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Abstract

Financial services must monitor their transactions to prevent being used for money laundering
and combat the financing of terrorism. Initially, organizations in charge of fraud regulation
were only concerned about financial institutions such as banks. However, nowadays, the
Fintech industry, online businesses, or platforms involving virtual assets can also be affected
by similar criminal schemes. Regardless of the differences between the entities mentioned
above, malicious activities affecting them share many common patterns. This dissertation’s
first goal is to compile and compare existing studies involving machine learning to detect
and analyze suspicious transactions. The second goal is to synthesize methodologies from
the last goal for tackling different use cases in an organized manner. Finally, the third goal is
to assess the applicability of deep generative models for enhancing existing solutions.

In the first part of the thesis, we propose an unsupervised methodology for detecting
suspicious transactions applied to two case studies. One is related to transactions from a
money remittance network, and the other is related to a novel payment network based on
distributed ledger technologies. Anomaly detection algorithms are applied to rank user
accounts based on recency, frequency, and monetary features. The results are manually
validated by domain experts, confirming known scenarios and finding unexpected new cases.

In the second part, we carry out an analogous analysis employing supervised methods,
along with a case study where we classify Ethereum smart contracts into honeypots and
non-honeypots. We take features from the source code, the transaction data, and the funds’
flow characterization. The proposed classification models proved to generalize well to unseen
honeypot instances and techniques and allowed us to characterize unknown techniques.

In the third part, we analyze the challenges that tabular data brings into the domain of
deep generative models, a particular type of data used to represent financial transactions
in the previous two parts. We propose a new model architecture by adapting state-of-the-
art methods to output multiple variables from mixed types distributions. Additionally, we
extend the evaluation metrics used in the literature to the multi-output setting, and we show
empirically that our approach outperforms the existing methods.

Finally, in the last part, we extend the work from the third part by applying the presented
models to enhance classification tasks from the second part, commonly containing a severe
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class imbalance. We introduce the multi-input architecture to expand models alongside our
previously proposed multi-output architecture. We compare three techniques to sample from
deep generative models defining a transparent and fair large-scale experimental protocol and
interesting visual analysis tools.

We showed that general machine learning detection and visualization techniques could
help address the fraud detection domain’s many challenges. In particular, deep generative
models can add value to the classification task given the imbalanced nature of the fraudulent
class, in exchange for implementation and time complexity. Future and promising applica-
tions for deep generative models include missing data imputation and sharing synthetic data
or data generators preserving privacy constraints.
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Chapter 1

Introduction

Imagine that a criminal obtained some profit by participating in some illegal activity, and
that criminal wants to deposit his money into a bank for future use. However, if the sum is
too large, for example, ten thousand or more, the transaction will raise an alarm that will
lead to an investigation. Of course, the criminal wants to avoid any questions, and instead of
doing that, he splits the amount into several smaller deposits. This technique is known as
structuring. Banks and other financial institutions usually employ software solutions based on
rules to detect known criminal techniques like this one. The problem is that the set detection
of rules needs to be updated often to catch up with the evolving criminal tactics.

This dissertation’s primary goal is to present tools and general methodologies to analyze
and detect frauds, scams, suspicious activities, or any anomalous behavior related to users,
accounts, or transactions between them. Nevertheless, the idea is to achieve this goal even in
the presence of novel criminal tactics. The proposed solutions will be presented alongside
practical use cases related to traditional banking and modern financial technologies, distin-
guishing scenarios where we can apply supervised or unsupervised methods. Additionally,
we will dive into the topic of deep generative models to evaluate this technology’s possible
applications in the fraud detection domain.

1.1 Know Your Customer

The term Know Your Customer (KYC) denotes the process that banks and several associated
businesses must follow to identify their clients and the origin of funds correctly. It is closely
related to the practices implemented for Combating the Financing of Terrorism (CFT) and
Anti-Money Laundering (AML). The G7 Summit of 1989 established the Financial Action
Task Force on Money Laundering (FATF) for these purposes. Another organization from
the United States is the Financial Crimes Enforcement Network (FinCEN), and related laws
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check source:
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check target:
CFT

send receive

Money
Laundering
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Customer Bank Business
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Customer

Fig. 1.1 Relationship between KYC, AML, and CFT.

include the Bank Secrecy Act and the Patriot Act. According to the introduced policies,
bank employees must fill a Currency Transaction Report whenever a movement of funds
involves more than u$d 10,000. Furthermore, employees in financial institutions must submit
a Suspicious Transaction Report (STR) if they detect an odd transaction (but are forbidden
from informing the client about it). A Suspicious Activity Report (SAR) is an extended
version that can group multiple STRs along with a detailed narrative. The controls associated
with those regulations usually include various types of identity checks and documentation
requests. Banking systems must validate suspicious clients’ names against known criminal
lists and Politically Exposed Persons. The systems also calculate risk metrics for accounts
based on questionable occupations, blacklisted nationalities and destination countries, the
amount and currency of fund movements, and their frequencies in different time slots. More
on the subject can be found in [146, 128].

The literature covered to a fair extent the topics of money laundering and terrorism
financing. In [146], the authors discuss the variety of strategies and approaches used in
the related illicit activities. To start with, they coin the term structuring (elsewhere called
smurfing) as the stage of dividing a transaction whose volume exceeds regulated limits
into a set of smaller ones. In [128], the authors define placement as the stage in which
criminals introduce the money into the financial system, and define layering as the subsequent
movements of funds to different accounts under potentially diverging jurisdictions. During
the final stage, known as integration, the previously legitimated funds are used in standard
purchasing transactions, for instance, to acquire assets or luxury goods. These techniques’
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Fig. 1.2 Placement, layering, and integration.

goal is to avoid being reported due to regulatory breaches and thus becoming subjected
to further investigations. In the case of laundering, the immediately sought effect is the
obscuring of the money provenance, and in the case of terrorism financing, its ultimate
beneficiary. We depict how all these concepts relate in Figure 1.1.

In this field, domain experts carefully craft a set of rules used in practical software
tools. These rules check individual attribute values or a combination of them to see if a
transaction posses suspicious characteristics. Rule-based systems usually apply one rule after
another, and if none of them raise the alarm, the transaction is considered legitimate. The
problem with such tools is that they are bound only to detect known suspicious schemes.
To capture new cases, experts must first identify and define the underlying tactics and then
add the new detection rules to the tool rule base. The set of rules tends to grow in size
and complexity very fast, which complicates the system maintenance and is very prone to
human errors [9]. Machine Learning and Data Mining algorithms offer the possibility of
detecting suspicious movements in financial transactions, and also the chance of discovering
new behavior patterns. The challenge in this field is the marked imbalance of classes: the
number of irregularities tends to be very small compared to legitimate transactions. An even
more troublesome issue is the lack of knowledge about anomalous cases: labeled datasets
are hard to obtain or do not exist at all.

We face rapid growth in alternative payment methods, social trading platforms, and
digital currencies. Consequently, authorities must constantly adapt regulations and policies to
new criminal schemes exploiting these technologies’ more profitable opportunities. However,
while fraud detection methods need to be updated accordingly, the research over traditional
and modern financial domains is still in its early stages.
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1.2 Ripple

Ripple1 is a novel service that offers a remittance network, a currency exchange market, and
a real-time settlement system. It was released for the first time in 2012 by the homonym
company. Their protocol allows banks to send international payments across multiple
networks faster than with traditional methods. Transactions are cryptographically signed,
and they can move an internal currency denominated XRP. The distributed ledger records
the balance of that currency for every account along with the transactions. For settlements
based on other assets, Ripple registers debt obligations among trust lines previously defined
between parties. This mechanism is also known as I Owe You (IOU) (see Figure 1.4). Some
businesses and individuals defined as gateways 2 provide the means for moving money or
other valuables in or out of the network (see Figure 1.3). They are responsible for complying
with local regulations and notifying the appropriate authorities about irregularities.

The Ripple network represents information in a distributed and shared ledger 3. The
ledger is a collection of transactions, account information, a date, and a sequence number.
The network stores a sequence of ledgers. Network nodes have to achieve a consensus to
decide which transactions modify the last ledger to obtain a new version. A tree structure
stores the data, with node types related to currency exchange offers, trust lines, and balances.

Among other information, the official Ripple Data API4 provides the full transaction
history. Every request can indicate several filters like the type of transaction, date ranges,

1https://ripple.com/
2https://ripple.com/build/gateway-guide/
3https://ripple.com/build/ledger-format/
4https://ripple.com/build/data-api-v2/
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Fig. 1.4 Ripple fund movements: IOU transfer (left) and XRP transfer (right).

pagination, and order. The response contains the list of desired objects. Each of them
describes the transaction with an identifying hash, the date of creation, the sequence number
of the ledger that first included the operation, the transaction arguments, and metadata
indicating which nodes the transaction changed in the ledger tree 5.

Every transaction contains a considerable amount of fields, but the most important one
is the type of operation. It describes the intention of the transaction and also defines the
existence of additional fields. We focus on three of these cases: payments, offer creations
and offer cancellations. This dissertation does not cover the rest of the alternatives related to
administrative tasks (e.g., creating trust lines).

An offer creation is equivalent to an order submission in a traditional foreign exchange
market. The user indicates some currency he is disposed to deliver in exchange for another
amount expressed in a different currency. The offer creator can also indicate a wide variety
of options and flags to define additional logic for the order, but we center the study on
the amounts and currencies. An offer is only executed when another one that matches its
requisites is submitted. The user has no control over the order matching. The priority is given
first to the orders with the best exchange rate, in case of a tie, to the ledger’s older alternative.
An order can also be partially executed when it crosses others, but some of the offered value
remains. The ledger saves the remaining amount in a smaller offer with the initial exchange
rate. Users can define flags in their offers to avoid this behavior. A user request can cancel
an offer before it gets executed. However, other mechanisms can also remove an offer from
the book, like lack of funds or expiration (see Figure 1.5).

5https://ripple.com/build/transactions/
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Fig. 1.5 Ripple order book.

Payments describe the movement of funds from a source account to a destination account.
Ripple presents a complex collection of options to define the desired flow of funds6. It is
possible to send money directly from source to destination or using paths of intermediaries.
Users can employ one or more paths to send funds simultaneously. If no path is defined,
there is a default strategy that depends on the transaction arguments. Ripple defines a path as
a sequence of steps where the first one is the source, and the last one is the destination. A
path step can be the debt movement from one account to another involving an issuer in the
middle. This action is known as rippling and can only happen with the previous existence of
trust lines between parties. Offers from the order book can also be used as a path step using
different currencies or issuers, but the user cannot select the specific order to execute. Ripple
picks the offer based on the best exchange rates at the moment of execution of the payment
(when it enters in the ledger). Nevertheless, the transaction’s originator can define a limit
for the money he is willing to exchange. Traders in the Ripple network can take advantage
of these mechanisms for arbitrage [126]: buying currencies with low and outdated prices
from one trader and selling them to another one at a higher price. The exchange rates should
be the same across issuers to have a competitive market. When there are discrepancies,
arbitrage tactics can be used to obtain risk-free profit until consuming the cheap asset supply
or until the price is corrected. Usually, this kind of event takes place in a short period due to
high demand. To put this in practice, traders must create a circular payment: an operation
using one or more paths with intermediaries where the source and the destination accounts

6https://ripple.com/build/paths/
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belong to the same owner. Payments also work as an account creation mechanism when the
destination is non-existent, and the amount sent is expressed in the internal currency.

1.3 Blockchain and Ethereum

Blockchain technology revolutionized asset trading around the world. We can see a blockchain
as an append-only ledger that is maintained by a decentralized peer-to-peer network. A
blockchain records the transfer of assets in transactions and groups them into the so-called
blocks. Cryptographic algorithms link blocks to their predecessors, thereby forming a
“blockchain”. The network participants store this chain of blocks, where a consensus protocol
dictates which one to append next. Bitcoin [107] and Ethereum [148] are currently the two
most prominent blockchain implementations. Blockchain is considered one of today’s most
significant innovations since it allows decentralizing any asset’s governance. While the
Bitcoin blockchain’s purpose is to decentralize cash governance, thereby the banks’ role,
the Ethereum blockchain’s goal is to decentralize the computer. As of the time of writing,
Ethereum has a market capitalization of more than u$d 22 billion7.

Ethereum builds on top of Bitcoin’s principles and offers the execution of so-called
smart contracts. Smart contracts are Turing-complete programs that are executed by the
participants of the Ethereum peer-to-peer network. A 160-bit address identifies them, and
they are deployed or invoked via transactions. We distinguish between external and internal
transactions. External transactions refer to transactions initiated by user accounts, whereas
internal transactions refer to operations triggered by smart contracts when they react to
external transactions. In other words, every internal transaction has an external one as its
origin. Smart contracts may interact with Ethereum’s native cryptocurrency called ether,
and receive data input from participants. Ether is a unit, and we can divide it into additional
subunits, where the smallest one is called Wei. The blockchain enforces the execution of
smart contracts precisely as they are programmed, without any possibility of censorship. The
execution of smart contracts costs gas. Users can determine how much gas they want to
provide to the execution of a smart contract (gas limit) and how much they want to pay per
gas unit in terms of ether (gas price). If the execution of a transaction consumes the available
gas before it ends, it terminates by throwing an error and reversing its effects.

Smart contracts are usually programmed using a high-level programming language, such
as Solidity8. As with any program, smart contracts may contain bugs [8]. Attackers have
already targetted several smart contracts in the past. The two most prominent hacks, the

7https://coinmarketcap.com/currencies/ethereum/
8https://solidity.readthedocs.io/en/v0.5.11/
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2) BUT THERE IS A TRAP:
the message value is added to the contract balance before the function is executed,

hence, this condition will always be false

3) FINALLY:
the contract creator is the only one

who can withdraw the contract balance

1) THE CONTRACT SEEMS TO HAVE A FLAW:
it looks like some kind of game, where the participant needs to guess a number that after applying a hash 

function to it, the result needs to match a pre-calculated hash; when the guess is correct, if the “entry fee” for 
the game (the value sent) is greater than the “prize” (the balance accumulated in the contract), the participant 
wins the prize and receives back the participation fee too; however, because the number data type is uint8, 

the challenge seems to be easy to beat just by brute force (only 256 possibilities).

Fig. 1.6 Honeypot example in Solidity programming language.

DAO hack [130] and the Parity wallet hacks [117] caused together a loss of over $400
million. As a result, attackers started looking for vulnerable smart contracts [8], and the
community proposed several tools to scan different types of vulnerabilities [91, 137, 138].
Interestingly, recent works show that attackers started deploying vulnerable-looking smart
contracts to lure other attackers into traps [38, 89]. This new type of fraud is known as
“honeypots” [129, 125]. Honeypots are smart contracts that appear to have a flaw in their
design. This flaw typically allows any arbitrary user on the Ethereum blockchain to drain the
contract’s funds. However, once a user tries to exploit this apparent vulnerability, a trapdoor
obfuscated into the contract prevents the draining of funds from succeeding. The attempt to
exploit these honeypot contracts does not come for free. Their exploitation always depends
on the transfer of a certain amount of ether to the contract. The idea is that the victim solely
focuses on the apparent vulnerability and does not consider the possibility that the contract
might be hiding a trap inside. Moreover, to facilitate the detection of their “vulnerable" smart
contract, honeypot creators often upload the source code to Etherscan 9, an online platform
that allows anyone to navigate through the Ethereum blockchain and to publish the source
code of any smart contract.

Torres et al. [38] present a tool called HONEYBADGER that applies symbolic analysis
to contract bytecode and relies on handcrafted rules to detect honeypots. Unfortunately,

9https://etherscan.io/



1.4 Deep Generative Models 9

Fig. 1.7 Hotel room images generated with DCGAN.

this approach cannot recognize new honeypot techniques unless experts know them and
implement specific detection rules. Moreover, HONEYBADGER only relies on the bytecode
of a smart contract and does not consider transaction data. However, transaction data reflect
user behavior, which might be useful to detect honeypot techniques.

1.4 Deep Generative Models

Deep generative models (DGMs) are algorithms that can learn to draw samples from the
same distribution of a dataset implementing deep learning techniques. These models’ key
idea is that they employ a considerably smaller amount of parameters than the amount of
data they use for training. Hence, to generate data points similar to the examples provided
to them, DGMs cannot memorize samples. Instead, they need to capture the underlying
concepts that define the training data.

The most popular DGMs in the field of computer vision, natural language processing,
and speech recognition are currently variants of generative adversarial networks (GANs) [50]
and variational autoencoders (VAEs) [66]. For example, in Figure 1.7 we present samples
synthesized by DCGAN [119]. The authors trained the model based on pictures of hotel
rooms with a resolution of 64x64 pixels. Later they utilized the trained model to generate the
presented images, taking as input on each case 100 random numbers drawn from a uniform
distribution. At first glance, the synthetic images look credible enough, but when closely
inspected, they resemble something coming from a dream. However, many advances from
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Fig. 1.8 Face images generated with StyleGAN2.

the past six years led to significant improvements in the generated images’ realism and
resolution. Another example shown in Figure 1.8 includes the faces of imaginary people with
a resolution of 1024x1024 pixels synthesized with StyleGAN2 [61]. There is also a website
that allows any user to reproduce these experiments and generate random faces of people
that do not exist10. Many studies experimented with different methods to control sample
synthesis. For example, in Figure 1.9 we can see an example where a VAE is used to generate
sentences by interpolating between the latent codes of two input sentences [16]. Note that

10https://thispersondoesnotexist.com/



1.4 Deep Generative Models 11

Fig. 1.9 Sentence interpolation using the latent space of a VAE.

the sentences are not only grammatically correct but are also semantically related between
the neighboring sentences. In Figure 1.10 we included an example of the more recent and
popular GPT-3 [17], a model that attracted a lot of attention from the media lately11121314.
We can see how, based only on a title and a subtitle, the model can generate a short article
that is grammatically correct, captures the intended topic, uses the names presented to it, and
even employs quotes and other complex literary devices. GPT-3 is based on the transformer
architecture and belongs to a different family of generative models than GANs and VAEs
called auto-regressive models. The main secret behind this model’s success is training it
with a large number of parameters (175 billion, ten times more than any previous non-sparse
language model) and a large amount of data (around 570GB of plain text or 400 billion
tokens). The creators released a paid API to use GTP-315.

With all the recent advances in DGMs, it is tempting to apply them as tools to problems
in data science tasks. While these models work well on continuous-domain problems such
as images, sound, and video, they struggle generating samples from mixed numerical and
categorical distributions. The reason for this is partly due to the inherent difficulty of training
deep learning models with discrete outputs: sampling from discrete distributions is a non-
differentiable operation, which makes it impossible for gradients to flow through the networks
using backpropagation. Another evident difference between the presented examples and
problems in the data science domain is the number of available samples and the feature

11https://www.forbes.com/sites/robtoews/2020/07/19/gpt-3-is-amazingand-overhyped/
12https://www.nytimes.com/2020/07/29/opinion/gpt-3-ai-automation.html
13https://fortune.com/2020/07/28/how-a-i-is-helping-doctors-triage-patients-in-urgent-care/
14https://www.wired.com/story/ai-generated-text-is-the-scariest-deepfake-of-all/
15https://openai.com/blog/openai-api/
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Fig. 1.10 An article generated with GPT-3 given a title and a subtitle.

space’s size. We need to address these limitations to use DGMs for imputation, simulation,
feature extraction, transfer learning, or sampling artificial data points.

1.5 Research Questions

• Can we define a robust analysis and detection methodology for different scenarios in
the absence of labels or ground truth?

• Can the methodology be extended when labels are available and generalize well even
in the presence of imbalanced classes?

• Is it possible to generate better simulations based on real data?

• How can we assess the quality of the synthetic data?

• Can we enhance the imbalanced classification with synthetic data?

1.6 Thesis Structure

• The current chapter presents the introduction of the topic.
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• Chapter 2 presents background information and a literature review.

• Chapter 3 presents the unsupervised approach to the problem with two use cases, one
related to a private company and another involving the Ripple network.

• Chapter 4 presents the supervised approach to the problem with a use case involving
the Ethereum Blockchain.

• Chapter 5 describes how to generate tabular data with deep generative models and how
to measure the quality of resulting samples.

• Chapter 6 discusses if it is possible to use data generated by deep generative models to
improve the performance of imbalanced classification tasks.

• Chapter 7 closes the dissertation with a discussion, the conclusions, and future work.

1.7 Publications

1. Ramiro D. Camino, Christian A. Hammerschmidt, and Radu State. Working with
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Chapter 2

Background

2.1 Machine Learning

Machine Learning (ML) is the sub-field of Artificial Intelligence that provides computer pro-
grams with the ability to improve from experience without being explicitly programmed [104].
Deep Learning (DL) is a particular kind of machine learning that achieves great power and
flexibility by learning to represent the world as a nested hierarchy of knowledge, with each
concept defined by simpler ones and more abstract representations computed in terms of less
abstract ones [49]. Artificial intelligence (AI) is a broader concept than machine learning,
which addresses the use of computers to mimic the cognitive functions of humans [122].
Nevertheless, once a problem is “well studied”, and society incorporates computers to solve
a particular task, the program or technique usually leaves the AI category. For example, the
first psychiatrist chatbot called ELIZA [59] was considered at the time as an AI, even if it
just consisted of handcrafted rules using regular expressions. For today’s standards, nobody
would classify ELIZA as an AI. Fuzzy logic and different tree search algorithms went through
the same path at some point [122]. Today machine learning and deep learning are in vogue
(again) [49], hence it is tough to find AI algorithms outside these categories, but it could
change in the future. The machine learning discipline is closely related to other fields such
as statistics, data science, data mining, and business intelligence. Some differences between
statistics and machine learning are that the latter sometimes can find relationships that do
not have a statistical justification. Additionally, machine learning focuses on computational
aspects such as performance, memory consumption, and hardware implementations (e.g.,
GPUs) or distributed algorithms. Data science, data mining, data analytics, and business
intelligence are disciplines that draw techniques from different fields like mathematics,
statistics, computer science, and information science, intending to discover insights from
real-world data, presenting reports and possibly making business decisions based on the
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gathered information. The line separating those disciplines is quite blurry. Some practitioners
argue that one of those concepts is more general than the others, while other experts suggest
that data science is more focused on the scientific aspects, and the rest emphasize the business
processes. Nevertheless, many of these terms sometimes can be interchanged.

