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Structural characterization 
and in vitro lipid binding studies 
of non‑specific lipid transfer protein 
1 (nsLTP1) from fennel (Foeniculum 
vulgare) seeds
Mekdes Megeressa1, Bushra Siraj2, Shamshad Zarina2 & Aftab Ahmed1*

Non‑specific lipid transfer proteins (nsLTPs) are cationic proteins involved in intracellular lipid 
shuttling in growth and reproduction, as well as in defense against pathogenic microbes. Even though 
the primary and spatial structures of some nsLTPs from different plants indicate their similar features, 
they exhibit distinct lipid‑binding specificities signifying their various biological roles that dictate 
further structural study. The present study determined the complete amino acid sequence, in silico 
3D structure modeling, and the antiproliferative activity of nsLTP1 from fennel (Foeniculum vulgare) 
seeds. Fennel is a member of the family Umbelliferae (Apiaceae) native to southern Europe and the 
Mediterranean region. It is used as a spice medicine and fresh vegetable. Fennel nsLTP1 was purified 
using the combination of gel filtration and reverse‑phase high‑performance liquid chromatography 
(RP‑HPLC). Its homogeneity was determined by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS‑PAGE) and matrix‑assisted laser desorption/ionization‑time of flight (MALDI‑
TOF) mass spectrometry. The purified nsLTP1 was treated with 4‑vinyl pyridine, and the modified 
protein was then digested with trypsin. The complete amino acid sequence of nsLTP1 established by 
intact protein sequence up to 28 residues, overlapping tryptic peptides, and cyanogen bromide (CNBr) 
peptides. Hence, it is confirmed that fennel nsLTP1 is a 9433 Da single polypeptide chain consisting 
of 91 amino acids with eight conserved cysteines. Moreover, the 3D structure is predicted to have 
four α‑helices interlinked by three loops and a long C‑terminal tail. The lipid‑binding property of 
fennel nsLTP1 is examined in vitro using fluorescent 2‑p‑toluidinonaphthalene‑6‑sulfonate (TNS) and 
validated using a molecular docking study with AutoDock Vina. Both of the binding studies confirmed 
the order of binding efficiency among the four studied fatty acids linoleic acid > linolenic acid > Stearic 
acid > Palmitic acid. A preliminary screening of fennel nsLTP1 suppressed the growth of MCF‑7 human 
breast cancer cells in a dose‑dependent manner with an  IC50 value of 6.98 µM after 48 h treatment.

Within the membranes of plant cell organelles, lipids go through metabolic activities, including anabolism, 
catabolism, and  renewal1. These organelles, however, do not have enzymes that are engaged to synthesize lipids. 
This necessitates an intracellular non-vesicular route for lipid mobilization that facilitates their movement inside 
the aqueous environment of the cytoplasm. Thus, a closer examination of lipid trafficking mechanisms had 
led to the identification of LTPs from spinach leaves for the first time in 1984 by Kader et al.1–3. These proteins 
exhibited the ability to transfer hydrophobic molecules, including phosphatidylcholine, phosphatidylglycerol, 
phosphatidylethanolamine, and phosphatidylinositol, from liposomes to mitochondria; bolstering the hypothesis 
that phospholipids are imported to intracellular organelle from outside through a transfer process by  LTPs2. The 
proteins were named first as “phospholipid-exchange proteins” (PLEPs). Still, since there was no true one-for-one 
exchange of phospholipids noted between acceptor and donor membranes, the name “phospholipid-transfer 
protein” was given. Nonetheless, the generic name “lipid-transfer protein” was provided since it promotes the 
transfer of lipids other than  phospholipids4–6. Consequently, “nonspecific lipid-transfer protein” was used as they 
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lack specificity for the different  phospholipids7. Since then, several nsLTPs have been purified and character-
ized from several plants species such as wheat (Triticum aestivum)8, Chinese cabbage (Brassica rapa)9, cumin 
(Cuminum cyminum)10, maize (Zea mays)11, castor bean (Ricinus communis)12, barley (Hordeum vulgare)13, 
Chinese lily (Narcissus tazetta)14, wild carrots (Daucus carota)15, eggplant (Solanum melongena)16 and ajwain 
(Trachyspermum ammi)17.

Plant nsLTPs are highly conserved small molecular weight proteins with a high isoelectric point (pI) between 
9 and 11. Based on their sizes, they were classified into two subfamilies as nsLTP1 and nsLTP2 (9 kDa and 7 kDa), 
 respectively7,18. Nevertheless, the newer classification method further grouped nsLTPs into nine types on the 
basis of amino acid sequence similarity and intervals of eight cysteine residues as the former method excludes 
the newly found anther-specific proteins exhibiting homology to plant nsLTPs. Later, with the advancement 
of technology, the 3D structures of nsLTPs have been resolved from different plants using Nuclear Magnetic 
Resonance spectroscopy (NMR), Infrared spectroscopy (IR), and X-ray  crystallography10,19,20. Subsequently, it 
is reported that there exist eight cysteine residues at the conserved positions that form four disulfide bridges 
as well as four α-helices in nsLTP1s and three α-helices in  nsLTP2s18, with a long C-terminus. The helices are 
situated in a folded manner creating an internal hydrophobic cavity suitable for the binding of lipids and other 
hydrophobic  molecules19.

