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Abstract

We present linear time and space operations on discrete paths.
First, we compute the outer hull of any discrete path. As a conse-
quence, a linear time and space algorithm is obtained for computing
the convex hull. Next, we provide a linear algorithm computing the
overlay graph of two simple closed paths. From this overlay graph,
one can easily compute the intersection, union and difference of two
Jordan polyominoes, i.e. polyominoes whose boundary is a Jordan
curve. The linear complexity is obtained by using an enriched ver-
sion of a data structure introduced by Brlek, Koskas and Provençal:
A quadtree for representing points in the discrete plane Z × Z aug-
mented with neighborhood links, which was introduced in particular
to decide in linear time if a discrete path is self-intersecting.

Keywords: Freeman code, lattice paths, radix tree, discrete sets,
outer hull, convex hull, polyomino intersection, union, complement,
difference.

1 Introduction

The ever-growing use of digital screens in industrial, military and civil ap-
plications gave rise to a new branch of study of discrete objects, digital
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geometry, where the most basic objects are pixels. In particular, their geo-
metric properties play an essential role in the design of efficient algorithms
for recognizing patterns and extracting features: these are mandatory steps
for an accurate interpretation of acquired images.

Fundamental geometric operations on sets of pixels, or discrete figures
have been extensively studied. For instance, algorithms computing rotations,
translations, symmetries, unions, intersections, dilations or segmentations
of discrete figures are well documented (see [14] for a survey of the many
algorithms available). However, none of the previous method is based on
encodings of discrete figures by their boundary using combinatorics on words,
a field which recently led to the development of efficient tools to study digital
geometry (see [1, 18]).

To illustrate the validity of this approach, consider the problem of finding
the convex hull of a set of points. It is well known that for the Euclidean case,
algorithms for computing the convex hull of a set S ⊂ R2 run in O(n log n)
time where n = |S| (see [7, 15]). One can also show that such algorithms are
optimal (see [8, 14, 20] for the general case). In the digital case, the situation
is made surprisingly easier with the help of combinatorics on words. For
instance, linear asymptotic bounds are obtained when considering discrete
paths encoded by elementary steps. Indeed, Brlek et al. designed a linear
time algorithm for computing the discrete convex hull of nonself-intersecting
closed paths in the square grid [5]. It is based on an optimal linear time and
space algorithm for factorizing a word in Lyndon words designed by Duval
[11].

In this paper, we study fundamental geometric operations on connected
discrete figures, or polyominoes with the help of combinatorics on words. As
a first step, we describe a linear algorithm for computing the outer hull of
any discrete path using the data structure described in [2] where the authors
designed a linear time and space algorithm for detecting path intersection. It
rests on a quadtree data structure induced by a natural radix order of N×N.
Then, each path is dynamically encoded by adding a pointer for each step of
the discrete path encoded on the four letter alphabet {0,1,2,3}. Then, we
extend those ideas to develop linear time and space algorithms for computing
the overlay of two Jordan curves on Z2. As a byproduct, the convex hull of
any discrete path, the intersection, the union and the difference of two Jordan
polyominoes are computed in linear time.
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2 Preliminaries

Given a finite alphabet Σ, a word w is a function w : [1, 2, . . . , n] −→ Σ
denoted by its sequence of letters w = w1w2 · · ·wn, and |w| = n is its length.
For a ∈ Σ, |w|a is the number of letters a in w. The set of all words of length
k is denoted by Σk. Consequently, Σ∗ =

⋃∞
i=0 Σi is the set of all finite words

on Σ where Σ0 = {ε}, the set consisting of the empty word. The set Σ∗

together with the operation of concatenation form a monoid called the free
monoid on Σ.

Let w be any word. We say that the word u is a factor of w is there exist
words x and y such that w = xuy. If |x| = 0 (resp. |y| = 0), then u is called
a prefix (resp. suffix ) of w.

There is a bijection between the set of pixels and Z2 obtained by mapping
(a, b) ∈ Z2 to the unitary square whose bottom left vertex coordinate is (a, b).
Therefore, we may consider pixels as elements of Z2. By definition, a discrete
set S is a set of pixels, i.e. S ⊂ Z2. Also, two pixels are called 4-adjacent
(resp. 8-adjacent) if their intersection is a unit segment (resp. a point). A set
S is called 4-connected (resp. 8-connected) if for any pair of pixels p, q ∈ S,
there exist pixels p = p0, p1, p2, . . ., pk−1, pk = q such that pi and pi+1 are
4-adjacent (resp. either 4- or 8-adjacent) for i = 0, 1, . . . , k − 1. Since any
discrete set is a disjoint collection of 8-connected sets, we consider from now
on that discrete sets are 4 or 8-connected. Also, define a hole of a discrete
set S as a finite connected region of S. Any 4-connected (resp. 8-connected)
hole is called a 4-hole (resp. 8-hole).