In the following part of this section, we can summarize the basics of machine learning
and related techniques we employ throughout the dissertation. Supervised machine learning
algorithms can identify patterns that relate features (measurable characteristics of the data)
to labels (a particular property of the data). The learning or training process occurs when
the algorithms search for patterns based on examples for which the labels are known. The
result is a model, an approximation of the underlying relationship between features and
labels. During the testing step, the model assigns predictions to samples that were not part
of the training phase, and we compare these assignments to known labels. The purpose is
to evaluate how well the model generalizes to unseen cases. If each label represents one
option from a set of possible classes, we define a supervised machine learning problem as a
classification, but if the labels are continuous values, we define it as a regression. XGBoost
[25] is a famous tool among the data science community for supervised learning, which is
a fast implementation of an older algorithm known as gradient boosted machines [41]. An
ensemble is a model that combines the results from several other models to correct every
case’s weaknesses. Most of the alternatives to this technique can be classified into bagging or
boosting [12]. A boosting algorithm is an ensemble of sequential models where each model
corrects the previous one’s errors. In particular, gradient boosting refers to the technique of
minimizing the prediction residuals using gradient descent. The default and most common
ensemble members for XGBoost are Decision Trees [12], which possess a high variance
that boosting can correct. Like many other machine learning models, XGBoost outputs for
each sample the probability of belonging to each class. For binary classification, the decision
comes from splitting the predicted probability in two with a 0.5 threshold.

Anomaly detection is a technique that allows separating cases from a sample that deviates
from normal behavior. A straightforward approach in anomaly detection is to take every
variable and calculate the z-score of each sample, which is related to the distance of the
point to the mean measured in standard deviations. The problem is that defining the anomaly
score based on each dimension separately ignores the complex interactions between features.
There is an extension to this technique for multiple dimensions involving the Mahalanobis
distance, but it assumes that the data distribution is normal, and sometimes it is not the case.
The Isolation Forest (IF) algorithm [80] is based on the idea that an individual that is easier
to separate from the rest in random subdivisions of the feature space must be an anomaly. It
starts by drawing a sample from the dataset and takes a dimension at random. It then takes a
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random value inside the range of that dimension to divide the sample into two parts. With
the chosen dimension and splitting point, the algorithm creates the root node of a tree. More
nodes are created recursively for subsamples until subdividing is impossible or reaching an
arbitrary tree depth. In this tree, a point that is closer to the root node corresponds to a case
that is more prone to be isolated, but this phenomenon could be caused just by chance. The
algorithm then repeats the whole tree creation method for new samples until obtaining a
desired number of trees. Finally, it computes the average traversal path length among all the
trees as the anomaly score. In [80] the authors claim that the algorithm can tackle masking
problems (clustered anomalies) and swamping issues (wrongly classifying standard cases
for being surrounded by anomalous ones) better than other alternatives. On the other side, it
cannot handle well high-dimensional spaces because when the number of features increases,
the chance of getting the wrong dimension to split the sample is bigger [2]. One Class SVM
(OCSVM) [127] is an unsupervised variant of the classical Support Vector Machine (SVM)
where a boundary is created around normal samples to separate them from the anomalous
ones. It can find non-linear boundaries with kernel functions, but if too many anomalies are
present in the training dataset, they can degrade the algorithm’s accuracy [2]. When using
Gaussian Mixture Models (GMM) [2], one must assume that a combination of Gaussian
distributions generated the data. These components’ parameters are inferred from the dataset
using the Expectation-Maximization (EM) algorithm. We can test a sample against every
component, obtaining a membership probability, and we can define an anomaly as a sample
that is very unlikely to be generated by the mixture. The technique’s advantage is that it can
work with different types of datasets, only using other distributions in the mixture. On the
other side, the disadvantage is that we must make assumptions about the generative process’s
nature, which beats the purposes of understanding and diagnosing strange behaviors. As
mentioned before, every anomaly detection algorithm has advantages and disadvantages.
The authors in [28] tested different anomaly detection ensembles, but they claim that taking
a simple average score between different algorithms is a simple and effective solution.

For more detailed definitions, please refer to the literature covering topics like machine
learning and pattern recognition [104, 12], anomaly and outlier detection [2], artificial intelli-
gence [122], natural language processing and speech recognition [59] or deep learning [49].

2.2 Fraud Detection

In this section, we group machine learning, data mining, or data science studies dedicated to
detecting fraudulent activities or suspicious behavior. The analyzed criminal schemes involve
credit cards, health care and insurance claims, telecommunications, identity theft, tax evasion,
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and plagiarism. All these topics share common behavioral patterns with money laundering
[9]. Please refer to [118] for an extensive survey on data mining for fraud detection.

2.2.1 Anti-Money Laundering

This section presents a small survey of anti-money laundering studies, including the most
notorious publications in the past 15 years. We classify the articles into architecture, surveys,
theory, and experiments. Figure 2.1 exhibits the number of publications by year following
this categorization, where the experiment category is the most predominant. Architecture
articles [44, 144, 82, 152, 43, 158, 63, 4, 52] propose designs of anti-money laundering
systems with different desirable properties, both in streaming or batch mode, that require for
example to handle large volumes of transactions at a high-speed rate. Surveys [13, 145, 46,
74, 131, 121, 88, 123] include a collection of work from several authors in the domain, some
of them with statistics or comparisons, precisely like this section. Theory papers propose
mathematical models [155, 83, 11] or application concepts [42, 81] for money laundering
detection but without any empirical validation. The last category, the experiment studies, are
the main interest of this section. These studies involve some hypotheses and modeling tested
against data. About 67% of the articles in the experiment category involve private data, either
from a single [142, 92, 71, 75, 143, 72, 73, 84, 70, 19, 101, 102, 27, 5, 60] or multiple [99, 36]
anonymous banks for which only the country is disclosed, a government institution from a
known country [134, 62, 132, 115], or an anonymous private company [85, 120, 3, 30, 161].
Around 51% of the publications (which we describe below) use synthetic data to run their
experiments. Furthermore, only 17% of the experimental studies employ both private and
generated data simultaneously, and sadly none of them involve publicly available datasets or
provided open data along with the publication.

One of the most famous studies from the experimental category [134] works with 80
simulated accounts mixed with 5000 real ones from the Wuhan Branch of the Agriculture
Bank in south-central China, collecting around 1.2 million records over seven months.
However, the data generation is unspecified: the authors just describe the fraudulent accounts
as “obviously deviated” data points. Furthermore, there is no baseline to compare against,
and the detection rate of anomalies is lower than 70%. A similar study presented in [92]
works with 6000 accounts from an anonymous bank, collecting one million records over
eight months, and generates anomalous cases by adding “sin noise” to existing samples
(not well specified). The anomaly detection is carried out by RBF neural networks and
compared against OCSVM. Another article [45] mixes transactions from an anonymous bank
with synthetic fraudulent cases. This article also ranks transactions from the most to the
least suspicious based on a clustering algorithm known as Local Outlier Factor (LOF) [2].
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Fig. 2.1 Amount of Anti-Money Laundering papers in the past 15 years.

However, the data generation process is not well specified, and there are no baselines to
compare the results. The authors in [86] propose a money-laundering simulator, generating
transaction attributes in a configurable range to create known money laundering patterns
along the placement, layering, and placement stages. The study does not employ real data, it
does not specify the data generation (no details about distributions), and it does not contain
any experiments. However, the authors continue their work in [87], where they present a
more detailed data generation: the distribution depends on configurable Markov models, and
the transaction amount depends on the account age. Detection algorithms are carried out with
Weka [147], comparing Random Tree, C4.5, Random Forest, and JRip algorithms against
Naive Bayes as the baseline. Weka is also employed in [160], in this case implementing
the PART, C4.5, and Random Forest algorithms to detect accounts owned by smurfs or
money mules. Fraudsters recruit the owners of these accounts as intermediaries who accept
money from one fraudster and forward it to another one for a fee. The authors of [160]
generate suspicious cases at random based on known “habits” or transaction patterns (e.g.,
a chain from one criminal to another with several intermediate smurfs). Nevertheless, the
algorithm only captures long chains, and the information about data distributions is missing.
In [120] the authors discretize transaction amounts in bins and use them to detect mules by
transitioning between states in Markov models. A different model is built per role to classify
users (e.g., regular users versus mules). However, the study has several weaknesses: the
authors make strong assumptions about the data; the authors propose a very simplistic model
(using only the transaction amount); the scenarios are minimal; many distribution details
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are missing; the results contain a considerable amount of false positives, and the authors
have no baseline to compare. To some degree, all the enumerated anti-money laundering
publications work with similar features. The attributes that typically describe individual
transactions are the type, date, currency, amount, sender, and receiver. Additionally, the
aggregated transaction properties shared across studies include counts or frequencies of
withdrawals and deposits, ratios between withdrawals and deposits, and aggregated values
(min, max, sum, mean, std) for the transaction amount the time between transactions.

2.2.2 Market Abuse Detection

The term market abuse refers to practices surrounding the financial market that put some
investors under an unreasonable disadvantage against others. These practices are deemed
illegal in several parts of the world. Some studies implement machine learning techniques for
the detection of insider trading, which is the trading of securities of a public company based
on private information about the company. In [34], the authors search correlations between
options trading information and market news using decision trees, support vector machines,
and neural networks. Another study [32] covers the impact on the market originated from
forum threads involved in ramping, which consists of trying to persuade people that shares
are worth more than they are. This event may happen when investors want to sell shares
at an increased price and profit quickly. Linear regressions, decision trees (C5.0), and
neural networks are employed in [156], to analyze the correlation between indicators of
market abuse, and the number of spam emails found that spread false rumors or illegal
information (also known as touting). Furthermore, [133] discusses how insiders’ trading
behavior differs based on their companies’ roles, the transaction types, the company sectors,
their relationships with other insiders, and how that behavior changes over time.

Another kind of abuse of a financial market is trade-based manipulation (or market
manipulation), which damages the proper functioning and integrity of the market by merely
buying and selling. Price and volume are usually the two main targets to manipulate. Many
studies approach this issue with anomaly detection techniques. In [21], the authors transform
the time-varying financial trading data into a pseudo-stationary time series and apply machine
learning algorithms to detect price manipulation. Anomaly detection over order prices is
applied in [20], employing Hidden Markov Models and Gaussian Mixture Models, along
with a complex feature extraction mechanism based on signal processing and differentiation.
Another study [76] employs neural networks to detect pump-and-dump mechanisms, which
involves artificially inflating the price of an owned stock through false and misleading
positive statements (pump) to sell the cheaply purchased stock at a higher price (dump).
Two-dimensional Gaussian Models are also employed in [76] to detect spoofing, a strategy
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to manipulate the price of an instrument through a combination of buy and sell orders. A
hybrid solution between [21] and [20] is presented in [157], adding random undersampling
plus the SMOTE oversampling algorithm [24] to overcome the class imbalance and the
Mann-Whitney U test [95] for detecting concept drift and adapt the models. Besides anomaly
detection, some other machine learning algorithms are used, like using supervised methods for
the detection of market price manipulation [112, 47], generating explainable models based on
financial variables for the detection of price manipulation in closing hours [33], or simulating
honest versus spoofing trades with Markov Decision Processes [97]. Additional techniques
that derive from graph algorithms (but not necessarily employing machine learning) include
analyzing irregular trading behavior with spectral clustering [40], detecting collusive trader
groups with graph clustering [113] or finding cliques [141], and the detection of special nodes
like blackholes (very high in-degree over out-degree ratio) and volcanoes (very low in-degree
over out-degree ratio) [78]. Wash trade is a particular market abuse tactic in which a group
of collusive investors sells and buys the same financial instruments in parallel. This tactic
creates an illusion of high demand, and brokers can unfairly profit from inflated commission
fees. Although the concept and money laundering are not directly related, the patterns
and detection methods fit our domain. In [22] the authors look for trading circuits where
the exchanged volume returns almost entirely to the origin and the time window between
submissions and executions is abnormally narrow.

2.2.3 User Behavior and Profiling

In [14], the authors separate credit card purchases in time windows, obtaining vectors of
purchase volumes. Using Euclidean distance, for every client, they get the closest clients.
Then, they calculate the client’s distance from his group for every time step using a t-test,
which they use as an anomaly score. The authors use a second approach to analyze only one
client’s transactions using time windows and measure the difference between consecutive
time windows using a t-test as the anomaly score. Another study [58] constructs curves
for eBay auction bids over time, using the data points as knots to compute splines. Then
the curves are clustered using k-medoids, measuring the similarity of vector polynomial
coefficients with euclidean distance. The authors of [54] build user profiles to detect frauds
in telecommunication networks. One vector is computed per day, accumulating each phone
call count and duration in different categories. They then concatenate those vectors using
an arbitrary window size to obtain a single vector representing the user profile. The authors
compute deviations in user behavior by measuring the similarity between profile vector
pairs. Anomalies in sequences of system calls are detected in [151], modeling the transitions
between n-grams of those sequences with a Markov Reward Process, based on labeled
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data and a technique from the Reinforcement Learning domain called Temporal Difference
Learning. X-means is employed in [23] to cluster fraudulent users in online auctions, and
decision trees are trained over the cluster labeling to obtain a more explainable model.
Additionally, the experiments are repeated with different user history proportions to see if
they can detect fraud in the early stages. In [140], the study represents user behavior as a
set of finite actions (clicks on an interface). The time between actions is also discretized
in fixed bins, obtaining traces of behavior when interleaved with the user actions. If we
consider actions as symbols or characters and the traces as strings, we can transform behavior
into vectors of n-gram frequencies. In the vector representation, we can translate behavior
similarity into string similarity. The study uses cosine similarity to cluster users using
Divisive Hierarchical Clustering, calculating the number of cluster divisions depending on
the modularity measure. Furthermore, the study describes every cluster with aggregated
features and compares them using the chi-squared test.

2.2.4 Criticism

In summary, we can enumerate the challenges in the fraud detection domain and the issues
with the state-of-the-art techniques and studies as follows:

• It is not easy (or impossible) to reproduce the current studies:

– Private data:

* not available for everyone, hence, not reproducible;

* some publications do not describe the features or their distributions;

* some publications do not describe the feature engineering or preprocessing.

– Synthetic data:

* some publications have unspecified distributions;

* some publications have strong baseless assumptions;

* some publications have simplistic money laundering generated scenarios;

* some publications have very small scenarios;

* some publications only test anomalies and not necessarily money laundering;

– Private + Synthetic data: some publications base their simulations on private data.

• There is a lack of labels, ground truth, and proper validation:

– some publications only validate visually;
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– some publications only inspect cherry-picked cases;

– some publications only report anomaly rankings;

– some publications have no baselines.

• Imbalanced classes: the amount of money laundering related transactions is minimal.
Nonetheless, they have to be detected because the impact is high.

• Partial information: many money laundering techniques or patterns span through
several networks, and usually, data from only one system is available (e.g., one bank).

• Low quality or misleading metrics:

– some publications have very low true positives;

– it is common to have a high amount of false positives or false alarms.

2.3 Blockchain and Ethereum

In [38], Torres et al. proposed the first taxonomy of honeypots. They identified eight
different honeypot techniques and implemented a tool, HONEYBADGER, to detect them.
HONEYBADGER uses static analysis to investigate Ethereum smart contracts. Before that,
in the domain of smart contracts, static analysis has been used to detect vulnerabilities
[91, 137], and verify the compliance and violation of patterns [138]. While other such tools
exist, they focus on smart contracts’ security and not on honeypots or scams. In [10] the
authors investigate scams on Ethereum (specifically Ponzi schemes). However, they analyze
smart contracts’ source code manually. The study in [26] presents a tool for detecting Ponzi
schemes using machine learning. Machine learning has also been used in [135] to adapt
to new attack patterns rapidly. Other machine learning studies in this domain emphasized
transactions but for security reasons [110, 68], or to predict the bitcoin price [100].

2.3.1 Honeypot Techniques

Torres et al. [38] identified eight different honeypot techniques. In general, honeypots use
bait in the form of funds to lure users into traps. After looking at the source code1, users are
tricked into believing that there is a vulnerability and that they will receive more funds than
they require to trigger the vulnerability. However, it is not clear to the users that the honeypot

1The source code is often made publicly available to lure victims.
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contains a hidden trapdoor that causes all or most of the funds to remain in the honeypot. In
the following, we provide a summary of the honeypot techniques used to deceive users.

Balance Disorder (BD). This honeypot technique uses the fact that some users ignore
the exact moment when a contract’s balance is updated. A honeypot using this technique
promises to return its balance plus the value it receives if the former is smaller than the latter.
However, before executing the code, the contract adds the received value to its balance. As a
result, the balance will never be smaller than the value received. An example of this type was
presented in Figure 1.6 of Chapter 1.

Inheritance Disorder (ID). This honeypot technique involves two contracts and an inher-
itance relationship between them. Both the parent and the child contract define a variable
with the same name that guards access to funds’ withdrawal. Although novice users may
believe that both variables are the same, the compiler will map the two variables internally to
two different storage locations. As a result, changing one variable’s content does not change
the content of the other variable. A honeypot can implement this trick to limit the contract
balance’s withdrawal solely to the contract creator.

Skip Empty String Literal (SESL). A bug previously contained in the Solidity compiler
skips hardcoded empty string literals in function calls’ parameters. Thus, the compiler shifts
the parameters following the empty string literal upwards. Honeypots can use this to redirect
funds to the attacker instead of sending it to the victims.

Type Deduction Overflow (TDO). Although developers usually declare variables with
specific types, type deduction is also supported2. A type is then inferred, without the
guarantee that it is sufficiently large. Honeypots can abuse this mechanism to cause integer
overflows that prematurely terminate execution, deviating from the expected behavior.

Uninitialized Struct (US). Structs are a convenient tool in Solidity to group variables
under a common namespace. However, if developers try to modify an uninitialized struct, the
EVM writes by default the beginning of the storage. This mechanism can overwrite existing
values and modify the contract’s state. Thus, variables required to perform the transfer of
funds may be overwritten and thereby prevent the transfer.

Hidden State Update (HSU). Internal transactions are a consequence of external ones,
but blocks only store the latter. However, both can cause changes in a smart contract’s state.
This honeypot technique assumes that users mostly pay attention to external transactions
and that an internal one may go unnoticed. For example, Etherscan does not display internal
transactions that do not transfer any value. A honeypot can use this effect to hide state
updates from users and make them believe the honeypot is in a different state.

2Until compiler version 0.5.0 https://solidity.readthedocs.io/en/v0.5.0/.
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Hidden Transfer (HT). Platforms such as Etherscan allow users to view the source code
of published smart contracts. However, due to the limited size of the source code window
(and given that there is no line-wrapping), publishers can insert white spaces to hide the
displaying of certain source code lines by pushing them outside the window. This property
allows publishers to inject and hide code that transfers funds to them instead of users.

Straw Man Contract (SMC). When uploading a contract’s source code to Etherscan, only
the contract itself is verified and not the code of other contracts that the contract may call.
For example, a source code file may contain two contracts, where the first contract makes
calls to the second contract. The second one, however, is not used after deployment. Instead,
it is a straw man standing in the place of another contract that selectively reverts transactions.

2.3.2 Criticism

HONEYBADGER is a form of a rule-based system built to detect honeypots among Ethereum
smart contracts. As mentioned before, the rules that this software employs depend solely
on static byte code analysis. One of the weaknesses of this approach is that it ignores any
pattern derived from transaction behavior. Nevertheless, most importantly, given that the
system developers crafted rules to capture each specific technique, the system would not
detect any instance belonging to a technique unknown to them.

2.4 Deep Generative Models for Tabular Data

Unsupervised learning from datasets is of interest in many fields, serving different purposes.
Examples include inference tasks as in [96], where the authors learn Bayesian models using
non-parametric priors over multivariate tabular data, as well as unsupervised feature discov-
ery, extraction, and transfer [64, 119, 56], and synthetic data for privacy-aware applications
[29, 105]. On continuous data, Generative Adversarial Networks (GAN) [50] have proven to
be good at learning data distributions in an unsupervised fashion. By feeding in additional
information (such as labels), conditional GANs [103] can learn to generate samples for
specific inputs. On discrete data (e.g., text sequences, categorical data), GANs face problems
leading to comparatively worse performance. However, several approaches exist to deal with
this. The Gumbel-Softmax [57] and the Concrete-Distribution [94] were simultaneously
proposed to tackle this problem in the domain of Variational Autoencoders (VAE) [66]. Later,
[69] adapted the technique to GANs for sequences of discrete elements. Addressing the same
problem, a reinforcement learning approach called SeqGAN [154] interprets the generator as
a stochastic policy and performs gradient policy updates to avoid the backpropagation prob-
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lem with discrete sequences. The discriminator outputs the reinforcement learning reward for
a full sequence and executes several simulations generated with a Monte Carlo tree search to
complete the missing steps. An alternative approach that avoids backpropagating through
discrete samples, called Adversarially Regularized Autoencoders (ARAE) [159] transform
sequences from a discrete vocabulary into a continuous latent space while simultaneously
training both a generator (to output samples from the same latent distribution) and a discrimi-
nator (to distinguish between real and fake latent codes). The approach relies on Wasserstein
GAN (WGAN) [6] to improve training stability and obtain a loss more correlated with
sample quality. MedGAN [29], while architecturally similar, is used to synthesize realistic
health care patient records. The authors analyze the problem of generating simultaneously
discrete and continuous samples while representing records as a mix of binary and numeric
features. The method pre-trains an autoencoder, and then the generator returns latent codes
as in the previous case, but they pass that output to the decoder before sending it to the
discriminator; therefore, the discriminator receives either fake or real samples directly instead
of latent codes. They propose using shortcut connections in the generator. Additionally,
the authors present the mini-batch averaging technique to evaluate better the generation
of a whole batch instead of individual isolated samples. Before feeding a batch into the
discriminator, mini-batch averaging appends the batch’s average value per dimension to itself.
One study [51] presents an improved version of WGAN to address the difficulty of training
GANs. It adds a gradient penalty to the critic loss (WGAN-GP) and removes the critic
parameters’ size limitation. Tabular GAN (TGAN) [150] presented a method to generate
data composed of numerical and categorical variables, where the generator outputs variable
values in an ordered sequence using RNNs.

2.4.1 Classification with Imbalanced Classes

Some studies already experiment with the possibility of using deep learning models as a
preprocessing technique to improve classification tasks where the amount of samples per class
is highly imbalanced (e.g., when the size of the minority class is less than 10% of the size
of the majority class). The method known as Dual Autoencoders (DualAE) [109] consists
of training two stacked autoencoders in parallel using sigmoid and tanh activations. The
method then encodes each sample with two models, and the concatenation of both codes can
replace the original features. This procedure is a form of representation learning that aims to
improve one model’s synthesis power by combining two models that might capture different
information. Stacking autoencoders was a common technique to train a concatenation of
single layer autoencoders in separated incremental steps, but they were replaced over time
by deep autoencoders [49]. We can also find a few approaches specifically implementing
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deep generative models to oversample the minority class for posterior classification. For
that goal, the authors in [35] propose an oversampling approach using conditional GANs,
and in another study [39], the authors train a simple GAN only with the minority class
from a credit card fraud dataset. Furthermore, the authors of [149] transformed TGAN
into a conditional model (CTGAN) to generate samples from the minority class. Finally,
HexaGAN [55] proposed to train three models in alternating steps to compute a unified
objective function: a conditional GAN for oversampling, an imputation model for missing
values, and a classification model.

