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We investigate quantum error correction us-
ing continuous parity measurements to correct
bit-flip errors with the three-qubit code. Con-
tinuous monitoring of errors brings the benefit
of a continuous stream of information, which
facilitates passive error tracking in real time.
It reduces overhead from the standard gate-
based approach that periodically entangles and
measures additional ancilla qubits. However,
the noisy analog signals from continuous parity
measurements mandate more complicated signal
processing to interpret syndromes accurately.
We analyze the performance of several practi-
cal filtering methods for continuous error correc-
tion and demonstrate that they are viable alter-
natives to the standard ancilla-based approach.
As an optimal filter, we discuss an unnormal-
ized (linear) Bayesian filter, with improved com-
putational efficiency compared to the related
Wonham filter introduced by Mabuchi [New J.
Phys. 11, 105044 (2009)]. We compare this opti-
mal continuous filter to two practical variations
of the simplest periodic boxcar-averaging-and-
thresholding filter, targeting real-time hardware
implementations with low-latency circuitry. As
variations, we introduce a non-Markovian “half-
boxcar” filter and a Markovian filter with a sec-
ond adjustable threshold; these filters eliminate
the dominant source of error in the boxcar fil-
ter, and compare favorably to the optimal filter.
For each filter, we derive analytic results for the
decay in average fidelity and verify them with
numerical simulations.

1 Introduction
Quantum error correction (QEC) is essential to building
a scalable and fault-tolerant quantum computer [1, 2].

Although the theory of QEC has been developing since
the 1990s and is now well established for the circuit
model of quantum computation, the practical imple-
mention of QEC in realistic hardware raises additional
nuance that prompts more detailed investigation. The
present work addresses one aspect of QEC implementa-
tion that is relevant to modern superconducting qubit
architectures [3, 4] by investigating whether the time-
continuous nature of standard dispersive qubit measure-
ments can be used in principle to improve the logical-
state-tracking fidelity in the prototypical error correc-
tion scenario of a 3-qubit bit-flip code [5]. We show that
direct monitoring of the error syndromes reduces hard-
ware resources compared to the circuit model of QEC
while maintaining performance.

Circuit models of QEC redundantly encode a logi-
cal qubit state into multiple physical qubits. Exam-
ples of this model include the Shor [6], Steane [7], and
Calderbank-Steane-Shor (CSS) codes [8, 9], as well as
more general stabilizer codes [10–14]. Encoded informa-
tion is checked by measuring ancillary qubits that are
entangled with the redundant code subspaces. The an-
cilla measurements project the logical qubits back onto
the code subspaces, effectively converting analog drifts
of the encoded state into digital jumps between code
subspaces (e.g., bit flips, phase flips, or combinations
thereof). The measurement results provide informa-
tion about jumps between code subspaces, thus enabling
correct decoding of the logical qubit state. Different en-
coding schemes protect against different error types and
quantities according to the redundancy of the code sub-
spaces, with the simplest codes protecting against only
single jumps per measurement cycle. Simple forms of
such gate-based QEC have already been implemented
in several experiments, see e.g. [15–17].

Stabilizer codes typically assume ancilla-based pro-
jective syndrome measurements. However, for super-
conducting qubits this assumption can be problematic
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for two reasons. First, the repeated entangling and dis-
entangling of the code and ancillary qubits adds addi-
tional gate overhead and hardware resources. This over-
head also increases the vulnerability of the protocol to
additional error mechanisms. Second, superconducting
qubit architectures implement projective measurements
by integrating and thresholding time-continuous disper-
sive measurements, which are not instantaneous pro-
jections as assumed by the theoretical quantum circuit
model [18–21]. The temporally extended nature of the
measurements further increases the overhead by sub-
stantially lengthening the achievable cycle time for pe-
riodic syndrome measurements. These challenges raise
the question whether alternative strategies for perform-
ing the syndrome measurements could be fruitful.

A possible route to perform QEC without the over-
head of ancilla qubits is to directly monitor the error
syndromes continuously in time [22, 23]. With this vari-
ation, the code subspaces for the error syndromes are
directly coupled to a continuous readout device [24–30],
avoiding the need for periodic entangling gates and ad-
ditional ancilla measurements. This idea of continu-
ous quantum error correction was proposed in Ref. [31],
and further developed in Ref. [32–39]. Experiments
have since demonstrated several necessary components
of continuous QEC, including measurement-generated
entanglement between pairs of qubits via continuous
parity and partial-parity measurements in supercon-
ducting circuits [40–43]. We have thus reached a stage
of technological development where implementing con-
tinuous QEC becomes feasible for at least the simplest
codes.

In principle, continuous measurements have the ad-
vantages of being: (1) Always on - A continuous mea-
surement eliminates dead time between measurement
cycles of ancillary qubits, preventing errors from oc-
curring during entangling-gate sequences. (2) Natural
- Standard dispersive measurements in superconduct-
ing circuitry are already continuous, producing binary
results only after integrating and thresholding. (3) Po-
tentially faster - Continuous measurements have a char-
acteristic time scale to distinguish the signal from the
intrinsic background noise, which can be shortened to
yield “strong continuous measurements” that rapidly
yield information about error syndromes. Continuous
measurements also have disadvantages, however, since
they are: (i) Noisy - An experimenter must interpret a
stochastic time-continuous signal, which is a more dif-
ficult signal processing problem than for discrete an-
cilla measurements. (ii) Challenging - Using ancillary
qubits of the same design as the data qubits is concep-
tually straightforward, whereas physically implement-
ing direct syndrome measurements requires specialized
qubit circuits. (iii) Computationally expensive - Op-

timal signal processing of the continuous readout may
have high latency.

In the present paper, we assess the performance of im-
plementing continuous QEC for the simplest three-qubit
bit-flip code, assuming a simplified model of modern
superconducting hardware, and develop practical filters
to interpret the stochastic time-continuous signals. We
show that for passive error tracking the benefits of con-
tinuous measurements can outweigh the disadvantages,
enabling high-fidelity decoding of the logical qubit with-
out the need for active feedback. This positive result
is particularly interesting, since much of the previous
work on continuous QEC has focused on applying ac-
tive feedback based on the monitored syndrome signals
to also correct the errors continuously [31, 39], which
has been shown to be rather ineffective due to the large
noise of the signal, as well as degradations from signal
processing delay [44]. For simplicity, we consider pas-
sive error tracking for a prototypical setup that tracks
only Poisson-distributed bit-flip errors in a three-qubit
code, and consider possible generalizations in the sub-
sequent discussion. However, we emphasize that these
techniques also apply to active error correction with the
additional caveat that additional errors not considered
here may occur during the correction pulses.

We compare three signal-processing filters for inter-
preting the error syndromes. We expand upon the
Bayesian filtering methods discussed by van Handel and
Mabuchi [34, 35] and derive a linear version of the
Bayesian filter that permits faster numerical calcula-
tion of the most likely state compared to the nonlinear
(Wonham) filter. To address the issue of computational
expense we then propose two variations of the simplest
Markovian “boxcar” filter that averages the noisy sig-
nals over temporal segments of a fixed length. After
analyzing the ways in which error tracking can fail for
the boxcar filter, we identify the dominant source of
error that compromises its performance. We then in-
troduce an improved non-Markovian “half-boxcar” filter
that corrects the dominant error of the boxcar filter by
re-examining the memory of the preceding half-boxcar
average. Finally, we introduce an improved Markovian
“double threshold” filter that also corrects the domi-
nant error of the crude boxcar filter by using two signal
thresholds. Both variations can be readily implemented
with low-latency circuitry, such as field-programmable
gate arrays (FPGAs), and compare favorably to the op-
timal Bayesian filter. We derive analytic results for the
initial drop in fidelity and the approximately linear fi-
delity decay rate for each filter, optimize them over the
free filter parameters, and verify them with numerical
simulations, finding good agreement.

We now summarize the main findings of this paper.
We provide a simple direct parity readout implemen-
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tation for superconducting transmons that relies on en-
tangling strongly detuned resonator linewidths with the
two-qubit parity subspaces. Our proposed design has
recently been fabricated and tested [45, 46], which mo-
tivates our current work. We derive analytic results
for the initial drop of each signal-processing filter, as
well as their logical error rates, which are summarized
in Tables 2 and 3. We verify these analytical results
through explicit numerical simulations in Figures 6a–
6d. In particular, we conclude that the “half-boxcar”
filter performs comparably to the optimal Bayesian fil-
ter and is therefore a good candidate for real-time lab-
oratory implementation with an FPGA because of its
simple numerical requirements.

The paper is organized as follows. In Section 2 we re-
view the basics of the three-qubit bit-flip code, and pose
the problem. In Section 3, we discuss a possible imple-
mentation for the continuous syndrome measurements.
In Section 4 we introduce and analyze an optimal linear
Bayesian filter. In Section 5 we introduce and analyze
three periodic averaging filters that are more efficient
but suboptimal. In Section 6, we describe our numer-
ical simulations for the continuous syndrome measure-
ments. We verify our analytics of the continuous and
periodic filters with the numerics, and discuss the re-
sults. We conclude in Section 7. We also include an
Appendix that contains a complementary analysis of
an ancilla-based projective measurement implementa-
tion of the three-qubit bit-flip code.

2 Three-qubit bit-flip code
For clarity we review the basics of the three-qubit bit-
flip code and introduce notation and terminology.

2.1 Encoding and error syndromes
The standard bit flip code redundantly encodes a logical
qubit state α|0〉L + β|1〉L into three physical qubits,

|ψ0〉 = α|000〉+ β|111〉, (1)

and uses majority-voting to identify and correct single
bit flip errors. We number the bits from left to right
as 123. We use quantum computing conventions for the
Pauli operators: I = |0〉〈0|+ |1〉〈1|, X = |0〉〈1|+ |1〉〈0|,
Y = −i|0〉〈1| + i|1〉〈0|, and Z = |0〉〈0| − |1〉〈1|. To
indicate idling and bit flip operations on the physical
qubits, we use the Pauli identity I and flip X operators.
The initial encoding of the logical state is recovered after
an idle operation III. Omitting tensor products for
brevity, we use the notation III to indicate the original
encoding. Similarly, the operations after a single bit
flip on the first, second, or third qubit are XII, IXI,

IIX, respectively, which also serve as suitable labels
for the resulting encodings. For example, these bit flips
produce the states

|ψ1〉 = XII|ψ0〉 = α|100〉+ β|011〉, (2)
|ψ2〉 = IXI|ψ0〉 = α|010〉+ β|101〉, (3)
|ψ3〉 = IIX|ψ0〉 = α|001〉+ β|110〉. (4)

In each single-bit-flip case, the resulting states can
be perfectly decoded as long as the new encoding is
learned.

We can learn which single bit flip has occurred with-
out destroying the logical state by performing projective
parity measurements Z1Z2 and Z2Z3 on the system,
where the subscripts of the Pauli Z operators indicate
the bit number. These parity measurements give results
+1 or −1 if the parity of the two coupled bits is even
or odd, respectively. The parity measurements must be
performed without measuring each qubit individually
in order to preserve the coherence of the logical state.
After performing a syndrome measurement of the pair
of parities (Z1Z2, Z2Z3), we can use the syndrome out-
comes to identify the new logical encoding according to
the mapping:

(+1, +1)→ III,
(−1, +1)→ XII,
(−1, −1)→ IXI,
(+1, −1)→ IIX.

(5)

These syndrome measurements are checked periodically
to detect single bit flips and infer the updated logical en-
coding. If desired, one could apply the operation of the
encoding label to restore the encoding to the original
encoding. For example, if we detect the parity mea-
surement outcome is (−1, +1), we know the encoding
is XII; therefore, applying the operation XII restores
the encoding III since applying XII twice on the ini-
tial state yields the identity. However, this correction
step may be delayed or omitted, since knowledge of the
encoding is sufficient to use the coherent quantum in-
formation. Therefore, we assume passive error tracking,
rather than active error correction, for the remainder of
the paper.

The code does not protect against two simultaneous
bit flips from the III encoding, denoted XXI, XIX,
and IXX, which produce the states

|ψ4〉 = XXI|ψ0〉 = β|001〉+ α|110〉, (6)
|ψ5〉 = XIX|ψ0〉 = β|010〉+ α|101〉, (7)
|ψ6〉 = IXX|ψ0〉 = β|100〉+ α|011〉. (8)

Parity measurements of complementary bit states are
identical, so the error syndromes will not correctly iden-
tify the change in encoding if two bit flips occur be-
tween two syndrome measurements. An incorrect iden-
tification of the encoding produces a logical error since
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Figure 1: Hidden Markov model for the transitions between
the eight logical encodings for the 3-qubit bit-flip code. Each
encoding is labeled by the Pauli X operations that relate it to
the reference encoding |ψ0〉 = α|000〉 + β|111〉, as well as a
numeric index k = 0, . . . , 7. Single bit-flips X on each qubit
cause transitions between encodings. Complementary encod-
ings have identical parities, so cannot be distinguished by the
syndrome measurements (Z1Z2, Z2Z3), with bits numbered
left-to-right as 123. We assume that bit flips are independent
and infrequent, with a constant rate µ per qubit.

the quantum information can no longer be correctly de-
coded. The situation is the same with three bit flips,
denoted XXX, which produces an encoding comple-
mentary to the original encoding

|ψ7〉 = XXX|ψ0〉 = β|000〉+ α|111〉. (9)

This syndrome ambiguity is not resolved by including
a third parity measurement of Z1Z3, so we restrict our
analysis to two parity measurements to minimize hard-
ware resources. However, we note that adding the third
parity measurement would slightly improve our ability
to discriminate sequential bit flips from a single bit flip.

The code also does not protect against non-bit-flip
errors of the data qubits, such as phase flips, which can
also produce logical errors. Similarly, the code is not
fault-tolerant, so does not protect against all errors that
can appear during syndrome measurements, such as bit
flips of ancillary qubits in the middle of an entangling
gate.

Our task is to track the transitions between the 8
encodings produced by bit flips, starting from the initial
encoding III. We measure the syndromes to update our
knowledge of the encoding. At some later time t, if we
still know the correct encoding then we have tracked all
bit flip errors successfully and thus can correctly decode
the state. However, if we incorrectly track the encoding,
then we have failed to track bit-flip errors, so trying to
decode the state will produce a logical error.

We define the (binary) fidelity f(t) ∈ {0, 1} of error
tracking after a duration t to be 1 if the knowledge of
the encoding matches the true encoding, and 0 if they
differ. The average fidelity F (t) ∈ [0, 1] is the average
of the binary fidelity over many tracking realizations—
equivalent to the process fidelity in quantum process
tomography—and serves as a useful performance met-
ric.

2.2 Bit-flip error model and fidelity
For simplicity of analysis, we assume that bit flips occur
independently, infrequently, and at a slow but constant
rate µ per qubit, so that the flips are Poisson-distributed
in time. We take the bit-flip rate to be equal for each
of the three qubits for simplicity and symmetric with
respect to the bit states. To focus on the flipping dy-
namics, we work in the rotating frame of the physical
qubits, which remain uncoupled, so the effective idling
Hamiltonian is zero.

With these assumptions, the bit-flip-tracking task re-
duces to finding the evolution of a hidden Markov model
[34, 35, 47, 48], with the possible transitions illustrated
as the arrows in Fig. 1. Each encoding k = 0, . . . , 7
described in the previous subsection has a probability
Pk ∈ [0, 1] such that

∑
k Pk = 1. We assume the ini-

tial encoding state is III. The master equation that
describes the jump processes on average can then be
expressed as a matrix equation

∂t ~P = M ~P , P0(0) = 1, (10)

with probability vector ~P = [P0 P1 P2 P3 P4 P5 P6 P7]T
and Markov transition matrix

M = µ



−3 1 1 1 0 0 0 0
1 −3 0 0 1 1 0 0
1 0 −3 0 1 0 1 0
1 0 0 −3 0 1 1 0
0 1 1 0 −3 0 0 1
0 1 0 1 0 −3 0 1
0 0 1 1 0 0 −3 1
0 0 0 0 1 1 1 −3


.

(11)

Note that we neglect double-flip or triple-flip processes
in this matrix. The solution ~P (t) = exp(tM) ~P (0)
asymptotically approaches the uniform distribution as
a fixed point for large t, limt→∞ Pk = 1/8.

The average encoding fidelity F (t) ≡ P0(t) may be
obtained by solving Eq. (10). Each bit flips indepen-
dently, so the solution factors into a product of expo-
nential decays of each bit to an asymptotic flip proba-
bility of 1/2. The average fidelity with no jump tracking
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is thus

F (t) ≡ P0(t) =
[

1 + exp(−2µt)
2

]3
(12)

= 1− 3µt+ 6µ2t2 + · · · .

The fractional deviation of this decay from the linear
regime is (6µ2t2)/(3µt) = 2µt. For later optimizations
we bound this deviation by 1/15 to ensure that the lin-
ear approximation F (t) ≈ 1− 3µt is a reasonable decay
model, which bounds µt ≤ 1/30 and thus the maxi-
mum average fidelity drop while remaining in the linear
regime to 1− F (t) ≤ 10%.