A convenient way of representing discrete sets without hole is to use
a word describing its contour (or boundary). In 1961, Freeman proposed
an encoding of discrete objects by specifying their contour using the four
elementary steps (→, ↑,←, ↓) ' (0,1,2,3) [13]. This encoding provides an
advantageous representation of discrete paths in Z2. A discrete path is a
sequence of points P = (p1, p2, . . . , pn) where pi and pi+1 are 4-adjacent for
i = 1, 2, . . . , n− 1. More precisely, two points p and q are called neighbors if
q = p+ e for some elementary unit vector e ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}.

It is not hard to see that every discrete figure without hole can be repre-
sented by a closed and simple discrete path. From now on, we concentrate on
the more general concept of discrete paths, referencing discrete figures with-
out hole as “simple and closed discrete paths”. For example, the discrete
figure of the single pixel (0, 0) is regarded as the path ((0, 0); 0123).

It is worth mentioning that in the case of a closed discrete path, w is
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Figure 1: (a) A discrete path coded by the word w = 001100322223 and
(b) its first difference word ∆(w) = 01030330001.

unique up to a circular permutation of its letters and the sense of travel.
For example, any circular permutation of the word w = 001100322223
represents the discrete path shown in Figure 1(a). One says that a word
w ∈ F∗ is closed if and only if |w|0 = |w|2 and |w|1 = |w|3. Further, w
is called simple if it codes a nonself-intersecting discrete path, i.e. its only
closed factors are ε and possibly w itself. For instance, w = 001100322223
is nonsimple and closed.

It is sometimes useful to consider encoding of paths with turns instead
of elementary steps. Such encoding is obtained from the contour word w =
w1 · · ·wn by setting

∆(w) = (w2 − w1)(w3 − w2) · · · (wn − wn−1)

where subtraction is computed modulo 4. ∆(w) is called the first differ-
ences word of w. Letters of ∆(w) ∈ F∗ are interpreted via the bijection
(0,1,2,3) ' (forward, left turn,U-turn, right turn). It is worth mentioning
that for any closed path w, the first difference word of w is ∆(w)(w1 − wn),
where ∆(w) is defined as above. For example, one can verify in Figure 1(b)
that ∆(w) = 01030330001 and that it codes the turns of w.

We present two additional operations on discrete path. The first one is the
usual reversal operator : Given w = w1w2 · · ·wn, we define w̃ = wn · · ·w2w1.
Moreover, let ŵ = w̃, where · is the morphism defined by 0↔ 2 and 1↔ 3.
From a geometric point of view, applying the operator ·̂ to some path w
translates as traveling the path w in the opposite direction.

Clearly, every path w is contained in a smallest rectangle, or bounding
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Figure 2: (a) Smallest rectangle containing a discrete path and the point W ;
(b) Standard decomposition of a self-avoiding closed path

box such that we can define the leftmost and then lowest point W as in
Figure 2(a). W is easily obtained in linear time by keeping track of the
extremum coordinates while reading the word. It is worth mentioning that
in the case of a closed simple path u, this coordinate corresponds to the point
W of the standard decomposition of u obtained by considering the following
four extremal points of the bounding box: W (lowest on the left side), N
(leftmost on the top side), E (highest on the right side) and S (rightmost on
the bottom side) (see Figure 2(b)).

3 Topological graph theory

This section lays the theoretical groundwork for our study of discrete paths
and objects. We begin by recalling some notions about topological graph
theory (see [16] for a thorough exposition of the subject).

Let G be a graph and S a surface. Then an embedding of G in the surface
S is an injective and continuous1 function

I : G −→ S.

