JoinNonce are sampled uniformly at random
over their domain. Yet, DevNonce is only 16-bit long, leading to a birthday paradox-
style attack for LoRa 1.0 (i.e., high chance of repetitions over sessions) [AF17].

Figure 8.2 shows the messages exchanged in the LoRaWAN 1.0 Join, which are as
follows:

1. The End Device sends a “Join Request” message, consisting of a nonce DevNonce
along with identifiers for ED and AS. The message is MAC-ed using the long
term key AppKey.

160 Chapter 8. Accountable Proxying

AppKey

End Device

AppKey

Network Server

AppKey

Application Server

Join-request =
AppEUI, DevEUI, DevNonce,
hAppKey(AppEUI,DevEUI,DevNonce)

1. Join-Request

JoinAccept =
{AppNonce,NetID, params}AppKey,
hAppKey(AppNonce,NetID, params)

2. Join-accept

AppSKey, NwkSKey =
f1, f2(AppKey, AppNonce, NetID, DevNonce)

FIGURE 8.2: LoRa 1.02 Join Procedure

2. After checking the freshness of DevNonceED1, NS replies with a “Join Accept”
message. This message contains identifiers for NS, a fresh nonce AppNonce, and
a collection of parameters to be used for further communication. This message
is encrypted using AppKey2, and a MAC of the plaintext is sent back alongside
this encryption.

3. ED and NS can now calculate the session keys NwkSKey and AppSKey, as AES-
128 encryptions under AppKey of AppNonce and DevNonce together with specific
tagging (e.g., 0x01, 0x02). To make the figure more readable, we write f1 and f2

respectively instead of aes(AppKey; 0x01|| . . .), aes(AppKey; 0x02|| . . .).

Modelling of LoRa 1.0 Join

We first go over our analysis of the LoRa 1.0 Join procedure. Note that for this protocol
we consider only theMLoRa1.1Spec threat model. This is because there is no Join Server,
changing the assumptions on secure channels.

We also do not model confusion freeness, as in this case it is subsumed entirely by
the synchronisation goal, sync_ED_NS, defined in the following subsection.

Comprehensively & Closely Modelling the LoRa 1.0 Specs in Tamarin.
Our Tamarin model follows the LoRa 1.0 specification extremely closely. For instance,
in the code-snippet below, one can immediately see that we encode details down to
the level of the padding and optional parameters:

1“For each end-device, the network server keeps track of a certain number of DevNonce values used
by the end-device in the past, and ignores join requests with any of these DevNonce values from that
end-device.” [SLE+]

2Technically, the message is decrypted using this key, so that the end device needs only implement
the primitive for encryption

8.3. Case Study: LoRaWAN 1.0 161

Example LoRa 1.0 Tamarin Rule

rule Device_Receive_JoinAccept:
let

NS='NetworkServer'
//inputs - ED_Store_02
DevEUI=ClientID(~random64)

//inputs - ans
decoded=sdec(ans,AppKey)
AppNonce=fst(decoded)
NetID=fst(snd(decoded))
DevAddr=fst(snd(snd(decoded)))
opt_params=fst(snd(snd(snd(decoded))))
tau_s=snd(snd(snd(snd(decoded))))

//compute session keys
pad16='pad_with_0s'
NwkSkey=senc(<'0x01', AppNonce, NetID, DevNonce, pad16>, AppKey)
AppSkey=senc(<'0x02', AppNonce, NetID, DevNonce, pad16>, AppKey)

Nonce Freshness & Short Nonces.
The specification states that NS should keep a tally of nonces sent by ED, performing
necessary freshness checks. Our model fully captures this.

We also simulate the fact that nonces are only over generated small domains (DevNonce ∈
{0, 1}16 and JoinNonce ∈ {0, 1}24). We devise a manner of producing nonces in a
cyclic manner. This clearly under-approximates true nonce generation (which would
be done by simply using a “Fresh” sort), however it encapsulates the fact that colli-
sions of nonces are likely. It is arguably unusual for symbolic methods to encode this
fact, however LoRa 1.0 insecurities stemming from these collisions are known [AF17].
So, our model aims to see if we can find attacks based on this same short-nonces
shortcoming.

Our modelling approach in this case is to encode the set of possible values as constant
terms (i.e. ‘1’, ‘2’, ...) rather than abstract fresh terms. This set of values is encoded
into the specification of ED. When a value is to be chosen, we take advantage of
Tamarin’s multiset builtin, which permits nondeterministic selection of an element
from a multiset.

To verify the soundness of this “small-domain” encoding, we prove two lemmas:
(a) two_join_requests_distinct_nonces_device, stating a device can always send two
(or more) Join Requests with different nonces. This ensures that our encoding does
not restrict the behaviour too coarsely;
(b) two_join_requests_same_nonce_device, stating that a device can send two Join
Requests with the same nonce, demonstrating that our modelling can indeed capture
the shortcomings of short-nonce repetition.

162 Chapter 8. Accountable Proxying

Analysis of LoRa 1.0 Join

We first present the main security properties we encode and verify.

Key-Agreement Properties..
Firstly, we focus on standard agreement properties for AKE protocols, as seminally
introduced by Lowe [Low97]. To this end, we encode the following properties with
corresponding intuitions:

(1) weak agreement (wa_ED_NS) – whenever a device ED has completed the Join
Procedure with a network server NS, then some execution of NS has “recorded”
to have run the Join with said ED;

(2) non-injective agreement (nia_ED_NS) – whenever a device ED has completed the
Join Procedure with a Network Server NS, and ED’s transcript contains certain
messages, then some execution of NS has “recorded” to have run the Join with
said ED with the same said messages;

(3) injective agreement (ia_ED_NS) – whenever a device ED has completed an execu-
tion d of the Join Procedure with a network server NS and ED’s transcript for
execution d contains certain messages, then there is a unique execution n of NS,
which records a Join Procedure with said ED, and the same said messages that
appear in ED’s execution.

(4) synchronisation (sync_ED_NS) – in any full Join execution there exists an ED and
a NS who both have matching views of the transcript of the execution.

(5) session-key secrecy (key_secrecy) – if a secret key x is established at timepoint i,
then either the adversary does not know x, or the agent who established said
key has been compromised beforehand.

Freshness Failure.
The main specification encoded for checking freshness and identifying potential
replay attacks is the following fifth property:

(6) replay-attack existence (replay) – there can exist two Join executions, i and j, in
which DevNoncei = DevNoncej and AppNoncei = AppNoncej (i.e., in which both
ED’s nonce and NS’ nonce repeat themselves).

Analysis Results for LoRa 1.0..
We now present some details and the results of our analysis for the properties above,
performed using the Tamarin prover tool. To carry out the verification, we created an
oracle to improve the automatic navigation of the search-space.

The results show that 4 out of the 6 properties examined for agreement and synchro-
nisation in LoRa 1.0 Join are violated. We provide a summary in Table 8.1.

Interpretation of Attacks..
We note that the failings of of non-injective agreement and synchronisation come

8.4. Case Study: LoRaWAN 1.1 163

Security Goal MLoRaSpec

key_secrecy X
sync_ED_NS 7

wa_ED_NS X
nia_ED_NS 7

ia_ED_NS 7

replay resistance 7

TABLE 8.1: LoRa 1.0 Results

down to equivalent traces. This trace shows that the main crux of the failure is that
DevNonce is not used in the LoRa 1.0 Join Response. We note that this behaviour is
rectified in the LoRa 1.1 Join.

The fact that replay-attack resistance fails indicates that even with the checks of the
NS on the freshness of DevNonce, due to the small-domain of the nonces, the protocol
does fail to catch replay attacks. Namely, the trace shows that it is possible for there
to be a session i in which the attacker can replay an old DevNonce from a session
j and, in session i, the NS’ AppNonce also coincides with the AppNonce in session j.
As a result, the AppSKey established in each of two traces is the same. Given how
the encryption of the record-layer messages works in LoRa 1.0, this means that the
attacker can retrieve elements of the plaintext of the record-layer messages from the
two sessions i and j. Note that the replay attack we exhibit by this was shown by
hand in 2018 [AF17]; however, this is the first time this replay was automatically found by
a protocol-verification tool.

As well as verifying the soundness of our “small-domain” nonce approach, we also
verified that this modelling is complete - that the attacker cannot always perform this
replay attack. To this end, we prove two additional lemmas, which demonstrate that
there are also traces in which only one nonce (be it the DevNonce or the AppNonce)
repeats itself.