For practical error-tracking purposes, it is sufficient
to focus on improving the short-time fidelity with linear
decay by tracking the jumps with syndrome measure-
ments. After including jump tracking, the approximate
form of the fidelity in the linear regime will be

F (t) = 1−∆Fin − Γt, (13)

where ∆Fin is the initial drop in fidelity on a short time
scale, while Γ is the average logical error rate for longer
time scales after the tracking method takes full effect.

In later sections we will derive approximate expres-
sions for and optimize this linear drop in fidelity to as-
sess the relative performance between error correction
methods. We will find that with good error correction
the optimized linear decay Γ scales as µ2 after the short-
duration initial drop in fidelity ∆Fin that is still linear
in µ.

3 Physical Setup
The goal of a physical realization of the three-qubit code
is to perform the syndrome measurements of the two-
qubit parities (Z1Z2, Z2Z3) and use them to track bit
flips to preserve the knowledge of the logical state en-
coding. We focus on direct syndrome measurement that
is continuous in time, in contrast to traditional ancilla-
based periodic syndrome measurements. For concrete-
ness, we consider one possible physical implementation
with modern superconducting transmon qubits [49] on a
two-dimensional wafer, shown in Fig. 2, where the par-
ities are measured continuously via dispersive coupling
to microwave resonators [45, 46]. While a third parity
measurement of Z1Z3 is possible in principle by wrap-
ping the qubits into a ring, it increases the complexity
of the hardware.

In this configuration, the readout resonators are cou-
pled to pairs of data qubits to directly measure the par-
ity. The dispersive shifts χ for each qubit (e.g., χ1,2
or χ2,3 in Fig. 2) must be tuned to be identical, such
that they are comparable to or greater the linewidth κ

Figure 2: Possible experimental setup for continuous bit flip
error correction using the three-bit code. The parity of neigh-
boring qubits (zizj) = ±1 is measured directly by coupling
both qubits to the same readout resonator such that they each
dispersively shift the resonator frequency by the same amount,
χi,j . Pumping on resonance then populates the resonator field
entangled with the odd parity subspace, leaving the even par-
ity subspace entangled with a near-vacuum state. Homodyne
measurement produces a stochastic signal, Ii,j(t), that directly
reveals the parity after renormalization, Ii,j(t) → ri,j(t) =
(zizj)(t) +

√
τ ξi,j(t), with 〈ξi,j(t)ξi,j(0)〉 = δ(t). Integrating

this stochastic signal for the characteristic time scale τ pro-
duces a unit signal-to-noise ratio for identifying the qubit-qubit
parity.

of the resonator, 2χ � κ. By fabricating qubits 1 and
3 with tunable SQUID loops, the dispersive shifts can
be tuned to match as required [45, 46]. The odd-parity
subspace with two-qubit states |01〉 and |10〉 will shift
the resonator frequency first up by χ then down by −χ
(or vice versa) to return to its original resonance fre-
quency. The even-parity subspace will have |11〉 shift
the frequency by 2χ� κ while |00〉 will shift by −2χ so
that the line widths do not overlap strongly. Hence, the
resonant pump will produce a non-vacuum steady-state
field in the resonator only for the odd-parity subspace,
leaving the even-parity subspace in vacuum.

The parity subspaces therefore become entangled
with two distinct coherent fields: (c00|00〉 + c11|11〉 +
c01|01〉 + c10|10〉)|α = 0〉 → (c00|00〉 + c11|11〉)|α =
0〉 + (c01|01〉 + c10|10〉)|α = β〉 with |β| > 0. This
entanglement enables homodyne measurement of the
leaked resonator field to distinguish the subspaces. The
coherence of each subspace, however, remains essen-
tially unperturbed because the fields for each parity
subspace are indistinguishable within the subspace. Re-
alistically, imperfect field overlap can still dephase the
parity subspaces, which is an imperfection analogous
to entangling-gate infidelity in ancilla-based parity-
measurements. For simplicity of analysis, we assume
this dephasing is sufficiently slow to neglect.

After amplifying the leaked fields and measuring
them via homodyne detection along the maximally in-
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formative field quadrature, a stochastic signal is ob-
tained for each parity resonator. The resonator con-
nected to data qubits 1 and 2 produces the signal I1,2(t),
while the resonator connected to data qubits 2 and 3
produces the signal I2,3(t). After properly shifting and
normalizing these signals, they approximate moving-
mean Gaussian stochastic processes centered at the par-
ity eigenvalues (zizj) = ±1:

dr1,2(t) = (z1z2)(t) dt+√τ1,2 dW1,2,
dr2,3(t) = (z2z3)(t) dt+√τ2,3 dW2,3.

(14)

Here, dW1,2 and dW2,3 are statistically independent
Wiener increments, each with zero mean Gaussian
statistics and variance dt. Formally these increments
can also be understood as δ-correlated white noise,
ξi,j ≡ dWi,j/dt, with 〈ξi,j(t)ξi,j(t′)〉 = δ(t − t′). For
simplicity in what follows, we assume both noises are
characterized by the same characteristic measurement
timescale τ1,2 = τ2,3 = τ , which signifies the integra-
tion duration needed to achieve unit signal-to-noise ra-
tio (SNR). The parity information can thus be recov-
ered by processing the stochastic signal over a duration
of time. As a temporal reference in simulations, we will
fix the measurement timescale to be fast, τ = 100 ns,
and consider relatively slow bit-flip rates in the range
µτ ∈ [10−6, 10−3].

This direct parity-measurement method reduces
hardware resources compared to an ancilla-qubit-based
approach. Such a gate-based approach would require
two additional ancilla qubits to measure the parities
(in addition to the readout resonators for each ancilla
qubit), as well as periodic entangling gates and pro-
jective measurements. In contrast, the direct parity-
measurement method considered here requires only a
single readout resonator per parity measurement. The
direct method also yields a raw, time-continuous parity
signal, which can be processed in two distinct ways for
the purposes of error correction:

1. Continuous filtering to track the most likely errors
that have occurred in real time

2. Periodic filtering by integrating and thresholding
over consecutive durations ∆t

Notably, the second method can use the same error-
tracking algorithm as for the ancilla-based approach
with periodic projective measurements. We now ana-
lyze both methods in the following sections.

4 Continuous Bayesian filter
Environmental perturbations during monitoring cause
jumps between the encoding states in Fig. 1. Encod-
ings connected by a single jump have distinct parity

eigenvalues, so the means of the noisy parity signals in
Eqs. (14) will correspondingly jump. Integrating these
noisy signal with a moving temporal window with a du-
ration longer than τ can therefore identify infrequent
single jumps [50], allowing the changes in logical encod-
ing to be tracked via the changing syndromes. However,
if multiple jumps occur within a time scale comparable
to τ , then the noise can prevent the jumps from being
identified before the encoding jumps to a complemen-
tary one with a parity indistinguishable from the origi-
nal one. Such a misidentification of an encoding with its
complement oding is a logical error that will not be cor-
rected by continued monitoring. It is thus important to
filter the noisy signals in a way that minimizes misiden-
tification errors caused by rapid successive jumps.

An optimal time-continuous filter can be derived by
using all available information to process the time-
continuous noisy signals. The key idea is to update the
encoding probabilities ~P at each moment in time us-
ing Bayes’ rule, which requires known likelihoods of ob-
serving the collected signals given definite parities and
a known estimate of the flipping rate µ. The maximum
resulting probability then indicates the best guess for
the updated encoding.

Importantly, the fidelity of tracking the encoding is
determined only by the correctness of the estimate at
the final time. The assumed Markovian dynamics im-
ply that each random jump and random noise fluctua-
tion is independent of past fluctuations, which implies
that adding information from temporally extended sig-
nal correlations will not improve the final state estimate.
In particular, time-symmetric smoothing methods [51–
53]) that process the past signal still produce estimates
identical to forward-in-time estimates for the state at
the final time (as we have verified numerically), even
though they do generally improve the tracking fidelity
for past jumps. It is thus sufficient to consider only
forward-in-time Bayesian updates to derive a filter that
uses all relevant information about the stochastic signal
and the flipping dynamics to achieve an optimal state
estimate at the final time.

Such a time-continuous Bayesian filter is known as a
Wonham filter [54], and has been applied to continuous
error correction of the three-bit code by van Handel and
Mabuchi [34, 35]. However, the Wonham filter contains
a nonlinear update from Bayes’ rule that reduces its
computational efficiency during real time processing of
the stochastic signals. To address this problem, we in-
troduce a variation of the Wonham filter that removes
this nonlinearity to improve computational efficiency.
Our linear Wonham filter uses unnormalized probabil-
ities ~σ(t) that reproduce the correct probabilities after
renormalization ~P (t) = ~σ(t)/||~σ(t)||1 with the 1-norm
||~σ(t)||1 =

∑7
k=0 σk(t). These unnormalized probabili-
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k s1,2|k s2,3|k

0 +1 +1
1 -1 +1
2 -1 -1
3 +1 -1
4 +1 -1
5 -1 -1
6 -1 +1
7 +1 +1

Table 1: Parity eigenvalues si,j|k for each encoding k.

ties can be regularized periodically only as needed, dras-
tically reducing the computational overhead of real-time
processing with the filter. We expect this linear filter
to be suitable for real-time processing with FPGAs to
enable on-demand state estimation and feedback. We
derive and analyze this filter in what follows.

4.1 Derivation of linear Bayesian filter
Recall that the Markovian master equation for the
encoding probabilities ~P (t) without error tracking is
Eq. (10). The goal is to update this evolution to in-
clude the information gained by the stochastic parity
measurements. This new information will refine the
probability evolution with Bayes’ rule.

Before deriving the linear filter, we first derive the
nonlinear Wonham filter for comparison. The deter-
ministic dynamics of the bit-flips is unchanged by the
probabilistic updates from the measurement results, so
the contribution of the averaged master Eq. (10) will
be unchanged in the final dynamical equation. For this
reason, we will initially neglect this deterministic part
in the derivation, then add it back at the end.

4.1.1 Nonlinear Bayesian (Wonham) filter

After averaging the stochastic signals over a short du-
ration dt, the rescaled readouts r̄1,2 and r̄2,3 for the
two continuous parity measurements are Gaussian with
independent noises according to Eqs. (14), so the joint
probability density of both results is a product of Gaus-
sian distributions,

P (r̄1,2, r̄2,3 | k) = P (r̄1,2 | k)P (r̄2,3 | k), (15)

P (r̄i,j | k) =
exp(−dt(r̄i,j − si,j|k)2/2τ)√

2πτ/dt
. (16)

Here the index k = 0, . . . , 7 indicates a definite encoding
as described in Fig. 1, and the means si,j|k = ±1 are
the parity eigenvalues of the encoding shown in Table 1.

After collecting integrated readouts, each encoding
probability Pk in ~P should be updated via Bayes’ rule,

Pk
(r̄1,2, r̄2,3)−−−−−−→ P (r̄1,2, r̄2,3 | k)Pk∑

` P (r̄1,2, r̄2,3 | `)P`
. (17)

Since the likelihood probabilities are Gaussian with
means that always square to 1, this update ratio con-
siderably simplifies to

Pk →
exp

[
(dt/τ)(r̄1,2s1,2|k + r̄2,3s2,3|k)

]
Pk∑

` exp
[
(dt/τ)(r̄1,2s1,2|` + r̄2,3s2,3|`)

]
P`
. (18)

This update is already sufficient to track the most
likely state given a temporal sequence of integrated
readouts {r̄i,j(ndt)}Nn=0. However, it can be concep-
tually useful to put the time-continuous deterministic
evolution of Eq. (10) on equal footing with the Bayesian
updates by taking the time-continuous limit of the lat-
ter to produce a filtering equation that includes both
stochastic and deterministic updates. To do this, we
expand the Bayesian update equation to first order in
dt to obtain a nonlinear stochastic differential equa-
tion (SDE) in Stratonovich form (with time-symmetric
derivative obeying standard calculus rules), to which we
can simply add the deterministic part of the evolution
from Eq. (10) giving

(Stratonovich) (19)

∂tPk =
∑
`

Mk`P` + (δk` − Pk)P`
s1,2|` r1,2 + s2,3|` r2,3

τ
,

where Mk` are the components of the transition matrix
M in Eq. (11), and δk` is the Kronecker delta.This equa-
tion can be used directly to convert the data stream into
a state estimation.

The stochastic process can be modeled by converting
the SDE to Itô form with a forward-difference deriva-
tive, which modifies the equation by adding an effec-
tive drift term [55]. After lengthy calculation, the
added drift cancels the means of the stochastic signals
ri,j(t) = (zizj)(t) +

√
τ ξi,j(t) to leave only the zero-

mean white noise ξi,j(t) ≡ dWi,j(t)/dt,

(Itô) (20)

∂tPk =
∑
`

Mk`P` + (δk` − Pk)P`
s1,2|` ξ1,2 + s2,3|` ξ2,3

τ
.

Since in Itô form the noise terms ξi,j are uncorrelated
with each other and with the state probabilities at the
earlier time step, this form of the equation makes it clear
that averaging over all noise realizations eliminates the
stochastic terms, leaving just the drift, to correctly re-
cover the original Lindblad form master Eq. (10) with-
out tracking. This SDE is the nonlinear Wonham filter
used by van Handel and Mabuchi [35, 54].
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Figure 3: Two examples of the linear Bayesian filter used for bit-flip tracking. The initial encoding is III (see Fig. 1), with
characteristic measurement time of τ = 0.1µs, and a bit-flip rate of µ = 5 × 10−3 (µs)−1. (top) Successful tracking. Single bit
flips are identified after a brief delay comparable to τ . Three filter errors caused by noise fluctuations are shown at times 160µs,
255µs, and 275µs, which are all quickly self-corrected. (bottom) Unsuccessful tracking due to a logical error. Two bit flips (bits 1
and 3) occur in rapid succession at 10µs, faster than the time scale of τ can detect. The filter incorrectly interprets this pair as a
bit 2 flip, which is a logical encoding error. The filter never recovers, and continues tracking the complementary encoding.

4.1.2 Linear Bayesian filter

We will now linearize the Wonham filter by removing
the nonlinear normalization step from the Bayesian up-
date. To do this, we define “unnormalized probabili-
ties” ~σ such that ~σ/||~σ||1 = ~P recovers the same en-
coding probabilities as before. We then modify the key
Bayesian update step of Eq. (18) by omitting the de-
nominator:

σk
(r̄1,2, r̄2,3)−−−−−−→ exp

[
dt

τ
(r̄1,2s1,2|k + r̄2,3s2,3|k)

]
σk. (21)

Note that we have preserved the cancellation of state-
independent Gaussian factors in the Bayesian update
to prevent irrelevant (state-independent) changes in the
norm. This linearized update isolates only the state-
dependent changes to the unnormalized probabilities.

Proceeding as before, we can expand this update to
linear order in dt to obtain a filtering equation. Impor-
tantly, the instantaneous signals ri,j(t) = (zizj)(t) +√
τ ξi,j(t) depend only on the definite parity (zizj)(t) =

±1 of the actual encoding (i.e., not an expectation value
in an estimated state), so do not depend upon the dis-
tinction between ~P or ~σ. We then add the deterministic
updates as before with one modification: we remove the
diagonal part −3µI of the transition matrix in Eq. (11)
that is proportional to the identity matrix I. Any such
term proportional to the identity causes irrelevant in-
creases in the norm of ~σ and thus can be added or re-
moved arbitrarily without affecting the relative sizes of
its components. This freedom of choice is analogous to
choosing a gauge and will be useful in the derivation to
follow. The Stratonovich filtering equation then takes
the simple linear form

∂t~σ =
(

M̃ + r1,2S1,2 + r2,3S2,3

τ

)
~σ, (22)

where

M̃k` ≡ (1− δk`) Mk`, (23)
(Si,j)k` ≡ δk` si,j|k. (24)
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This linear Bayesian filter directly depends on the mea-
sured signals ri,j(t) as well as the diagonal matrices Si,j
of the parities si,j|k shown in Table 1. Converting this
equation to Itô form simply adds a state-independent
drift term, ~σ/τ , on the right hand side that only changes
the overall norm and can thus be omitted. As a result,
Eq. (22) can be understood in either the Stratonovich
or Itô picture without changing the results that will be
predicted by the maximum unnormalized probability,

kest ≡ argmaxk σk. (25)

We show examples of this filter being used for error
tracking in Fig. 3. We contrast one example trial with
only single bit-flip errors (top) against one trial with one
“double-flip” error that is uncorrectable (bottom). In
the successful tracking case, the filter tightly tracks the
actual encoding jumps, with a delay in detecting jumps
set by the characteristic measurement time τ . Noise
fluctuations cause occasional errors that are rapidly cor-
rected on the same time scale of τ . In the unsuccess-
ful tracking case, two successive jumps that occur on a
timescale faster than τ are misinterpreted as a different
single bit flip, which produces a logical error that the
filter is not designed to correct.