The components S − G are called faces or regions of the embedding.
Further, if I is such that every region is homeomorphic to the open disk,
we say that I is a cellular embedding. For example, let G be any finite
nonempty graph and S = R2. Then there does not exist cellular embedding
of G in S since the infinite face is not homoemorphic to the open disk. Thus

1We abuse the terminology by referring to the image of the topological representation
of the graph simply as G
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Figure 3: (a) The graph GP associated with the path coded by w = 001233.
(b) The counterclockwise embedding G(P ) in R2 and (c) its associated rota-
tion scheme.

from now on, we embed such graph in the sphere but draw the result in the
projective plane R2 (with the necessary point at infinity). A graph which
can be embedded in the plane is called a planar graph.

Now, let G = (V,E) be a planar graph and I : G −→ R2 an embedding
of G in the plane. Then I is completely determined up to homeomorphism
by associating a cyclic order with the edges around each vertex of G in the
following way: Begin by fixing an orientation (e.g. counterclockwise). Then
for each vertex v in V , define the cyclic permutation on incident edges of v.
This defines a rotation scheme on G.

Let P = (p, w) be some discrete path. The graph of P , denoted by
GP , is the undirected graph whose vertices are the points visited by P and
whose edges are connections between two consecutive points. The graph
of its image embed in the plane R2 is noted G(P ). For example, Figure 3
illustrates the path P coded by w = 001233, its graph GP and its associated
counterclockwise embedding G(P ) in R2.

Finally, a closed curve in the plane R2 is called a Jordan curve if it is
continuous and nonself-intersecting. An open Jordan curve is called a Jordan
arc. Since discrete curves are composed of a finite number of straight line
segments, we use the standard terminology polygonal curve and polygonal
arc respectively. Thus, a Jordan polygonal curve is a nonintersecting closed
polygonal curve and a Jordan polygonal arc is a nonintersecting polygonal
arc. In the same spirit, we define a Jordan polyomino as a polyomino without
hole whose boundary is a Jordan polygonal curve (see Figure 4). In other
words, if P is a polyomino whose boundary is ∂(P ) = (p1, p2, . . . , pn) ∈
Z2 × Z2 × · · ·Z2, then it is a Jordan polyomino if and only if it has no hole
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Figure 4: (a) A Jordan polyomino and (b) a non-Jordan polyomino.

and pi 6= pj for all 1 ≤ i < j ≤ n.

4 Data structure

In 2011, it was established by Brlek, Koskas and Provençal that self-intersection
of paths can be verified in linear time [2]. Their idea consists in building an
enriched radix quadtree so that moving by n steps in any direction on the
square grid has both spatial and time complexity O(n). They first assume
for simplicity that the whole path lies in the first quadrant N × N, so that
their data structure is restricted to points having positive coordinates. In a
following discussion, they show how the data structure can be extended to
Z × Z, by constructing one quadtree per quadrant, and by describing how
transitions from one quadrant to another are supported.

Here, as we are interested in computing the intersection, union and differ-
ence of two discrete regions, the first quadrant assumption is too restrictive.
Therefore, we present a sligthly modified version of the quadtree, that is also
enriched with edge coloring and orientation.

We use the following definitions. A direction is any of the four unit
vectors (1, 0), (0, 1), (−1, 0) and (0,−1). Moreover, a colored discrete path is
a triple (p, w, c), where p ∈ Z2 is called the starting point, w ∈ F∗ is called
the direction word and c ∈ {0, 1, . . . , C − 1} is called the color of the path,
where C, the number of colors, is some positive integer.

When reading colored discrete paths, we are interested in storing them in
an enriched radix tree. This can be done by using the following operations:

• At any time, CurrentPoint() returns the coordinates of the point
where we are in the data structure. Initially, its value is the origin
(0, 0).
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(a)

Figure 5: The two graphs on which is based the data structure. (a) The
rooted tree T induced on Z2 by the radix relation. (b) The grid graph G
on Z2 with the 4-adjacency relation. The data structure can be seen as a
subgraph of T ∪G, augmented with colored arcs.

• From the current point, we can add a colored arc in any of the four
directions by calling WriteArc(d, c), where d is a direction and c is
the color. At the same time, we also add a colorless arc in the opposite
direction, which is important since every edge can be traveled in both
directions. This operation also sets the current (x, y) point to (x, y)+d.

• As a shortcut, the operation WritePath(w, c), where w = w1w2 · · ·wn

is a direction word and c is a color, is equivalent to performing the
operation WriteArc(wi, c) for i = 1, 2, . . . , n.

• At any time, it is possible to reset the current point anywhere in Z2,
by calling JumpTo(x, y), where (x, y) ∈ Z2.