8.4 Case Study: LoRaWAN 1.1

We now investigate the LoRa 1.1 Join procedure. The 1.1 version of the specification
addresses some problems with LoRa 1.0, by reducing trust in the proxy. In accordance
with this, our analysis is extended to include this additional party. Again, we aim
to draw our model in fine-grained detail from the specification, which allows us to
produce attacks that are directly verifiable.

The Join Procedure in LoRaWAN 1.1

Protocol Description. The LoRaWAN 1.1 “Join procedure” is a four-party proto-
col [Sor], involving an end device ED, a Join Server JS, a Network Server NS and an
Application Server AS. The protocol relies primarily on the fact that ED and JS share

164 Chapter 8. Accountable Proxying

AppKey, NwkKey, OldJoinNonce

End Device Network Server

AppKey, NwkKey, kjs,as

Join Server

kjs,as

Application Server

Join-request =
js, ep, DevNonce,
hNwkKey(js, ep,DevNonce)

1. Join-Request

JoinReq = Join-request, Settings

2. JoinReq

JoinAns = Join-accept, NwkSKey, {AppSKey}kjs,as

3. JoinAns

JoinAccept = JoinNonce, NetID, Settings

4. Join-accept

JoinNonce 6= OldJoinNonce

OldJoinNonce = JoinNonce

NwkSKey = f1(NwkKey, JoinNonce, DevNonce)
AppSKey = f2(AppKey, JoinNonce, DevNonce)

5. Encrypted Data Packet

6. Encrypted Data Packet, {AppSKey}kjs,as

FIGURE 8.3: LoRa 1.1 Join Procedure – Simplified View. Secure chan-
nels are displayed with dashed lines 99K

two3 long-term symmetric keys: AppKey and NwkKey. The aim of the protocol is to
use these long-term keys to establish a set of session keys for use in the record layer.

In Fig. 8.3, we depict the Join Procedure in LoRaWan 1.1, where –for simplicity–
we omit certain low-level details, such as certain identifiers, message padding, and
headers. The protocol proceeds as follows:

1. ED sends to JS a “Join Request” formed of a nonce DevNonce, relevant identifiers,
along with a MAC of this information using the long-term key NwkKey.

2. This request is received by NS, who forwards it as is (apart from network-level
headers) to JS.

3. Upon successful verification of the MAC, JS produces a “Join Answer”, which
includes a “Join Accept”, and a number of session keys. The crucial session
keys are AppSKey and NwkSKey. We will discuss these keys’ generation later.

– To create the “Join Accept”, JS generates a new nonce JoinNonce, which it
MACs and encrypts using the long-term keys shared with ED.

– In the “Join Answer”, the AppSKey is encrypted with a long-term key that JS
shares with AS.

– The “Join Answer” is sent by JS to NS.

3There is a third, long-term shared key called JSIntKey.

8.4. Case Study: LoRaWAN 1.1 165

4. The Network Server retains NwkSKey and forwards only the “Join Accept” part.
From the “Join Accept”, the device retrieves JoinNonce, and is then able to
re-compute the session keys.

5–6) Later, in the first encrypted application-level message sent by ED, the AS either
gets the encrypted AppSKey from the NS or a session-id with which to obtain
the AppSKey from the JS. The NS forwards this information along with the first
application-level message. This will be further discussed later.

Keys Generated During the Join Procedure.
During the Join Procedure, the Join Server (and later, the End Device) generates a
set of session keys. The most significant of these are named AppSKey and NwkSKey4.
These sessions keys are produced by encrypting with AES-128 using the long-term
keys AppKey and NwkKey, respectively. The following data is used in the key gener-
ation: DevNonce, JoinNonce and JS’s identifier JoinEUI, along with specific message
tagging5(e.g., 0x02, 0x04, respectively). Each session key is used at the record layer
for encrypting/decrypting application messages6: NwkSKey is to be used by NS and
ED, and AppSKey by AS and ED.

Remarks on the LoRa 1.1. Join Procedure.

There are a few other aspects of the LoRa 1.1 Join Procedure worth mentioning, which
we detail below.

LoRa 1.1 Channel Requirements.
During the Join Procedure, as per the LoRa specifications, the security of channels is
assumed to be as follows:

• an insecure channel between ED and NS

• an insecure channel between NS and AS

• a secure channel between NS and JS

Upon the end of this AKE, the intended channels are as follows:

• a confidential, authenticated and integral channel between ED and NS (obtained
via encryption and MAC-ings);

• an insecure channel7 between NS and AS, on which a correct behaviour is one
where NS is proxying AppSKey-encrypted messages between ED and AS.

4There are two additional MAC keys for NS and ED, namely, SNwkSIntKey and FNwkSIntKey. Our
formal models capture all session keys.

5To not overload notation with different AES keys and different padding, on Fig. 8.3 , we simply
write NwkSKey is calculated using a function f1 and AppSKey is calculated using a function f2.

6LoRa record-layer messages are not encrypted directly with the AppSKey, instead there is a bespoke
KDF which uses AppSKey.

7 Concretely, line 1437 of the LoRA1.1 specifications mentions that there is a-priori no secure channel
between NS and AS.

166 Chapter 8. Accountable Proxying

There is also a secure channel between AS and JS, which can optionally be used
to deliver AppSKey. Note the insecure channels between NS and AS, both during
the Join Procedure as well as afterwards, at the application level. In the LoRa1.1
specifications, there is no requirement of integrity or of confidentiality made with
respect to the channel between NS and AS.

Bespoke Nonce-generation in LoRa 1.1.
In LoRa 1.1, DevNonce is not sampled uniformly at random over its domain, instead
it is produced as a strictly-increasing counter. NS keeps a tally of DevNonces per
device, and checks that it is increasing (see page 52 of the specifications). Similarly,
the JoinNonce (which is 24 bits long) is produced by the increasing a counter, kept
up-to-date for each device.

Alternative AppSKey-deliveries in LoRa 1.1.
There are in fact two ways in which AppSKey can be delivered to AS. In the Join
Answer message, JS may choose to generate a SessionKeyID instead of (or as well as)
the encrypted AppSKey. If a SessionKeyID is given, the NS may forward this alongside
any encrypted data packets sent by ED. The specification does not indicate which
approach is preferred.

In this second case, AS cannot immediately decrypt messages sent from ED. In
order to retrieve the encryption key, AS contacts JS, who delivers the corresponding
AppSKey. In both cases, it is not clear from the specifications whether AS is to check
if the first data-packet/application-level message does indeed decrypt correctly with
the delivered AppSKey and how the protocol continues in case of failure.

LoRa 1.1 Join – a Non-standard AKE..
Although the Join Procedure views four entities, the protocol is in fact actively run
just between two of the four parties: the end-device ED and the Join Server JS. In
particular, ED and JS have pre-shared symmetric-keys, and –based on these– they
establish new session keys, in what constitutes a symmetric-key authenticated key-
establishment (AKE). Using the the Join Server JS as a trusted third party (TTP) in
an symmetric-key AKE protocol is not necessarily unusual; this type of AKE has
been used in protocols such as Kerberos [Ada11]. To this end, like in a TTP-based
AKE, ED and JS establish session keys not for their use, as it would be the case in a
standard AKE, but for the use of ED with the Network Server and the Application
Server, respectively. However, there are other aspects that are non-standard, even for
a TTP-based AKE protocol:
– ED and JS do not have a direct connection, as in a standard TTP-based AKE, and
instead it is the Network Server who acts as a proxy for the AKE messages sent
between ED and JS.
– Even though, as a result of this AKE, the Application Server receives a session key to
use with ED to encrypt/decrypt application-level messages, the Application Server is
not active during the Join procedure at all. In fact, AS cannot verify any meaningful
properties (e.g., integrity w.r.t. what JS delivered) about the session key it is given.

8.4. Case Study: LoRaWAN 1.1 167

Modelling of LoRa 1.1 Join

Comprehensively & Closely Modelling the LoRa 1.1 Specs in Tamarin.
We follow the specifications of the LoRa 1.1 Join closely, encoding in Tamarin levels
of details far beyond the simplified description given in Figure 8.3. For instance,
the Tamarin code-snippet shown in Figure 8.4 shows part of the specification of the
JoinServer, which contains details about sessions keys, padding, and counters.