4.2 Bayesian filter analysis
We now derive simple expressions for the linear degra-
dation of state-tracking fidelity in Eq. (13). We first
consider the initial fidelity drop ∆Fin, then consider the
linear decay rate Γ at steady-state after the filter takes
full effect. The Bayesian filter has no free parameters
to optimize; it only depends on knowledge of the parity
eigenvalues, the characteristic measurement time τ of
the collected signals, and the estimated bit-flip rate µ.
As a result, the derived expressions for fidelity decay
provide an estimate for the best tracking fidelity that
could be achieved in principle with continuous parity
measurements.

4.2.1 Initial fidelity drop

The Bayesian filter has an initial drop in fidelity Fin
primarily because of its delayed response to a bit flip.
This delay makes the filter vulnerable to bit flips that
occur just before the final state estimate is requested.
We thus expect a drop in fidelity by the probability of
a bit flip occurring within one filter response time. We
stress this is a general feature of all error correction
techniques and is in no way special to our protocol.

The filters starts from time t = 0 with the correct
encoding. Since the initial encoding is 0 (III) with cer-
tainty, we focus on the encodings reachable by one bit
flip: 1 (XII), 2 (IXI), and 3 (IIX) according to the

numbering in Fig. 1. For simplicity, we initially neglect
the Gaussian noise in Eq. (22) to focus on the evolution
caused by the signal means. We also use the freedom of
the norm to add a constant term to Eq. (22) and shift
the parity eigenvalues after each jump to 0 for the cor-
rect states and -2 for incorrect states; this shift simpli-
fies the analysis by keeping correct state (unnormalized)
probabilities nearly constant.

Focusing on the four states relevant from the previous
paragraph (σ0, σ1, σ2, σ3), the equation of motion is

∂t~σ =


0 µ µ µ
µ −2/τ 0 0
µ 0 −4/τ 0
µ 0 0 −2/τ

 · ~σ. (26)

Here we have assumed that the true state of the system
is (III), so the parities read by the detectors is 〈r1,2〉 =
1, 〈r2,3〉 = 1 (even,even). From Eq. (22) the diago-
nal term is thus {1,−1,−1, 1}/τ + {1, 1,−1,−1}/τ =
{2, 0,−2, 0}/τ . We have used the freedom of the overall
norm of ~σ to subtract a factor of 2I/τ from all diago-
nal entries, so the correct state (0) does not grow, but
rather the incorrect states decay.

It is now straightforward to see that starting from
the initial condition (1, 0, 0, 0) the components σ1 and
σ3 reach a steady state of µτ/2, while the component σ2
reaches its steady state of µτ/4. The true component σ0
actually grows very slowly from 1 as σ0 ≈ 1+(5/4)µ2τt,
but we can neglect this correction on the time scales of
interest. This is then the idling state of the filter while
in the error-free original state.

Suppose now that a bit flip occurs, either XII, IXI,
or IIX. We take first a flip on bit 1. The parity eigen-
values then change immediately to the values 〈r1,2〉 =
−1, 〈r2,3〉 = 1 (odd,even). Consequently, the filter equa-
tion changes the diagonal term to −{1,−1,−1, 1}/τ +
{1, 1,−1,−1}/τ = {0, 2, 0,−2}/τ , and we again shift
the overall matrix by −2I/τ to get the new equation

∂t~σ =


−2/τ µ µ µ
µ 0 0 0
µ 0 −2/τ 0
µ 0 0 −4/τ

 · ~σ, (27)

where we now have the initial condition just found,
(1, µτ/2, µτ/4, µτ/2). These equations are readily
solved to find σ0 = e−2t/τ and σ1(t) = µτ −
(µτ/2)e−2t/τ , which quickly limits to its new steady
state of µτ .

The filter is able to catch the error when the value of
σ1 exceeds the value of σ0. This timescale defines the
response time of the filter. Solving then µτ = e−2t/τ ,
we find the response time of the filter to a qubit 1 flip
to be t(1)

r = (τ/2) ln(1/µτ). The definition of the initial
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drop of the filter fidelity is if the bit flip occurs be-
fore the filter can respond appropriately. Consequently,
if the process is called after an error occurs, but be-
fore the filter can respond, then a logical error happens.
The probability of this occurring is the drop in fidelity,
∆F = µt

(1)
r , which is linear in µ.

Repeating this analysis for qubit 3 gives the same
result, t(3)

r = (τ/2) ln(1/µτ). For a qubit 2 error, both
parities change (odd,odd), so the relevant equation of
motion is

∂t~σ =


−4/τ µ µ µ
µ −2/τ 0 0
µ 0 0 0
µ 0 0 −2/τ

 · ~σ, (28)

because the diagonal term is now −{1,−1,−1, 1}/τ −
{1, 1,−1,−1}/τ = {−2, 0, 2, 0}/τ , with the overall sub-
traction. Starting from the same initial conditions as
before, the solutions are σ0(t) = e−4t/τ , and σ2(t) =
(µτ/2) − (µτ/4)e−4t/τ , which limits quickly to µτ/2.
Thus, the time when σ0 becomes smaller than σ2 is
given by t(2)

r = (τ/4) ln(2/µτ).
Adding up the drop contributions for the three single

bit flips produces

∆Fin = µτ

[
5
4 ln

(
1
µτ

)
+ 1

4 ln 2
]
. (29)

The initial drop in fidelity is linear in µ up to logarith-
mic corrections, since the error correction has not taken
full effect. As a reminder, we expect the long-time de-
cay after error correction takes effect to be quadratic in
µ.

This estimate for the initial drop has neglected the
role of the Gaussian noise in the signals. As seen in
Fig. 3, noise fluctuations can occasionally cause the fil-
ter to jump to a different state estimate even when no
bit flip occurs. These fluctuations produce false pos-
itives that are usually quickly corrected on the time
scale of the filter response and do not contribute to the
logical error rate. However, if such a fluctuation occurs
just before the termination time, then the false positive
is not corrected before the estimated state is requested,
resulting in a misidentification error. A drop contribu-
tion from such noise-induced misidentifications should
be added to the flip-based drop estimate in Eq. (29).

As we present in Section 6, we have numerically
checked Eq. (29) with flip rates ranging from µτ ∈
[10−6, 10−3]. We found that the derived expression sys-
tematically underestimates the drop by a small amount,
as anticipated from the omission of the noise contribu-
tion. In order to correct this systematic underestima-
tion in a crude way, we found that it is sufficient to al-
ter the numerical prefactor in the first term of Eq. (29)

by substituting 5/4 7→ 3/2, effectively adding a noise-
based contribution that is approximately half that ex-
pected from a flip-induced single parity flip µt

(1)
r /2 =

(µτ/4) ln(1/µτ). Though physically unjustifiable due to
the lack of true bit flip, this adjustment compensates for
the additional noise-based drop and agrees with numer-
ics within the range µτ ∈ [10−6, 10−3]. A proper treat-
ment of the noise-induced drop is analytically lengthy
and beyond the scope of the simple derivations given
here, so we make this crude prefactor substitution for
simplicity in the plots of Section 6.

4.2.2 Logical error rate of the Bayesian filter

In addition to the errors contributing to the initial drop
in fidelity, which only occur just before the final time,
the Bayesian filter is vulnerable at any time to logical
errors caused by two consecutive bit flips that occur
within one response time of the filter. Since the first
bit flip does not have time to be registered by the filter,
the two flips will be interpreted as a single flip, which
causes the filter to track an incorrect complementary
encoding, as shown in the bottom half of Fig. 3. These
logical errors require two flips, so produce a logical error
rate that scales as µ2.

Logical errors of this type can be produced by 6
double-flip scenarios, which we can reduce to three dis-
tinct cases by symmetry. The sequence of bit 1 flip-
ping then bit 2 flipping, (i.e., {1, 2}) produces the same
error as the {3, 2} flip sequence. Similarly, the {2, 1}
and {2, 3} sequences produce identical errors, as do the
{1, 3} and {3, 1} sequences. We thus consider only three
distinct cases: {1, 2}, {2, 1}, and {1, 3}.

We start with the {1, 2} case. Consider a bit 1 flip at
time t = 0 (chosen arbitrarily) followed by a bit 2 flip at
a later time T that is faster than the filter can resolve
it. After the second bit flip the correct encoding is 4
(XXI). The filter can sometimes make an error and
return the value of 3 (IIX), because it cannot resolve
the time between the two parity flips, and can only see
the transition from 0 to 3, connected by a single bit flip
on the third qubit (see Fig. 1). Formally, this occurs
if σ4(t) < σ3(t) asymptotically for t � T . We will
now calculate the rate at which this mistake can occur,
which leads to a logical error that can not be corrected.

We generalize the analysis of the last subsection by
also including the dynamics of state σ4, which will be
the true state at the end of the section. This state
connects to states 1 and 2 by bit flips, and before the
first flip has the equation of motion ∂tσ4 = µ(σ1 +σ2)−
2σ4/τ . Its steady state value is 3µ2τ2/8.

Once qubit 1 flips at time t = 0, the new diago-
nal terms of the equation matrix are associated with
(odd,even) parities, and become {−2, 0,−2,−4,−4}/τ .
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The equation of motion for state 4 is now ∂tσ4 = µ(σ1 +
σ2) − 4σ4/τ . The steady-state value is σ4 = µ2τ2/4.
The results obtained before for σ0, σ1 still hold, and
we find the solution σ3(t) = (µτ/2)e−2t/τ . For later
convenience, we also note that solutions for the other
components are σ2(t) = µte−2t/τ and σ5(t) = µ2τ2/2
in the steady state.

Qubit 2 then flips at time t = T , making the true
state of the system now 4 (XXI) and the parity eigen-
values (even, odd). The new diagonal terms of the equa-
tion matrix become {−2,−4,−2, 0, 0}/τ . This indicates
that neither state 3 nor state 4 are dynamically sup-
pressed by the filter, because both have the correct par-
ities associated with them. We now reset our time, and
need to solve the following approximate set of equations

∂tσ0 = −2σ0/τ, (30)
∂tσ1 = −4σ1/τ,

∂tσ3 = µσ0,

∂tσ4 = µσ1,

starting with the initial conditions σ0(T ) =
e−2T/τ , σ1(T ) = µτ, σ3(T ) = (µτ/2)e−2T/τ , σ4(T ) =
µ2τ2. In the equations above, we have kept the
leading order terms assuming µτ � 1 (states 2,5,7
are not relevant to this discussion). These equations
can be solved with standard methods, leading to the
asymptotic results for t � T of σ̄3 = µτe−2T/τ , and
σ̄4 = µ2τ2/2.

The filter will give a logical error if σ̄3 > σ̄4 since it
returns the incorrect state. From the asymptotic results
derived above, this error occurs when

T <
τ

2 ln
(

2
µτ

)
. (31)

This result makes physical sense: If the second error
occurs at a time shorter than the filter response time,
it cannot sense the difference between the two scenerios
we have sketched here. The logical error rate is the rate
at which this kind of process occurs. This rate can be
calculated as the rate of the first error occurring, µ,
times the probability that a second error occurs within
a time T after it, µT . Consequently, the error rate is
given by Γ{1,2} = (µ2τ/2) ln(2/µτ).

We next consider the {2, 1} case. The reverse sce-
nario of a bit 2 flip followed by a bit 1 flip produces
a very similar derivation to the one above, which we
omit for brevity, and also yields the same condition
T < (τ/2) ln(2/µτ). Therefore, the contributions to the
logical error rate from this scenario (or bit 2 then bit 3
flips) are the same Γ{2,1} = Γ{2,3} = (µ2τ/2) ln(2/µτ).

Finally, we consider the {1, 3} case. The scenario of
a bit 1 flip followed by a bit 3 flip produces a slightly
different result than the other two cases. After the bit 1

flip, at time T we have the same states from before, the
largest of which are σ0(T ) = exp(−2T/τ) and σ1(T ) =
µτ . Now, qubit 3 flips instead of qubit 2, so the relevant
states are 5 (XIX), the correct state, and 2 (IXI), the
incorrect one, with the same parity results of (odd,odd).
The relevant diagonal terms in the matrix equation are
now {−4,−2, 0,−2,−2, 0}/τ , so we now focus on the
σ0, σ1, σ2, σ5 dynamics. The equations of motion for
this situation are then,

∂tσ0 = −4σ0/τ, (32)
∂tσ1 = −2σ1/τ,

∂tσ2 = µσ0,

∂tσ5 = µ(σ1 + σ3),

with the initial conditions established after the qubit
1 bit flip, σ0(T ) = e−2T/τ , σ1(T ) = µτ , σ2(T ) =
µTe−2T/τ , and σ5(T ) = µ2τ2/2. Solving these equa-
tions with standard methods yields for t � T the
asymptotic results, σ̄5 = µ2τ2, and σ̄2 = µTe−2T/τ .
We can find the logical error rate by finding the time
where σ̄2 > σ̄5, or whenever t < T , where

T = τ

2 ln T

µτ2 ≈
τ

2 ln
[

2
µτ

ln c

µτ

]
, (33)

and c is a number of order 5 in the logarithm approxi-
mation.

By symmetry, all other error processes identified in
the beginning of the section reduce to the type identified
above. Adding them yields the total logical error rate,

Γ = µ2τ

[
3 ln 2

µτ
+ ln ln(5/µτ)

4

]
. (34)

We numerically verify this expression over the range of
bit-flip rates µτ ∈ [10−6, 10−3] in Section 6.

5 Periodic Filters
The linear Bayesian filter analyzed in the preceding sec-
tion produces an optimal estimate and is more compu-
tationally efficient than the nonlinear Wonham filter.
However, it requires prior knowledge of the bit-flip rate
µ and the Gaussian noise time scale τ , and still requires
several matrix multiplications per time step. We wish
to compare this optimal case against simpler and more
practical filters that require less prior information and
are more easily implementable in hardware, e.g. with
field-programmable gate arrays (FPGAs), to enable on-
demand state estimation for purposes of feedback con-
trol. We consider variations of a particularly simple
“boxcar-averaging” filter, which should be well-suited
for low-latency hardware.
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Boxcar filters average successive durations ∆t of the
noisy parity signals ri,j(t), then threshold the integrated
means r̄i,j =

∫∆t
0 ri,j(t)dt/∆t, often using two thresh-

olds a+ and a−, with a+ > a−. That is, if the average
signal exceeds the threshold a+, we assign the value
+1 to the parity. Similarly, if the time-averaged sig-
nal is less than the threshold a−, then we assign the
value −1 to the parity. Any result between the two
thresholds a+ and a− is treated as ambiguous, man-
dating a separate strategy for resolving the ambiguity.
The final outputs of the filter are binary parity results,
(b1,2, b2,3) with bi,j = ±1, for each time duration ∆t.
These results can then be used to track changes in the
encoding using the syndromes in Eq. (5). This filter
is the most direct translation of standard ancilla-based
error correction with periodic projective measurements
to continuous syndrome measurements. The primary
difference is that continuous measurements are always
on, and the collected data is only later partitioned into
bins of duration ∆t for averaging and tracking.

In what follows, we analyze three simple boxcar-
averaging filter variations:

A. Boxcar filter : The simplest method for averaging
sequential time bins of duration ∆t, using symmetric
thresholds a+ = a− = 0.

B. Half-boxcar filter : A non-Markovian modification
to the simple boxcar filter that removes its domi-
nant source of error by occasionally processing the
averaged signal shifted by a half duration ∆t/2.

C. Double-threshold boxcar filter : A Markovian mod-
ification to the simple boxcar filter that also re-
moves its dominant source of error, using asymmet-
ric thresholds a ≡ a+ ≥ 0 and a− = 0.

We find that although the simplest boxcar filter per-
forms poorly compared to the Bayesian filter, the two
proposed modifications can achieve performance com-
parable to the optimal Bayesian filter with significantly
less computational overhead. Note that for these con-
sidered filters, only two tunable parameters must be set
prior to filtering: the boxcar duration ∆t for all three
filters, and the asymmetric threshold a ≥ 0 for the dou-
ble threshold filter.

Over the next few subsections, we identify the domi-
nant error mechanisms and define the three boxcar fil-
ters in more detail. For each filter, we derive expressions
for the long-time linear decay rate Γ. We then derive
expressions for their initial fidelity drops ∆Fin, since
they arise from similar mechanisms. We then consider
optimization of the tunable filter parameters and ana-
lytically optimize the parameters to obtain simpler for-
mulas that can be directly compared with those of the

Bayesian filter. We numerically verify both the optimal
parameters and the derived expressions in Section 6.

5.1 Boxcar error mechanisms
There are two main mechanisms for causing a change
in syndrome in a boxcar filter: (i) A bit flip can occur
with rate µ (yielding a probability of flip per averaging
box of µ∆t), which can alter one or both parities. (ii)
Noise fluctuations can cause the average parity signal
over a box to appear changed, even though no actual
bit flip occurs. Such a misidentification of a parity flip
will be incorrectly interpreted by the filter as an actual
bit flip.