Most nsLTPs display broader lipid binding specificity in vitro that they form non-covalent complexes with 
fatty acids, fatty acyl-CoA, hydroxylated fatty acids, phospholipids, and glycolipids. Some of them are also shown 
to accommodate large molecular weight hydrophobic molecules like prostaglandin B2 like wheat (Triticum aes-
tivum)  nsLTP21. Their binding affinities to various ligands are also noted to be variable depending on their 3D 
structures. Several nsLTPs bind to more than one lipid molecules at a time, while some do not bind at all due to 
steric hindrance of the bulky side chains of aromatic amino acids that made the hydrophobic  cavity22. Among 
the lipids examined in binding studies, saturated lipids containing 16–18 carbons interact significantly compared 
to those with 12–14 or 20–22  carbons23. The presence of long carbon chains, hydroxyl group, one or two double 
bonds in the acyl chain, and cis configuration of the lipid molecules are determining factors that control their 
affinity to nsLTPs, as evidenced from a computational study on Asian rice (Oryza sativa)24.

NsLTPs are synthesized as preproteins in plant cells with a signal peptide at the N-terminal that is 21–27 
amino acid residues in LTP1s and 27–35 residues in LTP2s, where they are secreted into apoplastic  space18,25. 
Plant nsLTPs play a significant role beyond lipid shuttling between membranes. Instead, some of them are 
involved in growth and reproduction, symbiosis, defense against pathogenic microbes, and adaptation of plants 
to  stress22,25. Their involvement in various active roles in plants’ survival and their stability against denaturants, 
heat, and proteases, nsLTP are drawing research interests as drug carriers for targeted drug delivery and potential 
drugs to the existing deadly  diseases26,27.

Therefore, this project focuses on nsLTP1 isolated from the seeds of fennel (Foeniculum vulgare), a member 
of the Umbelliferae (Apiaceae) plant family. It is an erect perennial-umbelliferous plant with hollow stems of 
length up to 2.5  m28. Fennel is among the most important medicinal plants that are native to southern Europe 
and the Mediterranean region. Ethnomedical uses involve cough, abdominal problems, eye diseases, fever, 
insomnia, kidney problems, mouth ulcer, and to enhance milk  supply29–31. In support of its ethnomedical use, 
studies have shown the pharmacological activity of fennel, including antitumor, antibacterial, antifungal, anti-
oxidant, antithrombotic, anti-inflammatory, oestrogenic, hepatoprotective, and  antidiabetic29,31–34. Numerous 
pharmacological activities of fennel studied so far are based on aqueous and/organic extracts and essential 
oils, leaving proteins and peptides isolated unexplored. Hence, this project aims to isolate and characterize the 
primary structure of fennel nsLTP1 using N-terminal amino acid sequencing and 3D structural modeling using 
bioinformatics tools. The study further examines the in vitro lipid binding potential of fennel nsLTP1 using the 
fluorescent method and in vitro cytotoxic effects on the MCF-7 breast cancer cell line.

Results
Purification of nsLTP1. The crude protein mixture was extracted successfully from defatted fennel seed in 
20 mM Tris/HCl pH 8.0 at 4 °C and allowed to precipitate using 60% ammonium sulfate. The partially purified 
proteins recovered by gel filtration chromatography is indicated in (Fig. 1a). The fractions 39–43 were observed 
to have a protein band around 9–10 kDa by 12% Tris/Tricine SDS-PAGE gel electrophoresis (Supplementary 
Fig. S1). The pooled fractions were then subjected to RP-HPLC, which resulted in a well-defined peak eluted at 
a retention time of 13 min (Fig. 1b). Analysis of purified nsLTP1 on MALDI-TOF mass spectrometry depicted 
the mass at m/z 9433.5163 Da (Fig. 1c).

Amino acid sequence. The partial N-terminal amino acid sequence of purified nsLTP1 protein was iden-
tified using Edman sequencing (AIDCKTVDAALVPCVPYLTGGGTPT), which showed its homology to the 
nsLTP1 subfamily of proteins. Then, for accurate, complete primary structural determination, the protein chain 
was digested with TPCK (L-1-Tosylamide-2-phenylethyl chloromethyl ketone) treated trypsin. The RP-HPLC 
tryptic peptides elution profile is shown as (Fig.  2). The amino acid sequences of tryptic peptides acquired 
marked from T1 to T9 (numbered based on their position with respect to amino acid terminus) are determined. 
The orders of the tryptic peptides in the fennel nsLTP1 were achieved based on homology with other plant 
nsLTPs. Since peptide T9 lacks arginine and lysine residues, it was assumed that this is a carboxy-terminal end 
of the protein. Furthermore, CNBr cleavage digestion gave two large peptides CB1and CB2 confirming the pres-
ence of a single Met residue (Fig. 3). The protein region 38–51 was elucidated, and the presence of two lysine 
residues at positions 45–46 was confirmed by aligning the CB2 and T2/T3 peptides. The compilation of sequence 
data from the intact protein as well as from peptides generated from trypsin and CNBr digestion confirmed the 
complete primary structure of fennel nsLTP1 containing a total of 91 amino acids, including eight cysteine resi-
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Figure 1.  Chromatographic profile and mass spectrometric analysis of fennel nsLTP1. (a) Protein elution 
profile of crude protein sample precipitated from fennel (Foeniculum vulgare) seeds on HiPrep Sephacryl S-200 
HR16/20 gel filtration column. The red-colored circle signifies the fractions containing nsLTP1. (b) 2D-RP-
HPLC elution profile of pooled gel filtration fractions 39–43 comprising fennel nsLTP1 on Aeris Widepore 
3.6UXB-C18 (150 × 2.1 mm) column; (c) MALDI-TOF mass spectra of RP-HPLC purified fennel nsLTP1.

Figure 2.  Peptide mass fingerprinting of nsLTP1 from fennel (Foeniculum vulgare) seeds. RP-HPLC 
chromatogram of tryptic digest of Cys-modified fennel nsLTP1 on Aeris widepore 3.6UXB-C18 (150 × 2.1 mm) 
column; The gradient from 0 to 60% acetonitrile in 55 min; flow rate 1 ml/min; absorbance monitored at 
214 nm.
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dues. These residues are conserved in the fennel nsLTP, thus enabling the same 3D structure known for a num-
ber of nsLTPs. The fully sequenced protein is deposited in the public protein database UniProt KnowledgeBase 
(UniProtKB) and assigned the accession number C0HLP9.