LoRa 1.1 Code Snippet

rule JoinServer_Receive_JoinRequest_Generate_Response_with_Key:
let
...

//verify tau_c
tau_c_dash=<'MHDR', $JoinEUI, $DevEUI, DevNonce>

//generate response - assuming OptNeg is set, ie we are using v1.1
ctr_JS=ctr_JS_in+'2' //counter for nonces
JoinNonce=Nonce(<$DevEUI, ctr_JS>) //nonce device specific;

counter-based↪→
DevAddr=Nonce(~rnd32DevAddr) //address assigned by the Join Server

//compute various keys
pad16='pad_with_0s'
//the key used for the mac during the initial Join-Accept answer
JSIntKey=SessionKey(senc(<'0x06', $DevEUI, pad16>, NwkKey))
//the key used for the Join-Accept triggered by a Rejoin-Request
//JSEncKey=senc(<'0x05', DevEUI, pad16>, NwkKey) not needed atm

//compute various network session keys
//Forwarding Network session integrity key (p55, l. 1604)
FNwkSIntKey=SessionKey(senc(<'0x01',JoinNonce, $JoinEUI,DevNonce,

pad16>, NwkKey))↪→
//Serving Network session integrity key (p55, l. 1605)
SNwkSIntKey=SessionKey(senc(<'0x03',JoinNonce, $JoinEUI,DevNonce,

pad16>, NwkKey))↪→
//Network session encryption key (pp55, l. 1606)
NwkSEncKey=SessionKey(senc(<'0x04',JoinNonce, $JoinEUI,DevNonce,

pad16>, NwkKey))↪→
//compute the secret Application Server Key (pp55, l. 1601)
AppSKey=SessionKey(senc(<'0x02', JoinNonce, $JoinEUI, DevNonce,

pad16>, AppKey))↪→
...

FIGURE 8.4: Code Snippet of Tamarin rule for LoRa 1.1 Join Procedure

In order to justify the choices made in our modelling, our Tamarin files contain
references to the line/page of the LoRa specifications which justify our choice of
encoding.

Modelling the Join & Data Packets in the LoRa 1.1..
The LoRa 1.1 Join Procedure finishes before the first data packet is sent (i.e., the keys

168 Chapter 8. Accountable Proxying

are established before this packet is sent). However, as explained in Subsection 8.2,
we wish to verify key-agreement properties with respect to all four parties involved,
but AS receives the AppSKey only when first data packet is delivered (or shortly
afterwards, depending on the delivery method). To this end, we model the full Join
Procedure, plus the first data packet.

Variations of the LoRa 1.1 Specifications Modelled.
The specification contains no clear requirement on the AS being able to decrypt the
first data-packet sent to it. To this end, we model two variations of the LoRa 1.1 Join:

• The “Desync-Model”, which encodes the LoRa 1.1 specification precisely (where
the AS will not end in “error” if it receives the first application message mal-
formed);

• The “Sync-Model”, which encodes a slight tightening of the LoRa 1.1 speci-
fications, whereby the AS will end in “error” if it receives a malformed first
application message.

For each such “sync”/“desync” setting, we encode the two cases discussed in Subsec-
tion 8.4 as to how AS receives the AppSKey. This yields:

• “AppSKey-from-NS”, which encodes that the NS delivers the (JS-encrypted)
AppSKey directly to the AS, with the first application-level message;

• “AppSKey-from-JS”, which encodes that the JS delivers the AppSKey to the AS,
upon the latter’s request yielded after the first application-level message arrived
at the AS.

Encoding Different Threat Models.
For both the Desync-Model and the Sync-Model, as well as for both the Appskey-from-NS
and Appskey-from-JS variations, we create four different Tamarin files, each encapsu-
lating one of the three threat modelsMLoRa1.1Spec,MNS-weakCorrupt andMAS-NS-Secure,
presented in Subsection 8.2.

Consequently, to capture all these different scenarios, we include a total of 12 Tamarin
files for LoRa 1.1. Note that this is mainly done for convenience, with the vast majority
of the Tamarin code shared between models, and only minor changes in key locations.
This separation allows us to pinpoint which “configurations” of LoRa 1.1 lead to
attacks.

Restrictions.
In order to improve the tractability of our analysis in the most severe threat model,
MNS-weakCorrupt, we include a series of restrictions on the maximum number of Join
Requests and the maximum number of Join Responses. This means that, in this
strongest model and for this property, we look to see if there is any attack within a
maximum number of spanned sessions for one given Device and one given Join Server.
However, we do not bound the attacker’s powers in other ways, such as number of
nonces or messages. Concretely, for the LoRa 1.1 Join in theMNS-weakCorrupt model,

8.4. Case Study: LoRaWAN 1.1 169

proofs were carried out with a maximum number of Join Responses and Requests
set to 4 and 3 respectively. These values were chosen with the tradeoff between
computational cost and faithfulness of the model in mind. However, for exhibiting
an attack, we found counterexamples of the properties inMNS-weakCorrupt even with
this set to 2.

Weakly-typed Models vs. Source Lemmas.
Specifically for the case of proving properties on the MNS-weakCorrupt models, we
wrote several Tamarin source lemmas. However, these proved ineffective. Instead,
we achieved better performance by weakly-typing8 the models. Nonetheless, we did
this in a parsimonious way, i.e., we only declared: (a) a specific sort Nonce as a subsort
of Fresh, to exclude typing-attacks on nonces; (b) a specific format for data-packages
after the Join finished, to stop injection of *any* possible term therein. Arguably, these
two weak-typings are realistic and cannot exclude mainstream key-agreement attacks.
These together with the aforementioned restrictions allowed us to disprove (different
versions) of confusion freeness in the strongest attacker modelMNS-weakCorrupt.

Counter-based Nonces.
As described in Subsection 8.4, the LoRa 1.1 specifications replace nonces with counter-
based bitstrings both on the ED and on the JS, which the latter having device-specific
counters. We model this in Tamarin, using the multiset builtin. Counters are modelled
as multisets over a domain of a single element (i.e. the counter can have values ‘1’,
‘1’+‘1’...), incrementing on each use. Both ED and JS record the last accepted value of
their partner’s counters, and will only accept a message if the counter is increasing.

Security Goals of LoRa 1.1 Join

We now present the main security properties we encode and verify.

Firstly, to encode equivalent properties as in the LoRa 1.0 Join, we look at agreement
properties between ED and JS. To this end, recall that the role of NS in the LoRa 1.0
Join is assumed in LoRa 1.1 by JS. So, with the equivalent meaning as those presented
in Subsection 8.3, we encode:

(1) key secrecy for the NwkSKey and AppSKey (key_secrecy)

(2) weak agreement between ED and JS (wa_ED_JS)

(3) non-injective agreement between ED and JS (nia_ED_JS)

(4) injective agreement between ED and JS (nia_ED_JS)

Secondly, we move to encoding AKE requirements linked specifically to the LoRa 1.1
Join, i.e., between the Devices and the Application Server. We specify the following
lemmas:

8Such techniques have been used before in Tamarin-verification when large systems (such as TLS1.3)
were encoded and analysed [CHH+17].

170 Chapter 8. Accountable Proxying

(4) weak agreement between ED and AS (wa_ED_AS) – which encodes that whenever
a device ED has completed the LoRa 1.1 Join Procedure allegedly with AS then
some execution of AS has “recorded” running with ED.

We note, once again, that (in our models and in the LoRa 1.1 specification), an AS
“ascertains” that it is communicating with a specific ED only when said AS receives
the first (encrypted) data packet and the corresponding AppSKey to decrypt it, as
–beforehand– the AS is not alive during the actual key-establishment run by the ED
and JS (via NS). Recall that, to capture error-handling if the packet-decoding by
the AS fails, we encode the two variations “Desync-Model” and “Sync-Model” of
the LoRa specifications. In both of these models, we look at the synchronisation
sync_ED_AS property below:

(5) synchronisation between ED and AS (sync_ED_AS) – which checks if there is an
execution in which ED sends a data-packet, yet the data-packet received by AS
cannot be decoded.

Moreover, we also encode agreement properties similar to sync_ED_AS but slightly
stronger. Namely, we check 2-party and 3-party agreement properties with respect
to data packets and/or AppSKeys, to check not only if the AS is (un)able to decode a
data-packet (as per sync_ED_AS), but also if an AS could potentially be adversarially
confused as to which data-packet and/or AppSKey is associated with which ED.
We call these agreement properties confusion freeness and describe several of their
flavours below.