2.4.2 Missing Data Imputation

There are numerous studies related to image completion with DGMs like [139] that uses
denoising autoencoders for image imputing. In the natural language processing domain, [16]
presented a VAE model with a recurrent architecture for sentence generation and imputation.
The concept of imputing missing values with deep generative models also exist for tabular
data. Generative Adversarial Imputation Nets (GAIN) [153] adapted the GAN architecture
to this problem. The generator outputs imputed samples from inputs with random noise
replacing the missing values. The discriminator then tries to predict which values were
imputed and which values are original. The authors of Multiple Imputation Denoising
Autoencoders (MIDA) [48] initially replace missing data by the mean or the mode of the
corresponding feature. Then they send the first imputation through a denoising autoencoder
(implemented with a dropout on the input layer). The data reconstruction coming from
the denoising autoencoder represents the final imputation. Additionally, several models are
trained with different random initialization to achieve multiple imputations. Importance
Weighted Autoencoders (IWAE) [18] presents a generalization of the evidence lower bound
defined in VAE that can approximate asymptotically better the posterior distribution. Two
studies, Heterogeneous-Incomplete VAE (HI-VAE) [108] and Missing data IWAE (MIWAE)
[98], extended the work of IWAE to the field of multiple data imputation by separating
variables into missing and observed. Additionally, HI-VAE presents a more extensive
collection of losses that depend on the type of each variable.

2.4.3 Criticism

The acquisition of knowledge is an iterative process in the scientific domain. Scientists
need to understand, incorporate, and challenge the ideas of their pairs continuously. In
this context, the ability to reproduce experiments is essential. However, modern academic
times and practices can give birth to publications that leave many details to interpretation.
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Table 2.1 Five UCI repository datasets including the word “breast” in their names.

Full Name Samples Variables
Predictive Non-Predictive Target Total

Breast Cancer 286 9 0 1 10
Breast Cancer Wisconsin (Original) 699 9 1 1 11
Breast Cancer Wisconsin (Diagnostic) 569 30 1 1 32
Breast Cancer Wisconsin (Prognostic) 198 33 1 1 35
Breast Tissue 106 9 0 1 10

Table 2.2 DGM studies that mention the “breast” or “breast cancer” dataset.

Study Dataset Description Source Samples Variables Dataset Match
HI-VAE [108] publication 699 10 BCW (Original)MIDA [48] publication 699 11
GAIN [153] supplementary materials 569 30

BCW (Diagnostic)HexaGAN [55] supplementary materials 569 30
MIWAE [98] code example (scikit-learn) 569 30
cGAN [35] publication 106 9 Breast Tissue
DualAE [109] publication 350 9 No Match

Many seemingly trivial pieces of information might cause discrepancies in our results and
wrong conclusions. In our everyday work, we found that small details related to the datasets,
preprocessing, hyperparameters, and the reported metric can trigger a cascade of problems.

UCI Repository

In the domain of computer vision, there are very well known benchmarks based on datasets
like MNIST3, ImageNet4, and CIFAR5. However, there is no popular framework to compare
studies in the domain of deep learning for tabular data imputation. There is a popular source
of datasets called the UCI Repository [37], but there is no standardized protocol for the
usage of this resource. The problem is that the datasets are usually identified with arbitrary
short names or aliases, which can lead to confusion. For example, Table 2.1 describes five
datasets with similar names but different amounts of samples and features. Occasionally
authors append tables like this one to their publications as supplementary material. These
tables could solve dataset identification, but sometimes the numbers do not match between
papers or with the information provided on the repository. Following the previous example,
Table 2.2 enumerates seven deep learning studies which are supposedly employing one of
the datasets mentioned above. However, one of the datasets has no match. Furthermore,

3http://yann.lecun.com/exdb/mnist/
4http://www.image-net.org/
5https://www.cs.toronto.edu/ kriz/cifar.html
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the repository publishes some datasets like “adult”6 separated into train and test. Using the
entire set or a portion may cause discrepancies in the number of samples reported. The same
occurs when the dataset contains missing values, and some authors decide to discard them,
but others do the opposite. In the same way, inconsistencies in the number of features can
appear when non-explanatory variables (e.g., ID numbers) are discarded or included in the
description tables. We consider that the simplest solution would be to identify the datasets by
the full URL on the repository. Machine learning software like scikit-learn [116] provides a
collection of datasets to work out-of-the-box, but they are usually considered “toy datasets”
because of the dimensions or the complexity of the related task. An ideal approach would be
something closer to torchvision, the image repository provided by PyTorch [114].

Preprocessing and Metrics

Even if it is not always necessary, scaling numerical features is considered good practice
for training deep learning models. The procedure usually affects the convergence of the
training loss but also changes the magnitude of some metrics. Furthermore, the encoding of
categorical variables can also affect the experiments, but studies rarely specify it. One could
assume that one-hot-encoding is more reasonable because it makes no sense to measure a
distance between two label-encoded categorical variables since the numbers assigned to each
category are arbitrary, and they possess no valid order. Nevertheless, a one-hot-encoding
can significantly increase the number of feature dimensions, leading to many problems.
Besides, deep learning libraries like PyTorch [114], and Tensorflow [1] contain embedding
layers for categorical variables that expect label encoded inputs but also contain softmax
layers that require one-hot-encoding to handle categorical outputs. In any case, note also that
one-hot-encoded categorical variables and min-max scaled numerical variables are contained
in the range [0,1], but in other combinations of formats, if the ranges are different, then losses
like MSE might assign different weights to each type of variable during training. If all the
variables are in the same range, another possibility could be to aggregate different losses per
variable type like in [108], but it is harder to implement.

Hyperparameters

In most of the deep learning related papers, hyperparameters are not indicated or only partially
defined. Furthermore, some studies provide their hyperparameters, but they rarely explain
the logic behind the selection. Most of the deep learning setups need to define some standard
settings: the batch size, the learning rate, the amount and the size of hidden layers, the

6http://archive.ics.uci.edu/ml/datasets/adult
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optimization algorithm (and extra hyperparameters that it may have), decide if dropouts are
needed, decide if batch normalization is used and determine whether any kind of parameter
normalization is used (plus related weights). Additionally, for any GAN derived model, the
number of training steps for each component needs to be defined, and for any model involving
a latent space, the size also needs to be determined. Regarding more specific models: the
parameter clamp for WGAN, the gradient penalty weight for WGAN-GP, the hint probability
and the reconstruction loss weight of GAIN, and the temperature of Gumbel-softmax.

We could argue that some of these choices are not part of the hyperparameter selection
but part of the architecture design. For example, the use of LeakyReLU in the discriminator
[119]. There are also implementation decisions that have an impact on the results, but studies
rarely document them. For example, there is a vast collection of “GAN training tricks”
usually hidden among the implementations, some of which can be found in [124].

With this massive amount of decisions to make, even running a grid search with a small
number of alternative values for each hyperparameter could cost a considerable amount of
resources. Hence, if the authors of other models do not specify their configurations (or do
not publish the entire code for their experiments), and an exhaustive search is not possible,
selecting arbitrary values seems very tempting. However, researchers put the proper effort
into searching hyperparameters for their proposals, getting an advantage over competitors
with default values. Additionally, many studies do not consider each model’s capacity when
comparing them (the number of trainable parameters or weights). For these reasons, one
might suspect that in many articles, the competition between models is unfair. The authors of
[90] suggest that with enough capacity and training time, many different GAN alternatives
can achieve the same results regardless of how complex they look. Also, in the metric
learning domain, [106] shows that even if articles across the years claim that the field is
going steadily forward, some methods from over a decade ago can be competitive nowadays
by using them properly and measuring the right thing. Useful comparisons should list and
tune all parameters for the proposed method and the competitors too.



Chapter 3

Finding Suspicious Activities in
Financial Transactions

3.1 Motivation

Banks and financial institutions worldwide must comply with several policies to prevent
money laundering and combat the financing of terrorism. Nowadays, there is a rise in the
popularity of novel financial technologies such as digital currencies, social trading platforms,
and distributed ledger payments, but there is a lack of approaches to enforce the regulations
mentioned above. Software tools usually detect suspicious transactions based on knowledge
from experts in the domain, but as new criminal tactics emerge, detection mechanisms
must be updated. Suspicious activity examples are scarce or nonexistent, hindering the
use of supervised machine learning methods. In this chapter, we describe a methodology
for analyzing financial information without the use of ground truth. Using an ensemble
of anomaly detection algorithms, we generate a user suspicion ranking to facilitate human
expert validation. We apply our procedure over two case studies: one of them related to
money remittance transactions from a private company and the other concerning Ripple
network transactions. We illustrate how both examples share interesting similarities and that
the resulting user ranking leads to suspicious findings, showing that anomaly detection is a
must in both traditional and modern payment systems.

3.2 Methodology

We now describe the methodology’s general guidelines for anomaly detection on financial
transactions. The first preprocessing step consists of filtering the rows from the dataset
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Fig. 3.1 Methodology outline.

that contain invalid values. Experts in the domain should indicate the expected format of
every variable. Invalid samples could originate from software, programming, or data entry
errors. In some cases, criminals intentionally forge invalid values to bypass different checks.
Therefore, invalid transactions should be marked as suspicious in the early preprocessing
stage and filtered out from the rest of the analysis.

We build a collection of vectors resulting from the aggregation of transactions by user.
Most of the fraudulent schemes present an abnormal frequency of transactions and destina-
tions, similar contiguous volumes, and very short delays between events. RFM (Recency,
Frequency, and Monetary) variables can capture this kind of behavior and are widely used for
other scenarios in fraud analysis [9]. Any user that contains an uncommon value in one of the
RFM variables can be considered suspicious. Nevertheless, unusual combinations of variable
values are more challenging to define. The computation of RFM variables from transactions
results in a collection of time series per account. Each account time series’ length depends
on the number of transactions that the account possesses. The aggregation of RFM variables
per user is necessary to compare vectors of fixed size, but it provokes an inevitable loss
of information. We recommend representing each time series with more than one statistic
feature simultaneously, like the median, the mean, or the standard deviation. We will provide
examples of feature engineering approaches in each case study.

As we deal with an unsupervised scenario, most of the traditional feature selection
techniques do not apply. The first basic check we can run consists of counting the number
of values in every feature across all samples belonging to the generated dataset. An empty
column should be re-designed or directly dropped because it does not contribute to any
analysis or decision. We should take a similar approach with features that have almost
always the same value. This situation can be easily spotted when a column presents an
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insignificant variance. Furthermore, we study how features affect each other, measuring the
Pearson correlation coefficient [9]. Calculating this metric for every column pair gives us the
possibility to drop a column when we obtain values close to 1 or -1.

Columns in the dataset might have some of their values missing. Depending on the
feature’s semantics, an empty value can invalidate a sample, but it can be acceptable in other
cases. Nevertheless, anomaly detection algorithms can be negatively affected by missing
values [2]. If the number of missing values for one feature across all the samples is greater
than some predefined threshold (e.g., 80%), the feature can be considered non-informative
and discarded. In the opposite case, the feature can be used by keeping the observed values
and imputing the missing ones. For this chapter, we take the naive approach of filling the
dataset gaps using the respective column’s median.

Intervals where features are very dissimilar can also degrade the accuracy of anomaly
detection algorithms [2]. We scale every column by subtracting its mean from it and then
dividing by its standard deviation. After this, every feature is centered around 0 and most of
its values reside in [−1,1].

With the obtained dataset, we train the three anomaly detection algorithms using imple-
mentations from the scikit-learn [116] machine learning software. To do that, we need to
define some model parameters in every case. For Isolation Forest (IF), we use the recom-
mended default values from [80]: sub-sampling size φ = 256 and the number of trees t = 100.
In the case of One-Class SVM (OCSVM), we chose the Radial Basis Function (RBF) [127]
kernel and the default parameters from the library. Finally, for Gaussian Mixture Models
(GMM), we need to experiment with the number of components. We run the algorithm for
several values of this parameter, and we plot them against the Bayesian Information Criterion
(BIC) [2] of the corresponding models. This metric is not interpretable by itself, but lower
values are preferred when comparing the BIC between two models. We define the number
of components by looking at the point where there the curve stops decreasing significantly.
This practice is known as the elbow method [2].

Every algorithm gives a score for every user. Those values are in different scales and
are not comparable without additional treatment. We first scale the output of each algorithm
in a way that the most suspicious individual in the dataset gets a score of 1 and the least
suspicious one gets a value of 0 according to this formula [9]:

scorenew =
scoreold−min(scoreold)

max(scoreold)−min(scoreold)
(3.1)

We proceed to get a fourth score for every data point by averaging the three previous
scores. We can plot the distribution of the four scores to be sure that they are generally
consistent. If we obtain very different histograms, maybe the algorithms are not the right
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choice for the dataset, or the feature engineering should be revised. We can also compare
how pairs of scores relate to each other in scatter plots, where points residing in the positive
diagonal represent similar score pairs. We can expect the average to exhibit a strong correla-
tion with individual scores, but some discrepancies can arise between other specific pairs.
The goal of mixing results from different techniques is to improve the quality of the averaged
score. Therefore, it is not a problem if a few samples present very different individual scores.
However, in the extreme situation of a wide discrepancy between scores, alternative anomaly
detection algorithms or parameters should be explored.

Finally, we use the averaged anomaly score to sort the users in a ranking. We consider
the accounts at the top of the list as the most suspicious cases, and we analyze them manually
with the help of domain experts. Figure 3.1 depicts an outline of the methodology.

3.3 Case Studies

3.3.1 Private Company

Our first case study is related to a private company that develops transaction monitoring
products for financial institutions. The company provided us with a dataset composed of
financial transactions typical of Money Remittance and Currency Exchange providers. The
goal is to compare results with a rule-based detection expert system.

Dataset analysis

The dataset contains one million rows, each representing a transaction with ten different
variables: the transaction ID, the source and destination IDs, the amount, and six categorical
variables. For privacy reasons, every ID was adequately replaced by a hash before handling
them to us, and we did not receive any personal information about the users.

Around 27% of the source accounts are different, and 59% in the case of destination
accounts. The distribution of transactions per account is very long-tailed in both cases,
implying that most accounts appear only a few times in the dataset, but with some extreme
exceptions. These users are the first suspects and will be analyzed later. For understanding
the relationship between sources and destinations, we build a directed graph where nodes
represent accounts, and directed edges define transactions between them. The result is a
bipartite digraph: one subset of nodes only with outgoing arcs (known as source nodes)
corresponding to transaction originators and another subset of nodes only with ingoing arcs
(known as sink nodes) corresponding to transaction destinies. That means that no account
sends and receives funds simultaneously (there are no internal nodes). This phenomenon also
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Table 3.1 Graph structure (Private Company)

degout degin
Mean 3.729 1.706

Std. 4.558 1.568
Min. 1 1
25% 1 1

Median 2 1
75% 5 2
Max. 397 120

Internal Sources Sinks
0 268090 586032

indicates that the number of transactions an account has is equal to the out-degree for source
nodes and equal to the in-degree for destination nodes. Another peculiarity of the structure is
that destination nodes only receive arcs from one source node. Therefore, destination nodes
only have more than one transaction when they receive funds multiple times from the same
source. The graph structure is described in Table 3.1.

The transactions are distributed uniformly over 15 months. Regarding the days of the
week, there is a positive peak on Fridays, a negative peek on weekends, and for the rest
of the days, the activity is mildly uniform. The amount is a positive floating-point number
representing the quantity of money transferred between source and destination accounts. The
company transformed all values to USD with conversion rates relative to the transaction’s
creation date to work with comparable samples. The rest of the variables describe different
aspects that can change the semantic of each transaction. The code determines if the
transaction is a remittance, currency exchange, or a regular wire transfer. The type and the
direction semantic depend on the previous variable: remittances and wire transfers can denote
sending, receiving, or canceling operations, and currency exchanges can denote buying or
selling operations. The payment mode defines how the sender interacted with the company,
and the delivery is the analog for the receiver. Finally, the purpose indicates why the sender
initiated the transaction (e.g., bill payment or a gift).

Feature engineering

We start filtering invalid samples: transactions with undefined source or destination account,
invalid formats for the date or the amount, and not listed values for categorical variables.
Around 0.02% of the samples fall into this category, and we file them for further examination.

Given the transaction graph structure described in the previous section, we aggregate
transactions to obtain a signature vector only for source accounts. We define two counting
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Table 3.2 Anomaly Score for the users with maximum feature values (Private Company)

Feature Score
# transactions 0.728
# destinations 0.666

median(amount) 0.599
range(amount) 0.596
median(delay) 0.463

range(delay) 0.466

features: the number of transactions and the number of different user destinations. We
collect the amounts from all the user’s transactions and measure the time between them,
obtaining two time series. For both collections, we add as features their medians and the
ranges. Finally, we create one feature for each possible value of each categorical variable
holding the corresponding frequency of occurrence.

Anomaly detection

We chose the parameters for the anomaly detection algorithms, as mentioned in Section 3.2.
For the GMM, we observe in Figure 3.2 how the BIC value starts decreasing slower around
20 components. Hence, we decided to use that value for our experiments. We plot histograms
of scores for every algorithm in Figure 3.3. We can observe that IF gives a long right-tailed
distribution, GMM shows an extreme separation between anomalies and standard cases, and
OCSVM contains many jumps. However, the AVG algorithm smooths everything. In Figure
3.4, we can visualize how the scores positively correlate with each other in most cases. There
is a zone of disagreement between algorithms in the left bottom corner. Nevertheless, some
users are evident anomalies for all the algorithms in the right top corner, and the red color
indicates that those points have a high AVG score as expected.

After obtaining the AVG score for every user, we analyze how that metric relates to each
continuous feature. We can see in Table 3.2 that the account with the highest value for one
feature is associated with a high score most of the time. The only exceptions are the features
corresponding to the time between events, but it is reasonable to consider users with high
delays as normal because most of the users in the dataset behave like that.

Besides the anomalously high values in every dimension, we also analyze each user
individually in the top positions in the ranking. We see in Table 3.3 the complete list of
transactions of the most suspicious user. It clearly shows an example of structuring, where
consecutive operations arise in a short period, with different destination accounts and the
same amount of money in USD. Another case in Table 3.4 presents several transactions at
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Fig. 3.2 Amount of GMM components vs. BIC score (Private Company).

Fig. 3.3 Anomaly score distribution for different algorithms (Private Company).

the same time to the same destination with different amounts. The same account participated
in 53 additional cases with a similar pattern.

Validation

We presented our data analysis and findings to the company and their experts in the domain.
They explained that the peculiar graph structure we found is typical for a Money Remittance
and Currency Exchange business. Most of the time, clients of that business send remittances
to destinies for which financial institutions maintain no accounts and no unique identifiers.
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Fig. 3.4 Scores for the three algorithms (Private Company).

Table 3.3 Structuring example 1: close time, different destinations, and the same amount.

Destination Date Amount (USD)
user0 2014-09-11 12:51:51 13541.00
user1 2014-09-11 12:59:35 13541.00
user2 2014-09-11 13:01:05 13541.00
user3 2014-09-11 13:21:22 13541.00
user4 2014-09-11 13:27:25 13541.00

Table 3.4 Structuring example 2: same time, same destination but different amounts.

Destination Date Amount (USD)
user0 2014-10-18 20:08:35 1861.00
user0 2014-10-18 20:08:35 2647.00
user0 2014-10-18 20:08:35 1672.00
user0 2014-10-18 20:08:35 6.00
user0 2014-10-18 20:08:35 15.00

This issue also seems to apply to global inter-bank payments. The company knows that the
set of destination users contains a significant amount of duplicates. Merging accounts that
correspond to the same entity in real life is not a trivial task, given that the same person
can register his name with slight changes or even with fake identities. Also, dates of birth,
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addresses, phone numbers, and other attributes can differ for several reasons. This problem
is widely studied under many names [53], like entity resolution or record linkage.

The weekday structure is related to the working culture in the countries where the data
originates. Usually, workers receive their salaries at the end of the week, and they send part
of the money to their families abroad. This phenomenon is consistent with our reports.

The company checked the anomaly ranking for users and compared our results to their
rule-based detection setup. Their experts verified and validated those cases manually. They
confirmed that we gave high values to all the accounts the rule-based detection setup marked
as suspicious. Furthermore, they informed us that they were able to spot additional suspicious
schemes thanks to our methodology. They also stated that the two approaches should be seen
as complementary since rule-based regulations are mandatory, and also because our method
presented a few false negatives that their system could cover.

3.3.2 Ripple

Our second case study is related to Ripple. There are several tools to analyze and inspect the
network with modern visualizations like Ripple Charts 1. Another example is the online tool
Bithomp2 that allow us to identify some accounts by nicknames and inspect their transactions.
Additionally, [7] presents an overview of Ripple with statistics about the platform’s use and
growth. Nevertheless, we found no previous work related to this technology on how to detect
suspicious behavior. The goal of this case study is to explore that possibility.

Dataset analysis

We collected Ripple transactions limited to the successful ones. The information we use in
this chapter belongs to the time interval between January and June of 2016.

We first measure the distribution of transaction types in Table 3.5. Although our dataset
comes from a posterior period than the study presented in [7], we observe the same kind of
results. There is a considerable amount of order cancellations, and at the same time, more
than 82% of the submitted orders were replacing a previous order (an alternative cancellation
mechanism). Furthermore, roughly 20% of the created offers get executed at the moment of
submission. The movement of actual value between accounts only represents 30% of the
transactions. To study users’ trading behavior, we simplify the dataset considering only the
payments and the executed or partially executed orders.

1https://xrpcharts.ripple.com/
2https://bithomp.com/



40 Finding Suspicious Activities in Financial Transactions

Table 3.5 Transaction type count (Ripple)

Type Count
Order Submission 79831744

Order Cancellation 11017512
Payment 4735046

Others 3224138
Total 98808440

Table 3.6 Graph structure (Ripple)

degout degin
Mean 248.772 117.751

Std. 4213.015 1975.149
Min. 0 0
25% 0 1

Median 1 2
75% 3 4

Max. 330548 314426
Internal Sources Sinks

15901 6574 17969

Depending on each transaction type, we split the dataset into sequences per user sorted
by date. For payments, we add the transaction to the sender’s sequence and the receiver’s
sequence. If the payment affects offers in its path, we also add the order executions to
the corresponding sequences. For order submissions, we add the transaction to the order
creator’s sequence and the sequences of the crossed orders’ owners. Our resulting dataset
consists of 14,560,124 samples corresponding to 40,754 different wallets. We represented
every fund movement with the transaction ID, the source and destination IDs, the amount
and the currency sent, and the amount and currency received. The reason for the existence of
multiple destinations depends, as we mentioned before, on the type of transaction. For order
submissions, there can be one or more matching orders, and in the case of the payments, there
is always a unique sender, but it is possible to have multiple payment paths involving one or
more intermediary accounts. Furthermore, among these transactions, we find 191 currencies.
The distribution of transactions per currency is very long-tailed. Hence we present the ten
most frequent currencies in Figure 3.5.