3D Structural modeling. Three-dimensional structure prediction of fennel nsLTP1 was conducted using 
bioinformatics tools. The BLASTp analysis of fennel nsLTP1 against PDB revealed potential templates (Supple-
mentary Table S1), which were aligned with the target sequence (Supplementary Fig. S2). Of these, crystal struc-
ture coordinates of non-specific lipid transfer protein 5TVI_V from S. melongena (Eggplant) was taken based on 
its highest identity (59.34%) and similarity (74%) with the least E-value. Sequence alignment between the target 
(fennel nsLTP1) and template (Solanum) is shown in Fig. 4. The Modeller program was used to build the model 
of nsLTP1 from the selected template. The best model with the least energy assessed by DOPE score was selected 
and shown in Fig.  5a. The superimposition of the modeled structure with the template using Chimera gave 
RMSD 0.118 Å, suggesting a good fit (Fig. 5b). The quality of the constructed model was assessed by Ramachan-
dran plot using PROCHECK (Supplementary Fig. S3), which showed that 93.5% of the amino acids were found 
in the most favorable allowed region, 5.2% in sterically allowed, and only 1.3% residues in disallowed regions. 
The energy profile of the model was evaluated by the PROSA tool, which gave a z-score − 5.4, suggesting it to be 
a good model. The modeled structure is assigned the accession number PM0082624 in the online protein model 
database (PMDB)35. Fennel nsLTP1 has 91 residues whereas 3D structure is predicted to have four α-helices that 
are interlinked by a total of three loops L1, L2, and L3; as well as a long C-terminal tail. 

Molecular docking. The best-docked conformation of each of the lipids with fennel nsLTP1 is presented 
as Fig. 6, which depicts the docked conformation of linoleic acid, linolenic acid, stearic, and palmitic acid in the 
binding pocket of fennel nsLTP1. The poses of lipid molecules were mainly considered within the active site of 
nsLTP1, as well as their binding scores for ranking the lipids. Moreover, Supplementary Table S2 represents the 
output of AutoDock Vina in terms of binding affinity (Kcal/mol) and interactions found between protein and 
ligands.

Figure 3.  Amino acid sequence of nsLTP from fennel (Foeniculum Vulgare) seeds. Solid lines with T and CB 
represent peptides sequenced after trypsin and cyanogen bromide digestion, respectively.

Figure 4.  Pairwise sequence alignment of nsLTP1 from fennel (Foeniculum vulgare) and Eggplant (Solanum 
melongena) nsLTP1 through Clustal Omega as visualized by Jalview.
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In vitro lipid binding activity of fennel nsLTP1. To evaluate the lipid-binding ability of fennel nsLTP1, 
the fluorescence-based assay was performed using 6-p-Toluidino-2-naphthalenesulfonic acid (TNS), a lipophilic 
probe that fluoresces as a result of binding in a hydrophobic  environment35,36. Lipids used in the study include 
saturated fatty acids (FAs) such as stearic acid and palmitic acid with the chain length of C18 and C16 respec-
tively; as well as polyunsaturated FAs involving linoleic acid (cis, cis-9,12-Octadecadienoic acid) and linolenic 
acid (all-cis-9,12,15-octadecatrienoic acid) with the chain length of C18. The binding of TNS to the hydrophobic 
cavity of nsLTP1 accounted for the highest fluorescent intensity, whereas the addition of nsLTP1 to the mixture 
of TNS and FAs decreased its fluorescence (Fig. 7).

Interestingly, among the FAs in the experiment, linoleic acid displaced the TNS probe with the highest effi-
ciency (4–40% of the control fluorescence) at all the concentrations tested. Linolenic acid, on the other hand, 
exhibited lesser efficiency (7–59% of the control fluorescence) as compared to linoleic acid in displacing the 
TNS probe from the hydrophobic cavity of nsLTP1. In contrast, stearic acid showed lower displacement effi-
ciency (21–59% of the control fluorescence) than linolenic acid but slightly higher efficiency than palmitic acid 
(40–69% of the control fluorescence). Besides, palmitic acid was shown to reduce the fluorescent intensity in a 
dose-dependent manner. However, the other FAs caused an initial increase in intensity, followed by a gradual 
decrease as the FA concentration was increased.

Cytotoxic effect of fennel ns‑LTP on human breast cancer cell line. The screening of fennel nsLTP1, 
as depicted in (Supplementary Figure S5a) suppressed MCF-7 human breast cancer cells in a dose-dependent 
manner compared to untreated control cells with the  IC50 value of 6.98 µM. At the lowest concentration tested 
(5 µM), fennel nsLTP1 reduced statistically significant (***P < 0.001) number of viable MCF-7 cells with respect 
to untreated cells with percentage inhibition of 31.8%. Whereas, at highest concentration (150 µM), MCF-7 pro-
liferation was inhibited significantly (***P < 0.001) by 77.1%. Moreover, doxorubicin (positive control) resulted 
in a dose-dependent inhibition with an  IC50 value of 0.037 µM (Supplementary Figure S5b).

Fennel nsLTP1 treated MCF-7 cells were further examined for morphological alteration after 48 h using 
phase-contrast microscopy. While the untreated cells were observed to have a monolayer with a high density, the 
doxorubicin and nsLTP1 treated cells, however, displayed morphological alterations and reduced cell count (Sup-
plementary Figure S5c). The number of viable cells decreased as the concentration of the fennel nsLTP increased. 
Moreover, the nsLTP1 treated cells demonstrated roundedness and shrinkage, suggesting the antiproliferative 
effect of the protein. It was compared with doxorubicin treated cells where a significantly low number of cell 
count was noted in addition to morphological alteration.