Logical errors are produced by sequences of these ba-
sic mechanisms occurring at particular times. For ex-
ample, a bit flip that occurs in the latter half of an
averaging box will not produce a detectable parity flip
until the subsequent box, which allows time for a second
bit flip to occur and place the bits in a state comple-
mentary to the estimated state tracked by the filter.
Similarly, if one parity is misidentified in an averaging
box, a nearby bit flip can confuse the filter so that it
tracks an estimation that is complementary to the ac-
tual state. We detail these dangerous event sequences
in the following sections.

Parity misidentification errors play an important role
in the following analysis, so we give a general analysis
of their probabilities to occur here. A parity misiden-
tification occurs when the integrated signal for a box
is observed to be less than the discrimination thresh-
old a, even though no bit flip occurs. Given an in-
tegration duration ∆t and mean parity rm over that
duration (e.g., rm = ±1 for a definite parity that per-
sists the entire duration), the probability of obtain-
ing an integrated signal r̄ is Gaussian, P (r̄ | rm) =
exp(−(r̄ − rm)2∆t/2τ)/

√
2πτ/∆t. Thus, the probabil-

ity of obtaining an integrated signal less than a discrim-
ination threshold a is

P (r̄ < a | rm) =
∫ a

−∞
P (r̄ | rm)dr̄

= erfc
[
(rm − a)

√
∆t/2τ

]
/2, (35)

where erfc(x) = 1 − erf(x) is the complementary error
function.

The probability of misidentifying a parity of +1 as
−1 is therefore

Pmis(a) ≡ P (r̄ < a |+1), (36)

while misidentifying −1 as +1 has probability

P (r̄ > a | −1) = P (r̄ < −a |+1) = Pmis(−a), (37)
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using the simplification P (−r̄ | −1) = P (r̄ |+1). For
the simple boxcar case, when the threshold is the sym-
metric point a = 0, these formulas simplify to a single
misidentification probability,

Pmis ≡ Pmis(0), (38)

= erfc(
√

∆t/2τ)/2,

≈ exp(−∆t/2τ)
√
τ/2π∆t.

The final asymptotic exponential approximation is valid
when ∆t� τ . Note that for reasonably long integration
times ∆t ∼ 10τ , the misidentification probability is less
than 0.1%.

5.2 Boxcar logical error rate
The simplest boxcar filter with symmetric threshold
a = 0 is an important reference case for the other box-
car filter variations. As such, we first analyze its error
mechanisms in detail so that we can identify its domi-
nant error. The subsequent boxcar variations will use
different strategies to target and correct this dominant
error. We focus here on deriving the dominant contri-
butions to the logical error rate Γ, and delay the con-
sideration of the initial drop ∆Fin until after all three
boxcar variations have been carefully defined.

Since the 3-bit code is designed to protect against
only a single bit-flip error, the most straightforward con-
tributions to the logical error rate Γ are from pairs of er-
rors. For example, the two-flip sequence III → XII →
XIX can be misinterpreted as a single flip III → IXI
to the complementary encoding, causing a logical error.
These problematic error pairs can be broadly catego-
rized into three groups: (a) two bit flips, (b) one bit
flip and one parity misidentification, or (c) two parity
misidentifications. The contributions that involve three
or more basic errors are comparatively small, so we will
neglect them in this analysis.

In addition to these mechanisms involving pairs of
errors, however, there is a more subtle and dangerous
single error mechanism: (d) a mid-box flip of bit 2. In
this case a single flip III → IXI can cause the pari-
ties to flip in successive boxes due to their independent
noise fluctuations. Negative-biased noise fluctuations
can make one averaged parity pass the zero threshold
within the first box, while positive-biased noise fluctua-
tions can make the other parity pass the zero threshold
at a later time that occurs in the subsequent box. As
such, the reported parity flips will be interpreted as the
sequence III → XII → XIX and yield a complemen-
tary encoding, causing a logical error. Since this last
type of error is caused by a single flip, it is the domi-
nant source of error for the simple boxcar filter that will
be removed by the boxcar variations in subsequent sec-
tions. We illustrate this problematic error mechanism

+1

0

-1

r̄1,2

r̄2,3

∆t

∆t ∆t

a

Figure 4: Most significant boxcar-averaging error. If bit 2 of the
three-bit code flips, then both normalized and averaged parity
readouts r̄i,j for bits i and j will flip over an averaging time ∆t,
as shown by the blue and red diagonal dot-dashed lines. When
the flip occurs in the middle of an averaging box as shown,
then the averaged readouts may cross the zero threshold at
slightly different times due to noise fluctuations, causing one
parity to appear flipped in one averaging box while the other
appears flipped in the next averaging box. The sequence is
interpreted as a succession of flips for bits 1 and 3, producing
a logical error. We propose two variations to fix this error: (1)
The non-Markovian half-boxcar method reevaluates the mid-
section between successive averaging boxes when bits 1 and 3
successively flip. If both parities flip for the midsection average,
then the succession of flips is correctly reinterpreted as a bit 2
flip. (2) The Markovian double-threshold method introduces a
second threshold a ≥ 0, shown by the horizontal green dashed
line, such that a flip in bit 2 is detected when both parity signals
drop below this new threshold.

in Fig. 4, which we will refer to again when discussing
the mechanisms of the boxcar variations that fix this
error.

We now discuss each error contribution in turn.

(a) Two bit flips

Each bit flip has an independent probability of µ∆t.
There are three ways to have two distinct flips with
3 qubits. Therefore, the probability for two distinct
flips to occur within one box ∆t is 3(µ∆t)2, yielding
a contribution to the logical error rate of Γbb =
3(µ∆t)2/∆t = 3µ2∆t.

More precisely, a bit flip in the first half of a box
is likely to be detected, but a bit flip in the second
half is unlikely to be detected until the following
box. The sensitivity region for flips is thus shifted
by a half-box in time from the periodic syndrome
information. That is, for two bit-flip errors the dan-
ger is in having two flips within a region of duration
∆t that starts at a mid point of one box and ends at
the midpoint of the next box. However, this tempo-
ral shift by a half-box does not affect the reasoning
used for the logical error rate.
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(b) One bit flip and one misidentification

Logical errors generally require two averaging boxes
to manifest. Over two consecutive boxes 2∆t there
are two possible parities to misidentify in each box
and three half-boxes ∆t/2 in which a flip of one of
the three bits could cause parity changes, yielding
36 total pairs of errors to consider. After checking
each of these possibilities, we identify 4 classes that
produce a logical error:

i. A misidentification and a flip of a comple-
mentary bit within the first half of the same
box: For example, starting from encoding III
a misidentification in channel r1,2 and a flip
of bit 3 in the first half of the box produces
a syndrome with two flipped parities, which
is misinterpreted as a bit 2 flip. This error
leaves the true encoding in IIX while the es-
timated encodings follow the sequence III →
IXI → XXI to produce a logical error. There
are 2 parities to misidentify in one box ∆t,
with 2 complementary bits each, so there are
4 possibilities of error, each with probabil-
ity µ(∆t/2)Pmis, producing a contribution to
the logical error rate of 4(µ∆t/2)Pmis/∆t =
2µPmis.

ii. A misidentification and a flip of a complemen-
tary bit within the second half of the same box:
For example, misidentifying r1,2 produces the
estimated encoding XII. After a flip in bit
3 the true encoding becomes IIX, which in
the following box will make it appear that both
parities have flipped, leading to the estimated
encoding sequence III → XII → XXI. As
with the preceding case, there are 4 possibili-
ties yielding a contribution to the error rate of
2µPmis.

iii. A misidentification in one box, then a bit flip in
the first half of the next box: The parities from
this sequence appear identical to the previous
case. There are 4 possibilities, so the error rate
contribution is also 2µPmis.

iv. A bit flip in the second half of a box, then a
complementary parity misidentification in the
following box: In the first box no error will be
reported, but the second box will have two ap-
parent bit flips interpreted as a wrong single
flip. There are 4 possibilities, so the contribu-
tion is also 2µPmis.

The total error rate contribution is Γbm = 8µPmis.

(c) Two misidentifications

A misidentification in one channel followed by a sec-
ond misidentification in the complementary chan-
nel during the next box causes a logical error. For
example, misidentifications of r1,2 then r2,3 causes
the estimated encoding sequence over three boxes:
III → XII → XXI → XXX. There are two or-
derings for this type of error, so the contribution to
the logical error rate is Γmm = 2P 2

mis/∆t.

(d) Mid-box flip of bit 2

Starting with the encoding III, suppose that bit
2 flips near the center of a box, at time ∆t/2 + δt.
Both parities should flip in this case, but the flip oc-
curs in a region where the integration result will be
sensitive to noise fluctuations. If one parity shows
a flip while the other does not, it leads to a logical
error over the course of two boxes. For example,
if r1,2 flips in one box while r2,3 flips in the next
box, the apparent encoding follows the sequence
III → XII → XIX. This error is unique to a
bit 2 flip because such a flip requires both parities
to correctly flip.

The integrated parity signal r̄ after such a flip is
Gaussian-distributed with a mean value of rm =
[(∆t/2+δt)−(∆t/2−δt)]/∆t = 2δt/∆t and variance
τ/∆t. The probability of getting r̄ < 0 in a channel
is equal to P (r̄ < 0 | rm) as defined in Eq. (35). If
one channel flips r̄1,2 < 0, but the other does not
r̄2,3 > 0, then the probability of this occurring for
any rm ∈ [−1, 1] is∫ 1

−1
P (r̄ < 0 | rm)P (r̄ > 0 | rm) drm →

√
τ

π∆t ,

(39)

where the integral over the product of error func-
tions rapidly reaches an exact asymptotic value af-
ter ∆t & 10τ . The contribution of this scenario to
the logical error rate is therefore Γb2 = µ

√
τ/π∆t.

As highlighted previously, this is the most danger-
ous error mechanism because its error rate is lin-
early dependent on µ.

Gathering all of the above contributions produces the
total logical error rate for the boxcar filter, arranged in
order of significance:

Γ = Γb2 + Γbb + Γbm + Γmm, (40)

= µ

√
τ

π∆t + 3µ2∆t+ 8µPmis + 2P
2
mis

∆t

We will later optimize this formula over the boxcar du-
ration ∆t and numerically verify its accuracy over the
range of bit-flip rates µτ ∈ [10−6, 10−3].
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Because of the dominant error that is linearly depen-
dent on µ the boxcar filter performs poorly compared to
the Bayesian filter and is not useful for error correction.
To make the boxcar filter viable, we therefore wish to
eliminate this dominant error with a simple and mini-
mal modification to the boxcar filter. We consider two
such modifications in the subsequent sections: a non-
Markovian modification that uses previous history in
the continuous record to identify the problematic bit-2
flip, and a Markovian modification that identifies the
problematic bit-2 flip by bracketing the parity signals
between two thresholds. We will see that both varia-
tions compare favorably to the Bayesian method, so are
suitable for practical error correction.

5.3 Half-boxcar filter and error rate
To overcome the problem of the bit-2 flip in the box-
car filter, we introduce a non-Markovian extension that
we call the half-boxcar filter. To the basic boxcar fil-
ter we add one extra conditional action that reexamines
any ostensible sequential flips of bits 1 and 3 to make
sure they are not an incorrectly interpreted flip of bit
2. That is, if a parity flip is observed after an averaging
boxcar, t ∈ [0, ∆t], and a second parity flip is observed
in the opposite channel one boxcar later, t ∈ [∆t, 2∆t],
then the filter reexamines the signal in an interval that
straddles both boxcars. The raw signal is reaveraged
over a duration ∆t that is shifted one half-boxcar be-
hind the most recent boxcar, t ∈ [∆t/2, 3∆t/2], and
compared to the zero threshold as a secondary check.

With this modification, a flip in bit 2 that happens
near the center of the first box will cause both parities
to change in the re-averaged middle box, unlike sequen-
tial flips of bits 1 and 3. The top portion of Fig. 4
illustrates how both averaged signals will flip when av-
eraging the shifted middle box in the protocol. There-
fore, this modification correctly distinguishes a bit-2 flip
from sequential bit-1 and bit-3 flips and eliminates the
primary logical error mechanism of the boxcar filter.
When a bit-2 flip is detected, the interpreted history of
bit-flips must then be corrected so that the first box,
t ∈ [0, ∆t] records correctly that bit 2 flipped, while
the second box, t ∈ [∆t, 2∆t], records that nothing ad-
ditional occurred.

An elegant implementation of this non-Markovian ex-
tension averages sequential half-box intervals ∆t/2 of
the raw signals, storing the most recent three half-box
averages in memory in addition to the accumulating
sequence of parity values. Averaging pairs of these pre-
integrated half-boxes then efficiently produces either the
most recent full-box average or the required shifted box
to reassess a suspected bit-2 flip as needed. As such,
this extension only minimally increases the computa-

tional complexity compared to the basic boxcar filter,
while improving the fidelity so that it compares favor-
ably with the Bayesian filter. It thus achieves a good
balance between accuracy and efficiency.

5.3.1 Half-boxcar logical error rate

We follow the same procedure for categorizing contri-
butions to the logical error rate Γ as we did for the box-
car filter in the preceding section. While the addition
of the half-box mechanism removes the most serious of
the boxcar errors, it also subtly alters the other logi-
cal error mechanisms, both removing a few more errors
and adding new ones. We now discuss each category of
contributions in turn.

(a) Two bit flips

Unlike the basic boxcar filter, the partitioning of
two consecutive boxes into half-boxes matters for
sequences of two bit flips. Logical errors can occur
from bit flips within the same box, or two consecu-
tive boxes. There are four relevant cases.

i. Two distinct bit flips in the same half-box:
There are three possibilities, each with proba-
bility (µ∆t/2)2. The contribution to the log-
ical error rate is thus: 3 (µ∆t/2)2 (2/∆t) =
(3/2)µ2∆t.

ii. Two consecutive flips of bits 1 and 3, one in
the second half of a box and the other in the
first half of the following box: The first flip is
not detected in the first box, so both parities
will flip in the second box and be incorrectly
interpreted as a flip in bit 2 after the second
box. There are two possible orderings, so the
total contribution to the logical error rate is:
2 (µ∆t/2)2/∆t = µ2∆t/2.

iii. A flip in either bit 1 or 3 during the second
half of a box followed by a flip in bit 2 during
the first half of the following box: The first flip
is not detected after the first box, so only one
parity will flip in the second box and be incor-
rectly interpreted as a flip of the complemen-
tary bit. After a third box, both parities will
appear change and be incorrectly interpreted
as a bit-2 flip, which leaves the estimate in a
complementary state. There are two possibili-
ties, with a similar situation if the bits flip in
reverse order, so the total contribution to the
logical error rate is 4 (µ∆t/2)2/∆t = µ2∆t.

iv. Two consecutive flips of bits 1 and 3, one in
each half of the same box: The second flip is
not detected, so one parity appears to flip, fol-
lowed by the other parity in the next box. The
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half-box prescription then averages the middle
of the boxes, which will show that both parities
flip, and thus be misinterpreted as a flip in bit
2, which is a logical error. There are two pos-
sible orderings, so the total contribution to the
logical error rate is 2 (µ∆t/2)2/∆t = µ2∆t/2.

The final error above is newly introduced by the
half-boxcar mechanism, so the total contribution of
two bit flips to the logical error rate is larger than
the simple boxcar filter: Γbb = (7/2)µ2∆t.

(b) One bit flip and one misidentification

There are 6 distinct mechanisms for a bit flip and
misidentification to cause a logical error. The half-
boxcar filter modifies these contributions signifi-
cantly from the simple boxcar filter.

i. A misidentification and a flip of a complemen-
tary bit both within the same box: This mech-
anism is the same as the boxcar case, but with
the improvement that any flip in bit 2 is now
corrected by the half-box mechanism. There
are 2 possible misidentifications, each with 1
complementary bit that flips with probability
µ∆t. The total contribution to the logical er-
ror rate is 2µPmis.

ii. A misidentification then a complementary flip
of bit 1 or 3 during the first half of the next box:
This appears as a sequence of two flips not cor-
rected by the half-boxcar mechanism. For ex-
ample, if bit 1 flips then the actual encoding be-
comes XII, but the apparent encoding follows
the sequence III → IIX → IXX. There are
two possibilities, so the contribution is µPmis.

iii. A misidentification then a complementary flip
of bit 1 or 3 during the second half of the next
box, but near the middle: The bit flip will be
reported with probability P (r̄ < 0 | rm), with
rm = 2δt/∆t as in Eq. (39), where δt is the
location of the flip with respect to the mid-
dle of the box, resulting in the same logical
error as in the previous case. There are two
possibilities, so the contribution to the logical
error rate is 2µPmis

∫ 1
0 P (r̄ < 0 | rm) drm →

µPmis
√
τ/2π∆t. This exact asymptotic value

is reached by ∆t & 15τ .
iv. A misidentification then a flip in bit 2 during

the first half of the next box: This produces an
apparent sequence of flips in bits 1 and 3, which
triggers the half-box mechanism. However,
for the half-box-shifted middle section that is
checked, bit 2 flipped too late to be detected. It

is thus possible for only one parity to flip, anal-
ogously to the original bit-2 flip issue of the ba-
sic boxcar in Eq. (39), which leaves the logical
error uncorrected. The contribution to the log-
ical error rate is 2µPmis

∫ 1
0 P (r̄ < 0 | rm)P (r̄ >

0 | rm) drm → µPmis
√
τ/4π∆t. This exact

asymptotic value is reached by ∆t & 15τ .
v. A misidentification then a flip in bit 2 during

the second half of the next box: This scenario
appears identical to the preceding case, so also
contributes µPmis

√
τ/4π∆t.

vi. A flip in bit 2 near the middle of a box that
triggers the half-box mechanism, followed by a
misidentification in one of the channels during
the check of the middle box: The check will
then not correct the misinterpretation of the
bit 2 flip as two consecutive bit 1 and bit 3
flips. The probability of this occurring is iden-
tical to the preceding two cases, so also con-
tributes µPmis

√
τ/4π∆t.