In [2], it was proved that, in the case where all points lie in N2, a sequence of
m calls to WriteArc has time and space complexity O(m) or, equivalently,
WriteArc has amortized complexity O(1). For the sake of completeness,
we prove here that the bound still holds when extending the space to Z2.
As a consequence, the operation WritePath(w, c) has complexity Θ(|w|).
Moreover, we show that JumpTo(x, y) has complexity O(|x|+ |y|).
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Algorithm 1 Finding a child of a node

Input: Any node u in the quadtree, and the indices (i, j) of the child
Output: The child node of v at indices (i, j)

1: function Child(u : node, i, j : indices) : node
2: if u.child[i, j] is not defined then
3: u.child[i, j]← NewNode(u)
4: end if
5: return u.child[i, j]
6: end function

The parent of a point (x, y) ∈ Z2 is defined by

Parent(x, y) =

(
sign(x)

⌊
|x|
2

⌋
, sign(y)

⌊
|y|
2

⌋)
.

Conversely, if (x′, y′) is such that Parent(x, y) = (x′, y′), then we say that
(x′, y′) is a child of (x, y). It is not hard to see that

• (0, 0) has eight children, namely (±1, 0), (0,±1), (±1,±1).

• Every point (0, y), where y ∈ Z, has six children, which are (0, 2y),
(±1, 2y), (0, 2y + 1) and (±1, 2y + 1) (the situation is symmetric for
points of the form (x, 0), where x ∈ Z).

• Every point (x, y), where x, y 6= 0 has exactly four children, which are
(2x, 2y), (2x+ 1, 2y), (2x, 2y + 1) and (2x+ 1, 2y + 1).

The rooted tree induced by the parent relationship described above is
called radix quadtree (see Figure 5(a)). When moving along the four unit
directions in Z2, we wish to create as few nodes as possible in the data
structure: This can be done by inserting only the nodes that are visited by
the discrete path as well as all ancestors of those nodes. Indeed, given some
node u, if we want to retrieve one of its neighbors v, then it suffices to go up
from u to their nearest common ancestor in the radix quadtree, and then go
down from this ancestor to v. However, the problem with that strategy is
that it can be expensive to navigate through the quadtree.

For this purpose, we enrich it with neighbors links whenever it is needed,
which can be done recursively. Algorithm 1 is a simple function that re-
turns a child of any node, while creating it if it does not already exist in
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Algorithm 2 Finding a neighbor of a node

Input: Any node u in the quadtree, the coordinates (x, y) of this node and
the direction d pointing toward the neighbor

Output: The neighbor node of u in direction d
1: function Neighbor(u : node, (x, y) : point, d : direction) : node
2: if u.neighbor[d] is not defined then
3: (x′, y′)← (x, y) + d
4: if (x, y) = (0, 0) then
5: v ← Child(u, d)
6: else if (x′, y′) = (0, 0) then
7: v ← u.parent
8: else
9: Let i be −1 if x′ = −1, and x′ mod 2 otherwise

10: Let j be −1 if y′ = −1, and y′ mod 2 otherwise
11: if (x, y) and (x′, y′) share the same parent then
12: v ← Child(u.parent, i, j)
13: else
14: v ← Child(Neighbor(u.parent,Parent(x, y), d), i, j)
15: end if
16: end if
17: u.neighbor[d]← v
18: v.neighbor[−d]← u
19: end if
20: return u.neighbor[d]
21: end function

the data structure. The children are indexed by a couple (i, j) whose seman-
tics is described in Figure 6. We also assume that there exists a function
NewNode(u) which creates a new node and adds u as its parent.

Algorithm 2 describes the function Neighbor(u, (x, y), d), which returns
the neighbor v of u in direction d. The point represented by u is (x, y) (notice
that it is not mandatory to store the values (x, y) in the data structure, as
it may be deduced from the position of u in it). There are five possible
scenarios when accessing the neighbor of a node :

1. The neighbor link already exists, so that we can use it directly.

2. The current node is the root (lines 4-5). Then the neighbor is merely
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its child in direction d, and we can use the direct link.

3. The neighbor is the root (lines 6-7).

4. The node and its neighbor share the same parent in the radix tree
(lines 11-12). Then we can directly access the neighbor and link it.