Discussion
Since their discovery thirty years ago, structural studies of nsLTP1 from various plants have drawn several 
research interests to understand their biological role. In higher plants, the nsLTPs are that account for 4% of the 
total soluble  proteins1. They are cationic, cysteine-rich, small molecular weight proteins with sizes ranging from 6 
to 10  kDa1,8. The conserved eight cysteine residues that form four disulfide bridges stabilize the three-dimensional 
structure, as well as the presence of an internal hydrophobic cavity, which is regarded as a distinctive structural 

Figure 5.  Spatial structure of nsLTP1 from fennel (Foeniculum vulgare) seeds and its comparison with template 
structure. (a) Modeled structure of nsLTP1 with ribbon representation. Helices (H1, H2, H3, and H4) are 
in blue. Loops (L1, L2, L3) are in grey. Disulfide bonds are in yellow. (b) Superimposition of modeled fennel 
nsLTP1 model (blue) with the template Eggplant (Solanum melongena) nsLTP1 (5TVI) (red).



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21243  | https://doi.org/10.1038/s41598-020-77278-6

www.nature.com/scientificreports/

feature of  nsLTP1s1,6,8. In the present study, therefore, nsLTP1 from fennel seeds was isolated and characterized 
for the first time; following another research that identified it as a small molecular weight protein claimed to be 
responsible for allergenicity of fennel in some  people37. Fennel nsLTP1 is the sixth nsLTP1 reported from the 
Umbelliferae family after carrot, celery, cumin, dill, and ajwain.

Due to the fact that plant nsLTP1s have basic character (isoelectric point around 9) and relatively small 
molecular weight, the use of salts that reduce their solubility offers the advantage of successful precipitation 
devoid of denaturing their native  conformation38. Thus, precipitation of fennel seed proteins using 60% ammo-
nium sulfate is found to be a well-suited protocol for efficient isolation and purification of nsLTP1 using size 
exclusion chromatography (Fig. 1a), RP-HPLC (Fig. 1b), and molecular weight confirmation by MALDI-TOF 
mass spectrometry (Fig. 1c). Unlike nsLTP1s from  tomato39 and human  serum40, which were difficult to isolate 
the pure form due to their tight association with other proteins, nsLTP1 from fennel was identified as unbound 
form, not associated with other proteins.

Fennel nsLTP1 is a monomeric protein chain of 91 amino acid residues, with a total of 8 conserved cysteines 
located at the positions 4, 14, 28, 29, 49, 51, 74, and 88 that are engaged in the formation of disulfide bridges ena-
bling the same 3D structure known for a number of nsLTPs. Previous studies show that the disulfide bond link-
ages take place between  CysI–CysVI,  CysII–CysIII,  CysIV–CysVII, and  CysV–CysVIII, where the –CysV-X-CysVI–motif 

Figure 6.  Molecular docking of lipid molecules on nsLTP1 from fennel (Foeniculum vulgare) seeds). Best 
docked conformations of fennel nsLTP1 with Linoleic acid (a), Linolenic acid (b), Stearic acid (c), and 
Palmitic acid (d) as produced by AutoDock Vina. Interacting residues are labeled and shown in ball and stick 
conformation. The poses were generated through Discovery Studio Visualizer.
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usually have a hydrophilic residue like asparagine in the case of fennel  nsLTP141,42. The conserved hydrophilic 
residues are essential for the biological function of the protein in  plants43.

Several conserved hydrophobic amino acid residues involving Val7, Leu11, Pro13, Val15, Leu18, Val32, 
Ile62, Ala67, Leu70, Pro71, Val76, Leu78, Ile80, Pro81, Val82, Ile83, and Pro84 are observed in fennel nsLTP1. 
According to structural studies of nsLTP1s from other plants, these hydrophobic residues are buried within the 
molecule, not interacting with each other creating a suitable environment for forming a large internal tunnel-like 
cavity that provides a potential binding site for hydrophobic  ligands18,44. The presence of conserved residues, 
including proline and glycine, are also noted, which, according to previous studies, contribute to the conservation 
of a particular protein  fold25. Moreover, aromatic amino acid residues, including tryptophan and phenylalanine, 
are absent in fennel nsLTP1; several plant nsLTP1s are also reported to lack  tryptophan7. There are two tyrosine 
residues at the positions of Tyr17 and Tyr59 that are conserved in many plant nsLTP1s as  well10. In Solanum 
molenga, however, the Tyr17 is replaced by Phenylalanine. Thus, the complete amino acid sequence of fennel 
nsLTP1 depicted the overall molecular composition of the protein; consequently, it led the research interest to 
further analyze its 3D structure for a better understanding of its biological function.

Owing to the fact that the function of protein is determined by its structure, the 3D structure of proteins is 
crucial in terms of defining the biological  pathways45. The computational method is a commonly used approach 
for predicting the structure of proteins first by identifying a homologous relationship with a known structure 
to generate the model  structure46. Therefore, the 3D-structural modeling of fennel nsLTP1 is established using 
the crystal structure coordinates of nsLTP1 from eggplant (S. melongena) 5TVI as a template. 5TVI is selected 
as the best template based on BLASTp result; it is 59.34% identical and 74% similar to fennel nsLTP1 with 100% 
query coverage and e-value of 3E−33. The homology modeling, therefore, indicated that the structure of fennel 
nsLTP1 has four α-helices: H1 (4–20), H2 (26–38), H3 (42–57) and H4 (64–74); a long C-terminal tail (75–91); 
and three short loops at the positions of (21–25), (37–41), (58–63) residues. The study from the crystal structure 
of 5TVI depicted that these helices are engaged in the form of a hydrophobic cavity, where the overall structure 
is stabilized by the presence of four disulfide bonds that exist between cysteine (4–51), (14–28), (29–74) and 
(49–88) that are also retained by fennel nsLTP1  structure16. The internal hydrophobic cavity is regarded as a 
possible site for the binding of  lipid16. Studies from other plant nsLTP1s indicated that the long C-terminal tail 
is crucial for the orientation of the lipids in the  cavity16,47.