To understand the general relations of fund movements between accounts, we build a
directed graph as in the previous case study. The graph structure is described in Table 3.6. In
this case, we find more extreme right tails in the number of ingoing and outgoing transactions
per user, but a more balanced distribution between internal, source, and sink nodes.
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Fig. 3.5 Most used currencies in the Ripple dataset.

Feature engineering

In this case study, we have information for both sources and destinations of fund movements.
Hence, we create a signature vector aggregating transactions for every account. We have five
counting features for every user:

• the number of transactions involving the user,

• the number of transactions where the user is the sender,

• the number of transactions where the user is the receiver,

• the number of different accounts who sent funds to the user,

• and the number of different accounts who received funds from the user.

We collect all the incoming and outgoing fund movements separately for the seven most
frequent currencies, obtaining 14 different time series. We also measure the number of
seconds between every event generating an additional vector. We build two features for all
these collections based on the median and the range. Finally, we create the same two features
for the time series of delay between transactions involving the user. The resulting dataset
contains 35 non-empty features, and each of them has a significant variance.
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Fig. 3.6 Amount of GMM components vs. BIC score (Ripple).

Fig. 3.7 Anomaly score distribution for different algorithms (Ripple).

Anomaly detection

We select the parameters again for the anomaly detection algorithms, as mentioned in Section
3.2. Casually we used also 20 components for the GMM in this case, based on the BIC curve
that we observe in Figure 3.6. The histogram plots of scores for every algorithm in Figure
3.7 show this time more similar curves with very long tails to the right. Additionally, the 3d
scatter plot in Figure 3.8 shows how correlated are the scores among the algorithms.

In this case study, we have more features related to continuous variables. We show the
user score with the highest value of each feature in Table 3.7. We can see that the features
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Fig. 3.8 Scores for the three algorithms (Ripple).

corresponding to time delays between transactions, the number of transactions sent, and total
transactions have low anomaly scores.

Validation

In most cases, the Ripple accounts in the highest positions of the anomaly ranking had a
considerable amount of transactions. It is tedious to analyze all that information manually, and
the used anomaly detection algorithms do not offer a human-comprehensible interpretation
for their decisions. Nevertheless, the Ripple community is very active, and its members can
be considered experts in the field. We can find discussions about unusual transactions and
suspicious accounts in the official issue tracker3 and either the official4 or the unofficial5

forum. A collection of relevant accounts among the top suspects is shown in Table 3.8.
We found using Bithomp that some of them are related to known gateways like TokyoJPY,

SnapSwap, Bitstamp, Mr. Ripple, and RippleFox. It seems reasonable that the algorithms
consider gateways as anomalies because they behave differently from most users. We found
similar cases in the forums6 where users suspect that some accounts are related to banks

3https://github.com/ripple/rippled/issues
4https://forum.ripple.com/
5https://www.xrpchat.com/
6https://www.xrpchat.com/topic/1398-banks-on-ripple/
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Table 3.7 Anomaly Score for the user with the maximum value of each feature (Ripple)

Feature Score
transactions 0.582

sent 0.582
received 0.696
senders 0.733

receivers 0.622

median(delay) 0.395
range(delay) 0.332

median(XRPsend) 0.753
range(XRPsend) 0.753

median(XRPreceive) 0.518
range(XRPreceive) 0.623
median(CNYsend) 0.762

range(CNYsend) 0.667
median(CNYreceive) 0.678

range(CNYreceive) 0.713
median(USDsend) 0.646

range(USDsend) 0.667

Feature Score
median(USDreceive) 0.660

range(USDreceive) 0.752
median(BTCsend) 0.639

range(BTCsend) 0.667
median(BTCreceive) 0.867

range(BTCreceive) 0.820
median(EURsend) 0.646

range(EURsend) 0.667
median(EURreceive) 0.660

range(EURreceive) 0.692
median(JPYsend) 0.639

range(JPYsend) 0.609
median(JPYreceive) 0.754

range(JPYreceive) 0.708
median(XLMsend) 0.439

range(XLMsend) 0.667
median(XLMreceive) 0.445

range(XLMreceive) 0.622

Table 3.8 Ripple Accounts With High Anomaly Ranking

Rank Account Details
1 r94s8px6kSw1uZ1MV98dhSRTvc6VMPoPcN gateway TokyoJPY
2 rMwjYedjc7qqtKYVLiAccJSmCwih4LnE2q gateway SnapSwap
3 rQpCJ9uou6X7YXiHJiuyHNk72Ak1Pm9XWS suspected bank
4 rogue5HnPRSszD9CWGSUz8UGHMVwSSKF6 arbitrage bot
5 rvYAfWj5gh67oV6fW32ZzP3Aw4Eubs59B gateway Bitstamp
6 rB3gZey7VWHYRqJHLoHDEJXJ2pEPNieKiS gateway Mr. Ripple
7 rghL9q8iPW6P4ZqG53nv3VNkVBKWWngdd gateway RippleFox

10 rMqKD6oS578ekZkhsREXcYBQWwx9HHqWEy suspected bank
15 rnCA4c4gn1ZL5ufyNNqKnjvVWQn3P7rxKc suspected bank
17 rEiUs9rEiGHmpaprkYDNyXnJYg4ANxWLy9 arbitrage bot
20 rJnZ4YHCUsHvQu7R6mZohevKJDHFzVD6Zr whale account
22 rfh3pFHkCXv3TgzsEJgyCzF1CduZHCLi9o price manipulation
24 rQhMHRiXpkn1X1mWDRJxsu1VEpfS8VAaxK dumping
51 rGcQo3R21J8BpextdCS1KNhweUJht6c8Pv stealing via exploit

acting as gateways, but their identities were never confirmed. The Ripple community detected
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another interesting case7, where a single account referred to as a whale account holds an
abnormally high amount of resources.

At the top of the ranking, we found two accounts that appear in the forums8 and the issue
tracker 9 as examples of arbitrage bots. The number of trades, destinations, and currencies
they use is considerably higher than usual, and they also present anomalous delays between
transactions because they trade very often. Even if arbitrage is not illegal, it shares a typical
pattern with the wash trade technique (see Chapter 1). Thus, we should carefully examine
transactions and accounts related to this practice. In another forum, article10 users suspect that
an account may be a trading bot trying to manipulate prices somehow by putting sell orders
very close to buy orders with abnormally small amounts. Another suspected manipulation
case11 is related to an account in our ranking that received a large amount of XRP directly
from Ripple and sold all his reserves in a short period (dumping). If the funds’ movement
was between members of the same party, they could profit from the sudden price change.

Finally, we found an account accused of exploiting a Ripple vulnerability12. The attack
presents a pattern similar to circular payments involving at least one victim, a good gateway,
and another bad one that is either out of service or openly recognized as malicious. If
the victim has previous trust lines with both gateways, the technique allows the attacker to
exchange his IOUs from the bad gateway with the victim’s IOUs from the good gateway.

3.4 Discussion

To obtain a different understanding of the anomalies, we tried using decision trees with
anomaly/non-anomaly as a target variable for every account. We can generate these labels
by experimenting with different anomaly thresholds for splitting the anomaly score in two.
We employed the trained decision trees to extract rules that decide when an account is an
anomaly or not [9]. Nevertheless, the rule sets we obtained were too large and complicated
for human interpretation.

Additional graphical representations could also improve the validation of suspicious
cases. We experimented with t-SNE [93], an algorithm for analyzing data reducing the
dimensionality of the feature space. We created several 2D, and 3D scatter plots exploring

7https://www.xrpchat.com/topic/432-again-this-wallet-is-selling-like-crazy- ripplewallet18972352/
8https://github.com/ripple/rippled/issues/1257
9https://www.xrpchat.com/topic/2910-example-of-code-for-pseudo-circular-payments/

10https://www.xrpchat.com/topic/228-bot-pushing-price-down-sort-of-wierd/
11https://www.xrpchat.com/topic/1293- saxony-related-accounts-got-xrp-from-rippleinc-is-dumping/
12https://www.xrpchat.com/topic/3216-solved-a-bug-and-a-new-kind-of-attack-on-rcl/
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different parameter combinations according to the guidelines of an online tool13, but we
could never obtain any meaningful insights on account relations.

Dimensionality reduction techniques can also be used as an alternative to feature selection.
We could apply Principal Component Analysis (PCA) before running anomaly detection
algorithms to deal with smaller and more dense feature spaces [9]. The problem is that when
we keep the dimensions related to the principal components that can explain better most of
the variation in the dataset, we are not only discarding noise but also the particularities of the
anomalous cases. Additionally, the resulting transformed space’s data points are even more
challenging to interpret for humans than the original ones.

Finally, even if we have no certainty about money laundering or terrorist financing in the
Ripple network, we applied the same methodology to both case studies and found suspicious
cases with similar patterns. Although Ripple transaction information is public, the number of
transactions for the most active users is more significant than in the private company case,
and some of those users could be trying to obfuscate the source or the final use for their
founds. Furthermore, we could find accounts exploiting vulnerabilities that we were not
aware of beforehand with our approach.

3.5 Conclusion

We presented a methodology to analyze financial transactions from different sources, using
unsupervised learning methods. We presented two case studies, one representing a commer-
cial application we explored with our industrial partner and another from a publicly available
data source (Ripple transaction data). In the first case, we were able to validate our findings
with experts from the private company. In particular, our tool was able to spot exciting cases
in addition to the suspicious samples that traditional rule-based systems can detect. In the
second one, we validated our findings based on information from community forums. We
detected expected anomalies (e.g., gateway accounts) and cases unknown to us beforehand,
like arbitrage bots and vulnerability attacks. These findings confirm that anomaly detection
on user behavior is a must in both traditional and modern payment systems.

In the future, we plan to focus on detecting unexpected changes in user behavior and
extending the analysis methods to fit streaming environments.

13http://distill.pub/2016/misread-tsne



Chapter 4

Honeypot Detection in Ethereum

4.1 Motivation

Ethereum smart contracts have recently drawn a considerable amount of attention from
the media, the financial industry, and academia. With the increase in popularity, malicious
users found new opportunities to profit by deceiving newcomers. Consequently, attackers
started luring other attackers into contracts that seem to have exploitable flaws but contain an
elaborate hidden trap that benefits the contract creator. The blockchain community identifies
these contracts as honeypots. A recent study presented a tool called HONEYBADGER that
uses symbolic execution to detect honeypots by analyzing contract bytecode. In this chapter,
we present a data science detection approach based foremost on contract transaction behavior.
We create a partition of all the possible fund movement scenarios between the contract creator,
the contract, the transaction sender, and other participants. To this end, we add transaction
aggregated features, such as the number of transactions and the corresponding mean value and
other contract features, for example, compilation information and source code length. We find
that all categories mentioned above of features contain useful information for the detection of
honeypots. Moreover, our approach allows us to detect new, previously undetected honeypots
of already known techniques. We furthermore employ our method to test the detection of
unknown honeypot techniques by sequentially removing one technique from the training
set. We show that our method is capable of discovering the removed honeypot techniques.
Additionally, we present two new techniques discovered with our method.
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4.2 Data acquisition and feature extraction

4.2.1 Data

We limited the experiments in this chapter to the 2,019,434 smart contracts created in the first
6.5M blocks of the Ethereum blockchain because we need to match the range of blocks used
in [38] to be able to use the labels from that study. Using the Etherscan API1, we acquired
compilation and source code information for 158,863 contracts downloaded around 141M
external and 4.6M internal transactions.

4.2.2 Labels

We compile a list of contracts labeled as honeypots from HONEYBADGER’s public code
repository2. The repository provides a list of honeypots for each technique where source
code is available on Etherscan. The authors developed a tool that generated the labels, and for
each case, they indicated if the labeling was correct after a manual inspection of the contract
source code. The authors only included one representative address in their list for groups
of honeypot contracts that share the same byte code. To obtain a label for every contract,
we calculate the sha256 hash for the byte code of each contract and group them based on
the hashes. We then transfer the label of each representative contract to every contract in
its group. We only label as honeypot the contracts manually confirmed by the authors and
ignore their tool’s false positives.

4.2.3 Features

We create a set of features to understand the data better, verify that the behavior of transactions
reflects the used honeypot technique, and automate the detection of honeypots using machine
learning. We divide the features into three categories, depending on source code information,
transaction properties, and fund flows. We describe the extraction process for each category’s
features and their selection reasons in the following sections.

Source Code Features

• hasByteCode:bool → indicates if the contract contains bytecode. The absence of
bytecode means that the contract creation was erroneous and that it has no behavior.

1https://etherscan.io/apis
2https://github.com/christoftorres/HoneyBadger
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• hasSourceCode:bool → we hypothesize that the number of source code lines of a
honeypot is a decent approximation of the contract’s readability or interpretability.

• numSourceCodeLines:int → counting the number of lines in the source code does
not entirely reflect readability and interpretability characteristics, but it is a decent
approximation that does not require static code analysis or symbolic execution.

• compilerRuns:int→ we are interested in determining if a high amount of optimizations
during compilation could lead to unexpected behavior that attackers can exploit.

• library:int→ we collected all the possible libraries and created a categorical variable
of 749 unique values. We are interested in knowing if the adoption of a particular
library correlates with the occurrence of honeypots.

And finally, we split the compilerVersion:str into three parts: major, minor, and patch. We
are interested in finding if a major, minor, or patch version significantly affected honeypots,
caused by some vulnerability in the solidity language compiler. For each part, we collected
all the possible values and calculated two categorical variables:

• compilerMinorVersion:int→ 4 unique values.

• compilerPatchVersion:int→ 330 unique values.

The compiler major version is 0 for all the examined contracts, so we discard the feature for
not providing any information.

Transaction Features

We begin with the features we generate for both external and internal transactions.

• [internal|external]TransactionCount:int→ the number of transactions of the corre-
sponding type associated with the contract. We expect to filter out contracts with an
abundance of movements, which are probably not honeypots.

• [internal|external]TransactionOtherSenderRatio:float→ we calculate this by dividing
the number of unique senders by the number of total senders, omitting the contract
creator in both. The feature should be one if every transaction is sent by a different
sender, close to zero if few senders send many transactions, and we define it as zero if
the creator is the only sender. We would like to know if the participation of multiple
senders is a characteristic of honeypots or not.
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Next, we compute the average and the standard deviation for each contract and each property
of transactions involving fund movements. This yields a total of six features per transaction
type, external and internal:

• [internal|external]TransactionValue[Mean|Std]:float

• [internal|external]TransactionGas[Mean|Std]:float

• [internal|external]TransactionGasUsed[Mean|Std]:float

The value is only collected if there are no errors in the transaction. If there is an error,
the system rolls back the transaction and any transferred funds, but it still spends the
gas. We expect the feature means to be positive but small for honeypots, more varied for
popular non-honeypot contracts, and zero for contracts with testing purposes. Furthermore,
for the feature standard deviations, we have some weak intuitions we would like to test:
high standard deviations for gas and gas used may be correlated with contracts with many
different execution paths, becoming a proxy indicator for the complexity of the contract code.
Additionally, the standard deviation for the value may point out how different or how similar
are the transactions of a contract in terms of the amount of funds.

Moreover, we extract features related to time and block numbers for external transactions.
Internal transactions do not carry their timestamps or block numbers, and we cannot assume
that Etherscan sorts them chronologically. Our intuition is that honeypots have short lives
compared to other contracts, which was also pointed out in [38]:

• externalTransactionBlockSpan:int→ derived from the block number of the last trans-
action minus the first transaction’s block number.

• externalTransactionTimeSpan:int→ computed from the timestamp of the last transac-
tion minus the timestamp of the first transaction.

We also compute the block and time differences between transactions. Both the mean and
standard deviation indicate how often the contract receives transactions (only for contracts
with more than one transaction):

• externalTransactionBlockDelta[Mean|Std]:float

• externalTransactionTimeDelta[Mean|Std]:float

Lastly, features extracted only for internal transactions:
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Table 4.1 Fund Flow Variables.

Name Possible Values
sender creator, other
creation yes, no
error yes, no
balanceCreator up, unchanged, down
balanceContract up, unchanged, down
balanceSender up, unchanged, down
balanceOtherPositive yes, no
balanceOtherNegative yes, no

• internalTransactionCreationCount:int→ indicates how many contracts this contract
created. We hypothesize that honeypots are less likely to create other contracts.

• internalTransactionToOtherRatio:float → this is analogous to the feature transac-
tionOtherSenderRatio, but it is calculated for the receivers instead of for the senders.

Fund Flow Features

According to the definition of honeypots, we expect to find the following events at least once:

1. A contract is created successfully.

2. The contract’s creator sends funds to the contract. We can interpret this event as
“setting the trap" because funds attract attackers to exploit the contract.

3. A user that is not the contract’s creator sends funds, and the contract keeps them. We
can interpret this event as a victim falling for the trap.

4. The contract creator withdraws its profit from the contract.

Most importantly, a honeypot should rarely, if ever, present a withdrawal from an account
other than its creator.

We define different events triggered by external transactions (and potentially followed
by internal transactions), where each possible event corresponds to precisely one case. We
describe these cases with a combination of eight variables in Table 4.1.

For each external transaction, we collect the resulting internal transactions. We determine
the sender variable by comparing the transaction source to the contract creator. The creation
variable is set to yes only for the creation transaction. However, the error variable value,
in this case, is an aggregation: it is set as True if the external transaction or any of the
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triggered internal transactions contain an error. For the balance changes, we use the following
algorithm: we initialize every account with zero funds moved, and for each transaction (both
external and internal), we subtract the value from the transaction.from account and add it
to the transaction.to account (or to the transaction.contractAddress account if a contract is
created). After iterating over the transactions, we consider the funds moved into the creator,
contract, and sender accounts. We mark them as up, unchanged, or down if the values are
positive, zero, or negative, respectively. If the balance of any account other than the three
mentioned above is changed, we have two special flags that indicate if at least one other
account balance went up or down respectively. We prefer to keep a small and fixed number
of variables, and computing all the possible combinations yields 25×33 = 864 cases, many
of them invalid. For example, creation=yes only makes if when sender=creator, and we
only care about balanceSender if sender=other. Also, at least one balance goes up if and
only if at least one balance goes down. After discarding invalid combinations, we retain 244
valid cases. Finally, we extract the frequency of each case for every contract by counting
how many times a case appears divided by the total amount of cases.

4.3 Exploratory Analysis

In the following section, we analyze each of our variables in search of distribution differences
between honeypots and non-honeypots. We divide the study not by the categories presented
in the previous section but by the variable type (numerical and categorical) because the same
mechanisms can describe variables with the same type.

4.3.1 Most Relevant Numerical Features

We take all the numerical features and study how their distributions differ when dividing them
by honeypots and non-honeypots. We include only the results for three features where the
differences are more evident: the number of code lines, the number of external transactions,
and the transaction value. We describe the distribution of the three variables in Table 4.2.

First, we observe that honeypots seem to have a reasonable amount of code lines in
general, with a minimum that could include a fair amount of logic and a still readable
maximum. On the other side, non-honeypots present extreme values, from contracts with only
one line of code to a contract with more than 11K lines. Second, we see that three-quarters of
the contracts have a small number of external transactions. However, the maximum amount is
much larger for non-honeypots than for honeypots. Lastly, it seems that all honeypots always
move some amount of ether, but most non-honeypot contracts (over 75%) do not exchange
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Table 4.2 Distribution description for the most relevant numerical features.

Feature numSourceCodeLines normalTransactionCount normalTransactionValueMean
Honeypot Yes No Yes No Yes No

mean 57.00 279.70 5.13 680.61 0.27 5.46
std 22.80 278.42 4.26 33198.52 0.22 570.30

min 19.00 1.00 1.00 1.00 0.00 0.00
25% 41.00 109.00 3.00 1.00 0.10 0.00
50% 54.00 177.00 4.00 2.00 0.25 0.00
75% 67.00 386.00 6.00 4.00 0.38 0.00
max 185.00 11409.00 32.00 10412943.00 1.67 204365.82

value at all. Nonetheless, non-honeypots have very extreme maximum value movements,
while honeypots move on average no more than 2 ether.

We could use handcrafted rules to cut off the extremes of all these features. However,
one of those rules’ problems is that they overfit the dataset used to craft them. Even if the
boundaries are relaxed, if a new honeypot crosses one of those boundaries (both accidentally
or on purpose), it would be automatically classified as a non-honeypot disregarding the rest
of its properties. In any case, the rules we could craft can capture all the honeypots but do
not exclude a sufficiently large portion of non-honeypots. We could start combining several
rules until we find the best honeypot filter, but machine learning can do that for us.

4.3.2 Categorical Variables

All the extracted categorical features belong to the compilation and source code information
category: the compiler mayor, minor and patch versions, and the library. The minor compiler
version has only four possible values. Most contracts belong to the minor version 0.4, and in
particular, all but one honeypot among our samples belongs to that version. These statistics
agree with a popularity peak in Ethereum described by the authors of HONEYBADGER [38].
The compiler patch version has 330 possible values. One compiler version (0.4.19+com-
mit.c4cbbb05) is more common than others for honeypots, but no specific honeypot technique
is correlated. We repeat the procedure of counting honeypot techniques for the rest of the
compiler versions obtaining the same results. This finding suggests that we cannot link
honeypot activity to any compiler version. Instead, it seems that the high frequency for some
versions is related to the time when they were active, which could be at the same time linked
with Ethereum’s popularity. Finally, none of the honeypots have a library. Hence, we can
presume that libraries do not correlate with honeypot development or that no library contains
vulnerabilities exploitable for honeypot related purposes.
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4.3.3 Fund Flow Cases

We study the events related to fund movements to verify if honeypots behave as we expect.
For this, we query our data by partially defining some of the fund flow variables and adding
the frequencies of all matching cases.

We assumed that honeypots should receive a deposit from its creator to work since funds
are needed to attract attackers. However, we find that 29 honeypots (around 10% of them)
do not match this criterion. Inspecting individual cases, we find that these contracts are
honeypots but rely on initial deposits from victims to attract even more victims. Another
explanation could be that the creators of honeypots sometimes use a different account to set
their trap. We do not find clear evidence of such practice among our data, but future work
could address this topic, for example, using graph techniques to find colluding accounts.