5. The node and its neighbor do not share the same parent (lines 13-14).
In this case, we recursively try to link the parents of both nodes. When
this is done, we retrieve the neighbor, which is its parent’s neighbors’s
child. It remains to link it directly.

It follows from this study that the operation Neighbor takes constant time
except in the 5th case where several recursive calls are made. However, we
show that this case is rare:

Theorem 4.1. Starting from the origin, the operation WritePath(w, c) has
complexity Θ(|w|) or, equivalently, the operation WriteArc has amortized
cost O(1).

Proof. The proof is essentially the same as in [2]. We include it for the sake
of completeness and to confirm that it extends for a quadtree on Z2.

First, notice that the complexity of WritePath(w, c) is proportional to
the number of nodes in the quadtree, as all operations linking the nodes are
done in constant time. Therefore, if m is the number of nodes, then it only
remains to show that m = O(n).

For any discrete path p, let Points(p) be the set of points in Z2 visited
by p. Moreover, if i ≥ 0, let Parenti(p) be the discrete path whose sequence
of points is described by the parents of the points of p. Then the set X of
points of Z2 appearing in the data structure is

X =
h⋃

i=0

Points(Parenti(p)) (1)

where Parenti denotes the function Parent applied i times and h is the
height of the quadtree.

But any sequence of five consecutive points in a discrete path can have
at most four parents (this is Lemma 2 of [2]), i.e. at least two points share
the same parent. In other words, for any discrete path q,

|Points(Parent(q))| ≤ 4

5
|Points(q)|,
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Figure 6: The valid indices for accessing children of nodes. (a) From the
root, (b) from an axis point and (c) from any other point.

so that

|Points(Parenti(p))| ≤
(

4

5

)i

|Points(p)|.

This implies that

m = |X| =
h∑

i=0

|Points(Parenti(p))| ≤
∞∑
i=0

n

(
4

5

)i

= 5n = O(n),

as desired.

The complexity of JumpTo is immediate.

Corollary 4.2. The operation JumpTo(x, y) has complexity O(|x|+ |y|) in
the worst case.

Proof. In order to reset the current point to (x, y), it suffices to move |x|
times in the direction of (sign(x), 0) followed by |y| times in the direction
(0, sign(y)), while updating the parent-child links as well as the neighbors
links (but without coloring the arcs).

5 Outer and convex hull

We recall from topology that given a set S, the boundary ∂S is the set of
points in the closure of S, not belonging to the interior of S. Now, let S
be a 8-connected discrete set. The outer hull of S, denoted Hull(S) is the
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Figure 7: (a) The path w = 021, (b) its first difference word ∆(w) = 23 and
(c) its outer hull Hull(w) = 0213.

boundary of the intersection of all discrete sets without hole containing S, i.e.
the nonself-intersecting path following the exterior contour of S. Definition
5.1 extends the notion of outer hull to any discrete path.

Definition 5.1. Let P be any discrete path. Then, the outer hull of P ,
denoted by Hull(P ) is the outer face of the embedded graph G(P ).

The difference between Definition 5.1 and the preceding one lies in the use
of the embedding of P in the plane instead of a discrete set to describe the
outer hull. This choice is not arbitrary as it allows the computation of the
outer hull even when part of the discrete path are degenerate line segments
(i.e. Euclidean sets of null measure). For example, Figure 7 illustrates the
outer hull of the path coded by w = 021. Remark that using Definition 5.1,
the boundary of discrete line segments are coded by closed words, e.g. the
outer hull of the horizontal line segment coded by 0 is coded by 02.

This ensures that Definition 5.1 is a convenient generalization of the outer
hull to discrete paths. Indeed, if P codes the boundary of a discrete set S,
then P is simple and closed by definition. This gives P = Hull(P ) and since
Hull(S) is the boundary ∂(S) of S by definition, we have

Hull(S) = ∂(S) = P = Hull(P ).

Since there is a bijection between discrete paths in Z2 and words on F
coupled with a starting point, we identify P with its coding word w and we
write Hull(w) instead of Hull(P ).