Despite the presence of nsLTP1s with similar spatial structures from diverse plant species, they exhibit 
distinct ligand-binding  behaviors48,49. It is reported that nsLTP1s from different plants show variable binding 
affinities to the tested  FAs36,48,50. Accordingly, the observed binding preferences of nsLTP1s to bind FAs are not 
characteristic of every plant  nsLTP1s51,52. For instance, no FA binding was observed in antimicrobial protein 
Ace-AMP1 from onion; selective binding of saturated FAs to Xylem Sap Protein (XSP10) from tomato was noted, 
and dill (Anethum graveolens) lipid transfer protein (AG-LTP) exhibited a lack of selectivity toward various FAs. 
These characteristics could signify the variety of roles LTP play in plants, including defense against biotic stress, 
transportation of lipids, as well as cutin and suberin wax protective layers  formation49,53.

In the present in vitro lipid binding study using TNS fluorescent probe, nsLTP1 from fennel binds to both 
saturated and unsaturated FAs with variable efficiency. Similar variability in the binding affinities is observed 
in the study of nsLTP1s from ginkgo (Ginkgo biloba), lentil (Lens culinaris) seeds, Nicotiana tabacum, and dill 
(Anethum graveolens); where nsLTP1s were observed to have more preference to unsaturated  FAs36,48,49,53. This 

Figure 7.  The effect of fatty acids on the fluorescence level of fennel nsLTP1-TNS complex. The binding ability 
of FAs to compete with TNS (3.5 µM) for binding to fennel nsLTP1 (4 µM) at varying concentrations (5 µM, 
10 µM, 15 µM, and 20 µM). The ability of the FAs to compete with TNS for binding to fennel nsLTP1 was shown 
by the reduction of fluorescence from the nsLTP1-TNS complex. Data from three independent experiments are 
presented with mean and standard deviation (S.D.) highlighted as *P < 0.05, **P < 0.01, ***P < 0.001.
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can be explained in terms of FA chain length, the number as well as the position of double bonds, that could 
determine the way FAs are accommodated in the hydrophobic cavity of the  protein49,54,55. It appeared that pal-
mitic acid was the least efficient in displacing TNS from the binding pocket of fennel nsLTP1 as compared to 
stearic acid at all tested concentrations (Fig. 7). As supported by previous lipid binding studies, saturated FAs 
with relatively shorter chain length allow a limited number of hydrophobic interactions resulting in relatively 
lower binding efficiency as compared to saturated FAs with longer chain  length47,56,57.

On the other hand, significantly higher binding efficiency (***P < 0.001) was noted for linoleic acid, followed 
by linolenic acid (Fig. 7). The presence of one cis-double bond in FAs with a chain length of C18 (as in linoleic 
acid) has a higher affinity for the protein as it enforces the FA to a curved shape for easier accommodation in the 
binding  site23,56–58. Moreover, the binding assay revealed an initial increase in the percentage of fennel nsLTP1-
TNS fluorescence at the lower concentration of displacing FAs, followed by a decrease in the intensity at higher 
FA concentration (Fig. 7). This is in line with Gb-nsLTP1 from Ginkgo biloba, Jug r 3 from walnut and wheat 
LTP, where a similar biphasic change in the intensity of fluorescence in response to increased concentration of 
FAs was  observed36,50,58. Such a change could be explained in terms of the binding of FA in the cavity along with 
the fluorescent probe that increases the fluorescence intensity as a result of effective solvent exclusion from the 
binding pocket.

Further increase in the FA then displaces the probe leading to an observed decrease in  intensity23,50. The bind-
ing affinity of fennel nsLTP1 to the FAs is also an important factor that determines how readily TNS is displaced 
from the hydrophobic cavity as the FA concentration  increases50. Although the lipid binding assay is performed 
on a fewer number of FAs as a preliminary study which lacks kinetic and mechanistic analysis, we think that the 
outcome is still in line with the proposed role of nsLTP1 to bind lipids.

Molecular docking was employed to examine further the lipid-binding behavior of fennel nsLTP1 using its 
predicted 3D structure. The same FAs used in the wet lab experiment were selected as ligands. Protein–ligand 
interactions were observed by Discovery Studio Visualizer. The binding pocket is identified to be located at the 
residues between 61 and 91; where the lipid molecules are surrounded by helix H4 and C-terminal region. A 
similar result has been obtained in a lipid-binding study employing the crystal structure of rice nsLTP1 where H4 
and the C‐terminal loop region is demonstrated as the binding pocket with the most hydrophobic interactions 
 spotted59. Moreover, the aliphatic parts of the FAs are observed to be situated in the hydrophobic binding pocket 
of fennel nsLTP1, while their hydrophilic heads exhibited distinct orientations. Besides, the residues involved in 
lipid interactions include Asp64, Ala67, Gln68, Ala69, Pro71, Val72, Asn75, Val76, Gln77, Leu78, Pro81, Val82, 
and Ser83; where the common interacting residues observed among all studied molecules were Gln68, Pro71, 
Gln77, and Leu78. Therefore, it is suggested that the major lipid binding forces are hydrophobic interactions that 
are stabilized through hydrogen bonds between the protein and polar head of the  lipid10,17,59.