We find 192 honeypots that do not have any deposits from non-creator accounts, which
means that only 103 (roughly 35% of them) were able to lure victims into sending funds.
This metric is close to the statistics presented in [38]. Moreover, only 108 honeypot contracts
(∼37% of them) present withdraws from the creator. It makes sense to expect the creator
to withdraw funds only if the trap was effective. However, the amount of honeypots with
creator withdraws is higher than the number of effective ones, which indicates that the creator
sometimes withdraws the bait when the trap seems not to be working.

Honeypots should never present withdraws from non-creator accounts, but 50 cases
(∼17%) matching this criterion. We find some interesting cases among this group where
the honeypot creator failed to set the trap correctly. For example, one contract3 that belongs
to the Hidden State Update category. This kind of honeypot needs a transaction to change
the value of one or more variables in the contract. This update mechanism is usually hard
to track because Etherscan does not publish internal transactions that carry no value, and
victims fall into a trap when they do not know the contract’s state. However, for our contract
example, the hidden state change transaction is missing, and the users that were supposed to
be victims made a profit.

In Table 4.3 we present the top most frequent balance movement cases. The count
represents the number of external transactions that match the fund flow case. The IDs are
arbitrary values used to identify the features later on. We do not include the Boolean variables
with False values and the balance variables without changes for readability purposes. We
can observe some expected cases for honeypot contracts: creator deposits and withdrawals,
deposits from non-creator accounts, and contract creation (without any fund movement).
This category’s unexpected top case represents transactions from non-creator accounts that

3address=0xbC272B58E7cD0a6002c95aFD1F208898D756C580
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Table 4.3 The five most frequent fund flow cases by honeypot and non-honeypot.

Honeypots
Count ID Description

341 205 sender=other
304 83 sender=creator, balanceCreator=negative, balanceContract=positive
292 33 sender=creator, creation=True
168 201 sender=other, balanceContract=positive, balanceSender=negative
136 73 sender=creator, balanceCreator=positive, balanceContract=negative

Non-Honeypots
Count ID Description

94475857 205 sender=other
9667149 207 sender=other, balanceSender=negative, balanceOtherPositive=True
9130582 201 sender=other, balanceContract=positive, balanceSender=negative
8569634 77 sender=creator
5647532 127 sender=other, error=True

do not generate any fund movement. Furthermore, we can see that deposits from non-creator
accounts are also prevalent for non-honeypot contracts.

4.4 Experiments

4.4.1 Additional Pre-Processing

Before starting any of the machine learning experiments, we need to take further data cleaning
steps. Missing values in our dataset are mostly a product of our feature extraction. We cannot
compute the value aggregated features for any transaction type when there is an error because
the system rolls back the funds. For external transactions, we cannot measure the difference
of time or block number between consecutive external transactions when the contract only
has one external transaction. The rest of the external transaction features are always defined
because there is always at least one external transaction (the creation, even if it contains
errors). Nevertheless, for all these situations, we found it reasonable to fill the missing values
with zeros. However, a contract may not have any internal transactions. Consequently, all the
related aggregated features are undefined. Even if we could fill those features with zeros, only
18% of the contracts have internal transactions. Hence, we discard the aggregated features
related to internal transactions for the following experiments, but we add a new Boolean
feature that indicates the presence of internal transactions.
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Furthermore, not every contract is useful for our classification task. We discard contracts
without bytecode because the system cannot execute them. We also discard contracts without
source code for different reasons:

• It is harder to lure victims looking for vulnerabilities in contracts if the source code is
not publicly available.

• We only have labels for contracts with source code.

• We cannot compute features from the compilation and source code category for
contracts without source code.

After the filtering step, we reduced the number of samples in our dataset to 158,568 non-
honeypots and 295 honeypots.

Also, we find that not all fund flow cases are useful. Therefore, we discard all those that
do not have any frequency across our reduced dataset. Thus, we end up with 74 out of 244
cases that are useful for describing the transaction behavior. We also check each feature’s
variance, but none present a variance very close to zero. Thus we do not discard any other
dataset columns.

Our last step is taking any “unbounded" numerical feature (the ones that are neither
frequencies nor ratios) and apply min-max scaling to shrink them into the range [0,1]. We
use this technique to have every feature in the same range, allowing us to understand feature
importance better later on.

4.4.2 Honeypot Detection

In this section, we train a machine learning model called XGBoost [25] to classify contracts
into honeypots (the positive class) or non-honeypots (the negative class).

We use k-fold cross-validation to ensure that the models generalize to unseen data. We
split the data into k = 10 separate subsets called folds, where one is selected for testing, while
we train the algorithm on all the remaining folds. We repeat the procedure k times so that
each fold is used once for testing. In particular, we use stratified k-fold cross-validation, in
which the folds preserve the proportion of classes.

Furthermore, we deal with an imbalanced classification problem: our dataset contains
many more non-honeypot contracts than honeypot contracts. This issue harms the classi-
fication capabilities of machine learning algorithms. To address this issue, we configure
XGBoost to train with a scaling weight for the positive class4.

4https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.html#handleimbalanceddataset
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Table 4.4 Honeypot classification experiments for different categories of features.

Features Train Test
All 0.985±0.002 0.968±0.015
Only Transactions 0.966±0.004 0.954±0.030
Only Source Code 0.953±0.002 0.942±0.025
Only Fund Flow 0.952±0.002 0.938±0.023

We use the AUROC (Area Under the Receiver Operating Characteristics) to quantify our
model’s power on each fold. The ROC curve describes the TPR (True Positive Rate) against
the FPR (False Positive Rate) for different thresholds over the classification probability.
The area under that curve summarizes how well the model can distinguish between the two
classes over different threshold configurations.

In Table 4.4 we compare train and test AUROC for four sets of features: the features based
only on source code information, based only on aggregated transaction data, based only on
fund flow case frequencies, or using all the features together. In general, for every experiment,
the difference between train and test is not large, indicating that all the models can generalize
well to unseen samples. In particular, each individual set of features presents promising
results, with a slight advantage when using all the feature sets together. To understand better
the difference between the four alternatives, we list the three most essential features per
feature set in Table 4.5. First, the source code group’s most important feature is the number
of source code lines, and the following most important is related to the compiler version.
The problem with relying on the compiler version is that even if some values correlate with
honeypots in the present dataset, those relations might become irrelevant for new compiler
versions. The compiler versions we cover in this study can still be used in the future but
might become less popular over time. Second, the frequency of deposits to a contract from
its creator (fundFlowCase83) is a very distinctive fund flow feature, and the mean value of
external transactions is the most relevant of the transaction aggregated features. The problem
of both categories is that they rely only on transaction information. Hence, when a contract
did not execute any transactions, there is no information to make a classification. Lastly, the
advantage of using all the feature groups is that while the most critical features from each
group are at the top of the joint importance ranking, they also cover each set’s weaknesses.

Notice also that the metrics in Table 4.4 suggest that detection is possible using only
source code features. Hence, the transaction information might not be necessary to detect
honeypots. We test this assumption by experimenting with contracts that have no transactions
using only source code features. We obtain a train AUROC of 0.986±0.002 and test AUROC
of 0.885±0.201. The cross-validation shows a high difference between train and test metrics
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Table 4.5 The three most important features per feature category.

Category Feature Importance
All fundFlowCase83 0.657
All normalTransactionValueMean 0.107
All numSourceCodeLines 0.071
Only Transactions normalTransactionValueMean 0.576
Only Transactions normalTransactionValueStd 0.117
Only Transactions normalTransactionGasUsedStd 0.077
Only Source Code numSourceCodeLines 0.424
Only Source Code compilerPatchVersion136 0.129
Only Source Code compilerPatchVersion125 0.070
Only Fund Flow fundFlowCase83 0.799
Only Fund Flow fundFlowCase201 0.036
Only Fund Flow fundFlowCase79 0.032

(a case of overfitting). The source of this problem could be the low number of positive
instances on this experiment (only ten honeypots versus 64,333 non-honeypots), but this
result could also point out that the transaction information is necessary.

4.4.3 Simulated Detection of Unknown Honeypot Techniques

The previous experiment measures how well the machine learning model generalizes the
classification to contracts unseen during training, but those contracts share honeypot tech-
niques with other contracts present in the training set. In the following experiment, we intend
to simulate what would happen if we need to classify a contract that belongs to a honeypot
technique that we never encountered before. We change the cross-validation strategy by
picking one honeypot technique at a time: we build the testing set only with the samples
belonging to it and the training set with the remaining samples. This results in the eight
different experiments that are shown in Table 4.6. Because the test set comprises positive
cases, we measure the test Recall = T P/(T P+FN).

The high recall for all cases implies that the machine learning approach can detect
honeypots excluded during training. This property is a clear advantage over HONEYBADGER.
Because it relies on expert knowledge of the different honeypot techniques to craft detection
rules, it cannot detect new yet unknown techniques.
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Table 4.6 Simulating the detection of unknown honeypot techniques.

Removed Honeypot Technique FN TP Recall
Type Deduction Overflow 0 4 1.000
Uninitialised Struct 2 37 0.949
Hidden Transfer 1 12 0.923
Hidden State Update 12 123 0.911
Inheritance Disorder 4 39 0.907
Straw Man Contract 3 28 0.903
Skip Empty String Literal 1 9 0.900
Balance Disorder 3 17 0.850

Table 4.7 Number of new honeypots discovered by technique.

BD ID TDO US HSU HT SMC UC MKET
1 13 1 6 16 8 5 6 1

4.4.4 Detection of New Honeypots and Honeypot Techniques

The labels we employ correspond to contracts marked as honeypots by HONEYBADGER and
manually validated by its authors. Nevertheless, it does not mean that the rest of the contracts
are necessarily non-honeypots. A considerable amount of human work is required to inspect
millions of instances of Solidity source code. In this section, we describe a mechanism
to review the unlabeled contracts in a time-efficient manner. Firstly we train ten different
XGBoost models using ten stratified folds, and for each contract, we calculate the probability
of being a honeypot with each model. Secondly, we compute the mean and standard deviation
of the ten values for each contract. Lastly, we rank the contracts in descending order using the
mean probability of being a honeypot. We can filter out the contracts for which the models did
not agree on the prediction based on the standard deviation. The resulting ranking serves as
an order for the experts to inspect the contracts. We decided to validate the first 100 samples
of the list manually and discovered 57 new instances of honeypots5. From those instances,
we found three extra copies by matching hashes of contract byte code. Table 4.7 describes
the number of honeypot instances by technique. The table introduces two techniques that
were not defined and were not detected by HONEYBADGER: UC and MKET.

The first of the newly found honeypots uses a call to transfer funds to a potential attacker,
provided they sent funds first. However, the call is not complete: it is prepared but never
executed, as the parenthesis required for the execution are missing. HONEYBADGER cannot
detect this honeypot, as most compiler versions remove the unnecessary bytecode that sets up
the call. Furthermore, since the system never executes the call, there is also no CALL opcode

5New honeypots: https://github.com/rcamino/honeypot-detection/blob/master/paper_new_honeypots.csv



60 Honeypot Detection in Ethereum

within the bytecode. With the approach proposed in this chapter, we can detect this honeypot
technique as more information is analyzed (e.g., funds sent to non-creator accounts). We
propose to name this honeypot technique Unexecuted Call (UC).

The second honeypot6 that has been found with our approach is detailed in the following.
It implements an intricate mechanism to define an owner of the contract’s funds and can
transfer them only to that account. Additionally, anyone can pay a fee and call a function that
could seemingly overwrite the owner. Hence, the honeypot suggests that anyone can transfer
all contained funds to themselves. The contract appears to offer a game of speed where users
compete to call the function to become the owner, followed by another call to withdraw the
funds before anybody else does the same. However, the strange mechanism contains a trap
that does not allow changing the owner of the funds. The contract makes use of a hashmap
to store the owner variable. This mapping uses a string, "Stephen," as the key to access the
owner. The contract employs the correct key when writing the owner during deployment
and whenever reading the owner variable. However, to overwrite the owner, a slightly but
not noticeably different key is employed. A Cyrillic letter "e"7 is introduced as the second
"e" in "Stephen". It is so similar to the standard "e"8 that a user cannot easily recognize it.
Nevertheless, the code makes a distinction. Therefore, the misleading function cannot update
the owner. Instead, it stores the new value under an altogether different key. Moreover, only
the real owner can retrieve the funds. We propose to name this honeypot technique Map Key
Encoding Trick (MKET).

4.5 Future Work

There are several ways in which we could extend this chapter. We could explore the possibility
of extracting features from the contract names based on the work presented in [111], by
crossing the occurrence of words in the contract names with a relevant term list for Ethereum.
Another alternative could be to calculate a global state of account balances after executing all
the transactions of a contract instead of computing them per transaction.

We conceived the fund flow cases with the initial goal of analyzing the temporal depen-
dencies between each other. In other words, we wanted to study the behavior of contracts
using sequences of discrete symbols, which is equivalent to work with character strings or
lists of words. However, as we found that most of the honeypots present very short sequences,
the approach was not successful in finding useful patterns. In the end, we only used in this

6For example: 0xf5615138a7f2605e382375fa33ab368661e017ff.
7Unicode code 1077: https://www.codetable.net/decimal/1077
8Unicode code 101: https://www.codetable.net/decimal/101
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chapter uni-gram frequencies and discarded other alternatives like Markov Chains, n-gram
frequencies, or Recurrent Neural Networks. Nevertheless, we plan to employ fund flow
case sequences in future studies to classify contracts (or even accounts) with more extensive
transaction history into categories that do not involve honeypots.

We mentioned in Section4.4.2 that this study’s method is weaker when a contract did not
execute any transaction. HONEYBADGER does not have this problem, given that it works
only with the contract byte code. One solution we consider for the future is adding more
features that do not require any transactions, for example, extracting information by parsing
the source code. Nevertheless, most importantly, we think that the symbolic analysis and
machine learning approaches could complement each other. We should implement them
simultaneously to cover mutual weaknesses.

4.6 Conclusion

In this chapter, we presented a step-by-step methodology to obtain, process, and analyze
Ethereum contracts for the task of honeypot detection. We showed how we could contrast
assumptions and hypotheses about honeypot behavior with real data and derived features
for classification models9. The machine learning models proved to generalize well, even
when we removed all the contracts belonging to one honeypot technique from training. Most
importantly, we showed that our technique detected honeypots from two new techniques,
which would be impossible to achieve using byte code analysis without manually crafting
new detection rules. Furthermore, we proved that HONEYBADGER’s rules covering known
techniques were not capturing all the existing honeypot instances.

9Source code available at https://github.com/rcamino/honeypot-detection





Chapter 5

Multi-Output DGM

5.1 Motivation

In contrast to the continuous domain, where deep generative methods have delivered many
results, they struggle to perform equally on tabular data. We propose several architecture
extensions to train deep generative models on multivariate feature vectors representing
multiple variables of different types. We evaluate our architectures’ performance on datasets
with different sparsity, number of features, ranges of categorical values, and dependencies
among the features. We compute existing metrics, suggest alternative metrics, and show that
our proposed architecture outperforms existing models.

5.2 Definitions

In this section, we provide a summary of concepts relevant to the topic of tabular data
generation using deep learning models. We describe several architectures built progressively
on top of each other until we reach the issue of generating discrete distributions, followed by
existing proposals to solve the problem.

5.2.1 Tabular Data

From a statistical point of view, we can represent the outcome of a random phenomenon
with a random variable. The literature defines a random variable with finite or countably
infinite possible values as discrete. Note that this kind of variable may contain values that
are not numerical, e.g., the nationality of a person participating in a poll could be French,
German, or Spanish. On the other side, a random variable of the continuous type can take
infinite real values. A probability distribution describes how likely a random variable or set
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of random variables takes each possible value. The variable type determines how to describe
probability distributions. For example, the Bernoulli distribution describes the probabilities of
a random binary variable, a discrete variable with only two possible values. The Multinoulli
or categorical distribution covers a more general case, where discrete variables have a finite
number of possible values greater than two. A sample is said to be univariate when it is
composed of only one variable, and multivariate when it is composed of more than one
variable. For this work, we are interested in tabular data, the general case when multivariate
samples contain variables of heterogeneous types. This kind of data offers the possibility to
represent and study complex variable interactions. Please refer to [49, Chapter 3 - Probability
and Information Theory] for more information.

5.2.2 Encoding Variables as Numerical Features

In machine learning, computers improve from experience in some tasks without being
explicitly programmed. In many cases (e.g., most of the supervised and unsupervised
learning tasks), a dataset describes the experience, which is a collection of samples, which
are in turn a collection of measurable properties called features. In practice, a dataset
is usually represented with a matrix X ∈ Rn×m, where each row vector xi corresponds to
the sample number 1 ≤ i ≤ n, and each column x:, j corresponds to the feature number
1≤ j ≤ m. A numerical representation is needed because many machine learning algorithms
(in particular deep learning models) can only work with this kind of data [49, Chapter 5 -
Machine Learning Basics].

Tabular data, on the other hand, is usually represented with a structure X containing
n rows and m columns. Note that we use a bold font to distinguish the tabular notation
from the feature matrix notation, and we will describe variable indexing with superscripts
between square brackets. We then define the rows of X as x[i] for 1≤ i≤ n that correspond
to multivariate samples, and the columns as x[:,k] for 1≤ k ≤m that correspond to variables.
Additionally, each variable k has a related variable type type(k) ∈ {num,bin,cat} corre-
sponding to numerical, binary, and categorical respectively. To work with tabular data in
deep learning, we need to numerically encode all the variables, defining a mapping between
each variable value and the feature space. Given that the number of rows does not change
after the mapping, we define n = n. For the same reason, we use i to refer to row numbers in
both cases. However, the number of variables m and the number of features m might differ.
We define m[k] ≥ 1 as the number of features the variable k is mapped into. Thus, the total
amount of features of X is restricted to m = ∑

m
k=1 m[k]. For each sample i and variable k, the

definition of m[k] and the mapping map(x[i,k]) depends on type(k).
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The simplest case is when type(k) = num: we represent the value of the numerical
variable with one feature with the same value, meaning that m[k] = 1 and map(x[i,k]) = x[i,k].

If type(k) = cat then the variable k has a set of possible values values(k). The
set needs to be finite to define its size as size(k). Otherwise, we cannot apply any of
the following methods. Given that the set is countable, elements from values(k) can be
arbitrarily enumerated, by assigning to each one a different integer 1≤ q≤ size(k). We then
define value(k,q) as the value of variable k that has the integer q assigned to it. One possible
mapping is the label encoding, which uses the arbitrary enumeration to represent the variable
value, hence m[k] = 1 and map(x[i,k]) = q when x[i,k] = value(k,q). The problem with this
technique is that there is no distance between the categorical values, but a distance emerges
as a side effect of the representation choice, which could encourage machine learning models
to find artificial patterns. This is not an issue when using one-hot-encoding, which maps
the variable value into a binary vector with one position per possible value, where only the
position related to the selected value is one, thus m[k] = size(k) and:

map(x[i,k]) =
[
x[i,k,1], . . . ,x[i,k,size(k)]

]
(5.1)

x[i,k,q] =

{
1 if x[i,k] = value(k,q)
0 otherwise

(5.2)

Finally, we define the mapping of an entire tabular row xi into the feature vector row xi

as the vector concatenation over the mappings of each variable k (that we define as x[k]i ):

xi =
[
map(x[i,1]); . . . ;map(x[i,m])

]
=
[
x[1]i ; . . . ;x[m]

i

]
(5.3)

In Figure 5.1 we show an encoding example with m = 2 variables: nationality and
profession. Both are categorical (type(1) = type(2) = cat). The values of the nation-
ality are values(1) = [French,German,Spanish], and the values of the profession are
values(2) = [Student,Security,HR, IT]. The variables’ order in the list defines the number
assignation for both variables. We present the tabular data with n = 5 rows, mapped into
a matrix of n = 5 rows and m = m[1]+m[2] = 1+1 = 2 features with label encoding, and
m = m[1]+m[2] = 3+4 = 7 features with one-hot-encoding.

5.2.3 The Problem of Backpropagation with Sampling

In deep learning, the task a model trains to solve is tightly related to the loss function, the
output layer’s activation, and the output representation. On one side, when the target variable
is continuous, the related task is known as a regression. The mean squared error is usually
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Categorical Values
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Fig. 5.1 Encoding Example.

the loss, which in this case, minimizing it is equivalent to maximizing the log-likelihood.
The output layer does not need any non-linearity, which means the activation is linear. On the
other side, for classification tasks, the target variable can be binary on two-class classification
problems or categorical on multi-class classification problems. For binary classifications, the
target variable belongs to a Bernoulli distribution conditioned on the features to compute the
maximum-likelihood. The model then only needs to output a single number but must lie on
the interval [0,1] to be a valid probability. For this purpose the sigmoid activation is used:
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σ(h) =
1

1+ exp(−h)
(5.4)

This function provides the desired output range and, at the same time, is differentiable and
continuous. This property facilitates the backpropagation of the errors, which we compute
with the binary cross-entropy loss. The multi-class classification case is a generalization of
the binary case. The softmax activation defines a Multinoulli distribution, by normalizing the
input vector so each position falls in the range [0,1] and they all add up to one:

so f tmax([h1, . . . ,hm]) =

[
exp(h1)

∑
m
j=1 exp(h j)

, . . . ,
exp(hm)

∑
m
j=1 exp(h j)

]
(5.5)

This activation function also is continuous and differentiable, and the exponential component
makes the cross-entropy loss computation easier because it gets canceled with the logarithms.

However, both the sigmoid and the softmax activation functions do not return an actual
sample from the target variable. They return the parameters for the Bernoulli and Multinoulli
distributions, respectively. These outputs are enough for the corresponding loss calculations
during training, but they need an extra step in evaluation mode. One alternative consists of
using the parameters to sample from the distributions (implementing popular libraries like
PyTorch [114]). The most practical alternative is taking each distribution mode: rounding
the sigmoid outputs, or taking the position with the maximum value of the softmax output
vector (known as the argmax). The issue with all these operations (sampling, round, and
argmax) is that they are not differentiable, which means that the backpropagation algorithm
cannot transfer gradient information correctly, and the learning procedure is affected. The
problem is that while generating samples, these troublesome operations may be needed not
only in the output layers, meaning that we need to address the backpropagation blocking in
some way. For more information on output activation functions and deep learning losses,
please refer to [49, Chapter 6 - Deep Feedforward Networks].

5.2.4 The Reparametrization Trick

Neural networks typically perform deterministic operations, but we need stochastic transfor-
mations to implement generative models. A simple solution involves considering the sources
of randomness as additional inputs to the network and letting the model continue behaving in
a deterministic way. The function implemented by the network now appears to be stochastic
for an observer that has no access to the random inputs. Additionally, while this function is
continuous and differentiable, the gradients can be computed as usual using backpropagation.