(6) two-party confusion-freeness w.r.t. packets (CF_ED_AS_packet) – which encodes
that if a device ED finishes a session i by sending an encrypted data-packet pi to
an application server AS, then if the application server AS gets this data-packet
pi it believes it originates from this device ED.

(7) two-party confusion-freeness w.r.t. AppSKey (CF_ED_AS_packet_key) – which en-
codes the same as CF_ED_AS_packet w.r.t. the AppSKey: i.e., if a device ED
finishes a session i with a given AppSKeyi, then if the application server AS
receives AppSKeyi, it correctly believes it is meant for communicating with ED.

(8) three-party confusion-freeness w.r.t. AppSKey (CF_ED_JS_AS_key) – which en-
codes the same as CF_ED_AS_packet_key, factoring in the JS as well: i.e., the
view on a given AppSKey is synchronised correctly between a given EDs, the JS
and the AS.

As with LoRa 1.0, we analyse additional lemmas, primarily to check the correctness of
our modelling, or for auxiliary security properties (e.g., that the key-setup/commissioning
we model between Devices and the Join Server, is secure). However, as they are not
pertinent to the analysis, we omit details on those here.

Last but not least, we recall that we run our verification for these properties on
both the “Desync-Model” and “Sync-Model” of the specifications, in each of the

8.4. Case Study: LoRaWAN 1.1 171

three threat modelsMLoRa1.1Spec,MNS-weakCorrupt,MAS-NS-Secure, with two different
methods for distributing AppSKey. To this end, we created various bespoke oracles
for the respective analyses.

Hierarchy of Properties Analysed

In the “Sync Model”: CF_ED_JS_AS_key CF_ED_AS_packet_key CF_ED_AS_packet sync_ED_AS

In the “Desync Model”: CF_ED_AS_packet_key CF_ED_AS_packet sync_ED_AS

FIGURE 8.5: Hierarchy of Confusion-Freeness and Synchronization
Goals

The relationships between our various security properties are as follows:

Agreement Properties.
Our agreement properties are directly drawn from the definitions of Lowe [Low97].
Although the protocols we analyse are not two-party, the agreement results work on a
pairwise basis. Hence we have that injective agreement is stronger than non-injective
agreement, which in turn is stronger than weak agreement.

Confusion-Freeness Properties.
The simplest of the confusion-freeness properties is CF_ED_AS_packet. CF_ED_AS_packet
is stronger than sync_ED_AS, as it looks not just at the AS decoding the packets, but
also the AS attributing the device address inside said packets to a device. This process
is tied in with the format of the application-layer messages per se and (also) with how
the device address (that appears in these messages) is fed9 to the AS. In other words,
analysing CF_ED_AS_packet also looks at potential confusion of device identities.

Also, in this vein, CF_ED_AS_packet is weaker than CF_ED_AS_packet_key, as the
latter requires agreement on AppSKey as well as the packets sent to be associated with
that AppSKey. In fact, note that the confusion-freeness properties (CF_ED_AS_packet_key,
CF_ED_JS_AS_key,) that require agreement on both the AppSKeyas well as the data-
packet, logically, are not truly needed in the “Desync-Model”: if the AS is able to
report failure when decoding the packet, it is less relevant if it receives an incorrect
AppSKey. As such, we check the CF_ED_AS_packet_key, CF_ED_JS_AS_keyonly in
the “Sync-Model”.

Some of the confusion-freeness properties require three parties to agree, compared
to the simpler case of just two parties. Clearly, the former are stronger requirements
than the latter. Not only that, but given the modelling, if the 3 parties at hand agree
on an AppSKey (i.e., CF_ED_JS_AS_key holds), then necessarily the AS and ED would
agree on the packet as well (i.e., CF_ED_AS_packet_key holds); this is because the first
agreement over 3 parties also binding over identification of the device (ED’s EUI and
ED’s address), in a way that links in with the packets sent and received by the EDand
the AS, respectively.

9For details, see e.g., pages 12, 18, 19 of the backend specifications.

172 Chapter 8. Accountable Proxying

Other Relationships.
Although not necessarily true in the universal setting, an attack on key secrecy for the
LoRa Join protocol immediately results in a scenario where the adversary can forge
data packets (and the associated MACs). Such an attack would thus entail violations
of the majority of the other properties checked.

We note that the “Desync Model” encodes a weaker system than the “Sync Model”.
So, for the formulae that make sense to be checked in both (e.g., CF_ED_AS_packet
and sync_ED_AS), we have an implication from “Desync”-based formulations to
“Sync ”-based formulations.

Unlike in the case of “Desync” vs. “Sync”, hierarchical lines cannot be drawn in
between properties holding in the variations of the models w.r.t. AppSKey deliver-
ies: that is, the “ AppSKey-from-NS” and “AppSKey-from-JS” are incomparable with
respect to these properties holding:

prop. in “AppSKey-from-NS”
6→
6← prop. in “AppSKey-from-JS”

Finally, if any property holds in theMNS-weakCorrupt model, then it will hold in the
MLoRa1.1Spec model. If any property holds in the MLoRa1.1Spec model, then it will
hold in theMAS-NS-Secure model:

MNS-weakCorrupt MLoRa1.1Spec MAS-NS-Secure

In Figure 8.5 we present the part of our hierarchy of properties that does not trivially
follow from Lowe’s agreement lattice, but is rather dictated by our threat and system
models.

Analysis Results

We verified the above properties in all our threat models introduced in Subsection 8.2:
MAS-NS-Secure,MLoRa1.1Spec, andMNS-weakCorrupt.

We first report on the analysis of ED-JS properties. Given the presence of a secure
channel between the NS and JS in all but theMNS-weakCorrupt model, and the implicit
assumption that ED is honest in these security claims, these properties hold in the
MLoRa1.1Spec andMAS-NS-Secure cases. However, these properties do not hold in the
MNS-weakCorrupt threat model, when the adversary is able to manipulate the (mostly
plaintext) messages on this channel.

Table 8.2 shows the results of our analysis on the 1.1 Join procedure. A “NM” entry
indicates that the property was not modelled. This is because their validity is imme-
diately deducible from the results of other properties, following from our hierarchy
of goals. An entry of “NT” indicates that the proof did not terminate given our
current oracles. It is possible that with re-working of the associated oracle these
would terminate, but this is uncertain due to the underlying undecidability of the
verification problem at hand.

We begin with the scenario which most closely follows the LoRaWAN specification.

8.4. Case Study: LoRaWAN 1.1 173

Threat Model MAS-NS-Secure MLoRa1.1Spec MNS-weakCorrupt
Synchronisation Sync Desync Sync Desync Sync Desync

Key Delivery NS JS NS JS NS JS NS JS NS JS NS JS
Security Goal
key_secrecy X X X X X X X X X X X X
wa_ED_JS X X X X X X X X X X X X
wa_ED_AS X X X X X X X X 7 7 7 7

nia_ED_JS X X X X X X X X 7 7 7 7

sync_ED_AS X X X X X X 7 7 NM NM 7 7

CF_ED_AS_packet_key X X X X NT NT 7 7 7 7 X X

TABLE 8.2: Main Verification Results for the LoRa 1.1 Join

This is theMLoRa1.1Spec threat model, using the Desync-Model encoding. This model
is weaker than the Sync-Model, as the AS accepting potentially malformed messages
enables some attacks.

In this setting, our analysis shows that sync_ED_AS fails. Further, confusion-freeness
CF_ED_AS_packet_key fails, even in the main variant of the protocol where the AS
obtains the AppSKey from the NS. In this case, our falsifying traces shows that the
attacker can cross-wire device addresses and the corresponding AppSKeys as well
inject wrong application data-packets.

In the case of theMNS-weakCorrupt model, the aforementioned properties (sync_ED_AS,
CF_ED_AS_packet_key) continue to fail. Moreover, a stronger 3-party variation of
the confusion-freeness property, CF_ED_JS_AS_key, fails (also due to the hierarchical
implication). More specifically, CF_ED_JS_AS_key fails in theMNS-weakCorrupt model
because the attacker can confuse not only the AS, but also the JS as to which devices
sent which JoinRequests or messages. Concretely, the trace found here shows that an
attacker who controls the channel between NS and JS never forwards anything to the
JS, and swaps two devices’ requests on the NS-AS channel.