Moreover, the output of AutoDock Vina (Supplementary Table S2) indicated that the order of binding affinity 
among the four studied FAs is observed as linoleic acid > linolenic acid > Stearic acid > Palmitic acid, which agreed 
with wet-lab results. The same order of binding affinity with four lipid molecules was reported in the nsLTP1 of 
Lotus japonicus60. Earlier experimental studies also revealed that linoleic acid exhibited greater binding affin-
ity than linolenic  acid61. The lipid-binding property of plant nsLTP1s is ascribed to the two highly conserved 
consensus sequences, T/SXXDR/K and  PYXIS62. In fennel nsLTP1, the first pattern of the motif is TPQDK with 
the residues from 41 to 45, whereas the second motif PVSRT residues from 81 to 84. Among the two consensus 
sequences, Pro81, Val82, and Ser83 within the second conserved motif at the C-terminal loop region is found 
to be involved in lipid binding. Our docking studies, therefore, suggested that linoleic acid exhibited the highest 
binding affinity among all molecules studied, confirming results obtained through wet-lab experiments.

Plant nsLTPs have capability to bind a variety of lipids such as FAs, fatty acyl CoA, phospholipids, glycolip-
ids,  etc1. This variation makes them capable of performing different  functions63. It has also been suggested that 
nsLTPs may have multiple binding sites (lipid binding interactions)17. Structural studies have revealed that the 
protein may have elasticity in the presence of  ligand64. In the current study, polar heads of all studied FAs were 
directed toward helix 4, making hydrophobic interactions with residues in the vicinity. Closer examination of 
ligand protein interaction, however, showed variation among FAs. Linoleic acid is found to be involved in making 
hydrogen bond with two residues P71 and V76, whereas stearic acid is making one hydrogen bond with N75 of 
fennel. All fatty acids are making alkyl interactions with fennel nsLTP1 (Supplementary table S3). It has already 
been documented that nsLTPs have shown more affinity for unsaturated FAs as compared to  saturated36,48,49,53 
and our results are in line with these observations.

Earlier literature indicates studies on nsLTP1 from different fruits and nuts. We have aligned fennel nsLTP1 
sequence with peach, hazelnut, and walnut sequences and observed 37.78%, 34.07%, and 35.16% sequence simi-
larity, respectively (Supplementary Figure S4). Intramolecular interaction of peach and walnut nsLTP1 in the 
presence and absence of oleic acid has been studied extensively. Critical residues in the binding pocket of peach 
nsLTP1 that are affected due to Oleic acid interaction range for 76 to  8664. A similar binding pocket is retained in 
the case of fennel nsLTP1 as well. Among the four common interacting residues observed in our study (Gln68, 
Pro71, Gln77, Leu78), only Pro71 interaction was found to be retained in peach nsLTP1-Oleic acid  complex64. 
Pro71 is conserved in most of the nsLTP1  sequences65 and is likely to be involved in ligand interaction. Another 
residue contributing in ligand–protein interaction is L78 in Fennel nsLTP1, which is consistent with the earlier 
observation in peach and walnut where the ligand–protein interaction at this position is retained, albeit L is 
replaced by I and V in peach and walnut,  respectively58.

An interesting aspect of nsLTPs is their capability to act as allergens, which have been studied extensively 
in  peach37 and  walnut58. Four IgE binding epitope regions in peach nsLTP1 (17–25, 41–48, 65–69, 77–91) have 
been identified, which, if retained, are likely to elicit a strong allergic  response66. Apple nsLTP1 retained epitope 
composition and showed higher IgE binding affinity in comparison to hazelnut and sunflower nsLTP1 sequences, 
which showed more variation and lower IgE binding affinities 65. As far as fennel is concerned, studies of allergens 
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from fennel are limited to date. The analysis of fennel allergy among peach sensitive patients concluded that 
patients with peach allergy are likely to develop severe hypersensitivity to  fennel37. To further explore the aller-
genic potential of fennel, we compared the fennel and peach nsLTP1 sequences and observed that IgE binding 
epitope regions are not highly conserved in fennel; hence attributing allergic response solely to fennel nsLTP1 
would be unfair. It is noteworthy that apart from nsLTP1, another protein, Pathogenesis related protein 1 (PRP1), 
has been identified as a possible allergen for fennel sensitivity among peach allergic  patients37. Nevertheless, the 
possible role of fennel nsLTP1 as an allergen needs to be elucidated further.

The study further demonstrates the ability of fennel nsLTP1 to inhibit the proliferation of MCF-7 breast can-
cer cell lines for the first time (Supplementary Figure S5a), and the result was compared with the known potent 
anticancer drug, doxorubicin (Supplementary Figure S5b). When exposed to fennel nsLTP1, MCF-7 cells lost 
their proliferative ability in a dose-dependent manner. Moreover, the antiproliferative effect of fennel nsLTP1 was 
evident from the reduced number of viable cells, which explains its capability to induce cellular death. Compared 
to the calculated fennel nsLTP1  IC50 (6.98 µM), LTP isolated from Brassica campestris exhibited antiproliferative 
activity on MCF-7 breast cancer cell lines, the  IC50 value of 1.6 µM. Besides, the same LTP from Brassica camp-
estris showed inhibitory activity against hepatoma Hep G2 cells with an  IC50 value of 5.8 µM67, indicating that 
the antiproliferative activity of LTPs from the same plant varies based on the type of cell line tested. In contrast, 
nsLTP from Mung bean was shown to be devoid of an antiproliferative effect on MCF-7 cancer cell lines. This 
variability in antiproliferative behavior was proposed due to the difference in the amino acid sequence and the 
specific portion of the same protein responsible for the observed  activity67.