68 Multi-Output DGM

layer layer

sample

layer layer
sample

Sampling as part of the Network Reparametrization Trick

backpropagation
stops

backpropagation
can continue

backpropagation
can continue

no backpropagation
needed here because
it is just an extra input

Fig. 5.2 Reparametrization Trick.

However, it is also necessary that the random inputs do not depend on the rest of the inputs,
so the gradients do not need to travel through the sampling operation.

Consider the example in Figure 5.2 when the random value y is drawn from a Gaussian
distribution N (µ,σ2), where the parameters µ and σ need to be part of the learning process.
We cannot obtain the derivatives of y with respect to µ and σ because the sampling operation
is not differentiable. However, given the known properties of the Gaussian distribution, the
sampling operation can be replaced by the transformation y = µ +σz while we draw z from
N (0,1), which is, in this case, a random input that does not depend on any other input. This
transformation is known as the reparametrization trick. For more information on this topic,
please refer to [49, Chapter 20 - Deep Generative Models].

5.2.5 Autoencoders

An autoencoder is composed of two networks: an encoder Enc with parameters θEnc and a
decoder Dec with parameters θDec. The encoder receives as input a sample x and outputs a
latent code z, and the decoder takes z to return x̃ which is considered a reconstruction of x:

zi = Enc(xi) (5.6)

x̃i = Dec(zi) (5.7)

The model’s goal is to push x̃ as close as possible to x. We can achieve this by measuring
the reconstruction loss, the difference between x and x̃, and back-propagating the gradients
of that loss through the decoder and then to the encoder to adjust both θDec and θEnc. How to
measure the loss depends on the nature of the data. For example, in Equation 5.8 we present
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Fig. 5.3 Autoencoder Architecture.

the reconstruction loss for binary features using binary cross-entropy, and for numerical
features using mean squared error in Equation 5.9:

Lbinrec(x, x̃) =
n

∑
i=1

xi log(x̃i)+(1− xi) log(1− x̃i) (5.8)

Lnumrec(x, x̃) =
n

∑
i=1

(xi− x̃i)
2 (5.9)

Feature scaling, standardization, or normalization is usually applied to numerical features
for faster convergence during training. In the case of some losses like the mean squared error,
we also need these techniques to avoid assigning more weight to features with a broader
range of values. In particular, if numerical features are scaled to the range [0,1], both binary
and numerical features would share the same range, allowing the mean squared error to serve
as reconstruction loss for both variable types at the same time.

The fact that autoencoders can learn to copy their inputs is not particularly useful. One
possible application for them is to assign useful properties from x to z. We can achieve this
with undercomplete autoencoders by restricting z to a latent space with fewer dimensions
than the input space. Undercomplete autoencoders must extract salient properties from x to
reconstruct the inputs losing the least possible amount of information. If the decoder employs
a linear activation and the selected loss is a mean squared error, an undercomplete autoencoder
can learn a PCA transformation. For more applications and variants of autoencoders, please
refer to [49, Chapter 14 - Autoencoders].

5.2.6 Variational Autoencoders

The autoencoder’s goal is to encode and decode with the smallest possible reconstruction
error, without enforcing any structure or restriction over the latent space. Hence, sending any
arbitrary data point from the latent space into the decoder might not result in a meaningful or
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valid sample from the original feature space. In other words, an autoencoder is not well suited
for data generation without additional treatment. A Variational Autoencoder (VAE) [66] can
be defined as an autoencoder that is regularised during training to ensure that the latent space
has properties that make sampling possible. Instead of encoding inputs as single points, VAE
encodes inputs as distributions over the latent space. In practice, this means that the encoder
returns two outputs representing the parameters µ and σ of a Gaussian distribution. The
loss function minimized when training a VAE is composed of a reconstruction term and a
regularisation term that affects the latent space’s organization by making the distributions
returned by the encoder close to a standard normal distribution. Note that during training, the
latent codes need to be drawn from the distributions returned by the encoder, then passed
to the decoder to obtain the outputs, and finally used to compute the reconstruction loss.
To back-propagate to the encoder through the sampling operation, VAE implements the
reparametrization trick mentioned in Section 5.2.4. The regularisation term is expressed as
the Kulback-Leibler divergence between the returned distribution and a standard Gaussian:

µi,σi = Enc(xi) (5.10)

zi = µi +ζiσi for ζi ∼N (0,1) (5.11)

x̃i = Dec(zi) (5.12)

L(x, x̃) = Lrec(xi, x̃i)+KL(N (µi,σ
2
i )||N (0, I)) (5.13)
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For more information about the theory behind the VAE, and concepts like Variational
Inference or the Evidence Lower BOund (ELBO), please refer to [49] or [66].

5.2.7 Generative Adversarial Network

The architecture of a Generative Adversarial Network (GAN) [50] is composed of two
networks: the generator and the discriminator. On one side, the generator G with parameters
θG takes as input a random vector z drawn from a prior Pz and outputs a sample x̂. By doing
so, G can be considered as a deterministic mapping from the distribution Pz into a distribution
defined as PG. Thus, a sample drawn from Pz determines a latent representation of a sample
from PG. On the other side, the discriminator D with parameters θD takes either real samples
x from a distribution Pdata or fake samples x̂ from the distribution PG and tries to classify the
inputs into real or fake. The goal is to approximate the distribution Pdata with the distribution
PG by back-propagating the classification loss of D into G. This adversarial setting can be
thought of as a two-player minimax game with the following value function:

min
θG

max
θD

Ex∼Pdata [D(x)]+Ez∼Pz [1−D(G(z))] (5.14)

If the discriminator trains until convergence, then minimizing the value function is
equivalent to minimizing the Jensen-Shannon divergence between Pdata and Pg, but that lead
to vanishing gradients. In practice, the model is trained by alternating learning steps between
the discriminator and the generator optimizing a separate loss for each case:

LD(x,z) =
1
n

n

∑
i=1

log(D(xi))+ log(1−D(G(zi))) (5.15)

LG(z) =
1
n

n

∑
i=1

log(D(G(zi))) (5.16)
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where LD is the discriminator loss and LG is the generator loss.

5.2.8 Wasserstein GAN

In the article introducing Wasserstein GAN (WGAN) [6], the authors claim that the diver-
gences minimized in GANs are potentially not continuous, leading to training difficulties.
They propose to use the Wasserstein-1 distance (also known as Earth-Mover) because it is
continuous everywhere and differentiable almost everywhere. Also, they show that the loss
they propose is more correlated with sample quality. In practice, the difference is that a
critic replaces the discriminator, which returns real values instead of binary outputs. Most
importantly, the network parameters are limited or clipped to the range [−c;c] for a small
constant c. The losses from Equations 5.15 and 5.16 are respectively modified:

LD(x,z) =
1
n

n

∑
i=1
−D(xi)+D(G(zi)) (5.17)

LG(z) =
1
n

n

∑
i=1
−D(G(zi)) (5.18)

The WGAN with Gradient Penalty (WGAN-GP) [51] is an extension of the previous
model where the clipping is discarded a new term is added to Equation 5.17:

λGPEx̂∼Px̂

[
(||∇x̂D(x̂)||2−1)2] (5.19)

where λGP is a new hyperparameter called penalty coefficient, and Px̂ is a distribution defined
by sampling uniformly along straight lines between pairs of samples from Pdata and PG.

5.2.9 Adversarially Regularized Autoencoders

The Adversarially Regularized Autoencoders (ARAE) [159] alternate training steps between
an autoencoder, a generator that samples continuous latent codes, and a critic that distin-
guishes between real and fake codes. The generator loss is the same as in WGAN (Equation
5.18), and for the critic, the loss is similar to Equation 5.17 but includes the encoder:

LD(x,z) =
1
n

n

∑
i=1
−D(Enc(xi))+D(G(zi)) (5.20)
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5.2.10 MedGAN

MedGAN [29] also implements an autoencoder between the generator and the discriminator,
but in this case, the discriminator receives real data or fake data obtained from decoding
fake codes. The autoencoder is first pre-trained separately using binary cross-entropy as
reconstruction for datasets with binary features. During the main training phase, the gradients
flow from the discriminator to the decoder and afterward to the generator. The losses from
Equations 5.15 and 5.16 are respectively modified in the following way:

LD(x,z) =
1
n

n

∑
i=1

log(D(xi))+ log(1−D(Dec(G(zi)))) (5.21)

LG(z) =
1
n

n

∑
i=1

log(D(Dec(G(zi)))) (5.22)

Note that the model was conceived only for binary variables. The study [29] mentions an
alternative for continuous variables, but it is not clear how to adapt it for tabular data.
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5.2.11 Gumbel-Softmax

The Gumbel-Softmax is an activation function that can generate vectors x = [x1, . . . ,xd] ∈Rd

from inputs h = [h1, . . . ,hd] ∈ Rd , a temperature hyperparameter τ ∈ (0,∞) and d samples
g = [g1, . . . ,gd] drawn from Gumbel(0,1) =− log(− log(u)) with u∼U(0,1) given by:

gs(h,g,τ) = [So f tmax((log(h1)+g1)/τ) , . . . ,So f tmax(log(hd)+gd)/τ)] (5.23)

=

[
exp((log(h1)+g1)/τ)

∑
d
j=1 exp((log(h j)+g j)/τ)

, . . . ,
exp((log(hd)+gd)/τ)

∑
d
j=1 exp((log(h j)+g j)/τ)

]
(5.24)

As τ tends to zero, the Softmax smoothly approaches the argmax, and the resulting
samples approach one-hot. As τ tends to infinity, the samples become uniform. The usual
technique involves using continuous vectors during training and discretizing the sample
vectors to one-hot vectors during evaluation. However, these two different dynamics lead
to poor evaluation performance. The Straight Through Gumbel-Softmax technique ensures
the training and the evaluation dynamics are the same using the discrete form in the forward
pass and the continuous one during backpropagation. Nevertheless, note that this technique
applies to one categorical variable at a time and not directly to tabular data. Please refer to
[94, 57] for more information about the theory behind the Gumbel-Softmax activation.

5.2.12 Evaluating the Sample Quality

Evaluating the quality of GANs has proved to be complicated. In [15], the authors provide
a discussion of commonly used metrics. Furthermore, not all measures provide a fair
assessment of the sample quality, as noted in [136]. This section defines two metrics
proposed in [29] that perform a quantitative evaluation of binary datasets.

During experiments, each dataset X is usually partitioned into Xtrain and Xtest , where train
and test indicate row indices following train∩ test = /0 and train∪ test = {1, . . . ,n}. The
models are trained with Xtrain to generate another dataset called Xsynth, while the remaining
Xtest is used in different ways to evaluate the sampling quality.

We start with the most straightforward metric, which only checks if the model has learned
the independent distribution of ones per dimension correctly. For each of the m feature
columns from the datasets Xsynth and Xtest , we count the number of ones, and we divide that
by the number of samples n, obtaining two vectors of size m. The authors compare both
vectors visually using scatter plots. We describe the procedure in Algorithm 5.1 extending it
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Algorithm 5.1: Probabilities by feature
1 Function probByFeat(X):

Data: X ∈ Rn×m binary feature matrix
Result: v ∈ Rmbin+mcat vector with probabilities by feature

2 j← 1 // output vector position
3 l← 1 // feature column position
4 forall variable k do
5 for s← 1 to size(k) do
6 if type(k) ∈ {bin,cat} then
7 v j← 1

n ∑
n
i=1 Xi,l

8 j← j+1
9 end

10 l← l +1
11 end
12 end

for datasets of mixed variable types by counting the number of ones only for feature columns
corresponding to binary and categorical variables (it makes no sense for numerical variables).

The last metric problem is that it only captures how well the model can reproduce the
independent feature distributions, but it does not consider the dependencies between them.
The second method creates one logistic regression model per feature to tackle this, trained
with Xtrain, to predict the selected feature using the rest of the features. Then, calculating
the f1-score of each feature using the trained model and the corresponding predictions over
Xtest , we obtain a vector with m prediction scores. Repeating the same procedure but training
with Xsynth and evaluating with Xtest we obtain another vector of the same size. Both vectors
are also compared visually by the authors using scatter plots. Algorithm 5.2 summarizes the
procedure extending it for datasets of mixed variable types by training logistic regression
models only for feature columns corresponding to binary and categorical variables (a binary
classification does not work with a numerical target variable).

5.3 Contributions

5.3.1 Multi-Categorical Output Architecture

We propose to adapt the outputs of several architectures presented in the previous section
to generate multi-categorical samples. In Figure 5.8 we depict the general idea of the
modifications. Which model is affected depends on the architecture and will be explained
in the following sections. Regardless of the case, when we need to generate a sample x̂, we
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Algorithm 5.2: Predictions by feature
1 Function predByFeat(X train,X test):

Data: X train ∈ Rntrain×m train feature matrix
Data: X test ∈ Rntest×m test feature matrix
Result: v ∈ Rmbin+mcat vector with classification f1-scores by feature

2 j← 1 // output vector position
3 l← 1 // feature column position
4 forall variable k do
5 for s← 1 to size(k) do
6 if type(k) ∈ {bin,cat} then
7 ytrain← X train

:,l // separate feature column l from train
8 ytest ← X test

:,l // separate feature column l from test
9 X train

:,∼l ← X train without feature column l
10 X test

:,∼l ← X test without feature column l
11 M j← train a binary classification model with X train

:,∼l as features and
the separated feature column ytrain as labels

12 ŷtest ← classify features X test
:,∼l with model M j

13 v j← compute f1-score between predictions ŷtest and labels ytest

14 j← j+1
15 end
16 l← l +1
17 end
18 end

connect the model output h to m different dense layers working in parallel. Each dense layer
k takes h, which could have any arbitrary size, and returns a vector h[k] of size m[k]. We then
apply an activation function that depends on type(k) over each h[k] to compute x̂[k]. When
type(k) = num, a ReLU activation can be used, or no activation at all (a linear activation).
If type(k) = bin, then we simply use a sigmoid activation. Finally for type(k) = cat we can
select a softmax or Gumbel-softmax as a categorical activation. Following all the activation
functions, we concatenate every x̂[k] in the right order to obtain the output sample x̂.

5.3.2 Generators with Multi-Categorical Outputs

We adapt the GAN and WGAN-GP architectures by changing the generator’s outputs de-
scribed in the previous section. For the first model, we select the Gumbel-softmax activation
function, and for the second, a simple softmax (following the text generation use case on
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[51]). For the rest of this chapter, we refer to these models as Multi-Output Gumbel-GAN
(MO-Gumbel-GAN) and Multi-Output WGAN-GP (MO-WGAN-GP), respectively.

5.3.3 Autoencoders with Multi-Categorical Outputs

The ARAE and MedGAN architectures involve an autoencoder mixed with a GAN. For both
models, the generator outputs latent codes, and the decoder is in charge of mapping those
outputs to real samples. Hence, for these architectures, we propose modifying the decoder
outputs, using in both cases a Gumbel-softmax activation. The output concatenation remains
as proposed at evaluation time, but during training, we leave each x̂[k] separated to calculate a
reconstruction loss that takes into account the multi-categorical structure:

Lrec =
1
n

n

∑
i=1

m

∑
k=1

size(k)

∑
q=1

−x[k,q]i log x̂[k,q]i (5.25)

which is the average over the n samples, of the summation of cross-entropy losses over the
features from m categorical variables, between every sample and its reconstruction.

5.3.4 Proposals for Evaluating the Sample Quality

In this section, we propose modifications and extensions to the evaluation metrics presented
in Section 5.2.12. Regarding the dimension-wise prediction metric, we noticed that as the
number of dimensions grows, the performance of the logistic regression models starts to
deteriorate. This phenomenon can be misleading because if the f1 score is low, it is not clear
if the cause is the dataset’s properties (either real or synthetic) or the model’s predictive
power. For that reason, we decided to replace logistic regression with random forests.

Furthermore, the purpose of this metric is to evaluate binary samples. In our multi-output
setting, when categorical variables are present, we represent them using one-hot-encoding.
Hence, only one dimension by categorical variable has a value of one. Consequently, for
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Algorithm 5.3: Predictions by categorical variable
1 Function predByCatVar(X train,X test):

Data: X train ∈ Rntrain×m train feature matrix
Data: X test ∈ Rntest×m test feature matrix
Result: v ∈ Rmcat vector with classification accuracy by categorical variable

2 j← 1 // output vector position
3 l← 1 // feature column position
4 forall variable k do
5 if type(k) = cat then
6 cols← feature column indices in range [l, . . . , l +size(k)]
7 ytrain← label encoding of X train

:,cols
8 ytest ← label encoding of X test

:,cols
9 X train

:,∼cols← X train without feature columns in range cols
10 X test

:,∼cols← X test without feature columns in range cols
11 M j← train a multi-class classification model with X train

:,∼cols as features and
ytrain as categorical labels

12 ŷtest ← classify features X test
:,∼cols with model M j

13 v j← compute accuracy between predictions ŷtest and labels ytest

14 j← j+1
15 end
16 l← l +size(k)
17 end

features corresponding to categorical variables, the task of predicting one dimension based
on the remaining ones is almost trivial. The prediction can only take two forms: if there
is a one in the remaining features, the selected feature should be a zero; otherwise, it must
be a one. Therefore, we propose a third evaluation metric based on the dimension-wise
prediction, but predicting one categorical variable at a time. Each predictive model now
handles a multi-class classification problem. Thus, we replace the f1-score with the accuracy
score. We collect two vectors that we can visually analyze in the same way we mentioned
for the previous metrics. In Algorithm 5.3 we describe the proposed third metric.

Following the third metric’s logic, we propose to separate one by one each numerical
variable as a target for a linear regression model trained with the rest of the variables. We
calculate the mean squared error of the regression tasks for both Xtrain and Xsynth, obtaining
the respective regression score vectors. The fourth metric is described in Algorithm 5.4.

In addition to the visual inspection, we introduce a numerical analysis by measuring the
mean squared error between real and synthetic vectors for each of the four metrics:
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Algorithm 5.4: Regressions by feature
1 Function predByNumVar(X train,X test):

Data: X train ∈ Rntrain×m train feature matrix
Data: X test ∈ Rntest×m test feature matrix
Result: v ∈ Rmnum vector with regression MSE by feature

2 j← 1 // output vector position
3 l← 1 // feature column position
4 forall variable k do
5 if type(k) = num then
6 ytrain← X train

:,l // separate feature column l from train
7 ytest ← X test

:,l // separate feature column l from test
8 X train

:,∼l ← X train without feature column l
9 X test

:,∼l ← X test without feature column l
10 M j← train a regression model with X train

:,∼l as features and ytrain as
numerical labels

11 ŷtest ← make a regression from features X test
:,∼l with model M j

12 v j← compute MSE between predictions ŷtest and labels ytest

13 j← j+1
14 end
15 l← l +size(k)
16 end

MSEp =
1

mbin +mcat

∥∥∥probByFeat(X test)− probByFeat(X synth)
∥∥∥2

(5.26)

MSE f =
1

mbin +mcat

∥∥∥predByFeat(X train,X test)− predByFeat(X synth,X test)
∥∥∥2

(5.27)

MSEa =
1

mcat

∥∥∥predByCatVar(X train,X test)− predByCatVar(X synth,X test)
∥∥∥2

(5.28)

MSEr =
1

mnum

∥∥∥predByNumVar(X train,X test)− predByNumVar(X synth,X test)
∥∥∥2

(5.29)
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Table 5.1 Dataset statistics.

Name n m mcat mnum m mmin mmax
Fixed 2 10K 10 10 0 20 2 2
Fixed 10 10K 10 10 0 100 10 10
Mix Small 10K 10 10 0 68 2 10
Mix Big 10K 100 100 0 635 2 10
Census 2.5M 68 68 0 396 2 18
Forest 39K 12 2 10 54 1 40

5.4 Experiments

To assess our proposal’s quality, we conduct experiments with varying data properties:
sparsity, dimensionality, number of categories, and sample size. We first experiment with
datasets involving only categorical variables, and the second set adds numerical variables.

5.4.1 Datasets

To have better control of our experiments, we synthesize several datasets of one-hot encoded
categorical variables. While we select a uniform distribution for the first categorical variable,
we randomly distribute each remaining variable based on the previous one’s value. With
this procedure, we present four datasets of 10K samples: two with ten variables of fixed
size 2 and 10 respectively, one with ten variables with random size between 2 and 10, and a
bigger dataset of 100 variables with random size between 2 and 10. This setting allows us to
evaluate the models with different configurations of sparsity and dimensionality.

Additionally, we selected from the UCI Machine Learning Repository [37] two datasets
to get more real use cases of tabular data. The US Census Data 1990 Data Set (Census)1

contains almost 2.5M samples with 68 variables, each of them with a size in the range from
2 to 18, transformed into 396 features. The Forest Cover Type Data Set (Forest) 2 contains
around 39K samples with 10 numerical variables, plus 1 categorical variable of size 40 and
another of size 4, transformed altogether into 54 features. This last dataset is used only for
the experiments with mixed variable types. A summary is presented in Table 5.1.

1https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
2https://archive.ics.uci.edu/ml/datasets/Covertype

https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/Covertype
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5.4.2 Implementation details

We developed all our experiments using PyTorch 0.4.03. Based on [49, Chapter 11 - Practical
Methodology], we chose hyperparameters with random search followed by manual tuning.
We trained using Adam [65] with a minibatch size of 100 for 2000 epochs with a learning
rate of 10−3. Compared to the other models, we had to experiment more to find the right
setting for ARAE. We obtained better results by removing the original code normalization
and noise annealing, training for more epochs with a lower learning rate of 10−5.

Autoencoders were implemented with MLPs using TanH hidden activations. Generators
and discriminators were implemented with MLPs with batch norm between layers (setting
the decay to 0.99), using ReLU activations for the generators and LeakyReLU for the
discriminators. For ARAE, we used the same amount of steps for the three training stages,
and for the rest, we used two steps for the discriminator for every step of the other components.

In particular, we defined for ARAE the critic weights range to [−0.1;0.1]. We used three
hidden layers of size 100 for the generator and one for the discriminator, except for the
MedGAN models where we used two hidden layers in the discriminator of sizes 256 and 128
and two hidden layers in the generator with the same size as the latent code because of the
residual connections. For models with autoencoders, in the baseline cases, the decoder used
sigmoid outputs, and for the multi-categorical versions, we selected Gumbel-Softmax outputs
with temperature τ = 2/3. Finally, for the simpler GAN with Gumbel-Softmax outputs, the
temperature was set to a smaller value of τ = 1/3.