Implications of the Attacks Found.
The trace corresponding to CF_ED_AS_packet_key failing in the Desync Model shows
that AS can be (adversarially) confused when considering from which devices
application-layer messages have come. As a result, AS may be ultimately unable to
decode a message from some ED1, because they have received some AppSKey2 to link
to ED1 when this key instead corresponds to some ED2.

It is not clear how the AS would behave in this case, or if it would store the wrong
address for ED1 for a period of time.

With sync_ED_AS failing, and with the specs not being clear on how the AS needs to
respond, it also means that an ED may well believe it is sending LoRa data to an AS,
when it actually is not. In fact, a malicious party in between the NS and AS gets hold
of this (encrypted) data. This creates not only data loss for the ED’s owner, but also
data-collection by malicious parties, with no hope that the AS would track or signal
any malfunction.

174 Chapter 8. Accountable Proxying

Countermeasures.
To stop the failure of sync_ED_AS and CF_ED_AS_packet_key, we first and foremost
recommend that the LoRa 1.1 explicitly require that the AS check the format of the
first data-packet served and end in “error” if the decryption of this eventually fails.
Moreover, it should not store any long-term data with respect to this failed message.

Furthermore, we observe that the AKE properties that fail in theMLoRa1.1Spec model
hold in the modelMAS-NS-Secure. In practice, this means that strengthening the LoRa
specification’s requirements to have a secure channel between the NS and the AS can
fix the aforementioned AKE/LoRa 1.1 failing. However, the security of this channel
may often fall under the management of the NS and AS. This means that even if the
LoRa specifications were to require that these channels be secure, we cannot be sure
that this would be attained in practice.

Our analysis in theMNS-weakCorrupt setting tells us that any loosening of the trust in
NS results in several key-agreement properties failing. Notably, because confusion
freeness fails, it means that we cannot guarantee that an AS will have a correct view
as to which device it is speaking to. At the application-level, this is a significant
attack.

Due to the aforementioned issues with security ownership and risk, a more costly
countermeasure that may prevent the failure of sync_ED_AS and CF_ED_AS_packet_key
is the possible introduction of a clear key-confirmation step between the AS and ED.
Or, even further, one can consider making the AS part of the Join and not having the
AppSKey delivered “blindly” to it alongside the first data-packet

Overall, it maybe be advisable that the Join Procedure be redesigned such that the
AS cannot be confused irrespective of the security of these channels and trust in NS.
However, it is important that any modifications should remain as close as possible to
the current Join design.

8.5 A Proposal for a Novel Join Procedure

We now propose an amended version of the LoRa 1.1 Join, which we call LoRA 3-AKA+.
This new design is rooted in the observations from the case studies.

In order to prevent the AS from becoming confused as to which device it is com-
municating with, the NS provisioner must ensure the security of the incoming and
outgoing channels. However, it would be interesting if we could attain the same level
of security by instead placing less trust in the messages forwarded by the Network
Server. Indeed, it would be ideal if we could propose a design that is secure even
if these NS-originating channels are untrusted or compromised. To this end, we
leverage that –unlike in the LoRa 1.1 Join– the AS could be an active part of the
Join. Precisely, in LoRA 3-AKA+, we augment the LoRa 1.1 Join such that the AS is
minimally active. Arguably, this is as backwards-compatible as possible with the
current LoRa 1.1 Join.

So, at the cost of a small increase in latency, we attain the LoRA 3-AKA+ Join, which is
a secure multi-party AKE , even if the channels out of the NS are compromised.

8.5. A Proposal for a Novel Join Procedure 175

AppKey, NwkKey, ctrED

End Device Network Server

AppKey, NwkKey, ctrJS

Join Server Application Server

ctrED ++

JoinReq = ED, JS, ctrED,mac(ctrED,NwkKey)

1. JoinReq

2. JoinReq, nNS

3. JoinReq

4. NS, JoinReq, nAS

ctrJS ++

kAS = f1(AppKey, ctrJS , ctrED, nAS)
kNS = f2(NwkKey, ctrJS , ctrED, nNS)
NSResponse = NS, ctrJS , nNS, kNS

EDResponse = {ED, ctrJS , nNS , nAS}NwkKey

ASResponse = AS, ctrJS , nAS , kAS

5. NSResponse, EDResponse

6. ASResponse

7. EDResponse

kAS = f1(AppKey, ctrJS , ctrED, nAS)
kNS = f2(AppKey, ctrJS , ctrED, nNS)

8. {ED,NS, ctrED, nNS}kNS

9. {NS,ED, ctrJS , nNS}kNS

10. {ED,NS,AS, {ctrED, nAS}kAS}kNS

11. {ctrED, nAS}kAS

12. {{ctrJS , nAS}kAS}kNS

13. {ctrJS , nAS}kAS

FIGURE 8.6: LoRA 3-AKA+– A Minimally-Augmented LoRa 1.1. Join
with More Security, Less Trust. Secure channels are displayed with

dashed lines “99K”.

Essential Features of LoRA 3-AKA+ Compared to the LoRa 1.1 Join.
We work with the following principles in mind:

• The parties and network topology remain the same as in LoRa 1.1.

• The Application Server is “minimally” active during the Join Procedure: it
contributes a nonce to the Join Request, adding randomness to the encryption
key AppSKey and the MAC key NwkSKey.

• We envisage that the LoRA 3-AKA+ specification require (with a ‘MUST’ key-
word) that the NS-AS and NS-JS channels be secure; however, we show that
even if these are compromised the (confusion-freeness) security guarantees are
not lost.

• A “Key Confirmation” step is added at the end of the protocol, whereby the
involved parties check that they have mutually agree on the established session
keys. This key confirmation step occurs before the record phase begins.

The LoRA 3-AKA+ design is as close as possible to LoRa 1.1 Join, whilst giving protec-
tion to the Application Server against any possible (key/device) confusion attacks
such as those we have highlighted against LoRa 1.1.

176 Chapter 8. Accountable Proxying

The LoRA 3-AKA+ Protocol.
Figure 8.6 gives an overview of LoRA 3-AKA+.

The protocol LoRA 3-AKA+ is split into two main phases. First, the keys are established
using a process very similar to LoRa 1.1. Then, a set of “Key Confirmation” messages
are sent between the End Device and the Network Server and Application Server
respectively, in which the newly generated keys are checked for authenticity.

For readability, in this description we do not include references to parties’ names or
configuration parameters. We also collapse the multiple keys NwkSKey, FNwkSIntKey,
SNwkSIntKey into a single value (kNS). However, our Tamarin models do model the
addition of parties’ names and all LoRaWAN keys.

The LoRA 3-AKA+ protocol proceeds as follows:

1. The End Device ED generates a Join Request in the same way as in LoRa 1.1,
incrementing its DevNonce counter and sending it along with the request com-
mand, including a MAC of the message using the NwkKey.

2–3) The Network Server NS forwards the Join Request to the Join Server, adding a
freshly generated nonce NwkNonce. The Join Request is also forwarded as-is to
the Application Server.

4. The Application Server AS acknowledges the Join Request by forwarding an-
other copy of it to the Join Server, adding a freshly generated nonce AppNonce.

5–7) The Join Server processes the Join Request, generating the following values:

kAS = f1(NwkKey, JoinNonce,DevNonce,AppNonce)

kNS = f2(NwkKey, JoinNonce,DevNonce,NwkNonce)

NSResponse = JoinNonce,NwkNonce, kNS

EDResponse = {JoinNonce,NwkNonce,AppNonce}NwkKey
ASResponse = JoinNonce,AppNonce, kAS,

NSResponse, ASResponse and EDResponse are then sent to NS, AS and ED
(via NS), respectively.

8. The End Device re-calculates the keys independently. It then sends the first key
confirmation request to the Network Server, consisting of the values DevNonceand
NwkNonce, encrypted with the calculated kNS.

9. The Network Server responds with a key response message, containing JoinNonce

and NwkNonce.

10–13) The End Device sends a second key-confirmation message, this time to the
Application Server (via the Network Server). These messages are encrypted
using kAS, making the message-body unreadable to the Network Server. The
key-confirmation message contains values DevNonce and AppNonce, and the
key-confirmation response contains values JoinNonce and AppNonce.