The total contribution to the logical error rate is
Γbm = 3µPmis + (1 + 3/

√
2)µPmis

√
τ/2π∆t.

(c) Two misidentifications

The mechanism for two misidentification to cause a
logical error is unchanged from the boxcar filter, so
contributes Γmm = 2P 2

mis/∆t.

Gathering all contributions produces the total logical
error rate for the half-boxcar filter:

Γ = Γbb + Γbm + Γmm (41)

= 7
2 µ

2∆t+ 3µPmis +
√

2 + 3
2

√
τ

π∆t µPmis + 2P
2
mis

∆t .

Note that the value of the prefactors for several terms
is achieved only for ∆t & 15τ . We will later opti-
mize the free parameter ∆t to find that this condi-
tion is satisfied self-consistently for µτ . 10−4, and
verify this expression numerically for the bit-flip rates
µτ ∈ [10−6, 10−4], with slight numerical deviations vis-
ible for µτ ∈ [10−4, 10−3] due to shorter optimal ∆t
violating the approximation of the prefactor integrals.

5.4 Double-threshold filter and error rate
The non-Markovian half-boxcar filter has the drawback
of requiring extra memory and reinterpreting the past
tracking record. We thus also introduce an alternative
filter that also corrects the problem of the bit 2 flip
in the simple boxcar filter while remaining Markovian.
This new filter saves on memory at the expense of extra
conditional processing per boxcar.
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We use the intuition that if a bit-2 flip happens near
the center of a box, then both integrated parities should
be near zero, with only noise fluctuations determining
their sign about the usual threshold of zero. How-
ever, if a succession of bit 1 and bit 3 flips happens,
then only one parity will cross the threshold at a time.
We thus use a second signal threshold a > 0, that to-
gether with the zero threshold can bracket a region that
checks whether both parities are simultaneously close to
zero. Fig. 4 demonstrates this effect with the horizon-
tal dashed green line for a > 0: Both averaged signals
enter the region between 0 and a during the first box-
car, making the bit-2 flip correctly detectable using the
second threshold.

More precisely, assuming an initially even-parity en-
coding III, if both integrated signals are less than the
new threshold a, then we infer that bit 2 has likely
flipped. Otherwise, the signals are thresholded as nor-
mal. In pseudocode, given an estimated encoding III,

if r̄1,2 < a and r̄2,3 < a
then flip bit 2

elseif r̄1,2 < 0
then flip bit 1

elseif r̄2,3 < 0
then flip bit 3

else
do nothing

where the flips are performed on the estimated state
in accordance with passive error tracking. More gen-
erally, for an initial estimated encoding with parities
P1,2, P2,3 ∈ {+1,−1}, the parity-corrected integrated
signals (r̄1,2P1,2) and (r̄2,3P2,3) should be used in the
above algorithm in place of r̄1,2 and r̄2,3. The relaxed
threshold can more robustly detect simultaneous parity
changes when bit 2 flips close to the middle of a box,
while remaining Markovian.

5.4.1 Double-threshold logical error rate

One more we follow the same procedure as the boxcar
filter to find the remaining contributions to the logical
error rate Γ. As with the half-boxcar filter, the addi-
tional correction mechanism alters the mechanisms for
producing logical errors. We now consider each cate-
gory of contributions in turn.

(a) Two bit flips

The logical error rate caused by two bit flips in the
same box is exactly the same as the basic boxcar
filter: Γbb = 3µ2∆t.

(b) One misidentification and one bit flip

There are three distinct contributions:

i. A zero-threshold misidentification, then a com-
plementary flip in the next box: This case is the
same as the basic boxcar, so the contribution
of this kind of error to the logical error rate is
4µPmis.

ii. An a-threshold misidentification, then a com-
plementary flip of bit 1 or 3 in the same box:
Since both parities are observed to be below a,
this is interpreted by the double-threshold filter
incorrectly as a bit 2 flip. There are two possi-
bilities, so the contribution to the logical error
rate is 2µPmis(a), recalling the general form of
the misidentification probability from Eq. (36).

iii. A flip in bit 2 near the middle of a box, at time
∆t/2 + δt, followed by parity misidentification:
As with the bit-2 flip in the boxcar case, the
parity signals will both be Gaussian-distributed
with mean rm = 2δt/∆t and variance τ/∆t as
in Eq. (39). The probability of misidentifying
the parity requires r̄1,2 > a while r̄2,3 < 0, or
vice versa. There are two possibilities, so the
contribution to the logical error rate after sum-
ming over all rm ∈ [−1, 1] is

2µ
∫ 1

−1
P (r̄ < 0 | rm)P (r̄ > a | rm) drm (42)

≈ 2µ
√

τ

π∆t exp
[
−0.9 a

√
∆t
τ
− 0.15 a2 ∆t

τ

]
.

This Gaussian approximation to the error func-
tion integral is very accurate for ∆t & 10τ and
0 ≤ a ≤ 1, and correctly reduces to Eq. (39)
when a = 0. It can be derived using the ap-
proximation erfc(x) ≈ exp(−c1x − c2x2) valid
for x > 0 with c1 ≈ 1.1 and c2 ≈ 0.76 [56].

The total contribution to the logical error rate
is therefore Γbm = 4µPmis + 2µPmis(a) +
2µ
√
τ/π∆t exp

[
−0.9 a

√
∆t/τ − 0.15 a2 ∆t/τ

]
.

(c) Two misidentifications
The second threshold slightly modifies the simple
boxcar contribution. After one misidentification of
probability Pmis, either bit 1 or bit 3 flips. The next
box corrects this error unless a second misidentifica-
tion in the complementary channel occurs to make
it appear that both parities have flipped. However,
it is sufficient for both integrated signals to be less
than a in this case, due to the double threshold
mechanism. Thus with probability Pmis(a) there is
a flip in bit 2. In the third box the remaining bit
will flip, producing a logical error. There are two
possibilities, so the contribution to the logical error
rate is Γmm = 2Pmis Pmis(a)/∆t.
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Gathering all above contributions produces the total
logical error rate:

Γ = Γbb + Γbm + Γmm, (43)

= 3µ2τ
∆t
τ

+ 4µPmis + 2µPmis(a) + 2Pmis Pmis(a)
∆t

+ 2µ
√

τ

π∆t exp
[
−0.9 a

√
∆t
τ
− 0.15 a2 ∆t

τ

]
.

We will later optimize this formula over the free param-
eters, the boxcar duration ∆t and threshold a ≥ 0, and
numerically verify its accuracy over the range of bit-flip
rates µτ ∈ [10−6, 10−3].

5.5 Initial drop in fidelity
The initial drop in fidelity ∆Fin for all three variants of
the boxcar filter comes from single logical errors in the
final averaging box that do not have time to be detected.
There are two dominant types of logical error: a single
parity misidentification, or a single bit flip that hap-
pens too late within the averaging period. Other errors
are higher-order and comparatively negligible. Since
there are two parities, a misidentification can occur with
probability 2Pmis. The case of the bit flip requires more
careful analysis, since it may occur at any point within
the final box.

For bits 1 and 3, if a flip happens at time δt after
the center of the last box, ∆t/2 + δt, the probability
of not detecting the flip is P (r̄ > 0 | rm) with a shifted
signal mean of rm = 2δt/∆t and variance τ/∆t as in
Eq. (39). There are two possibilities of a bit flip, so
their contribution to the initial drop is

2 µ∆t
2

∫ 1

−1
P (r̄ > 0 | rm) drm = µ∆t. (44)

To detect a bit 2 flip correctly, both integrated signals
should be less than the threshold a (where a = 0 for
boxcar and half-boxcar filters and a > 0 for the double-
threshold filter). The negation of this is for one of the
signals to be greater than a. To not double-count the
errors for bits 1 and 3, the remaining signal should also
remain greater than 0. Therefore, a flip is not detectable
if r̄1,2 > 0 and r̄2,3 > a, or vice versa. If we denote one
such event A and the reverse configuration B, then the
total probability of not detecting the bit 2 flip is P (A∪
B) = P (A) + P (B)− P (A ∩B), where the intersection
A ∩ B has both signals greater than a. After summing
this probability for all rm we obtain

P2 ≡
∫ 1

−1
[2P (r̄ > a | rm)P (r̄ > 0 | rm)

− P (r̄ > a | rm)P (r̄ > a | rm)] drm. (45)

The total contribution of this scenario to the initial drop
is thus, (µ∆t/2)P2.

Gathering the above contributions, the total initial
drop in fidelity for all boxcar filters is

∆Fin = [2 + P2] µ∆t
2 + 2Pmis. (46)

Since this formula involves an unwieldy integral, we
will find suitable approximation before continuing. As
will become clear in the next section, for the simple
boxcar and double-threshold filters the averaging du-
ration ∆t should be set fairly long compared to τ to
achieve good performance. In this regime, we P2 ≈ 1
is an excellent approximation. Similarly, we will find
that Pmis is negligible for both the simple boxcar and
double-threshold filters when ∆t� τ .

For the half-boxcar filter, the peak performance will
be achieved for significantly smaller ∆t, so we must eval-
uate P2 more precisely to obtain an accurate estimate.
When a = 0, P2 acquires the asymptotic form

P2
a=0,∆t>8τ−−−−−−−−→ 1− 1√

π∆t/τ
+ exp(−∆t/τ)

(∆t/τ)
√
π
, (47)

which converges very slowly to 1 as ∆t → ∞. For
∆t ∼ 15τ , P2 ∼ 0.85. The dominant part of this
asymptotic form must be kept, as well as the Pmis con-
tribution to the error rate. Anticipating these simplifi-
cations now and using the asymptotic formula Pmis ≈
exp(−∆t/2τ)/

√
2π∆t/τ thus yields the final approx-

imations appropriate for the parameter regimes that
yield peak filter performance:

∆Fin
boxcar−−−−→ 3

2µ∆t (48)

∆Fin
half-box−−−−−→ 3

2µ∆t− µ
√
τ∆t

2
√
π

+
√

2 e−∆t/2τ√
π∆t/τ

(49)

∆Fin
doub.thr.−−−−−−→ 3

2µ∆t (50)

In Section 6 we verify these expressions numerically for
the bit-flip rates µτ ∈ [10−6, 10−3].

The final expressions for the logical error rate Γ and
initial fidelity drop ∆Fin are summarized in Table 2.

5.6 Optimizing filter parameters
The boxcar filters contain several tunable parameters
that play the role of the prior information about µ and
τ required for the Bayesian filter. That is, the averaging
duration ∆t and asymmetric threshold a must be set
prior to processing the parity signals. To achieve peak
filter performance, these parameters must be optimized
for each µ and τ . As such, in order to fairly compare the
performance of the boxcar filters to the Bayesian filter,
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Filter ∆Fin Γτ

Bayesian µτ

[
5
4 ln 1

µτ
+ 1

4 ln 2
]

3(µτ)2
[

ln 2
µτ

+ 1
3 ln ln(5/µτ)

4

]

Boxcar 3µτ
2

∆t
τ

µτ

√
τ

π∆t + 3 (µτ)2 ∆t
τ

+ 8µτ Pmis + 2P 2
mis

τ

∆t

Half-boxcar 3µτ
2

∆t
τ
− µτ

2

√
∆t
πτ

+
√

2 e−∆t/2τ√
π∆t/τ

7
2 (µτ)2 ∆t

τ
+ 3µτ Pmis +

[
1√
2

+ 3
2

]√
τ

π∆t µτ Pmis + 2P 2
mis

τ

∆t

Double-
threshold

3µτ
2

∆t
τ

3 (µτ)2 ∆t
τ

+ 4µτ Pmis + 2µτ Pmis(a) + 2Pmis Pmis(a) τ

∆t

+ 2µτ
√

τ

π∆t exp

[
−0.9 a

√
∆t
τ
− 0.15 a2 ∆t

τ

]

Table 2: Initial drops in fidelity ∆Fin and logical error rates Γ for various filters. We express the formulas in terms of the dimensionless
quantities µτ and ∆t/τ , where µ is the bit-flip rate, τ is the measurement timescale, and ∆t is the averaging timescale for boxcar
filters. The parity misidentification probabilities for the boxcar filters are Pmis(a) ≡ erfc[(1−a)

√
∆t/2τ ]/2 and Pmis ≡ Pmis(0). We

find numerically that for the Bayesian initial drop, more accurate results can be obtained in the regime µτ ∈ [10−6, 10−3] via the
substitution 5/4 7→ 3/2, which crudely compensates for neglected noise-fluctuation contributions. The three boxcar filters should
be optimized over the averaging duration ∆t, while the double-threshold variation should also be optimized over the threshold
a ≥ 0. For the initial drop of the boxcar filters, we have approximated that ∆t/τ � 1 for the simple and double-threshold boxcar
filters and ∆t/τ > 8 for the half-boxcar filter to achieve peak performance (see Section 5.5).

we must choose an appropriate optimization strategy
for the boxcar filter parameters.

We choose to optimize the filter parameters to mini-
mize the total decay in average fidelity in the linear de-
cay regime. Both the initial fidelity drop ∆Fin and the
linear decay rate Γ contribute to the total infidelity, so
we optimize both together by maximizing the duration
of time required for the average fidelity to drop a total of
10%. As discussed after Eq. (12), a 10% fidelity drop is
roughly the maximum tolerable drop while remaining in
the linear decay regime without error correction, which
makes it a reasonable target. Since F (t) = 1−∆Fin−Γt
for a duration t in this linear regime, this optimization
procedure yields a maximum time to drop by 10% fi-
delity:

tmax = max
params

0.1−∆Fin
Γ . (51)

For most cases, the duration tmax will be sufficiently
long that the linear decay dominates the total average-
fidelity decay, making this procedure essentially equiv-
alent to minimizing the decay rate Γ directly. However,
for some cases with larger flip rates µ the initial drop
becomes too large to neglect and this maximum-time
optimization produces more reasonable results.

We now systematically optimize the general formu-
las for the initial drop in fidelity ∆Fin and the logical
error rate Γ, using the maximum drop-time procedure
outlined in Eq. (51). The post-optimization formulas
will show the best achievable performance of each filter
more clearly. For sake of simple comparisons, we only
keep the dominant scaling of each analytical approxi-
mation in what follows. However, we will numerically
optimize the full formulas in Table 2 and use the full
expressions when comparing theory to numerical simu-
lations in Section 6.

5.6.1 Boxcar filter

The boxcar filter has only one free parameter to op-
timize: the boxcar duration ∆t. We use the opti-
mization procedure of Eq. (51), with the logical er-
ror rate from Eq. (40) and initial drop from Eq. (48).
We use the error function approximation Pmis ≈
exp(−∆t/2τ)/

√
τ/2π∆t from Eq. (38) to make the for-

mulas analytically tractable. We solve for the minimum
by taking a derivative of Eq. (51) with respect to ∆t and
setting it to zero, in the usual way, which produces the
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results

∆t
τ
≈ 0.207 (µτ)−2/3 − 1.3 (µτ)−1/3 + 6,

Γτ ≈ 1.86 (µτ)4/3, (52)
∆Fin ≈ 0.31 (µτ)1/3,

where we have replaced purely numerical prefactors
with decimal approximations and have truncated the
expressions to remove negligible terms. We choose the
precision of these numerical constants and the trunca-
tions so that the simplified analytical formulas closely
reproduce the numerically optimized result.

Notably, the optimal averaging duration ∆t domi-
nantly scales as µ−2/3 ∝ Γ−1/2, so becomes imprac-
tically long for small error-rates Γ. Moreover, since the
logical error rate Γ scales as µ4/3, the filter performs
dramatically worse than the µ2 scaling of the Bayesian
filter. These features make the simple boxcar filter ill-
suited for practical error correction.