We now recall some basic notions concerning digital convexity, for which
a detailed exposure appears in [5, 18]. Let S be an 8-connected discrete set.
S is digitally convex if it is the Gauss digitization of a convex subset R of
R2, i.e. S = Conv(R) ∩ Z2. The convex hull of S, denoted Conv(S) is the
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intersection of all convex sets containing S. In the case of a closed simple
path w, Conv(w) is given by the Spitzer factorization of w (see [5, 19]).
Given w = w1w2 · · ·wn ∈ {0, 1}∗, one can compute the NW part of this
factorization as follows: Start with the list (b1, b2, . . . , bn) = (w1, w2, . . . , wn).
If the slope ρ(bi) = |bi|1/|bi|0 of bi is strictly smaller than that of bi+1 for
some i, then

(b1, b2, . . . , bk) = (b1, . . . , bi−1, bibi+1, bi+2, . . . , bk).

By repeating this process until it is no longer possible to concatenate any
words, one obtains the Spitzer factorization of w. The NE, SE and SW
parts of the factorization are obtained by permuting the alphabet.

5.1 Outer hull algorithm

Let w ∈ F∗ be a discrete path and Gw its graph representation. Remark
that the application g : w 7→ Gw is not bijective since it is not injective
(for example, u = 0 and v = 02 admits the same graph). Now, recall from
Section 2 that the embedding G(w) of Gw in R2 gives rise to a rotation
scheme (provided we fix an orientation). We use this embedding to compute
the outer hull of w (i.e. the outer face of G(w)): Fix an orientation O of the
surface R2 and let ei = (u, v) be an arc from vertex u to v in G(w) such that ei
is an edge of the outer face of the embedding G(w) and such that e follows the
fixed orientation O. Next, compute ei+1 = (v, σv(u)) where σv is the cyclic
permutation associated with v in G(w). By letting O be the counterclockwise
orientation, one can iterate this process to obtain the outer face of G(w). For
example, using the rotation scheme defined for w = 001233 in Figure 3(c)
and starting with the arc (A,E), one computes the sequence of arcs

(A,E), (E,F ), (F,E), (E,D), (D,C), (C,B), (B,E), (E,A)

which corresponds to the outer hull of w (see Figure 8).
The correctness of this method follows from the so-called “right-hand

rule” or “wall follower algorithm” for traversing mazes. Indeed, given an
arc (u, v), taking the adjacent arc (v, σv(u)) amounts to “turning right” at
vertex v (see Figure 8(c)). The underlying principle of our algorithm is thus
to walk along the path, starting at an origin point on the outer hull and
turning systematically right at each intersection and returning to the origin
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Figure 8: (a) The sequence of arcs obtained by using the rotation scheme
of Figure 3(c); (b) The outer hull of w = 001233; (c) The sequence
(u, v), (v, σv(u)) corresponds to a right turn in the graph of a path, pro-
vided the orientation is counterclockwise

point. The preceding discussion guarantees that the resulting walk is then
precisely the outer hull of w.

To efficiently implement this procedure, several problems must be ad-
dressed. First, as stated before, the walk needs to start on a coordinate of
the outer hull, otherwise the resulting path may not describe the correct ob-
ject. This can be solved by choosing the point W associated with the contour
word w as the starting point.

Secondly, whenever a path returns to W before continuing on (the sim-
plest of which is the path coded by w = 021, see Figure 7), one must ensure
that the algorithm does not stop until every such sub-path has been explored.
An easy solution for managing that situation is to keep a list of all neighbors
of W that are in the path P associated with w. This list has at most two
elements since no vertex in P is located below or left of W .

Finally, one needs to recognize intersections and decide of the rightmost
turn. We solve this problem by using the quadtree structure described in
Section 4. This leads to Algorithm 3 for computing the outer hull of a
discrete path w, which proceeds as follows.

First, the quadtree G associated with w is built starting from W . Then,
the graph G is traversed from its root W , following the path represented by
w. At every intersection c, we need to:

(a) extract the letter α associated with the vector −→cv for each neighbor v of
c;

(b) determine the turn associated with each v, that is ∆(wc · α);
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Algorithm 3 Computing the outer hull of a discrete path

Input: A word w ∈ F∗ coding a discrete path
Output: A simple word w′ ∈ F∗ describing Hull(w)

1: Let W be the leftmost lowest coordinate on the bounding box of w
2: Construct the quadtree G associated with w rooted in W
3: Let N be the set of all visited neighbors of W
4: c← W + (1, 0) if it is in N or W + (0, 1) otherwise
5: w′ = Freeman(c−W )
6: while c 6= W or N 6= ∅ do
7: t = 2 mod 4
8: for each neighbor v of c do
9: if [Freeman(v− c)−Lst(w′) + 1] mod 4 ≤ [t+ 1] mod 4 then

10: t← Freeman(v − c)− Lst(w′)
11: next← v
12: end if
13: end for
14: w′ = w′ · Freeman(next− c)
15: N.Remove(c)
16: c← next
17: end while
18: return w′

(c) choose the rightmost one, that is the closest to 3.