A closer examination of fennel nsLTP1 treated cells by phase-contrast microscopy further confirmed a 
dose-dependent decrease in a cell count as well as consequent morphological changes (Supplementary Fig-
ure S5c). These include cellular roundness and shrinkage that is regarded as a morphological alteration related to 
 apoptosis68,69. Our studies progress to apoptosis analysis using flow cytometry to better understand the mecha-
nism of fennel nsLTP1 to kill MCF-7 breast cancer cell lines. The subsequent gene expression analysis evidenced 
that apoptosis is the possible cell killing mechanism.

Conclusion
The present study determined the isolation, purification, and amino acid sequence of nsLTP1 from fennel (Foenic-
ulum vulgare) seeds. Its 3D structure established in silico using the crystal structure coordinates of nsLTP1 from 
eggplant (S. melongena) 5TVI as a template. These structural analyses depicted that fennel nsLTP1 contains 
eight cysteine residues responsible for the disulfide bridges and a hydrophobic cavity. Moreover, in vitro lipid 
binding efficiency revealed that fennel nsLTP1 has the lipid-binding ability. A molecular docking study was 
also performed to validate the wet lab in vitro lipid binding study using its predicted 3D model structure. It is 
of future research interest to study the kinetics of lipid binding with a wide range of FAs as well as the mode of 
action. Additionally, this study reports a preliminary antiproliferative activity of fennel nsLTP1 against MCF-7 
human breast cancer cell lines for the first time.

Materials and methods
Extraction of proteins. Fennel (Foeniculum vulgare) seeds were ground, and the powder was defatted 
using n-hexane for 24  h. Then the hexane was filtered out and was dried in the hood. The dry powder was 
then soaked in 20 mM Tris/HCl, pH 8 under continuous stirring for four days at 4 °C, and filtered. The filtrate 
obtained was centrifuged at 40,000  rpm for 30 min, followed by precipitation of the supernatant using 60% 
ammonium sulfate at 4 °C. Finally, the precipitated crude protein extract was centrifuged at 14,000 rpm. The 
pellet was dissolved and dialyzed in water for two days at 4 °C and lyophilized.

Gel electrophoresis. Polyacrylamide gel electrophoresis (Tris-tricine 12% separation and 4% stacking gel 
were utilized throughout the study for the analysis of crude and/ isolated protein at constant 200 V for 1 h. The 
gels were stained using Coomassie stain followed by destaining water 70.

Gel filtration chromatography. HiPrep Sephacryl S-200 HR16/20 column was used as a first-dimen-
sional chromatography to separate the crude protein extract using AKTA start FPLC. The column was first 
equilibrated with 20 mM Tris/HCl, pH 8. The sample elution was performed with the same buffer at the flow rate 
of 5 ml/min, and absorbance monitored at 280 nm.

Reverse‑phase chromatography. The RP-HPLC was utilized to purify further the pooled fractions 
obtained from gel filtration chromatography using Aeris Widepore 3.6UXB-C18 (150 × 2.1 mm) column. The 
column was equilibrated with 0.1% TFA-water (solvent A). The elution of protein was performed at the flow rate 
of 1 ml/min, using a gradient of acetonitrile from 0 to 60% in 60 min, where the absorbance was measured at 
214 nm.

MALDI‑TOF mass spectrometry. The purified intact nsLTP1 was analyzed by MALDI-TOF mass spec-
trometer (Autoflex Speed, Bruker, USA). A 1 µl of the matrix 3,5-Dimethoxy-4-hydroxycinnamic acid (SPA) 
prepared in 50% acetonitrile–water containing 0.1%TFA, and 1 µl of the sample in 0.1% TFA-water were mixed 
and spotted on the MALDI plate. The Flex-control software (Bruker, USA) was used for the analysis of the 
spectra.
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Protein modification by vinyl pyridine. The purified and lyophilized protein (10 mg) was mixed with 
10 µl of reduction and alkylation buffer (Guanidine/HCl 6 M, tris base 0.2 M, di-sodium EDTA, 2 mM, and 5 μl 
of 2-Mercaptoethanol) in a ratio of 1:1. Then, 2-mercaptoethanol in 1:10 ratio was added to the solution under 
nitrogen and incubated at 50 °C for 4 h. The 4-vinyl pyridine was then added to the solution in a 1:1 ratio and 
incubated for 1.5 h at 37 °C. The reaction was finally quenched with 2-mercaptoethanol and 5% acetic acid in a 
1:1 ratio with the same volume as R&A buffer added to dissolve the protein. The modified protein was dialyzed 
against deionized water for 24 h and vacuum dried. Finally, the modified lyophilized sample was dissolved in 
Tris/HCl 0.1 M pH 8.5 and purified using RP-HPLC71.

Trypsin digestion and peptide fingerprinting. The modified fennel nsLTP1 was digested with TPCK 
(Tosyl-phenylalanyl-chloromethyl-ketone) treated trypsin (20:1 ratio) in 50 mM Tris/HCl pH 8 for 4 h at room 
 temperature72. Then, the solution was titrated with 1 M acetic acid to pH 4, and the resulting digested protein 
fragments were separated by RP-HPLC using column (Aeris Widepore 3.6UXB-C18 150 × 2.1 mm) with gradi-
ent elution of 0–60% B (0.1% TFA-acetonitrile) in 55 min. The flow rate was set at 1 ml/min, and absorbance 
monitored at 214 nm.

Cleavage with CNBr. The methionyl bond of purified intact fennel nsLTP1 was cleaved with  CNBr73. The 
protein (1 mg) was dissolved in 2 ml of 70% formic acid. Then 4 mg of CNBr was added to the solution at 25 °C 
and incubated in the dark for 24 h. The resulting protein digest was SpeedVac dried for further purification by 
RP-HPLC using Aeris Widepore 3.6UXB-C18 150 × 2.1 mm column with gradient elution 0–60% B (0.1% TFA-
acetonitrile) in 55 min. The flow rate was set at 1 ml/min, and absorbance at 214 nm.