8.6. Conclusions 177

Threat Model MAS-NS-Secure MLoRa1.1Spec MNS-weakCorrupt

Security Goal
key_secrecy X NA X
wa_ED_JS X NA X
wa_ED_AS X NA X
nia_ED_JS X NA X
nia_ED_JS X NA X
sync_ED_AS X NA X

CF_ED_AS_packet_key X NA X

TABLE 8.3: Main Verification Results for LoRA 3-AKA+

Analysis of the LoRA 3-AKA+ Protocol

We modelled the LoRA 3-AKA+ protocol in theMAS-NS-Secure andMNS-weakCorruptmodels.
These models represent the best-case and worst-case scenarios, depending on whether
or not the NS is part of the fully trusted environment alongside the JS and AS.

We modelled the same main properties as for LoRa 1.1 Join.

(1) weak agreement between ED and AS (wa_ED_AS)

(2) two-party confusion-freeness (CF_ED_AS_packet)

(3) explicit two-party confusion-freeness (CF_ED_JS_AS_key)

(4) explicit three-party confusion-freeness (CF_ED_JS_AS)

We repeat that the aim of encoding CF_ED_AS_packet, as well as CF_ED_JS_AS is
merely for proving purposes: i.e., one may prove faster than the other. As before, we
created several oracles to simplify the verification process.

Our analysis inside Tamarin proves that wa_ED_AS, CF_ED_AS_packet, CF_ED_JS_AS,
CF_ED_JS_AS_key, all hold on LoRA 3-AKA+, in both theMAS-NS-Secure andMNS-weakCorrupt

threat models. In particular, even when the channels in and out of the NS were com-
promised, the fact that the AS is alive, as well as the addition of the key confirmation
step, prevents any agreement insecurities inside LoRA 3-AKA+.

Intuitively, although a corrupt NS is able to grant the adversary access to the secure
channels and thus read, redirect or inject messages, the addition of explicit checks
prevents risk of confusion. Since the confirmation check between the ED and AS
is encrypted using the just-established key (which the adversary cannot reproduce
without knowledge of the long term AppKey), agreement and aliveness is ensured.

8.6 Conclusions

Interactions with the LoRa Alliance

As part of the research process, we engaged with the LoRa Alliance. As well as
performing responsible disclosure of our findings, we also held a series of interactions

178 Chapter 8. Accountable Proxying

with respect to the wider scope of formally verifying the current, as well as future,
LoRaWAN specifications.

In relation our findings, the Security Working Group (SWG) and the Technical Com-
mittee (TC) of the LoRa Alliance are in alignment with us regarding the following
main aspects:

1. clear requirements ought to be stipulated with respect to the security (i.e.,
confidentiality and integrity) of the NS-AS channel;

2. the AS should, to some extent, become an active part of Join, as this would
increase the capabilities of the AS to verify the authenticity of session keys and
application-layer messages.

During this interaction, we confirmed that the LoRa specifications do not explicitly
require that the NS-AS channel be secure.In general, requirements on the NS-AS
channel and the AS itself are slightly under-specified in the current version of the
specifications due to the fact that the NS and the AS have been initially thought
of as co-located parties. As the commissioning of proprietary Application Servers
becomes increasingly common, the LoRa Alliance acknowledges that the issues of
the under-specification of the security of the NS-AS channel as well the amount of
trust placed on the NS have become more acute. This confirms the validity of our
MLoRa1.1Spec andMNS-weakCorrupt models.

Indeed, within the LoRa Alliance SWG, work is already ongoing to properly specify
requirements on the NS-AS channel. With regards to the trust placed in the NS, it is to
be noted that parts of our LoRA 3-AKA+ design were generally welcome. Concretely,
the AS contributing with a nonce to the Join procedure is being considered by the LoRa
Alliance SWG as a possible solution going forward. However, the key-confirmation
step is viewed as potentially too computationally demanding on the end devices; as
such, the latter could be simplified and/or made optional, if ever to be adopted.

Conclusions

Here we briefly summarise our results and discuss options for future avenues of
research.

Main Recommendations for LoRa 1.0.
Although this is an older recommendation from [AF17], our results formally prove that
the domain of the nonces in 1.0 ought to be increased. In combination with the results
shown by us on LoRa 1.1, we also formally prove that the approach of counter-based
“nonces” that the LoRa Alliance took to repair the replay resistance failure is not the
correct one, as this is also a root of attacks. As such, a better approach would be to
increase the domain of the nonces, which would prevent the replay resistance failure,
without introducing additional risks.

Main Recommendations for LoRa 1.1.
Firstly, if the LoRa Alliance continue to adhere to their current threat-model, they

8.6. Conclusions 179

should eliminate the AppSKey-delivery mode based on SessionID. Otherwise, the AS
can be confused as to which device ED it is communicating with, resulting in severe
consequences.

Secondly, we show that the LoRa Alliance should explicitly demand the NS and AS
channel be secured.

Thirdly, we show that relying on one single crux of trust (i.e., the current NS in LoRa
1.1) is dangerous. Based on the current LoRa specifications, if only the NS-to-JS
channel becomes compromised, then we show that all AKE security goals can fail.

Finally, we show that AKE-security can be regained even if the trust in the NS is
lowered, if the LoRa 1.1 Join is modified to make the AS “alive” during the Join and
include a “key confirmation” step. We believe that this is a good balance of security
and trust.

Future Work

Even if this is not in the LoRa specifications, we believe strong device authentication
and device unlinkability should be studied. The risk of version-downgrade attacks
exists in LoRA. Modelling such attacks may be useful to get a better view of the
ecosystem at large.

As the LoRa specifications continue to evolve, it is important that any security models
continue to update with them. Similarly, the specificity of models can be even further
improved in order to identify new attack vectors. For example, our models consider
agent names to be public terms. However, in reality there is an implicit mapping
between a ED’s DevEUI (which it uses to identify itself) and an associated DevAddr
(which is used by the backend network).

181

Bibliography

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick
Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger, Drew
Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric
Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann. Imper-
fect forward secrecy: How diffie-hellman fails in practice. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015.

[Ada11] Carlisle Adams. Kerberos Authentication Protocol, pages 674–675.
Springer US, Boston, MA, 2011.

[AF17] Gildas Avoine and Loïc Ferreira. Rescuing LoRaWAN 1.0. In IACR
Cryptology ePrint Archive, 2017.

[Ash15] Warwick Ashford. PrivDog SSL compromise potentially worse than
Superfish. February 2015.

[BBD+18] Karthikeyan Bhargavan, Ioana Boureanu, Antoine Delignat-Lavaud,
Pierre-Alain Fouque, and Cristina Onete. A formal treatment of ac-
countable proxying over TLS. In 2018 IEEE Symposium on Security and
Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA, pages 799–816, 2018.

[BBDL+15] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Jean Karim Zinzindohoue. A messy state of the union:
Taming the composite state machines of tls. In Security and Privacy (SP),
2015 IEEE Symposium on, pages 535–552. IEEE, 2015.

[BBF+17] Karthikeyan Bhargavan, Ioana Boureanu, Pierre-Alain Fouque, Cristina
Onete, and Benjamin Richard. Content delivery over tls: a crypto-
graphic analysis of keyless ssl. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 1–16. IEEE, 2017.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Ver-
ified models and reference implementations for the tls 1.3 standard
candidate. In 2017 IEEE Symposium on Security and Privacy (SP), pages
483–502. IEEE, 2017.

[BK19] Sergiu Bursuc and Steve Kremer. Contingent payments on a public
ledger: models and reductions for automated verification. IACR Cryp-
tology ePrint Archive, 2019:443, 2019.

182 BIBLIOGRAPHY

[Bla12] Bruno Blanchet. Security protocol verification: Symbolic and compu-
tational models. In Proceedings of the First international conference on
Principles of Security and Trust, pages 3–29. Springer-Verlag, 2012.

[Bla13] Bruno Blanchet. Automatic verification of security protocols in the
symbolic model: The verifier proverif. In Foundations of Security Analysis
and Design VII, pages 54–87. Springer, 2013.

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand expo-
sure:SGX cache attacks are practical. In 11th USENIX Workshop on
Offensive Technologies (WOOT 17), 2017.

[BPG18] Ismail Butun, Nuno Pereira, and Mikael Gidlund. Analysis of lorawan
v1.1 security: research paper. pages 1–6, 06 2018.

[CAB+15] Chen Chen, Daniele E Asoni, David Barrera, George Danezis, and
Adrain Perrig. Hornet: High-speed onion routing at the network layer.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1441–1454. ACM, 2015.