5.6.2 Half-boxcar filter

To optimize the half-boxcar filter over the duration ∆t,
we follow the same procedure as in the previous section
for the boxcar filter. We use Eqs. (41) and (49) and
the error function approximation from Eq. (38). The
minimization procedure by taking a derivative with re-
spect to ∆t produces the approximate nonlinear relation
exp(∆t/2τ) = 3/14µτ

√
π∆t/2τ , which we solve recur-

sively for ∆t/τ . This procedure yields the following
continued fraction as a perturbative solution

∆t
τ
≈ 2 ln 3

14µτ
√
π ln[3/(14µτ

√
π · · ·)]

(53)

≈ 2 ln 1
15µτ ,

where the final approximation truncates the recursion
at the dominant logarithmic functional form. The con-
stant inside the logarithm is chosen as a crude fit to the
full numerically optimized curve within the parameter
regime µτ ∈ [10−6, 10−3] to help simplify the scaling
comparison. Using this simplification, the logical error
rate and initial drop have the forms

Γτ ≈ 8.4 (µτ)2 ln 1
15µτ , (54)

∆Fin ≈ 3(µτ) ln 1
15µτ ,

where numerical constants have again been reduced to
appropriate precision decimals based on fits to the nu-
merically optimized results.

Notably, the logical error rate Γ now scales with
µ2, up to logarithmic corrections, analogously to the

Figure 5: Numerically optimized second threshold a ≥ 0 for the
double-threshold filter, as a function of the bit-flip rate µτ . The
dashed line is a crude analytical fit a ≈ 0.525[1 − 2.5(µτ)1/3]
within the range µτ ∈ [10−6, 10−3].

Bayesian filter in Eq. (34), making the half-boxcar fil-
ter suitable for practical error correction. In the full
numerical simulations that we detail in the following
section, we will see that of the boxcar-averaging filters
the half-boxcar variation has the closest performance to
the optimal Bayesian filter, despite its dramatic reduc-
tion in computational overhead.

5.6.3 Double threshold filter

Unlike the preceding boxcar filters, the double-
threshold filter has two free parameters to optimize: the
boxcar duration ∆t, and the second threshold a ≥ 0.
To get a rough idea of the analytic scaling, we follow a
crude sequential optimization strategy. First, we follow
the same optimization procedure from the previous sec-
tion for ∆t for a fixed a, using Eqs. (43) and (50) and
the error function approximation from Eq. (38). This
optimization again yields a continued fraction solution

∆t
τ
≈ 2

(1− a)2 ln (1− a)2

6µτ
√
π ln (1−a)2

6µτ
√
π ···

, (55)

≈ 2
(1− a)2 ln (1− a)2

6µτ
√
π ln (1−a)2

6µτ
√
π

,

where the final approximation truncates the recursion
at the second-order, which achieves better accuracy
than the first-order truncation in the parameter regime
µτ ∈ [10−6, 10−3]. We find numerically that the de-
pendence of the optimal a on µτ varies slowly in this
parameter regime, so we approximate it using the fol-
lowing function

a ≈ 0.525[1− 2.5(µτ)1/3], (56)

which is a crude fit to the numerically optimized result
and not derived analytically. We compare this crude
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Filter ∆Fin Γτ ∆t/τ a ≥ 0

Bayesian 1.5 (µτ) ln 1
µτ

3 (µτ)2 ln 1
µτ

– –

Boxcar 0.31 (µτ)1/3 1.86 (µτ)4/3 0.207 (µτ)−2/3 0

Half-boxcar 3 (µτ) ln 1
15µτ 8.4 (µτ)2 ln 1

15µτ 2 ln 1
15µτ 0

Double-threshold 12 (µτ) ln 1
150µτ 33 (µτ)2 ln 1

150µτ 8 ln 1
150µτ 0.5

Table 3: Dominant scaling with µτ of optimized filter performance. We compare the initial fidelity drops ∆Fin, logical error rates Γ,
boxcar averaging durations ∆t/τ , and second thresholds a ≥ 0. We show only the dominant scaling in each case, truncating smaller
corrections for sake of simple comparison. We choose the precision of numerical prefactors to best fit the full numerically optimized
results obtained from Table 2 in the regime µτ ∈ [10−6, 10−3]. See Section 5.6 for details on the optimization procedures.

formula to the numerically optimized result in Fig. 5 for
completeness. We will use these approximate analytical
fits to the numerical optimization in Figs. 6a–6d in the
following section.

For the purposes of comparing the dominant scaling
of the various filters, we further approximate the thresh-
old as constant, a ≈ 0.5, and truncate the recursive so-
lution of ∆t/τ to first-order, which yields the following
loose approximations to the logical error rate and initial
drop in fidelity,

∆t
τ
≈ 8 ln 1

150µτ ,

Γτ ≈ 33 (µτ)2 ln 1
150µτ , (57)

∆Fin ≈ 12 (µτ) ln 1
150µτ .

As with the preceding filters, we have replaced constants
factors with to best fit the full numerical optimization.
The intention of these final formulas is not to be ex-
ceptionally accurate, but rather to capture the crude
dominant scaling for sake of simple comparison with
the other filters.

As with the half-boxcar filter, the double-threshold
filter achieves the µ2 scaling of the logical error rate Γ,
up to logarithmic corrections, so is also a suitable filter

for error correction. It has the benefit of being Marko-
vian, as opposed to the half-boxcar filter that requires
memory, but its scaling prefactors are not as favorable
as in Eq. (54) for the half-boxcar filter or Eq. (34) for
the Bayesian filter. For convenience, we compare the
dominant scaling of all filters in Table 3.

6 Numerical Simulations
To check the validity of our filter analysis, we numeri-
cally implement continuous measurements of the 3-bit
code, the linear Bayesian filter, and the three boxcar fil-
ter variations in the programming language julia [57].
To do this efficiently, we first pick a target bit-flip rate
µ to test, such that µτ ∈ [10−6, 10−3] with τ being the
reference timescale for the numerics (set to 1 for con-
venience). We then initialize a 3 × N array of bits to
describe N = floor(10max∆t/dt) time steps of dura-
tion dt = τ/10. The timescale max∆t is the maximum
optimal boxcar size of the four filters being tested for
each µ, and ensures that enough data is simulated per
trajectory to assess the behavior of each filter. We com-
pared the results to those obtained with dt = τ/100
to verify that no residual time discretization artifacts
were present in the numerics. The optimal box sizes are
numerically determined from the formulas presented in
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Table 2, and shown in Fig. 6b, with maxima ranging
from max∆t/τ ∈ [5, 2000].

To simulate each trajectory, at the initial time the bit
state is set to 000, representing the encoding III. Ran-
dom bit flips are then added with Poisson statistics at
the rate µ. Specifically, the wait-time distribution for
n steps between two successive jumps is exponential,
p(n) = exp[−n/(µdt)]/(µdt); for each qubit we sample
this wait-time distribution to find the random number
of steps floor(n) until the next jump for each bit, then
flip the appropriate bits between specified jumps. After
this procedure the 3×N array holds the “true” state tra-
jectory for the 3-bit code. This numerical model is thus
a direct implementation of the hidden Markov model in
Fig. 1 that is described in the main text.

Given a true 3-bit trajectory, we then simulate the
noisy parity signals ri,j by computing the exclusive-or
x(i, j) between neighboring bits i and j at each timestep
dt, then constructing ri,j = −2xi,j + ξ, where ξ is sam-
pled from a normal distribution with mean +1 and vari-
ance τ/dt. This construction vectorizes the noise simu-
lation efficiently, and centers the mean signals for even
parities at +1 and odd parities at −1. The resulting
noisy signals then simulate the parity signals that one
would obtain from performing continuous direct parity
measurements in the laboratory, after the signals have
been correctly normalized.

Given the simulated noisy signals ri,j , we then pass
both signals through each of the four trial filters ana-
lyzed in the preceding section: linear Bayesian, simple
boxcar, half-boxcar, and double-threshold boxcar. We
set the tunable parameters, ∆t and a, for the three box-
car filters to optimal values determined by the numerical
optimization of the formulas in Table 2. (We also verify
numerically that tuning these parameters away from the
theoretical optimum correctly shows that the parameter
values are optimum.) Each filter then returns a 3 ×N
array of estimated 3-bit state trajectories. For each dt,
we compute the bit state fidelity as a simple equality
test between the triplet of true bits and the triplet of
estimated bits, yielding 1 if the bits agree and 0 if they
disagree. We compute the average state fidelities by
repeating this process between 106 and 108 times and
averaging the fidelities at each time step.

This simulation procedure produces the numerical re-
sults plotted as the points in Figs. 6a–6d, with final nu-
merical error bars on the order of the width of the points
or smaller. The solid lines show the formulas summa-
rized in Table 2 after numerical parameter optimization.
For reference, the dashed lines show the crude analyt-
ical approximations of the optimized formulas that we
presented in Section 5.6. (Note that for the double-
threshold filter in Figs. 6b–6d we plot the more accu-
rate a-dependent analytic formulas in Eqs. (55) as the

dashed lines.) For the boxcar filters, we found that in
order to apply the linear decay formula in Eq. (13) to the
simulated data, the initial drop ∆Fin should be placed
in the middle of the first averaging box, at t = ∆t/2, af-
ter which the linear fit with slope Γ correctly describes
the data. For smaller µ the logical error rates Γ become
quite small so require more realizations to resolve the
average to sufficient numerical precision; in the cases of
the double-threshold and simple boxcar filters the opti-
mized durations ∆t/τ were sufficiently long to prohibit
accurate averaging of Γ below µτ ∼ 10−4. Nevertheless,
for all successfully simulated results the agreement is ex-
cellent between numerical simulations and numerically
optimized analytical formulas from Table 2.

In Fig. 6a, we show the time-dependent average fideli-
ties F (t) of all methods, optimized for a relatively large
bit-flip rate of µτ = 10−3. The numerical simulations
(data points) confirm the numerically-optimized analyt-
ical results for ∆Fin and Γ summarized in Table 2 (solid
lines), as well as the corresponding crude approxima-
tions (dashed lines). The gray line is a simulation of ide-
alized 3-bit code error correction using perfect-fidelity
projective parity measurements with a rapid cycle delay
of δt/τ = 4 (see the Appendix for details); the shaded
gray region above this line roughly represents fidelities
that are inaccessible to even an ideal implementation
of the 3-bit code. The light red shaded region below
indicates fidelities that are worse than that of a single
bit without error correction.

After the initial drops in fidelity ∆Fin in Fig. 6a, the
Bayesian filter (orange, top curve) and half-boxcar fil-
ter (green, second curve from top) achieve asymptotic
slopes (corresponding to the logical error rates Γ) that
are comparable to that expected for ideal operation of
the code. The double threshold filter (blue, bottom
curve at left of graph) performs slightly less favorably,
while the simple boxcar filter (red, third curve from top
at left of graph) performs significantly worse, as antici-
pated in the previous section. For the half-boxcar filter,
the last box decays at the same rate as the simple box-
car filter because the non-Markovian correction cannot
be applied to the last box. This change in decay rate
in the final box yields an additional contribution to the
net fidelity drop ∆Ffin ≡ ∆t(Γboxcar − Γhalf-boxcar) that
is not observed with the Markovian filters.

In Fig. 6b, we show the optimized averaging dura-
tions ∆t for the boxcar methods (solid lines) and cor-
responding crude approximations (dashed lines). The
gray line at bottom indicates the rapid cycle delay of
4τ for the idealized projective measurements. The non-
Markovian half-boxcar filter achieves the shortest aver-
aging durations with ∆t . 20τ even for small bit-flip
rates of µτ ∼ 10−6. The simple boxcar filter requires
excessively long optimal averaging durations (up to two
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Figure 6: Comparison of numerical simulations to analytical expressions. (a) Average fidelity F (t) in time, optimized for a bit-flip
rate of µτ = 10−3, showing how the initial drop ∆Fin and logical error rate Γ of various error correction methods manifest. For
the boxcar filters the data points indicate the box periodicity ∆t, while data points on the Bayesian curve are sampled similarly for
reference. Note that the last box of the half-box filter decays with the same rate as the basic boxcar filter, since the non-Markovian
correction cannot be applied. (b) Optimized boxcar-averaging duration, ∆t/τ , with the time-continuous Bayesian case omitted.
(c) Optimized initial drop in average fidelity ∆Fin for different filters, as a function of the bit-flip rate µτ . (d) Optimized logical
error rate Γ for different filters, as a function of the bit-flip rate µτ . The order in the legend from top-to-bottom matches the order
of the curves on the left edge of each plot. In all plots, numerical simulations of the various filters using optimized parameters are
plotted as circular data points with error bars smaller than the width of the points. The numerically-optimized analytical formulas
in Table 2 are plotted as solid lines, while the simplified formulas in the main text are plotted as dashed lines. The shaded gray
areas indicate the regions that are unattainable even by an ideal 3-qubit code, while the shaded red areas indicate the regions
that are worse than that of a single qubit with no error correction. The analytical initial drops for the Bayesian filter include the
prefactor correction 5/4 7→ 3/2 discussed in Section 4.2. The analytical initial drops for the boxcar filters numerically correspond
to the time at half of the first box ∆t/2.

orders of magnitude longer than the half-boxcar filter
for small bit flip rates). The Markovian double thresh-
old filter consistently requires averaging lengths that are
a factor of roughly 2–4 longer than the half-boxcar to
achieve similar performance.

In Fig. 6c, we show the optimized scaling of the initial
drop ∆Fin with µ for all methods, using the same color
and line-style conventions as Fig. 6a. The numerical
simulations confirm the numerically-optimized analyti-
cal results in Table 2 for the entire tested range of pa-

rameters µτ ∈ [10−6, 10−2]. For the Bayesian filter an-
alytical curve we adjust the derived formula by making
the substitution 5/4 7→ 3/2 in Eq. (29), which corrects
a systematic deviation caused by noise-fluctuations, as
discussed at the end of Section 4.2. Notably, the half-
boxcar filter achieves an initial drop roughly a factor
of 2 larger than the optimal Bayesian filter. For con-
trast, the double-threshold filter has an initial drop that
is roughly a factor of 8 larger than the Bayesian fil-
ter. The simple boxcar filter suffers from comparatively
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large drops greater than 0.3%, even with small bit-flip
rates of µτ ∼ 10−6, which is nearly two orders of mag-
nitude larger than the Bayesian filter.

In Fig. 6d, we show the optimized scaling of the logi-
cal error rate Γ with µ for all methods, using the same
conventions. The numerical simulations again confirm
the numerically-optimized analytic results, up to small
deviations for the half-boxcar filter at larger bit-flip
rates. We anticipated this slight deviation between the
analytics and the simulated data points for µτ > 10−4

during the derivation in Section 5.3, where it arises from
a short boxcar duration, ∆t . 15τ , that prevents con-
vergence to the asymptotic behavior assumed in the
analytical formulas. For the double-threshold and sim-
ple boxcar filters we simulate only larger bit-flip rates
µτ & 10−4 due to the optimal boxcar sizes ∆t becoming
prohibitively long for smaller µτ ; however, the tested
cases confirm the µτ -dependence expected from the an-
alytics.

These simulations confirm that quantum error cor-
rection based on passive state tracking with continu-
ous parity measurements is a viable strategy. As an-
ticipated, the linear Bayesian filter performs the best,
achieving only a slight reduction in performance com-
pared to the idealized 3-bit code due to the noise of
the monitored signal. Moreover, the half-boxcar fil-
ter nearly matches the Bayesian filter in performance
despite a dramatic reduction in processing require-
ments, which makes it the best balance between perfor-
mance and practicality of the minimal filters considered
here. The double-threshold filter also scales compara-
bly, though performs slightly worse overall. We also
emphasize that in the presence of experimental nonide-
alities, realistic implementations of the 3-bit code that
use entangling gates, ancillas, and projective measure-
ments are likely to perform comparably to the continu-
ous measurement filters considered here; for complete-
ness, we provide a similar analysis of the ancilla-based
projective case in the Appendix.

7 Conclusions
We have analyzed the 3-qubit bit-flip code to assess
the performance of direct methods for measuring the
syndromes using time-continuous parity measurements.
For interpreting the time-continuous noisy signals of the
direct syndrome measurements, we have introduced and
analyzed four distinct filters: (i) an efficient linear vari-
ation of an optimal Bayesian filter, (ii) a simple boxcar-
averaging filter, (iii) a minimal non-Markovian “half-
boxcar” variation of the boxcar-averaging filter, and (iv)
a minimal Markovian variation of the boxcar-averaging
filter that uses two thresholds. We have derived ana-
lytic estimations for the performance of all filters and

have verified them with numerical simulations.
These direct parity-measurement methods benefit

from a reduction in hardware resources compared to
ancilla-based methods (namely two fewer ancillary
qubits), which limits the number of inherent bit-flip-
error pathways even before extending the bit-flip code to
more sophisticated encoding schemes. The Bayesian fil-
ter most closely approaches the ideal performance of the
ancilla-based bit-flip code, but also requires the most
computational resources for real-time processing of the
noisy syndrome measurements. The boxcar variations
require less active processing than the optimal Bayesian
filter, so should be more easily implemented with signal
processing hardware, such as field-programmable gate
arrays (FPGAs), for the purposes of real-time syndrome
tracking. The non-Markovian half-boxcar filter achieves
the best balance between performance and computa-
tional overhead of the considered methods. The Marko-
vian double-threshold filter performs slightly less well
than the half-boxcar filter, but avoids the additional
memory overhead at the expense of an increased box-
car duration. All three methods are suitable for im-
mediate implementation with current superconducting
hardware.