Amino acid sequencing. The N-terminal amino acid sequence of the intact protein, and peptides, was 
analyzed using protein  sequencer74, with an online Phenylthiohydantoin (PTH) analyzer model PPSQ33A (Shi-
madzu).

Lipid binding study. The lipid-binding ability of fennel nsLTP1 was evaluated using TNS, a fluorescent 
probe with a slightly modified  protocol53. The fluorescence experiment was performed using the Ultramax M5 
microplate reader (Molecular Devices) at 25  °C. The intensity of fluorescence was measured at an emission 
wavelength of 437 nm and excitation of 320 nm. Prior to the initial fluorescence record (Fo), 3.5 µM TNS was 
incubated with and without lipids for 1 min in 1 ml buffer containing 175 mM mannitol, 0.5 mM  K2SO4, 0.5 mM 
 CaCl2, 5 mM MES, pH 7.0. All the FAs were prepared in Dimethyl sulfoxide (DMSO) at varied concentrations 
of 5 µM, 10 µM, 15 µM, and 20 µM. Then, nsLTP1 (4 µM) was added, and fluorescence was recorded after 2 min 
of incubation (F). The percentage of nsLTP-TNS complex fluorescence was calculated as:

where  Fc is the fluorescence of the nsLTP-TNS complex in the absence of lipid.

Structural modeling. The three-dimensional structure of fennel nsLTP1 was predicted using a homology 
modeling approach. The amino acid sequence identified in the current study was used to search for a tem-
plate against Protein Data Bank (PDB) using an online protein BLAST program (https ://blast .ncbi.nlm.nih.gov/
Blast .cgi). The best match was found to be with nsLTP1 from Solanum melongena (PDB ID: 5TVI), having 
59.34% identity with the target sequence; hence it was selected as a template. Multiple sequence alignment was 
performed through Clustal  Omega75. Crystal structure coordinates of 5TVI were used to construct the three-
dimensional model of fennel nsLTP1 using Modeller version 9.2376. The modeled structure was evaluated using 
PROCHECK and  PROSA77,78. To examine the structural variation between target and template, the modeled 
structure of fennel was superimposed with the crystal structure of 5TVI using UCSF Chimera version 1.1479.

Protein and ligand preparation. To examine the interaction between nsLTP1 and different FAs, a mod-
eled three-dimensional structure of fennel nsLTP1 was docked with linolenic, stearic, palmitic, and linoleic 
acids. Before docking studies, protein and ligand files were prepared. Ligand files of palmitic acid (CID: 985), 
linoleic acid (CID: 5280450), and linolenic acid (CID: 5280934) were downloaded from PubChem  Database80. 
The structure of stearic acid (ID: 5091) was downloaded from  ChemSpider81. All these structures were converted 
into PDB format through OpenBabel command-line interface to be utilized by docking  software82. The protein 
structure was prepared by adding polar hydrogens through AutoDockTools (ADT) and was saved in Protein 
Data Bank, partial charge (Q), and Atom Type (T) (PDBQT) format.

Molecular docking. The four lipid molecules were docked on protein structure using AutoDock Vina 
 program83. The binding pocket of the protein was identified using the Prosite  tool84. The grid box was set around 
the binding pocket of protein with grid points 80 Å × 46 Å × 80 Å. Different possible conformations with binding 
energies were obtained with each round of docking, and the best binding pose in all docked conformations was 
chosen for each ligand. Discovery Studio Visualizer was used to visualize the AutoDock Vina  output85.

Cell culture. The cytotoxic activity of fennel nsLTP1 was examined on MCF-7 (ATCC HTB-22) human 
breast cancer cell line that was purchased from the American Type Culture Collection (Manassas, VA). Dul-

(1)
(F− Fo)

Fc
× 100
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becco’s Modified Eagle Medium (DMEM) was purchased from Life Technologies Corporation (ThermoFisher 
Scientific, Carlsbad, CA). The cultured cells were grown as a monolayer in DMEM that is supplemented with 
10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin–streptomycin at 37 °C in an incubator at 95% humid-
ity and 5% CO2.

Cell proliferation assay. In vitro antiproliferative effect of fennel nsLTP1 against MCF-7 breast cancer cell 
lines was examined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT) assay 
that measures the metabolic activity of cells as a marker for cellular  viability86. MCF-7 cells seeded at the density 
of 10,000 cells/well incubated in 96-well plate at 37 °C in 5%  CO2 in the absence or presence of the samples for 
48 h at the final volume of 200 µl. The medium was then removed post-treatment for the indicated time, and 
MTT dye (0.5 mg/ml in PBS) was added to the final volume of 200 µl. Following incubation at 37 °C in 5%  CO2 
for 4 h, the dye was discarded, and the purple-blue colored formazan crystal was solubilized in DMSO (100 µl). 
The plate was read for optical density (OD) using a UV spectrophotometer (SpectraMax M5 Microplate Reader) 
at the wavelength of 570 nm to determine the mitochondrial activity. The study was performed in three inde-
pendent experiments with triplicates. The percentage of inhibition was calculated using the formula:

IC50 determination. The dose–response curve was used to extrapolate the  IC50 value from the three inde-
pendent triplicate experiments over the range of tested concentrations by nonlinear regression analysis using 
Prism version 8.0.0 for Windows, GraphPad Software, San Diego, California USA.

Statistical analysis. The experimental data were analyzed using the R statistical programming language, 
version 3.5.187. Primarily, the statistical requirements of continuous variables for parametric statistical tests were 
determined. One-way ANOVA (analysis of variance) followed by Tukey’s post-hoc test was used to assess the sta-
tistical significance for comparing two groups or multiple groups. Results with P values of < 0.05 were considered 
statistically significant. The significance was presented as *P < 0.05, **P < 0.01, ***P < 0.001.
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