[CCC+16] Frank Cangialosi, Taejoong Chung, David Choffnes, Dave Levin,
Bruce M. Maggs, Alan Mislove, and Wilson Wilson. Measurement and
analysis of private key sharing in the https ecosystem. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 628–640. ACM, 2016.

[CCM16] Taejoong Chung, David Choffnes, and Alan Mislove. Tunneling for
transparency: A large-scale analysis of end-to-end violations in the
internet. In Internet Measurement Conference (IMC), 2016.

[CF19] Sébastien Canard and Loïc Ferreira. Extended 3-Party ACCE and
Application to LoRaWAN 1.1. In Johannes Buchmann, Abderrah-
mane Nitaj, and Tajjeeddine Rachidi, editors, Progress in Cryptology
– AFRICACRYPT 2019, pages 21–38, Cham, 2019. Springer International
Publishing.

[Cha81] David L Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A comprehensive symbolic analysis of tls 1.3. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, pages 1773–1788, New York, NY, USA,
2017. ACM.

[Com11] Comodo. Comodo report of incident - comodo detected and thwarted
an intrusion on 26-mar-2011, 2011.

BIBLIOGRAPHY 183

[CSF+08] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Internet x.509 public key infrastructure certificate and certificate revo-
cation list (crl) profile. RFC 5280, May 2008. http://www.ietf.org/
rfc/rfc5280.txt.

[dCdCM16] Xavier de Carné de Carnavalet and Mohammad Mannan. Killed by
proxy: Analyzing client-end TLS interception software. In Network and
Distributed System Security Symposium, 2016.

[DG09] George Danezis and Ian Goldberg. Sphinx: A compact and provably
secure mix format. In Security and Privacy, 2009 30th IEEE Symposium
on, pages 269–282. IEEE, 2009.

[Die08] Tim Dierks. The transport layer security (TLS) protocol version 1.2.
2008.

[DMS+17] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick
Sullivan, Elie Bursztein, Michael Bailey, J. Alex Halderman, and Vern
Paxson. The security impact of https interception. In Network and
Distributed Systems Symposium, 2017.

[DR08] Tim Dierks and Eric Rescorla. The transport layer security (TLS) proto-
col version 1.2. Technical report, NIST, 2008.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key proto-
cols. IEEE Transactions on information theory, 29(2):198–208, 1983.

[E. 18] E. Rescorla. The transport layer security (TLS) protocol version 1.3
(draft 28). 2018.

[EBPG19] Mohamed Eldefrawy, Ismail Butun, Nuno Pereira, and Mikael Gidlund.
Formal security analysis of lorawan. Computer Networks, 148:328 – 339,
2019.

[Fac] Facebook. Introducing our certificate transparency monitoring tool.

[FBK+17] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris
Bentzel, and Parisa Tabriz. Measuring HTTPS adoption on the web. In
26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017., 2017.

[Gau13] Gaurang. Nokia’s MITM on HTTPS traffic from their phone. 2013.

[HCP17] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-resolution
side channels for untrusted operating systems. In 2017 USENIX Annual
Technical Conference (USENIXATC 17), pages 299–312, 2017.

[HKHH17] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han. Sgx-
box: Enabling visibility on encrypted traffic using a secure middlebox
module. In Proceedings of the First Asia-Pacific Workshop on Networking,
pages 99–105. ACM, 2017.

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt

184 BIBLIOGRAPHY

[HREJ14] Lin Shung Huang, Alex Rice, Erling Ellingsen, and Collin Jackson.
Analyzing forged ssl certificates in the wild. In Security and Privacy (SP),
2014 IEEE Symposium on, pages 83–97. IEEE, 2014.

[Int17] Intel. Intel software guard extensions sdk for linux os (1.9 release).
Technical report, 2017.

[ITU00] ITU-T RECOMMENDATION. Information technology–open systems
interconnection–the directory: Public-key and attribute certificate
frameworks. 2000.

[JU12] Jeff Jarmoc and DSCT Unit. SSL/TLS interception proxies and transitive
trust. Black Hat Europe, 2012.

[KW03] Chris Karlof and David Wagner. Secure routing in wireless sensor
networks: Attacks and countermeasures. Ad hoc networks, 1(2-3):293–
315, 2003.

[LCS+19] Jie Li, Rongmao Chen, Jinshu Su, Xinyi Huang, and Xiaofeng Wang.
Me-tls: Middlebox-enhanced tls for internet-of-things devices. IEEE
Internet of Things Journal, 2019.

[LLK13] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate transparency.
Technical report, 2013.

[LMS+12] S. Loreto, J. Mattsson, R. Skog, H. Spaak, G. Gus, and D. Druta. Explicit
trusted proxy in http/2.0. 2012.

[Low97] Gavin Lowe. A hierarchy of authentication specification. In CSF’97,
pages 31–44, 1997.

[LSL+19] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi, Selin
Chun, Taejoong Chung, and Ted Taekyoung Kwon. matls: How to
make tls middlebox-aware? In NDSS, 2019.

[LSP+16] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and
Zhi Liu. Embark: Securely outsourcing middleboxes to the cloud. In
NSDI, volume 16, pages 255–273, 2016.

[MAM+99] Michael Myers, Rich Ankney, Ambarish Malpani, Slava Galperin, and
Carlisle Adams. X. 509 internet public key infrastructure online certifi-
cate status protocol-ocsp. 1999.

[Mey13] David Meyer. Nokia: Yes, we decrypt your https data, but don’t worry
about it, 2013.

[MMSS+19] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket
Kate, and Matteo Maffei. Anonymous multi-hop locks for blockchain
scalability and interoperability. In NDSS, 2019.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The
TAMARIN prover for the symbolic analysis of security protocols. In

BIBLIOGRAPHY 185

International Conference on Computer Aided Verification, pages 696–701.
Springer, 2013.

[MWNG12] D. McGrew, D. Wing, Y. Nir, and P. Gladstone. TLS proxy server
extension. 2012.

[Nar13] V. Narayanan. Explicit proxying in HTTP-problem statement and goals.
2013.

[NFL+14] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunen-
berger, Marco Mellia, Maurizio Munafò, Konstantina Papagiannaki,
and Peter Steenkiste. The cost of the s in https. In Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments and
Technologies, pages 133–140. ACM, 2014.

[Nir12] Y. Nir. A method for sharing record protocol keys with a middlebox in
TLS. 2012.

[NLG+17] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis,
and Peter Steenkiste. And then there were more: Secure communica-
tion for more than two parties. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies, pages
88–100. ACM, 2017.

[Not14] M. Nottingham. Problems with proxies in http. 2014.

[NSV+15] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy
Blackburn, Diego López, Konstantina Papagiannaki, Pablo Rodriguez
Rodriguez, and Peter Steenkiste. Multi-context tls (mctls): Enabling
secure in-network functionality in tls. In ACM SIGCOMM Computer
Communication Review, volume 45, pages 199–212. ACM, 2015.

[O’B18] Devon O’Brien. Certificate transparency enforcement in google chrome.
2018.

[ORSZ16] Mark O’Neill, Scott Ruoti, Kent Seamons, and Daniel Zappala. Tls
proxies: Friend or foe? In Proceedings of the 2016 Internet Measurement
Conference, pages 551–557. ACM, 2016.

[PD16] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scal-
able off-chain instant payments. See https://lightning. network/lightning-
network-paper. pdf, 2016.

[PLPR18] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Safebricks: Shielding network functions in the cloud. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’18),
Renton, WA, 2018.

[PN18] Dmytro Piatkivskyi and Mariusz Nowostawski. Split payments in
payment networks. In Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pages 67–75. Springer, 2018.

186 BIBLIOGRAPHY

[Pop15] Andrey Popov. Prohibiting RC4 cipher suites, 2015.

[Res00] Eric Rescorla. Http over TLS, 2000.

[Res18] Eric Rescorla. The transport layer security (TLS) protocol version 1.3.
Technical report, NIST, 2018.

[RLT17] Elias Rohrer, Jann-Frederik Laß, and Florian Tschorsch. Towards a con-
current and distributed route selection for payment channel networks.
In Data Privacy Management, Cryptocurrencies and Blockchain Technology,
pages 411–419. Springer, 2017.

[RMSKG17] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg.
Settling payments fast and private: Efficient decentralized routing for
path-based transactions. arXiv preprint arXiv:1709.05748, 2017.