5.4.3 Results

In Table 5.2 we summarize the experiments we executed for every model on each dataset.
Because of the randomness during training, we need to ensure that we did not get satisfactory
results just by chance. Thus, we trained every model three times with different random seeds.
For each of the three proposed metrics, we present the mean and the standard deviation of
the runs’ values using different seeds. We make the following observations:

• The standard deviation for every case is usually smaller than 0.01, which indicates no
significant difference in the metrics between runs and that the results are not a product
of mere chance.

• For the FIXED 2 dataset, the multi-output models’ improvement is not evident. How-
ever, it is reasonable because samples with only two possible values per categorical

3Our open-source implementation is available at https://github.com/rcamino/multi-categorical-gans
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Table 5.2 The three proposed metrics for every dataset and every model.

Method Dataset MSEp MSE f MSEa
ARAE FIXED 2 0.00031 ± 0.00004 0.00001 ± 0.00001 0.00059 ± 0.00022
MedGAN FIXED 2 0.00036 ± 0.00031 0.00005 ± 0.00003 0.00056 ± 0.00033
MO-ARAE FIXED 2 0.00046 ± 0.00028 0.00001 ± 0.00000 0.00058 ± 0.00024
MO-MedGAN FIXED 2 0.00013 ± 0.00006 0.00000 ± 0.00000 0.00032 ± 0.00017
MO-Gumbel-GAN FIXED 2 0.00337 ± 0.00188 0.00014 ± 0.00012 0.00050 ± 0.00012
MO-WGAN-GP FIXED 2 0.00030 ± 0.00007 0.00001 ± 0.00000 0.00068 ± 0.00012
ARAE FIXED 10 0.00398 ± 0.00002 0.00274 ± 0.00021 0.02156 ± 0.00175
MedGAN FIXED 10 0.00720 ± 0.00825 0.00463 ± 0.00404 0.01961 ± 0.00214
MO-ARAE FIXED 10 0.00266 ± 0.00009 0.00036 ± 0.00018 0.01086 ± 0.00159
MO-MedGAN FIXED 10 0.00022 ± 0.00003 0.00167 ± 0.00010 0.00062 ± 0.00044
MO-Gumbel-GAN FIXED 10 0.00056 ± 0.00006 0.00110 ± 0.00013 0.00055 ± 0.00035
MO-WGAN-GP FIXED 10 0.00026 ± 0.00001 0.00123 ± 0.00005 0.00048 ± 0.00010
ARAE MIX SMALL 0.00261 ± 0.00020 0.01303 ± 0.00146 0.01560 ± 0.00039
MedGAN MIX SMALL 0.00083 ± 0.00039 0.01889 ± 0.00258 0.02070 ± 0.00170
MO-ARAE MIX SMALL 0.00195 ± 0.00040 0.00081 ± 0.00018 0.00759 ± 0.00100
MO-MedGAN MIX SMALL 0.00029 ± 0.00003 0.00133 ± 0.00012 0.00080 ± 0.00018
MO-Gumbel-GAN MIX SMALL 0.00078 ± 0.00027 0.00104 ± 0.00013 0.00047 ± 0.00008
MO-WGAN-GP MIX SMALL 0.00048 ± 0.00010 0.00140 ± 0.00014 0.00037 ± 0.00016
ARAE MIX BIG 0.04209 ± 0.00362 0.02075 ± 0.01144 0.00519 ± 0.00087
MedGAN MIX BIG 0.01023 ± 0.00263 0.00211 ± 0.00033 0.00708 ± 0.00162
MO-ARAE MIX BIG 0.00800 ± 0.00019 0.00249 ± 0.00035 0.00472 ± 0.00092
MO-MedGAN MIX BIG 0.00142 ± 0.00015 0.00491 ± 0.00055 0.01309 ± 0.00106
MO-Gumbel-GAN MIX BIG 0.00312 ± 0.00032 0.00194 ± 0.00017 0.00430 ± 0.00021
MO-WGAN-GP MIX BIG 0.00144 ± 0.00006 0.00536 ± 0.00030 0.01664 ± 0.00177
ARAE CENSUS 0.00165 ± 0.00082 0.00206 ± 0.00030 0.00668 ± 0.00175
MedGAN CENSUS 0.00871 ± 0.01078 0.00709 ± 0.00889 0.01723 ± 0.02177
MO-ARAE CENSUS 0.00333 ± 0.00020 0.00129 ± 0.00019 0.00360 ± 0.00095
MO-MedGAN CENSUS 0.00012 ± 0.00004 0.00024 ± 0.00003 0.00013 ± 0.00003
MO-Gumbel-GAN CENSUS 0.01866 ± 0.00040 0.00981 ± 0.00034 0.03930 ± 0.00469
MO-WGAN-GP CENSUS 0.00019 ± 0.00004 0.00017 ± 0.00002 0.00008 ± 0.00002

variable are equivalent to binary samples, and the baseline models are well suited to
that kind of data.

• Using variables with the same size or with different sizes does not affect the result.

• The size and sparsity of the samples seem to be the most critical factors. When the
datasets have more variables and contain more possible values, the dependencies
between dimensions become more complex, and also the independent proportion of
ones per dimension is harder to learn. The experiments show that no model outperforms
the rest for every case. It is reasonable to claim that a different model can be the best
for different settings, but in general, we can observe that the multi-output models
provide the best results.
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Table 5.3 The four proposed metrics for every model on the FOREST dataset.

Method Dataset MSEp MSE f MSEa MSEr
ARAE FOREST 0.00042 0.00158 0.03779 0.00647
MedGAN FOREST 0.00004 0.00010 0.02418 0.00272
MO-ARAE FOREST 0.00007 0.00043 0.03874 0.00007
MO-MedGAN FOREST 0.00002 0.00007 0.01143 0.00001
MO-Gumbel-GAN FOREST 0.00104 0.00015 0.00945 0.00011
MO-WGAN-GP FOREST 0.00002 0.00015 0.02651 0.00023

• We notice cases when, for example, Gumbel-GAN is the best method in the MIX

BIG experiments, but the worst in the CENSUS dataset. Given that we deal with a
considerable amount of hyperparameters, it might be valuable to do a more exhaustive
hyperparameter search to identify the reason for the variance in performance.

As an example, we show in Figure 5.9 the scatter plots for the MIX SMALL dataset, that
are associated with the values summarized in the third block of Table 5.2. Because we plot
ground-truth versus model output, perfect results should fall onto the diagonal line. We can
see how the first column is reasonably right for every model and how the second column is
almost perfect for our approach (as explained in 5.3.4). Finally, for the last column, the last
four rows corresponding to multi-output models present better performance than the rest.

5.4.4 Extension for Mixed Variable Types

In Table 5.3, we describe the four metric values using the Forest dataset for the two baselines
and the four proposed models. Note that since the table has an additional column, we
removed the standard deviation information for readability. The results are consistent with
the results from the multi-output setting presented in Table 5.2, showing that proposed models
outperform the baselines for most of the metrics.

5.5 Conclusion

We extended the autoencoder of MedGAN and ARAE and the generator of Gumbel-GAN
and WGAN-GP with dense layers feeding into (Gumbel) softmax layers, each separated into
the right dimensionality for their corresponding output variables. Additionally, we adapted a
metric to our categorical setting to contrast all approaches.

Compared to unmodified MedGAN and ARAE, all approaches improve the performance
across all datasets, even though we cannot identify the definite best model. The performance
improvement comes at the cost of adding extra information, namely the dimensionality of
the variables. In some cases, this information may not be available.
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Fig. 5.9 Example scatter plots for a particular run on the MIX SMALL dataset.

Note that other applications might require different evaluation methods to determine the
samples’ quality generated by each approach. This requirement might also guide the search
for the right hyperparameters and architecture options.



Chapter 6

Oversampling Tabular Data with DGM

6.1 Motivation

In practice, machine learning experts must often confront imbalanced data. Without account-
ing for the imbalance, common classifiers perform poorly, and standard evaluation metrics
mislead the practitioners on the model’s performance. A standard method to treat imbalanced
datasets is under- and oversampling. The undersampling process removes samples from the
majority class, while the oversampling process adds synthetic samples to the minority class.
In this chapter, we follow up on recent developments in deep learning. We take proposals of
deep generative models, including our own, and study the possibility of providing realistic
samples that improve performance on imbalanced classification tasks via oversampling.

Across 160K+ experiments, we show that all of the new methods tend to perform better
than simple baseline methods such as SMOTE but require different under- and oversampling
ratios to do so. Our experiments show that the sampling method does not affect quality,
but runtime varies widely. We also observe that the improvements in terms of performance
metric, while shown to be significant when ranking the methods, often are minor in absolute
terms, especially compared to the required effort. Furthermore, we notice that a large part of
the improvement is due to undersampling, not oversampling.
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6.2 Comparison

6.2.1 Datasets

Datasets like MNIST1, ImageNet2, and CIFAR3 are very well known in the domain of
computer vision. Thanks to this, countless studies could compare their findings against others
using widely accepted benchmarks. On the other side, when applying deep learning to tabular
data, no framework is well defined. Several papers opted to work with datasets from the UCI
Repository [37] on tasks related to this domain: tabular data imputation [153, 108, 48, 98],
imbalanced classification using a latent space [109], oversampling from deep generative
models [35, 149] or all the previous tasks at the same time [55]. Nevertheless, we want
to point out several interesting aspects of the datasets selected across these studies. First
of all, the datasets are usually presented with short names or aliases, leading to confusion.
For example, one dataset referred to as “breast” or “breast-cancer” presents four versions
online 4567 with different features, and sometimes it is not very clear which one the study
is referring to. Second, some datasets contain less than a thousand samples or just a few
features. While this can be reasonable for other machine learning models, deep learning
models may not reach their full potential when training with datasets of such dimensions.
Finally, state-of-the-art machine learning algorithms like XGBoost [25] can solve most of
the classification tasks associated with imbalanced UCI datasets without much need for any
additional treatment. For example, one study [109] showed that a simple Random Forest [79]
could classify 14 datasets from the UCI Repository with ROCAUC > 0.9 (and for most of
the cases very close to 1). Some examples are included in Section 6.3.

6.2.2 Deep Generative Models

In this chapter, we compare two well known deep generative architectures: GAN [50] and
VAE [66]. We include as well two variants of GAN that involve autoencoders, ARAE [159]
and MedGAN [29], adapting the reconstruction loss by separating the features per variable
(e.g., all the features from a one-hot-encoded categorical variable). Each separated reconstruc-
tion loss depends on the variable type: cross-entropy for categorical variables, binary-cross
entropy for binary variables, and mean squared error for numerical variables. Please refer to

1http://yann.lecun.com/exdb/mnist/
2http://www.image-net.org/
3https://www.cs.toronto.edu/ kriz/cifar.html
4https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
5https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
6https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
7https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic)
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Fig. 6.1 Multi-Input Architecture.

Section 5.2 for more details about this architecture. Additionally, HI-VAE [108] contains
details for a more complex version of the architecture.

For each of the models mentioned above, we include the Multi-Output variants presented
in Section 5.3. We select Gumbel-softmax [57, 94] for the categorical activations. For all the
Multi-Output versions of GAN, we use WGAN [6] instead, and we also add an alternative
with WGAN-GP [51]. In addition to the output modifications, we add a Multi-Input layer
on each model, as shown in Figure 6.1. This layer uses metadata to split the inputs x into
variables x[k] and applies a different embedding to each categorical variable. Each embedding
reduces by half the dimension m[k] of the corresponding categorical variable x[k] bounded to
the range [2,50] as illustrated in the following equation:

max(2,min(50,

⌈
m[k]

2

⌉
)) (6.1)

This transformation allows us to work in a dense, continuous, and lower-dimensional space,
which is better for training than the sparse, discrete, and higher dimensional one-hot-encoded
input. The transformed variables are concatenated back with the other non-categorical
variables. We can then connect the resulting modified inputs h to the next layer. We call
Multi-Variable (MV) to the final architecture that includes the modified inputs and outputs.

6.2.3 Sampling from Deep Generative Models

Among the literature, we found two alternatives to generate synthetic samples with deep
generative models for later use in imbalanced classification tasks. The authors in [39] train a
GAN only using the minority class samples to improve the detection of credit card frauds.
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Table 6.1 Comparison of sampling strategies.

Minority Conditional Rejection

Training data
only features from
minority class

features and labels
from both classes

features with
labels appended
from both classes

Changes to
all models

- add label as input
label implicitly
added as input by
the concatenation

Changes to
training loss

- -

label implicitly
part of the
reconstruction
loss (if present)

Sampling
during
evaluation

just input noise
noise and positive
label as input

noise as input,
separate label
from output,
discard samples
from negative
class, keep trying
until obtaining
desired sample
size (can timeout)

We call this technique “minority”. The second method [35] uses GANs with a condition (the
label) as an additional input for the generator and the discriminator. We will refer to this
alternative as “conditional”. We propose an additional technique that we call “rejection”, that
consists of training any deep generative model attaching the label to the rest of the features as
an additional variable. Afterward, the method discards all the samples that do not belong to
the desired class during the synthetic generation. Note that iterative draws are necessary for
obtaining a synthetic sample of a specific size with this technique, and the procedure could
never end. Therefore, the method needs a limit on the number of draws or the execution time.
Table 6.1 presents a summary and comparison of these three sampling strategies.

6.3 Experiments

In this section, we provide the details and the analysis of our experiments. The goal is to
provide an empirical comparison of how different under- and oversampling techniques affect
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Table 6.2 Dataset statistics.

Name n m mbin mcat mnum m classes
Adult 45K 14 0 8 6 105 2
Breast Cancer Wisconsin (Diagnostic) 569 30 0 0 30 30 2
Credit Card Fraud 284K 29 0 0 29 29 2
Default of Credit Card Clients 30K 23 0 9 14 99 2
Forest Cover Type 581K 12 0 2 10 54 7
Letter Recognition 20K 16 0 0 16 16 26
Spambase 4.6K 57 0 0 57 57 2

imbalanced classification. The code for classification, undersampling, oversampling, and all
the tasks related to deep generative models are publicly online 8.

6.3.1 Datasets

We initially select six datasets from the UCI Repository [37]: “Adult”9, “Breast Cancer
Wisconsin (Diagnostic)”10, “Default of Credit Card Clients”11, “Forest Cover Type”12,
“Letter Recognition”13 and “Spambase”14. These specific datasets from the UCI repository
are the most used among the related work. Some of them are multi-class problems, but we
need to convert them into imbalanced binary classification problems to be useful for our
study. The dataset “Letter Recognition” contains the same amount of samples per letter in the
English alphabet. Thus we can implement 26 one-vs-all binary classification problems, where
on each problem, one letter serves as the positive class and all the rest are part of the negative
class. We also transformed “Forest Cover Type” into several one-vs-one binary classification
problems by pairing two classes at a time. The next section describes more details about
the classification experiments involving the UCI repository. We also include the “Credit
card fraud” dataset presented in [31], which we obtained from the Kaggle repositories15.
This dataset only contains numerical features (most of them from coming from a PCA
transformation) and is highly imbalanced (< 0.001% of the cases are frauds). For any dataset,
we apply the same preprocessing procedure. All the numerical variables are scaled to fit
inside the range [0;1]. Additionally, we use one-hot-encoding for all the categorical variables,
but we represent them with one binary feature for the particular case of binary variables. We

8https://github.com/rcamino/deep-generative-models
9http://archive.ics.uci.edu/ml/datasets/adult

10http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
11https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
12http://archive.ics.uci.edu/ml/datasets/covertype
13http://archive.ics.uci.edu/ml/datasets/letter+recognition
14http://archive.ics.uci.edu/ml/datasets/spambase
15https://www.kaggle.com/mlg-ulb/creditcardfraud
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generate metadata indicating for each variable the type (categorical, binary, or numerical)
and the size (number of features). The SMOTE-NC oversampling method, the autoencoder
reconstruction loss, and the multi-variable architectures use this information. The code for
the preprocessing is available online 16. In Table 6.2 we describe the datasets, where n is
the number of samples, m is the number of variables, mbin, mcat, and mnum are the number
of variables of binary, categorical and numerical types respectively, and m is the number of
features after encoding the variables.

6.3.2 Classification

All of our experiments involve binary classification tasks implemented with XGBoost [25].
We compute the mean and standard deviation of the f1 score for the train and test sets over
ten folds. For each dataset, we run a grid search over several XGBoost hyperparameters
(the max depth and number of estimators). In Table 6.3, we present the results for the
best hyperparameters for the binary classification experiments based on XGBoost. The
multi-class datasets were transformed into several binary classification problems by pairing
two classes at a time or one class versus the others. Note that most of the cases have very
high test scores without any under- or oversampling. We found only three cases where
the test f1 score was less than 0.95: “Adult”, “Credit Card Fraud” and “Default of Credit
Card Clients”. Furthermore, we present in Figure 6.2 for these three datasets how train and
test f1 score changes while the amount of XGBoost estimators are incremented, for a fixed
maximum depth. We can see that the test curve converges in the early steps while the training
curve keeps growing, which indicates that the models start to overfit with a small number
of estimators. It sounds reasonable given that the imbalance is very high for these cases,
which confirms that they are hard to solve. The selected XGBoost hyperparameters shown in
Table 6.3 remain fixed for the rest of the under- and oversampling experiments.

6.3.3 Undersampling and Oversampling

The imbalanced-learn library [77] implements all the undersampling and oversampling
algorithms presented in the experiments that do not involve deep generative models. The
three selected datasets for the following experiments are imbalanced, which means that the
imbalance ratio (IR) is less than one, where IR is defined as:

IR =
|{minority class samples}|
|{majority class samples}|

(6.2)

16https://github.com/rcamino/dataset-pre-processing
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Table 6.3 Best hyperparameters for baseline binary classification experiments.

Dataset Positive Negative Max Estimators Train Test
Class Classes Depth f1 f1

Adult 1 0 3 225 0.738 0.732
Breast Cancer Wisconsin (Diagnostic) 1 0 2 205 1.000 0.958
Credit Card Fraud 1 0 4 18 0.898 0.896

Forest Cover Type

0 1 5 1000 0.962 0.941
2 0 3 280 1.000 1.000
3 0 2 1 1.000 1.000
4 0 4 891 1.000 0.999
5 0 5 610 1.000 1.000
6 0 5 984 1.000 0.998
2 1 5 940 1.000 0.999
3 1 2 143 1.000 1.000
4 1 5 995 1.000 0.997
5 1 5 569 1.000 0.999
6 1 5 528 1.000 1.000
3 2 4 267 1.000 0.994
4 2 5 113 1.000 0.997
5 2 5 972 1.000 0.979
6 2 2 23 1.000 1.000
3 4 2 1 1.000 1.000
3 5 5 245 1.000 0.965
3 6 2 1 1.000 1.000
4 5 4 738 1.000 0.997
4 6 2 23 1.000 1.000
5 6 2 22 1.000 1.000

Default of Credit Card Clients 1 0 3 3 0.494 0.496

Letter Recognition

0 others 5 137 1.000 0.995
1 others 5 262 1.000 0.937
2 others 4 235 1.000 0.972
3 others 4 316 1.000 0.950
4 others 4 504 1.000 0.941
5 others 3 774 1.000 0.952
6 others 5 311 1.000 0.966
7 others 5 688 1.000 0.939
8 others 3 195 0.996 0.966
9 others 2 830 0.999 0.957

10 others 2 817 0.993 0.945
11 others 2 672 1.000 0.963
12 others 2 251 0.995 0.990
13 others 3 337 1.000 0.979
14 others 5 600 1.000 0.951
15 others 5 456 1.000 0.980
16 others 5 87 0.999 0.975
17 others 5 370 1.000 0.950
18 others 3 538 1.000 0.969
19 others 4 171 1.000 0.987
20 others 4 115 0.999 0.977
21 others 3 227 0.998 0.975
22 others 2 379 0.999 0.987
23 others 4 357 1.000 0.990
24 others 5 350 1.000 0.974
25 others 4 129 1.000 0.985

Spambase 1 0 2 303 0.985 0.954

We undersample the majority class on the train set, applying a random under sampler,
which removes samples from the majority class with a uniform probability until reaching the
desired sample size smaller than the original. The result contains a larger IR that we call the
“undersampling ratio” (USR). Afterward, we train and evaluate the classification model and
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Fig. 6.2 Classification baseline train and test f1 scores by number of estimators.

compute the respective metrics. Furthermore, for each USR, we oversample the minority
class on the train set that was previously undersampled. The result contains an even larger
IR that we call the “oversampling ratio” (OSR). In Algorithm 6.1 we describe this whole
process. We call this algorithm for different oversampling algorithms and incrementally
larger values of USR and OSR.

6.3.4 Oversampling with Deep Generative Models

For the final experiments, we combine four deep generative models (or nine when we
employ multi-variable alternatives) with three different strategies to draw samples from them
(presented in Section 6.2). We implemented all the models with PyTorch [114]. The models’
training involves the training set, and when an autoencoder is present in the architecture, we
separate a validation set from the training set to evaluate the quality of the reconstruction.
After the training, the resulting model generates synthetic samples, and we append them to
the training set until reaching the desired OSR. We report the experiments using 10-fold
cross-validation. Algorithm 6.2 describes the whole procedure.