The results of our study are promising for the con-
tinued investigation of direct syndrome-measurement
methods. However, three scalability issues that we have
ignored need to be addressed before direct methods can
achieve full quantum error correction. First, we have
focused our analysis on the performance of the meth-
ods with respect to their intended design: protecting
against bit-flip errors. As such, we have ignored other
sources of infidelity, particularly dephasing of the par-
ity subspaces due to imperfect overlap of the entangled
microwave fields, which is analogous to ignoring entan-
gling gate infidelity in analyses of ancilla-based error
correction. Some analysis of these types of implementa-
tion imperfections has begun in recent years [58–61], but
more investigation is needed for a definitive assessment.
Second, while we have presented a practical method for
directly measuring the ZZ parities needed for bit-flip
correction, we have not addressed how to directly mea-
sure the XX parities needed for additional phase-flip
correction. Obtaining high-fidelity direct parity mea-
surements for both ZZ and XX is an open problem
currently under investigation. Third, high-fidelity ex-
tensions of direct two-qubit parity measurements need
to be developed to implement more sophisticated error-
correction schemes, such as the surface code that re-
quires four-qubit parity measurements.

A direct quantitative comparison of the performance
of this continuous error correction to conventional im-
plementations of gate-based ancilla plus projective-
measurement is challenging. This is because different
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assumptions must be made about how the ancilla-based
scheme is implemented, and what a fair comparison of
the approaches is. In superconducting-based architec-
tures, projective measurements have traditionally been
implemented as thresholded continuous measurements
anyway. Consequently, the always-on methods with a
fast measurement rate have the obvious advantages of
not needing time to implement the two-qubit gates,
or to have any down time between repeating the cy-
cle again, where other errors might sneak in. There
is also the possibility of errors occurring in the ancilla
qubits, which would then demand a much larger quan-
tum circuit to make everything fault tolerant, but at
the price of even more hardware. We analyze several
different error scenarios that can occur in the gate-
based implementation in the Appendices, for contrast.
Our overall conclusion is that the hardware efficiency
of the measurement-based parity has the potential to
minimize error possibilities, assuming both good parity
measurement fidelity and good gate fidelity.

Although full error correction using continuous parity
measurements requires additional investigation, several
experimental tasks can be achieved in the short term.
First, the 3-qubit bit-flip code as analyzed here can be
implemented immediately with current superconduct-
ing architectures. Second, a simple extension of the
parity-syndrome monitoring idea to a 4-qubit Bacon-
Shor error-detection code is a natural next step. Such
a code involves four qubits in a square grid, coupled
pairwise to parity-measuring resonators analogously to
Fig. 2. A detailed analysis of the simultaneous mea-
surement of ZZ and XX parities on the square grid
is considered in Ref. [38], which demonstrates that the
error detection scheme works in a time-continuous way.
A simpler variation of this idea can be performed with-
out direct XX measurements by alternating ZZ mea-
surements of different pairs, and suitably interleaving
single-qubit rotation gates to effectively switch between
ZZ and XX measurements. Such a variation is in be-
tween the usual ancilla-based projective scheme and a
fully continuous scheme, much like the boxcar filters in
the present work are in between ancilla-based schemes
and fully continuous schemes. We expect such an ex-
periment to be performed in the near future.
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A Ancilla-based parity measurements
Traditional ancilla-based error-correction with the
three-bit code uses the correction circuit shown in
Fig. 7, repeated over many cycles. At the beginning
of the first cycle, we assume that the initial states of
the ancillary qubits are known to be |b4〉 and |b5〉 with
b4, b5 ∈ {0, 1}. We couple the parity of qubits 1 and 2
(P1,2) to ancillary qubit 4, as well as the parity of qubits
2 and 3 (P2,3) to ancillary qubit 5, using a sequence of
CNOT gates. For timing efficiency, the CNOTs may be
performed in parallel so that the total duration of the
gate sequence is the length of two CNOTs.

In the analysis that follows, we notate a CNOT that
flips ancilla qubit j conditioned on the excited state
of qubit k as Cj|k. A CNOT gate must be imple-
mented by a sequence of more basic rotation gates that
are hardware-dependent. For specificity, we model the
CNOT with the cross-resonance gate used by the IBM
group [62–64]. The cross-resonance interaction occurs
when the data qubit k is pumped at the resonance
frequency of the ancilla qubit j, which can be mod-
eled crudely by an effective interaction Hamiltonian
H ∝ J(ZkXj + mIkXj) with a coupling strength J
and a chip-dependent cross-talk strength m [62] that
is measurable [63]. (For a more complete treatment of
the cross-resonance gate, see Ref. [65].) For a suitably
timed pulse, a rotation phase of ±π/2 can be accumu-
lated by the ZX interaction to yield the unitary gate:
exp(−i(ZkXj)π/4 − i(IkXj)mπ/4). The simple cross-
resonance interaction can take ∼ 300–400 ns to com-
plete [62], while echo optimizations can reduce the time
to ∼ 160 ns [63]. After correcting the residual cross-talk
rotation phase, the interaction produces a (ZX)90 gate,
which can be converted into a CNOT using single-qubit
rotations and a phase correction, e.g.

Cj|k = (IkIj)90[(Zk)−90 ⊗ (Xj)90](ZkXj)90 (58)
= e−iIk⊗Ij π/4(eiZkπ/4 ⊗ eiXjπ/4)e−iZk⊗Xj π/4

= |0〉〈0|k ⊗ Ij + |1〉〈1|k ⊗Xj .

The single qubit gates take roughly ∼ 30–50 ns to im-
plement [66]; therefore, we estimate the total CNOT
gate to have an optimistic duration of 200 ns in the fol-
lowing analysis, implying that the 2-CNOT gate time
is δt ∼ 4τ assuming a typical measurement timescale
of τ ∼ 100 ns. For most purposes, it will be sufficient
to use this final standard form of the CNOT. However,
for analysis of potential logical error sources the specific
gate implementation becomes important.

We then measure Z4 and Z5 for the two ancil-
lary qubits, using dispersive microwave readout simi-
lar to that outlined in Section 3, and integrate the re-
sulting signals for a duration ∆t. After thresholding
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the integrated signals with a symmetric threshold of
a = 0, we obtain the pair of binary results (R4, R5)
with R4, R5 ∈ {−1, 1}. Using the knowledge of the
initial ancilla states, we convert these results to the
parity eigenvalues of (Z1Z2, Z2Z3) with the relation
((−1)b4 R4, (−1)b5 R5). These eigenvalues are the er-
ror syndrome outcomes for tracking single bit flip errors
with the same table used in Eq. (5).

We start the next cycle after a total cycle duration
∆T , which includes the gate time δt, the syndrome mea-
surement integration time ∆t, an arbitrary waiting du-
ration, and a heralding measurement time ∆t. This
heralding measurement is made to ensure the ancillas
are in a known state before the next gate cycle, since bit
flips may have occurred on the ancillas during the wait-
ing time. If the waiting time is sufficiently short, such
that ∆T−δt < 2∆t, the readout and heralding measure-
ments may be combined into a single long measurement
of the ancillas. The only reason for separating the two
for long cycle times is that long integration times may
hide bit flips of the ancillas just prior to the start of the
next cycle. If we assume that bit flips of the ancillas
prior to the heralding measurement can be corrected,
then there is no penalty for the measurements continu-
ing for the entire waiting duration before thresholding.

We use three strategies to estimate the performance
of the ancilla-based case:

1. Idealistic strategy : We assume that the only errors
which are not correctable are from higher-order
data-qubit bit-flips. We also assume that the an-
cillas are not reused, so do not limit the cycle time.
This is the optimal theoretical performance of the
bit-flip code if no additional errors are introduced
in the implementation.

2. Pessimistic strategy : We keep all errors that arise
from sudden bit flips of either the data qubits or the
ancillas, including during measurement times and
during the cross-resonance gate interaction. We use
this strategy as a worst-case-scenario of the ancilla-
based case that would occur without more sophis-
ticated correction methods.

3. Optimistic strategy : We assume that all bit-flip-
induced phase-flip errors can be avoided by embed-
ding the 3-qubit code into a suitable fault-tolerant
code, leaving only second-order errors. We assume
non-Markovian processing of the syndrome history
to remove the detectable ancilla-flip errors. We also
assume that the ancillas are reused in each cycle.
We use this strategy as a more realistic benchmark
to assess the relative performance of the continuous
case.

The idealistic case acts as an effective lower bound for

the infidelity to show how the realistic cases compare
against the best possible theoretical case. In Figs. 6a,
6c, and 6d we plot this idealistic case as the gray line to
provide a crude comparison for the continuous measure-
ment cases. The pessimistic case acts as a worst-case
scenario to show how the raw 3-qubit code would behave
if implemented in a laboratory that only caused pure
bit flips, with no sophisticated non-Markovian process-
ing of the syndrome history. Although better processing
techniques would certainly be employed to avoid most of
these errors, the pessimistic case is still a useful compar-
ison as a lower bound to bracket expectations. The op-
timistic case acts as a more realistic in-between scenario
that incorporates plausibly achievable corrections. For
evaluating realistic QEC, additional enhancements be-
yond the simple bit-flip code should be assumed, which
makes the optimistic strategy a reasonable performance
comparison.

We now derive expressions for the initial drop in fi-
delity ∆Fin and the logical error rate Γ for these projec-
tive measurement scenarios, to be compared to the con-
tinuous measurement case. In each case, we fix the gate
time δt = 4τ to the length of two CNOT gates and opti-
mize over two free filter parameters: measurement inte-
gration time ∆t and cycle repetition time ∆T ≥ ∆t+δt.
As a caution, when experimentally implemented the
value of the measurement timescale τ will differ between
the continuous parity measurements of the main text
and the ancilla measurements in the appendix. Parity
measurements are likely to have a timescale τ that is
several times longer than the τ achievable for the mea-
surement of a single qubit. For simplicity of notation,
however, we ignore this distinction in what follows; nev-
ertheless, care should be taken when comparing results
to the continuous measurement cases.

A.1 Logical error rate: Idealistic case
In the idealistic case, we ignore all errors introduced
by the ancilla qubits, ignore all errors that could hap-
pen during CNOT gates, ignore phase flips, and ignore
misidentification errors of the readout. We also assume
that all ancilla measurements can be done in parallel
with an infinite supply of ancillary qubits, so that there
is no restriction on repetition time arising from reuse of
the ancillas. As such, the cycle time is limited only by
the gate time, ∆T → δt, with the measurement time
∆t→∞ allowed to be as large as necessary in parallel
to eliminate misidentification errors.

With these assumptions, only double-bit-flips of the
data qubits during the gate time δt contribute to the
logical error rate, with no delay between successive gate
times. Thus,

Γτ ≈ 3µ2τδt = 12 (µτ)2, (59)
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where we have taken the gate time to be δt = 4τ .
The initial drop in fidelity of ancilla-based error cor-

rection comes from errors that would normally be de-
tectable after multiple cycles, but do not have enough
time to be detected before the final detection cycle ends.
For the idealistic case, only data-qubit bit flips that hap-
pen after the initial CNOTs will cause an error, since
bit flips before the CNOTs will be detected. Examining
the gate timings in Fig. 7 shows that only flips of bits
1 and 2 in the second half of the gate time can cause
such an error, which yields a total fidelity drop of

∆Fin = 2µ(δt/2) = µδt = 4µτ. (60)

A.2 Logical error rate: Pessimistic case
In the pessimistic case, logical errors can arise from sev-
eral distinct mechanisms: (a) two data-qubit bit flips
during the same cycle, (b) a single data-qubit bit flip
during a CNOT gate, (c) one data-qubit bit flip and
one ancilla-qubit bit flip, (d) two ancilla-qubit bit flips,
(e) one misidentification and one bit flip, and (f) two
misidentifications. For completeness, we also briefly
consider a non-bit-flip error that is particularly prob-
lematic, (g) a single ancilla-qubit bit-phase-flip during
a CNOT gate. Note that single ancilla-qubit bit flips are
not problematic since they are simply corrected by the
subsequent cycle. We now consider each logical error
source in turn.

(a) Two data-qubit bit flips

This source of error is the same as in the idealistic
case, but single bit flips during the gate time δt are
now dangerous. In practice, however, ∆T � δt for
the pessimistic case, so we can neglect all δt/∆T
corrections without harm. With this simplification,
the two data-qubit bit-flip contribution to the logi-
cal error rate becomes 3µ2∆T .

(b) One data-qubit bit flip during CNOT

For specificity, we assume an initial 5-qubit state
|ψ〉 = (α|000〉 + β|111〉)|00〉, with an arbitrary log-
ical superposition of data qubits 1,2, and 3, and
the ancilla qubits 4 and 5 initialized in their ground
states. We use the CNOT gate implementation out-
lined in Eq. (58). Since the single-qubit gate cor-
rections require only 1/4 the gate time, we assume
that the relevant errors are caused by bit flips dur-
ing the two-qubit gate and neglect single-qubit-gate
errors. Since the (ZkXj)90 gate is a continuous ro-
tation that takes a finite time, a bit flip can occur
at any intermediate angle of the rotation.

An (IkXj) bit flip of the ancilla commutes with
this gate, so does not cause problems beyond

those considered in subsequent sections. How-
ever, an (XkIj) bit flip of a data qubit dis-
rupts the gate rotation. When we combine
the final single-qubit correction with the two-
qubit gate disrupted at an angle φ ∈ [0, π/2],
we find (IkXj)−π/2(ZkXj)π/2−φ(XkIj)(ZkXj)φ =
(IkXj)−π/2(ZkXj)π/2−2φ(XkIj) = Xj|k(4φ −
π)(XkIj), where

Xj|k(θ) ≡ |0〉〈0|k ⊗ Ij + |1〉〈1|k ⊗ exp(−iXj θ/2)
(61)

is a controlled-X rotation of the ancilla. For clarity,
we rescale the angle as 4φ ≡ ϕ ∈ [0, 2π].
Ignoring the phase corrections as unimportant here,
we now consider each data-qubit bit-flip scenario
of the complete gate sequence (C5|3C4|2C5|2C4|1)
shown in Fig. 7:

• X1 during C1|4:

C5|3C4|2C5|2(eiZ1π/4 ⊗ I4)X4|1(ϕ− π)(X1I4)|ψ〉
= (1− i) sin(ϕ/2)(α|100〉 − β|011〉)|00〉
+ (i+ 1) cos(ϕ/2)(α|100〉+ β|011〉)|10〉

• X2 during C5|2

C5|3C4|2(eiZ2π/4 ⊗ I5)X5|2(ϕ− π)(X2I5)C4|1|ψ〉
= (1− i) sin(ϕ/2)(α|010〉 − β|101〉)|10〉
+ (i+ 1) cos(ϕ/2)(α|010〉+ β|101〉)|11〉

• X2 during C4|2

C5|3(eiZ2π/4 ⊗ I4)X4|2(ϕ− π)(X2I4)C5|2C4|1|ψ〉
= (1− i) sin(ϕ/2)(α|010〉 − β|101〉)|00〉
+ (i+ 1) cos(ϕ/2)(α|010〉+ β|101〉)|10〉

• X3 during C5|3

(eiZ3π/4 ⊗ I5)X5|3(ϕ− π)(X3I5)C4|2C5|2C4|1|ψ〉
= (1− i) sin(ϕ/2)(α|001〉 − β|110〉)|00〉
+ (i+ 1) cos(ϕ/2)(α|001〉+ β|110〉)|01〉

After measuring the ancillas, each of these scenar-
ios produces a logical phase flip with probability
sin2(ϕ/2). A phase flip can not be corrected by the
bit flip code, so this is a logical error being induced
by a bit flip. Averaging ϕ over all possibilities yields
a probability of 1/2 for this to occur, per gate time
of δt/2 in each cycle. Thus, the total phase-flip con-
tribution to the logical error rate from all scenarios
above is 4 (1/2)µ(δt/2)/∆T .
In the C4|2 case, the ancilla measurement can addi-
tionally misidentify a bit-2 flip as a bit-1 flip with
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probability cos2(ϕ/2); this produces a logical error
since the subsequent correction cycle yields a syn-
drome of (−1,−1) with an estimated encodingXII,
which will be interpreted as a bit-3 flip to the en-
coding XIX that is the inversion of the true IXI
encoding. Averaging over ϕ again produces prob-
ability 1/2, and a contribution to the logical error
rate of (1/2)µ(δt/2)/∆T .
The total contribution to the logical error rate
from data-qubit bit-flips during a CNOT is thus
(5/4)µδt/∆T . Since this contribution is linear in
µ, it is the dominant source of error for the ancilla-
based approach. It is this term that is largely re-
sponsible for the smallness of the factor δt/∆T upon
optimization.