[SB08] Robin Snader and Nikita Borisov. A tune-up for Tor: Improving security
and performance in the tor network. In ndss, volume 8, page 127, 2008.

[SDM04] Paul Syverson, R Dingledine, and N Mathewson. Tor: The second
generation onion router. In Usenix Security, 2004.

[Sep15] Timothy J. Seppala. New Lenovo PCs shipped with factory-installed
adware. 2015.

[SH12] Jakob Schlyter and Paul Hoffman. The DNS-based authentication of
named entities (DANE) transport layer security (TLS) protocol: TLSA,
2012.

[SHS+12] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. Making middleboxes someone
else’s problem: network processing as a cloud service. volume 42,
pages 13–24. ACM, 2012.

[SLE+] N Sornin, M Luis, T Eirich, T Kramp, and O Hersent. LoRaWAN
Specification, Version V1.0.2;. LoRa Alliance, https: // lora-alliance.
org/ resource-hub/ lorawanr-specification-v102 .

[SLPR15] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Blindbox: Deep packet inspection over encrypted traffic. volume 45,
pages 213–226. ACM, 2015.

[Sor] N Sornin. LoRaWAN 1.1 Specification (April 2018). LoRa Alliance,
https: // lora-alliance. org/ sites/ default/ files/ 2018-04/
lorawantm_ specification_ -v1. 1. pdf , 1.

[SSL] SSLMate. Cert spotter.

[Tea20] Lightning Network Team. Lightning bolt specification, 2020.

[The18] The Tamarin Team. The Tamarin User Manual, 2018.

https://lora-alliance.org/resource-hub/lorawanr-specification-v102
https://lora-alliance.org/resource-hub/lorawanr-specification-v102
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf
https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf

BIBLIOGRAPHY 187

[TII+18] Giorgos Tsirantonakis, Panagiotis Ilia, Sotiris Ioannidis, Elias Athana-
sopoulos, and Michalis Polychronakis. A large-scale analysis of content
modification by open http proxies. In Network and Distributed System
Security Symposium (NDSS), 2018.

[TKG+18] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod
Bhatotia, and Christof Fetzer. Shieldbox: Secure middleboxes using
shielded execution. In Proceedings of the Symposium on SDN Research,
page 2. ACM, 2018.

[TWE+04] Steven Tuecke, Von Welch, Doug Engert, Laura Pearlman, and Mary
Thompson. Internet x. 509 public key infrastructure (PKI) proxy certifi-
cate profile. 2004.

[VBMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In 27th USENIX Security
Symposium (USENIX Security 18), pages 991–1008, 2018.

[VBWK+17] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. Telling your secrets without page faults: Stealthy page
table-based attacks on enclaved execution. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1041–1056, 2017.

[Wil15] Owen Williams. Google dropping CNNIC root CA after trust breach,
2015. https://thenextweb.com/insider/2015/04/02/google-to-drop-
chinas-cnnic-root-certificate-authority-after-trust-breach/.

[WMY18] Louis Waked, Mohammad Mannan, and Amr Youssef. To intercept or
not to intercept: Analyzing TLS interception in network appliances. In
Proceedings of the 2018 on Asia Conference on Computer and Communica-
tions Security, pages 399–412. ACM, 2018.

189

Chapter 9

Conclusion

In this thesis we demonstrated several strategies for developing security goals spe-
cialised for certain protocols. These needs arise out of the demands of the domain -
accomodating for physical contraints or in order to encode new adversarial assump-
tions.

Often a key challenge is in modelling the protocols themselves. A necessary choice is
found in the level of granularity of a model. Unfortunately, increasing the specificity
of a model can often impact the tenability of constructing security proofs (especially
using automated tools), whilst there are countless examples of scenarios where overly
coarse analysis leads to inaccurate results.

As such, a very successful strategy is found in building restricted frameworks within
which to analyse our protocols. Often, reasoning about the larger setting allows for
the construction of more general lemmas that provide a bridge between the intuition
of a security goal and an encoding in the specification language of choice.

Unfortunately there are some risks with such an approach. Firstly, restricting our
protocols to those built within a framework means that there may be protocols that
we cannot describe. Newer protocols often make use of novel cryptographic construc-
tions that may not fit comfortably within our assumptions. Secondly, introducing
an extra layer of abstraction gives a new opportunity for modelling errors to fit
through the cracks. A very clear example is found in the domain of privacy-based
security goals. Such goals make use of some form of equivalence, and it is becoming
increasingly apparent that seemingly minor differences in the definitions (often made
to simplify the analysis process) can lead to different conclusions being drawn.

Future Work

There is significant room for future work, both in the individual protocol domains
considered in each chapter of this work, as well as in the underlying strategies that
we have employed.

Although the Dolev-Yao adversary forms an excellent starting point for analysis, we
have repeatedly seen that it is not always the optimal choice. This can work in either
direction. In Chapter 4 we sought an adversary that was somewhat stronger than
traditionally used, by allowing for “partial” corruption. However, in Chapter 8 we
saw that for the problem of automating analysis of a particularly complex protocol

190 Chapter 9. Conclusion

it was helpful to weaken some parts of the adversary (for example, by introducing
typing) to make achieving results tenable.

Ultimately, the best approach here may be in understanding the impact of our as-
sumptions, rather than trying to push for uniformity in our definitions. Work by
Basin and Cremers shows that there is an intrinsic relationship between security goals
and adversaries – one security goal in one adversary model might be equivalent to a
similar goal under a different adversary. On the other hand, work by Chrétien et al.
shows that in some situations, simplifying assumptions may not change the precision
of our results.

In the longer term, it may be necessary to gain more control over the tools we use.
Automated provers generally rely on a set of base assumptions – both to simplify the
modelling process and in order to produce soundness results relating to the output
of their analysis. Given that we often design our frameworks in order to accommo-
date for integration with provers, we are sometimes limited by these underlying
assumptions. Unfortunately, modifying the tools may often inevitably lead to new
problems – as any changes necessarily require new proofs of the correctness of the
tool. However, we have seen such developments in the past: each new generation of
provers generally brings about more and more control over our specification model.
The work in this thesis would not be possible without the advanced tools we have
today, and undoubtedly the next generation of provers will allow for models that are
even more general still.

Finally, there is always room for growth in the process of designing security goals and
understanding the needs of each protocol domain. Several of the attacks discussed
in this thesis arise not necessarily out of a protocol’s failure to achieve the security
goals laid out in its specification, but rather a failure to consider certain security
requirements at all. This is often the case as protocol domains expand in complexity –
an increase in real-world demands if often not matched with a corresponding shift in
the security requirements of this change. We can also often see that as the scope of
a protocol expands, it may gain the features of protocols from other domains. As a
community, we must be diligent in identifying these connections and understanding
which security goals may be shared.

	Introduction
	Security Protocols
	Security Goals
	Research Questions
	Contributions
	Layout

	A Multiset Rewriting Model
	Fundamentals
	Modelling Methodology

	Bibliography
	I RFID Protocols
	Distance Bounding Protocols
	Introduction to Distance Bounding
	Modelling Distance Bounding
	Distance Bounding Security
	Verifying Distance Bounding Protocols
	Case Study: TREAD Protocol

	Relations on Security Properties
	Introduction to Relations
	Collusion and Irreversibility
	Post-Collusion Security
	Terrorist Fraud on Distance Bounding Protocols
	Case Study: ISO/IEC 14443 Protocols
	Results and Conclusions

	Desynchronisation Resistance
	Introduction to Key Updating Protocols
	A Framework for Key Updating Protocols
	Defining and Proving Desynchronisation Resistance
	Case Study: Grouping protocol of Sundaresan et al.
	Case Study: A Two Round Grouping Protocol

	Bibliography

	II Multiparty Protocols
	Path Protocols
	Introduction to Path Protocols
	A Framework for Path Protocols
	Security Goals for Path Protocols
	Case Study: Lightning Network
	A Path-Integral Payment Network Protocol
	Tamarin Implementations

	TLS and Middleboxes
	The TLS Protocol Suite
	Middlebox-Enabled TLS Schemes
	Case Study: mbTLS
	The maTLS Protocol
	Security Verification
	maTLS Implementation & Evaluation

	Accountable Proxying
	Introduction to LoRaWAN
	Threat Model and Security Goals
	Case Study: LoRaWAN 1.0
	Case Study: LoRaWAN 1.1
	A Proposal for a Novel Join Procedure
	Conclusions

	Bibliography
	Conclusion