To ensure a fair comparison between models, we arbitrarily fix the amount and size of
hidden layers for each model, so the resulting amount of parameters for every model is
reasonably close to the other models given a specific dataset. The common hyperparameters
also remain fixed across models: the number of epochs is 1000, the learning rate is 1e−3 and
the batch size is 1000. All the models that require alternating training steps proceed one step
at a time for every involved model. When we employ WGAN, we clamp the parameters to
the range [−0.01,0.01] and set the gradient penalty’s weight to 0.1.
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Algorithm 6.1: Imbalanced classification
1 Function imbalancedClassi f ication(X ,y, f olds, IR,US,USR,OS,OSR):

Data: X ∈ Rn×m feature matrix
Data: y ∈ {0,1}Rn binary label vector
Data: f olds ∈ R number of folds
Data: IR ∈ R, 0 < IR imbalance ratio
Data: US undersampling algorithm
Data: USR ∈ R, IR≤USR desired imbalance ratio after undersampling
Data: OS oversampling algorithm
Data: OSR ∈ R, USR≤ OSR desired imbalance ratio after oversampling
Result: µ train classification train score mean
Result: σ train classification test score standard deviation
Result: µ test classification test score mean
Result: σ test classification train score standard deviation

2 scorestrain← empty vector of size f olds
3 scorestest ← empty vector of size f olds
4 for f old← 1 to f olds do
5 X train,ytrain,X test ,ytest ← f oldSplit(X ,y, f old, f olds)
6 if IR <USR then
7 X train,ytrain←US(X train,ytrain, IR,USR)
8 end
9 if USR < OSR then

10 X train,ytrain← OS(X train,ytrain,USR,OSR)
11 end
12 M← train classification model with features X train and labels ytrain

13 ŷtrain← classify features X train with model M
14 scorestrain

f old ← score between predictions ŷtrain and labels ytrain

15 ŷtest ← classify features X test with model M
16 scorestest

f old ← score between predictions ŷtest and labels ytest

17 end
18 µ train← mean(scorestrain)

19 σ train← std(scorestrain)
20 µ test ← mean(scorestest)
21 σ test ← std(scorestest)

6.3.5 Results

We present in Table 6.5, Table 6.6, and Table 6.7 the results for the classification experiments
for the “Adult”, “Credit Card Fraud” and “Default of Credit Card Clients” datasets respec-
tively. Each table presents the mean and standard deviation of the train and test f1-score for
different experiments divided into four parts. In the first part, we indicate the initial IR of the



94 Oversampling Tabular Data with DGM

Algorithm 6.2: Oversampling with DGM
1 Function oversamplingDGM(X train,ytrain,OSR|S):

Data: X train ∈ Rntrain×m train feature matrix
Data: ytrain ∈ {0,1}Rntrain

train binary label vector
Data: IR ∈ R, 0 < IR imbalance ratio
Data: OSR ∈ R, IR≤ OSR desired imbalance ratio after oversampling
Data: S sampling strategy
Result: X train with imbalance ratio equal to OSR
Result: ytrain with imbalance ratio equal to OSR

2 M← train deep generative model from features X train and labels ytrain

implemented by sampling strategy S
3 while IR < OSR do
4 xsynth← draw samples from M implemented by sampling strategy S
5 X train← X train∪

{
xsynth}

6 ytrain← ytrain∪{1} // synthetic label is always positive
7 IR← compute imbalance ratio from updated ytrain

8 end

Table 6.4 Range of DGM parameters for each dataset and sampling strategy.

Dataset Sampling Model Model Parameters
Strategy Count min max

Adult
Minority 90 11887 15755
Rejection 90 11988 15856
Conditional 90 12093 15910

Default of Credit Card Clients
Minority 90 11015 15149
Rejection 90 11116 15250
Conditional 90 11215 15298

Credit Card Fraud
Minority 40 1170 1394
Rejection 40 1201 1425
Conditional 40 1200 1438

dataset and the results without any under- or oversampling. In the second part, we present
the USR that provides the best results using only undersampling. The third part shows each
imbalanced-learn algorithm, with the USR-OSR combination providing the best scores with
under- and oversampling. Finally, the last part describes the USR-OSR combination that
provides the best scores with under- and oversampling for each deep generative model and
sampling strategy pair. Note that the rejection sampling can “timeout” if it fails to obtain the
desired samples after 10,000 iterations.



6.3 Experiments 95

Table 6.5 Classification experiments for “Credit card fraud”.

Part I: Classifier
IR Train f1 Test f1

0.001 0.904±0.005 0.814±0.046
Part II: Undersampling→ Classifier

USR Train f1 Test f1
0.007 0.861±0.009 0.813±0.057

Part III: Undersampling→ SMOTE Oversampling→ Classifier
Oversampling USR OSR Train f1 Test f1
BorderlineSMOTE 0.004 0.005 0.877±0.010 0.811±0.055
RandomOverSampler 0.002 0.007 0.895±0.006 0.822±0.052
SMOTE 0.002 0.007 0.891±0.006 0.831±0.043
SVMSMOTE 0.002 0.003 0.899±0.006 0.816±0.062
Part IV: Undersampling→ DGM Oversampling→ Classifier
DGM Sampling USR OSR Train f1 Test f1
vae Minority 0.002 0.009 0.905±0.006 0.820±0.039
arae Minority 0.004 0.005 0.873±0.014 0.814±0.052
medgan Minority 0.002 0.010 0.896±0.006 0.822±0.042
gan Minority 0.006 0.008 0.860±0.013 0.820±0.069
vae Conditional 0.006 0.009 0.871±0.008 0.817±0.062
arae Conditional 0.002 0.007 0.902±0.004 0.816±0.048
medgan Conditional 0.003 0.007 0.886±0.007 0.810±0.056
gan Conditional 0.004 0.010 0.877±0.011 0.815±0.051
vae Rejection Timeout
arae Rejection Timeout
medgan Rejection Timeout
gan Rejection Timeout

We start analyzing the results shown in Table 6.5 for the dataset “Credit card fraud”.
Given that the dataset contains no categorical or binary features, we do not implement
the multi-variable models for this scenario. The class imbalance is very high, and our
experiments involving large changes to the imbalance ratio after under- and oversampling
resulted in a considerable deterioration of the classification scores. Small changes on the
imbalance ratio after undersampling do not offer classification improvements, but some small
oversampling cases seem useful. In our experiments with this dataset, SMOTE presents the
best classification score, while most of the deep generative models offer a slight improvement
over the classification without oversampling. Experiments with SMOTE and “minority” GAN
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Table 6.6 Classification experiments for “Adult”.

Part I: Classifier
IR Train f1 Test f1

0.33 0.743±0.002 0.716±0.005
Part II: Undersampling→ Classifier

USR Train f1 Test f1
0.50 0.756±0.002 0.731±0.010

Part III: Undersampling→ SMOTE Oversampling→ Classifier
Oversampling USR OSR Train f1 Test f1
ADASYN 0.4 0.6 0.749±0.001 0.727±0.010
BorderlineSMOTE 0.5 0.6 0.751±0.001 0.730±0.008
KMeansSMOTE 0.5 0.6 0.752±0.002 0.731±0.009
RandomOverSampler 0.5 0.6 0.756±0.002 0.732±0.007
SMOTE 0.5 0.6 0.752±0.002 0.732±0.008
SMOTENC 0.6 0.7 0.662±0.001 0.642±0.010
SVMSMOTE 0.5 0.6 0.750±0.001 0.730±0.009
Part IV: Undersampling→ DGM Oversampling→ Classifier
DGM Sampling USR OSR Train f1 Test f1
vae Minority 0.5 1.0 0.756±0.001 0.732±0.010
mv-vae Minority 0.5 1.0 0.755±0.002 0.733±0.010
arae Minority 0.5 1.0 0.755±0.001 0.733±0.010
mv-arae Minority 0.5 1.0 0.752±0.001 0.732±0.009
medgan Minority 0.5 0.6 0.755±0.002 0.732±0.007
mv-medgan Minority 0.6 0.8 0.752±0.001 0.733±0.010
gan Minority 0.6 0.7 0.754±0.001 0.734±0.010
mv-wgan Minority 0.5 1.0 0.752±0.002 0.734±0.008
mv-wgan-gp Minority 0.6 0.7 0.754±0.001 0.731±0.009
vae Conditional 0.6 1.0 0.754±0.002 0.732±0.008
mv-vae Conditional 0.5 0.6 0.755±0.001 0.733±0.007
arae Conditional 0.5 0.9 0.755±0.002 0.734±0.009
mv-arae Conditional 0.6 0.9 0.752±0.002 0.732±0.010
medgan Conditional 0.5 1.0 0.754±0.002 0.733±0.008
mv-medgan Conditional 0.5 0.8 0.753±0.002 0.732±0.008
gan Conditional 0.6 0.8 0.755±0.002 0.733±0.011
mv-wgan Conditional 0.5 0.6 0.752±0.002 0.733±0.005
mv-wgan-gp Conditional 0.6 0.8 0.752±0.003 0.733±0.008
vae Rejection 0.5 1.0 0.756±0.002 0.732±0.008
mv-vae Rejection 0.7 1.0 0.751±0.002 0.732±0.009
arae Rejection 0.5 1.0 0.755±0.002 0.733±0.007
mv-arae Rejection 0.6 0.9 0.753±0.002 0.732±0.011
medgan Rejection 0.6 0.9 0.753±0.002 0.733±0.010
mv-medgan Rejection 0.5 1.0 0.753±0.001 0.732±0.008
gan Rejection Timeout
mv-wgan Rejection 0.5 0.7 0.754±0.002 0.732±0.007
mv-wgan-gp Rejection 0.5 0.9 0.754±0.001 0.732±0.008

were carried out with the same dataset in [39], where both models presented very close results.
Besides the scores for SMOTE, our results are comparable to this study. We believe that the
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Table 6.7 Classification experiments for “Default of credit card clients”.

Part I: Classifier
IR Train f1 Test f1

0.28 0.479±0.006 0.457±0.036
Part II: Undersampling→ Classifier

USR Train f1 Test f1
0.80 0.552±0.004 0.534±0.031

Part III: Undersampling→ SMOTE Oversampling→ Classifier
Oversampling USR OSR Train f1 Test f1
ADASYN 0.8 1.0 0.552±0.004 0.537±0.028
BorderlineSMOTE 0.6 0.7 0.550±0.003 0.535±0.027
KMeansSMOTE 0.7 1.0 0.549±0.004 0.537±0.029
RandomOverSampler 0.8 0.9 0.553±0.005 0.538±0.031
SMOTE 0.6 0.8 0.550±0.004 0.535±0.031
SMOTENC 0.9 1.0 0.488±0.003 0.467±0.029
SVMSMOTE 0.8 0.9 0.549±0.004 0.534±0.029
Part IV: Undersampling→ DGM Oversampling→ Classifier
DGM Sampling USR OSR Train f1 Test f1
vae Minority 0.8 0.9 0.550±0.004 0.535±0.030
mv-vae Minority 0.8 0.9 0.550±0.004 0.533±0.031
arae Minority 0.7 0.8 0.546±0.004 0.533±0.030
mv-arae Minority 0.8 0.9 0.548±0.005 0.535±0.030
medgan Minority 0.8 0.9 0.546±0.005 0.534±0.032
mv-medgan Minority 0.7 0.8 0.543±0.003 0.534±0.032
gan Minority 0.8 0.9 0.549±0.004 0.535±0.029
mv-wgan Minority 0.8 0.9 0.545±0.004 0.534±0.030
mv-wgan-gp Minority 0.8 0.9 0.548±0.004 0.534±0.031
vae Conditional 0.7 0.9 0.539±0.004 0.531±0.030
mv-vae Conditional 0.7 0.8 0.546±0.005 0.532±0.032
arae Conditional 0.8 0.9 0.549±0.006 0.535±0.030
mv-arae Conditional 0.8 0.9 0.547±0.004 0.533±0.030
medgan Conditional 0.8 0.9 0.548±0.003 0.535±0.030
mv-medgan Conditional 0.8 0.9 0.546±0.004 0.535±0.032
gan Conditional 0.8 0.9 0.550±0.003 0.535±0.029
mv-wgan Conditional 0.8 0.9 0.546±0.004 0.536±0.032
mv-wgan-gp Conditional 0.9 1.0 0.545±0.006 0.534±0.028
vae Rejection 0.7 0.8 0.543±0.004 0.532±0.031
mv-vae Rejection 0.7 0.8 0.545±0.004 0.534±0.031
arae Rejection 0.9 1.0 0.546±0.004 0.532±0.032
mv-arae Rejection 0.8 0.9 0.547±0.003 0.534±0.032
medgan Rejection Timeout
mv-medgan Rejection Timeout
gan Rejection Timeout
mv-wgan Rejection 0.8 0.9 0.547±0.004 0.535±0.032
mv-wgan-gp Rejection 0.9 1.0 0.547±0.004 0.535±0.033

small discrepancies are related to the stochastic nature of the experiments. Additionally, we
can see that the classification tends to overfit every case, which we anticipated considering the
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Fig. 6.3 Two examples of test f1 score versus USR and OSR for “Adult”.

small number of positive samples. Finally, note that all the models implementing rejection
sampling reached a timeout. This phenomenon is reasonable for this dataset, given that the
probability of drawing a sample from the minority class is very low.

Now we compare all the results from Table 6.6 and Table 6.7. Regarding the classification
baseline without oversampling or undersampling, we can see that both problems are quite
challenging since the mean test f1 score is considerably far from 1. Furthermore, adding only
random undersampling to the pipeline shows some improvement in Table 6.6 but presents a
considerable improvement in Table 6.7. Nevertheless, most of the oversampling techniques
(both with and without deep generative models) only show a slight improvement on the
third decimal of the mean test f1 score on top of the undersampling. The only oversampling
algorithm that seems to worsen the classification quality is SMOTE-NC. Note also that
in Table 6.7 the RandomOverSampler —which is the most straightforward oversampling
technique— performs slightly better than the rest.

In Fig. 6.3, we present two example distributions of the f1 score across different ratios.
We can see that there is some difference between the oversampling with and without deep
generative models. The RandomOverSampler deteriorates progressively by incrementing the
oversampling ratio, while the oversampling using a Multi-Variable WGAN does the opposite.
However, note that the color bar scale (representing the mean test f1 score) is small.

In Fig. 6.4, we intend to explore some of the differences between sampling techniques
visually. We present three alternatives: two feature space transformations into two dimensions
based on PCA and t-SNE [93], and Self Organizing Maps (SOM) [67]. Scatter plots display
the transformations where negative, positive, or synthetic samples present different colors.
These plots provide us with the tools to examine how close to each other are samples from
different types. On the other side, the SOM assigns samples to different cells on a grid,
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Fig. 6.4 PCA, t-SNE, and SOM examples for “Adult” with oversampling.

comparing each sample type’s frequency with a pie chart. Given that these methods do not
scale well with the number of samples, we only visualize a subset in each plot. We are losing
information by dropping samples and dimensions simultaneously, but these approximations
can still explain the data structure. In the first two rows, we show SMOTE and one of the
DGM models, and in both cases, we can see that synthetic samples tend to be grouped
with positive cases as desired. Also, many of the negative classes are far away from the
other two types of samples. Furthermore, in the third row, we show one example of a
DGM model that generates samples that are very separated from the rest of the sample
types. Nevertheless, regardless of these two different situations, we see in the classification
results of the corresponding Table 6.6 that all oversampling techniques achieve practically
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the same performance. This finding could mean that the classification boundaries computed
by XGBoost do not change much, neither by adding synthetic samples resembling positive
samples nor with synthetic samples that fill empty portions of the feature space.

6.4 Discussion and Conclusion

Our experiments show several trends that persist across different generative methods and
datasets: First, undersampling the majority class without any oversampling improves the
classifier. Adding oversampling via a simple baseline such as SMOTE only leads to marginal
improvements. Second, all generative models provide very close results to the SMOTE
baselines. Finally, the sampling strategy does not substantially impact the results’ quality,
but rejection sampling is the slowest approach. It seems that we need to contextualize
the performance gain given by deep generative models for oversampling. They possess
a considerably more complicated setup and longer training time than the best-performing
baseline, a simple random under- and oversampling approach.

It is noteworthy that generative models require different under- and oversampling settings
to archive the best performance. However, regardless of the method used, the absolute
improvement on the classification metric (F1 score) is often minimal. This phenomenon
occurs despite results showing that in a ranking of methods, deep generative methods’
improvement is statistically significantly better [35]. Even if the f1 score is prevalent in
this domain, we could argue that it is not fair to compare results with this metric between
experiments with different imbalance ratios. We also computed the area under the Precision-
Recall curve for all the experiments, obtaining similar results. There is not a clear alternative
in the literature, which implies a possible research opportunity.

Regarding the sampling strategies, it is reasonable to expect a lousy sample quality when
training deep learning models with a small amount of data from the minority class. This
situation directly affects the minority and the rejection strategies, but it is even worse for the
latter because many draws are needed to obtain the desired output. On the other side, it is not
very clear for the conditional strategy if learning the majority class’s distribution would help
define the distribution of the minority class better. Finally, besides the samples’ quality, it
is unclear whether powerful and complex machine learning algorithms like XGBoost can
benefit by injecting synthetic samples into the minority class. There might be a combination
of simpler models and oversampling methods that could achieve better results, but finding a
useful combination might require many experiments. Brute forcing through combinations of
tools, models, or techniques should not be the way of practicing science, but there is a lack
of general understanding about what these generative models produce.



Chapter 7

Conclusions

7.1 Summary

Throughout this dissertation, we compared existing studies involving machine learning
solutions to detect and analyze suspicious transactions. We synthesized methodologies for
tackling different use cases in an organized manner and assessed the applicability of deep
generative models for enhancing existing solutions.

In Chapter 2, we started with a literature review on machine learning methods to deal
with the detection of fraud, money laundering, and different kinds of suspicious behavior
related to financial activities. Most importantly, we identified several common challenges
and flaws in the existing solutions:

• lack of labels, ground truth, and proper validation;

• highly imbalanced classes and high false positives;

• detection patterns based on complete information when in reality only partial informa-
tion is available;

• studies based on private data with under specified distributions, pre-processing and
feature engineering;

• studies based on synthetic data with strong baseless assumptions, simplistic or small
scenarios and under specified distributions;

• and weak validation practices.

Additionally, we summarized and compared the different approaches involving deep
generative models applied to tabular data or related types. We found a lack of benchmarks,
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standard baselines, and evaluation metrics like in other domains. Moreover, we described
some factors that affect the reproducibility of existing studies:

• misidentified datasets (mostly from the UCI repository);

• under specified pre-processing practices;

• and obscure hyperparameter selection.

In Chapter 3, we presented a methodology to analyze financial transactions from different
sources using unsupervised learning methods. We presented two case studies: one involving
private transactions from a money remittance network provided by our industrial partner,
and the other involving open transactions from the Ripple platform. In the first use case,
we were able to validate our findings with experts from the private company. In particular,
our tool was able to spot exciting cases in addition to the suspicious samples that traditional
rule-based systems could detect. In the second use case, we validated our findings based
on information from community forums. We detected not only expected anomalies but also
cases that were not known to us beforehand.

In Chapter 4, we presented a step-by-step methodology to obtain, process, and analyze
Ethereum contracts for the task of honeypot detection. We showed how to contrast assump-
tions and hypotheses about honeypot behavior against real data and derived features for
supervised machine learning models. Classification models proved to generalize well, even
when simulating that honeypots belonged to new techniques. Most importantly, our approach
detected honeypots from two new techniques, which would be impossible to achieve using
byte code analysis without manually crafting new detection rules.

In Chapter 5 we analyzed the impact of tabular data on deep learning models, a type
of structure that is very common in fraud detection tasks as shown in Chapters 2, 3, and 4.
We extended state-of-the-art deep generative models for tabular data with our multi-output
architecture. We adapted an existing metric to capture the variable correlations better when
using one-hot-encoding. Compared to the unmodified models, all the enhanced approaches
improved the performance across all datasets, even though we could not identify an exact best
model. The performance improvement came at the cost of requiring to add extra information.

Finally, in Chapter 6 we extended the work from Chapter 5 by applying the presented mod-
els to enhance classification tasks with imbalanced classes, the kind of task that is common
for supervised fraud detection scenarios like the one presented in Chapter 4. Additionally,
we introduced the multi-input architecture to expand models alongside our previously pro-
posed multi-output architecture. Our experiments showed several trends that persist across
different generative methods and datasets. First, undersampling the majority class without
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any oversampling improves the classifier. Second, adding oversampling via simple baseline
techniques only leads to marginal improvements. Nevertheless, all generative models perform
better than baselines. Finally, the sampling strategy does not seem to impact the quality of
the results substantially, but it affects the execution time.

7.2 Contributions

Besides the particular findings on each presented use case, this thesis provides the means
to address the many challenges for the general fraud detection domain. We proposed
experimental protocols to test the generalization capabilities of supervised models when
labels are present. For scenarios without ground truth, we proposed unsupervised alternatives
using an ensemble of anomaly detection models to obtain robust anomaly rankings and
several manual examination techniques for a robust validation. Additionally, we showed
that both supervised and unsupervised scenarios could benefit from similar sets of features:
aggregated values related to recency, frequency, and monetary aspects of the transactions, as
well as metrics derived from the transaction graph and derived from sequences of discrete
events triggered by the transactions. Most importantly, this thesis provides a compilation of
machine learning techniques related to fraud detection and provides rigorous pre-processing
and implementation details usually omitted or poorly defined in the literature.

We further compiled studies related to the application of deep learning on tabular data,
and in particular, deep generative models. Our analysis can provide guidance to data science
practitioners or statisticians who are looking to expand their sets of tools. We proposed several
modern algorithms for generating synthetic data to avoid using arbitrary random distributions
on simulations. Additionally, we presented several powerful models for oversampling data
in the presence of class imbalance. Finally, we contributed to the deep learning community
by presenting the multi-variable architecture, proposing new data generation evaluation
techniques, and designing a large-scale evaluation of models defining a transparent and fair
experimental protocol employing comparable model capacities.

7.3 Limitations

Our proposed multi-variable architecture requires a detailed description of each variable to
work. However, in some cases, this information may not be available (e.g., when data is
anonymized or obfuscated in some way). Furthermore, generative models require different
under- and oversampling settings to archive the best performance. Nevertheless, regardless
of the method used, the absolute improvement on the classification metric is often minimal.
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It seems that we need to contextualize the use of deep generative models for oversampling.
They possess a considerably more complicated set-up and longer training time than the
best-performing baseline, a simple random under- and oversampling approach. Consider
that traditional oversampling methods have been around for more than a decade, pushing the
performance of imbalanced classification tasks. However, novel deep generative models can
achieve comparable results, even when conceived for a different purpose.

7.4 Future Work

One way of extending this dissertation’s work would be to focus on detecting unexpected
changes in user behavior and extending the analysis methods to fit into streaming and big data
environments. For example, unsupervised machine learning models could be re-trained and
replaced either periodically or when the number of anomalies exceeds a certain predefined
threshold (indicating the presence of a concept drift). Another alternative would be to
implement online learning, where the models are updated directly with each predicted data
point. Note that not only when to update the models is a crucial point to study, but also how
much historical data is needed to train the models. In the case of supervised models, the
adaptation is not straightforward, given that the presence of new samples does not come
alongside new labels (or at least, not at the same time, and possibly not for free). One possible
solution would be to experiment with semi-supervised alternatives, a domain in which deep
generative models also have potential.

Counts and frequencies of discrete events have been used as features for the different use
cases throughout this dissertation. We experimented with the possibility of capturing a more
extended pattern of discrete events, represented as traces or strings of symbols. However, we
discovered that the sequences of events related to the users or accounts we studied were not
long enough to present exciting dependencies. Therefore, working with n-grams instead of
only uni-grams, using string similarities for clustering, and employing Markov models or
recurrent neural networks for detection remain ideas for future use cases.

In the domain of deep generative models, we have ongoing work in missing data impu-
tation, compiling, comparing, and extending state-of-the-art models, and proposing novel
iterative imputation methods. We are also interested in applying the power of deep genera-
tive models to different types of transfer learning. We could achieve this either by sharing
synthetic data or trained generative models preserving privacy constraints. Finally, we are
looking forward to applying the novel transformer architectures on tabular data.
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