(c) One data-qubit bit flip and one ancilla-qubit bit flip

A logical error can occur from flips within a single
cycle when a data-qubit flip is combined with a mis-
interpretation of the syndrome measurement. Since
data-qubit flips during the gate time have already
been included in the logical error of the preceding
subsections, we consider only flips that happen in
the interval [δt,∆T ], with probability µ(∆T − δt).
A syndrome misinterpretation can occur if an an-
cilla qubit is either incorrectly prepared, or flips just
prior to readout. An incorrect preparation occurs if
the ancilla flips during the second half of its herald-
ing measurement ∆t/2 before a detection cycle (see
Fig. 7), since that flip will not be detected by the av-
eraged record of the heralding measurement. Sim-
ilarly, if the ancilla flips during the gate time δt
(assuming it commutes with the CNOT gates) or
the first half of the final readout duration ∆t/2,
then the flip causes a misinterpretation of the syn-
drome. The total probability of these ancilla flips
is thus µ(∆t+ δt). There are four ways that combi-
nations of flips can cause a logical error: Both 1+5
and 3+4 flips will misinterpret a bit 1 or bit 3 flip
as sequence of two flips and cause a logical error in
the next cycle. For example, 1+5 produces a true
encoding of XII but yields the two-cycle sequence
of estimated encodings: III → IIX → IXX. Both
2+4 and 2+5 flips will misinterpret a bit 2 flip as
a bit 1 or bit 3 flip and cause a logical error in
the next cycle. For example, 2+4 produces a true
encoding of IXI but yields the two-cycle sequence
III → XII → XIX. The total contribution to
the logical error rate from a single cycle is therefore
4µ2(∆t+ δt)(∆T − δt)/∆T .
A logical error can also occur from flips over two
cycles when an ancilla qubit flips in one cycle and
a data qubit flips in the next. In this case, the
only situation that can cause a logical error is when

the ancilla flips in the second half of the heralding
measurement, with probability µ∆t/2. This flip is
unlikely to be detected in the current cycle, so will
be postponed to the next cycle where it combines
with the data-qubit flip to produce a logical error,
with probability µ(∆T−δt). Tallying the same four
ways this can produce a logical error produces the
probability 2µ2∆t(∆T −δt) that this type of logical
error occurs within a two cycle window. GivenN �
1 total cycles, there are N − 1 ≈ N windows of 2
consecutive cycles. The error rate contribution is
therefore N − 1 times the probability within a 2-
cycle window over the total duration N∆T , which
is 2µ2∆t(∆T − δt)/∆T .
A similar situation arises when a data-qubit flips
in one cycle followed by an ancilla-qubit flip in the
first half of the syndrome measurement of the next
cycle. The probability of obtaining a logical error
from this scenario is similar to the previous two-
cycle scenario, but includes the gate time. There-
fore, the contribution of this type of error to the log-
ical error rate is also 4µ2(∆t/2 + δt)(∆T − δt)/∆T .
The total contribution of one data-qubit flip and
one ancilla-qubit flip to the logical error rate is
8µ2∆t(∆T − δt)/∆T + 8µ2δt(∆T − δt)/∆T . Ap-
plying the condition δt/∆T � 1 yields the simpli-
fication 8µ2(∆t+ δt).

(d) Two ancilla-qubit bit flips

A logical error can occur from flips in a single cy-
cle when one ancilla flips during the first half of
its syndrome measurement (producing an incorrect
readout) and the remaining ancilla flips during the
second half of its heralding measurement (produc-
ing an incorrect preparation for the next cycle).
If the flips are ancilla 4 then ancilla 5, this pro-
duces the following sequence of estimated encodings
over three cycles III → XII → XXI → XXX.
The reversed order of ancilla flips is also possi-
ble, so the contribution to the logical error rate is
2µ2(∆t/2)2/∆T .
A logical error can occur from flips over two cycles
when the two ancillas sequentially flip during the
first halves of their syndrome measurements, which
produces the same result as above. Similarly, the
same result occurs when the two ancillas sequen-
tially flip during the second half of their heralding
measurements. Thus, the logical error rate acquires
two more contributions of 2µ2(∆t/2)2/∆T .
The total contribution of two ancilla-qubit flips to
the logical error rate is thus (3/2)µ2∆t2/∆T .

(e) One misidentification and one bit flip
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So far we have treated the ancilla measurements
as ideal projective measurements, but in reality
they are not. Since projective measurements imple-
mented with dispersive coupling to microwave fields
are thresholded continuous measurements—similar
to those considered in the main text—the ancilla
readout may be misidentified with probability Pmis
given in Eq. (38). Such a misidentification error
can cause a logical error when it is combined with
a data-qubit flip or a flip in the other ancilla qubit.
These contributions are much smaller than the pre-
ceding ones and can often be neglected; however,
we include them for completeness.

The combinations of one misidentification and one
bit flip follow the structure outlined in the preced-
ing subsections that include at least one ancilla bit
flip, so their contributions to the logical error rate
can be listed here more compactly: A misidenti-
fication in the syndrome measurement of a cycle
combined with a data-qubit flip in the same cycle
contributes 4Pmisµ(∆T − δt)/∆T . A misidentifica-
tion in the heralding measurement of a cycle com-
bined with a data-qubit flip in the same cycle con-
tributes 4Pmisµ(∆T − δt)/∆T . A misidentification
in the heralding measurement of a cycle followed by
a data-qubit flip in the following cycle contributes
4Pmisµ(∆T − δt)/∆T . A misidentification in the
syndrome measurement of a cycle combined with
the complementary ancilla-qubit flip in the second
half of its heralding measurement in the same cycle
contributes 2Pmisµ(∆t/2)/∆T . A misidentification
in the heralding measurement of a cycle combined
with the complementary ancilla-qubit flip in the
first half of its syndrome measurement in the same
cycle contributes 2Pmisµ(∆t/2)/∆T . A misidenti-
fication in the heralding measurement of a cycle
combined with the complementary ancilla-qubit flip
in the second half of its heralding measurement of
the following cycle contributes 2Pmisµ(∆t/2)/∆T .
An ancilla-qubit flip in the first half of its syn-
drome measurement of a cycle followed by the
complementary misidentification in the syndrome
measurement of the following cycle contributes
2Pmisµ(∆t/2)/∆T . An ancilla-qubit flip in the sec-
ond half of its heralding measurement of a cycle
followed by the complementary misidentification in
the heralding measurement of the following cycle
contributes 2Pmisµ(∆t/2)/∆T .

The total contribution of one misidentification and
one bit flip to the logical error rate is 12Pmis µ(∆T−
δt)/∆T + 5Pmis µ∆t/∆T . Applying the condition
δt/∆T � 1 yields the simplification 12Pmis µ +
5Pmis µ∆t/∆T .

(f) Two misidentifications

Similarly to the case with two ancilla-qubit flips,
two misidentifications can lead to a logical error.
These errors are extremely small, but included for
completeness. We list their contributions to the
logical error rate compactly, since they follow the
same structure as for two ancilla flips: A misiden-
tification in the syndrome measurement of a cy-
cle combined with a complementary misidentifica-
tion in the heralding measurement of the same cy-
cle contributes 2P 2

mis/∆T . A misidentification in
the syndrome measurement of a cycle combined
with the complementary misidentification in the
syndrome measurement of the following cycle con-
tributes 2P 2

mis/∆T . A misidentification in the
heralding measurement of a cycle combined with
the complementary misidentification in the herald-
ing measurement of the following cycle contributes
2P 2

mis/∆T .
The total contribution of two misidentifications to
the logical error rate is 6P 2

mis/∆T .

(g) One ancilla-qubit phase-bit flip during CNOT

For completeness, we highlight another type of logi-
cal error that could occur during a CNOT gate, but
which we will ultimately neglect in the main text.
In most of the analysis, we have been assuming
pure bit flips X. However, when an environmen-
tal perturbation physically causes such a bit flip,
the flip is likely to be a continuous rotation around
an arbitrary axis of the Bloch sphere. As such, an
ancilla-qubit bit flip may use an axis that does not
commute with the rotation axis of the controlled-X
rotation in the CNOT. The worst case is a “phase-
bit” flip of the ancilla, which uses the maximally
non-commuting axis denoted by IkYj .

Following the conventions of the preceding subsec-
tion, we find that the interrupted two-qubit gate se-
quence is (IkXj)−π/2(ZkXj)π/2−φ(IkYj)(ZkXj)φ =
(IkXj)−π/2(ZkXj)π/2−2φ(IkYj) = Xj|k(4φ −
π)(IkYj). After rescaling the angle as before 4φ ≡
ϕ ∈ [0, 2π], and noting that Yj = −iZjXj , we
can immediately use the scenarios outlined in the
preceding subsection to infer that an ancilla-phase-
bit-flip during any of the four CNOT gate scenar-
ios produces a logical phase-flip with probability
cos2(ϕ/2). Moreover, the C5|2 case will produce a
logical error with probability sin2(ϕ/2) since a bit 2
flip is misidentified as a bit 1 flip. These cases would
thus contribute another term of (5/4)µδt/∆T to the
logical error rate.

We also note in passing that a different implementa-
tion of a CNOT could result in a significantly worse
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error from such a phase-bit flip. Suppose that in-
stead of the symmetric coupling of the (ZkXj)90
gate, one directly implemented a controlled rota-
tion gate Xj|k(π). (The realistic gate operation is
somewhere in between these idealizations.) A bit-
phase flip in the middle of, e.g., the C4|1 gate would
then yield

C5|3C4|2C5|2X4|1(π − φ)(I1Y4)X4|1(φ)|ψ〉
= (i− 1) sin(2φ)β|111〉|00〉
+ (1 + i)

(
α|000〉+ β cos(2φ)|111〉

)
|10〉,

with similar outcomes for the other scenarios. In
both cases of the ancilla measurement, the logical

information is altered. In one case the logical state
is completely projected and the information is de-
stroyed, while in the other case the logical state is
partially projected by a random amount. Neither
of these types of logical error can be corrected by
the three qubit code.

In the spirit of analyzing how the bit-flip code pro-
tects against pure bit-flip errors, however, we do
not include these sorts of errors caused by phase-
bit-flips in our final estimate. This keeps the anal-
ysis focused solely on the performance of the code
against the type of error for which it was intended.

Adding up all contributions to the logical error rate
and neglecting δt/∆T � 1 corrections produces the to-
tal formula:

Γτ = 5
4µτ

δt

∆T + 3(µτ)2 ∆T
τ

+ 8(µτ)2 ∆t+ δt

τ
+ 3

2(µτ)2 (∆t)2

τ∆T + 12Pmis µτ + 5Pmis µτ
∆t
∆T + 6P 2

mis
τ

∆T . (62)

For both pessimistic and the optimistic methods,
there are three contributions to the initial drop. First,
if a data qubit flips after the CNOT gates, i.e. during
the ancilla measurement time, then the flip is not de-
tectable. Such a flip can occur with probability 3µ∆t.
Second, if an ancilla flips during the first half of its mea-
surement time in the final cycle, then its reported parity
outcome will be incorrect. Such an ancilla flip can occur
with probability 2µ(∆t/2). Third, if an ancilla has its
readout misidentified in the final cycle, then its reported
parity outcome will be incorrect. Such a misidentifica-
tion can occur with probability 2Pmis, with Pmis as de-
fined in Eq. (38). Adding these contributions together,
the drop in average fidelity from the final cycle is thus

∆Fin = 4µτ ∆t
τ

+ 2Pmis. (63)

Using the optimization outlined in Eq. (51), and
methods similar to the main text, we can analytically
obtain crude formulas for the optimized ∆Fin and Γ.
We find that the optimized measurement time scales
logarithmically with the bit-flip rate,

∆t
τ
≈ 2 ln 3

8µτ
√
π ln[3/(8µτ

√
π · · ·)]

≈ 2 ln 1
15µτ ,

(64)

where the final approximation applies in the range
µτ ∈ [10−6, 10−3] by renormalizing the nested logarith-
mic dependence to a constant. The cycle time scales as

the inverse square root,

∆T
τ
≈
√

5
3µτ . (65)

These time scales produce an optimized logical error
rate and initial drop of roughly

Γτ ≈ 6.2(µτ)2[1 + 8√µτ ]∆T
τ
≈ 8 (µτ)3/2 [1 + 8√µτ ] ,

∆Fin ≈ 4 (µτ)∆t
τ
≈ 8 (µτ) ln 1

15µτ . (66)

Due to the dangerous ancilla-flips during the CNOTs,
the logical error rate dominantly scales as µ3/2 rather
than µ2, which makes the pessimistic case significantly
worse than the ideal case and unusable for practical
error correction. Of all considered methods, it is the
worst performing.

A.3 Logical error rate: optimistic case
In the optimistic case, we assume that the 3-qubit code
is a sub-code of a larger code that should be able to cor-
rect many of the errors introduced by the ancilla qubits
in the pessimistic case. Most importantly, we assume
that the phase-flip errors introduced by bit-flips dur-
ing the CNOTs can be corrected by a suitable phase-
flip encoding. We also assume that the code is fault-
tolerant, so other errors that occur during the CNOT
gates and ancilla measurements will be corrected. Sim-
ilarly, we assume a non-Markovian extensions to the 3-
qubit code that can track the most likely past errors
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from observed sequences of syndrome measurements.
With these enhancements in mind, the only important
error will be the flip of two data-qubits, as intended
by the 3-qubit code. This yields a logical error rate of
Γ = 3(µτ)2(∆T/τ) that is quadratic in µ but linear in
the cycle time ∆T . For the initial drop in fidelity, the
result Eq. (63) in the pessimistic case also applies to the
optimistic case.

Unlike the idealistic case, in order to reuse the ancilla
qubits in consecutive cycles, the measurement time ∆t
must be kept sufficiently long to ensure that misidenti-
fication errors remain rare, which bounds the cycle time
from below ∆T ≥ δt+ ∆t and limits how small one can
make the logical error rate Γ. The operation of the 3-
qubit code, even with extensions, assumes that flips oc-
cur rarely enough that µ∆T � 1, so it is necessary that
misidentifications also occur rarely, Pmis � 1. A natu-
ral criterion for optimization is thus to keep the cycle
time ∆T as small as possible while gracefully bounding
Pmis to be smaller than the bit flips being corrected,
Pmis . µ∆t < µ∆T � 1, so that it scales appropriately
with µτ .

Approximately solving the constraint Pmis = µ∆t
produces a lower bound for the measurement time. In
this small misidentification error regime, we can use the
asymptotic formula Pmis ≈ exp(−∆t/2τ)/

√
2π∆t/τ

noted in Eq. (38), which produces the consistency rela-
tion exp(−∆t/2τ)/

√
2π∆t/τ . µ(∆t)� 1, yielding

∆t
τ

& 2 ln 1
µτ [2 ln(1/µτ)]3/2

≈ 2 ln 1
100µτ ,

assuming that ∆t will be minimized as the lower bound
of the cycle time. The first approximation is valid in the
range µτ ∈ [10−6, 10−3], while the second, more crude,
approximation remains reasonably close over the same
range.

We thus obtain crude scaling formulas for the opti-
mistic case of ancilla-based error correction:

Γτ ≈ 3 (µτ)2 ∆T
τ
≈ 3 (µτ)2

[
4 + 2 ln 1

100µτ

]
, (67)

∆Fin ≈ 6 (µτ)∆t
τ
≈ 12 (µτ) ln 1

100µτ . (68)

Importantly, for the optimistic case the scaling of Γ with
µ2 is restored, up to logarithmic corrections. However,
the initial drop in fidelity remains significant because of
bit flips in the extra two ancillary qubits during the final
correction cycle. Of the analyzed ancilla-based cases,
this optimistic case is the most plausible comparison
to the continuous measurement filters in the main text.
However, comparing the scaling must be done with care,
since the timescale τ for ancilla-based measurement is
likely a few times shorter than that of the parity mea-
surements in the main text.

1

2

3

4

5
Syndrome Measurement Heralding Measurement

∆T

∆t ∆t

δt

Figure 7: Ancilla-based error correction circuit for the 3-bit
code. Successive controlled-NOT (CNOT) gates entangle two
ancillas to the parities of bits 1-2 and 2-3 over a total gate time
of δt ∼ 4τ . To measure the syndromes, the ancilla qubits are
read out dispersively by integrating noisy signals for a duration
∆t. After an arbitrary waiting time, the ancillas are reinitial-
ized with a heralding measurement, also of duration ∆t, which
completes one full cycle time of ∆T . For ∆T − δt < 2∆t,
the ancilla measurements fill the waiting time, so syndrome
measurement and preparation heralding coincide.
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