This procedure ends when returning to the point W .

Theorem 5.2 (Correctness of Algorithm 3). For any word w ∈ F∗, Algo-
rithm 3 returns Hull(w).

Proof. Let k = |Hull(w)|. We use the following loop invariant:

At the start of the ith iteration of the while loop in Line 6, w′ is
a prefix of length i of the contour word associated with Hull(w).

The invariant holds the first time Line 6 is executed, since at that time,
w′ is the first step of the outer hull of w computed at Line 5. Now, assume
the invariant holds before the ith iteration of the loop. Then, Lines 8 to 13
find the rightmost turn at the current coordinate c. Then in Line 14, w′ is
concatenated with the step of this turn. By the right-hand rule for solving
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simply connected maze, considering rightmost turns yields coordinates on the
outer hull of w. Consequently, at the end of the iteration, w′ is a prefix of the
contour word associated with Hull(w) of length i+ 1. Finally, at the end of
the loop, w′ is a prefix of the contour word associated with Hull(w) of length
k, that is w′ = Hull(w). Note that since any neighbor of W is on Hull(w),
Line 15 clearly removes every element from N yielding, at termination, an
empty set.

The complexity of Algorithm 3 is linear both in time and space.

Theorem 5.3. Let w ∈ F∗. Then Algorithm 3 computes Hull(w) in Θ(|w|)
space and time.

Proof. First, the quadtree structure is constructed in linear time with respect
to |w| (see [2]). Also, as stated before, the point W is easily computed in
linear time. Consequently, computations in Line 2 are performed in linear
time. Next, Line 1, 4 and 5 each take constant time. Moreover, the set N
is constructed in linear time by accessing neighborhood informations of the
root in the quadtree structure, so Line 3 takes linear time. Now, since any
coordinate has at most four neighbors, the for loop in Line 8 is executed
at most four times per iteration of the while loop. Line 15 takes constant
time. This is due to the fact that N contains at most two elements. Since
instructions in Line 7, 9, 10, 11, 14 and 16 all are computed in constant
time, at most O(k) computations occur during the execution of the while
loop, thus making Algorithm 3 linear in time. Finally, the quadtree structure
needs linear space in k, since it only uses an enriched quadtree as additional
space.

Example 5.4. Consider the word w = 001100322223. Then, Algorithm 3
yields w′ = 001001223223 (see Figure 9). One can easily verify that w′ is
a simple path describing the outer hull of w, so Hull(w) = w′.

Our algorithm was implemented using the C++ programming language
and tested with numerous examples (see Figure 10). The source code is
available on demand.

Finally, we show how Algorithm 3 can be used to compute in linear time
and space the convex hull of any discrete path. It relies on the following
rather obvious result:
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Figure 9: Outer hull of w = 001100322223

Proposition 5.5. Let w ∈ F∗ be a boundary word coding a discrete path.
Then,

Conv(w) = Conv(Hull(w)).

Proof. If w is simple, then Hull(w) = w so the claim holds. Now, suppose
w is nonsimple. Then by definition, Hull(w) is the boundary of w. Since,
Conv(w) is the intersection of all convex sets containing w, it must also
contain Hull(w) and thus Conv(w) = Conv(Hull(w)).

Recall that Hull(w) is nonself-intersecting for any path w. Proposition
5.5 then yields a very simple procedure for computing the convex hull of a
discrete path using Brlek et al. simple path convex hull algorithm (see [5]):

1. Start by computing Hull(w) = w′;

2. compute Conv(w′).

It is clear that the preceding procedure computes the convex hull of a discrete
path in linear time and space. Indeed, we showed in Section 5.1 that the first
step is computed in linear time and space. Furthermore, it is shown in [5]
that the second step is computed in a similar fashion.

6 Overlay graph of two polyominoes

Let P1 = (p1;w1) and P2 = (p2;w2) be two Jordan polyominoes (i.e. P1

and P2 are polyominoes without hole such that their boundary are Jordan
curves). Recall from Section 3 that given a planar graph G embedded in the
plane R2, the faces of G are the components R2−G. Consider the graphs GP1
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Figure 10: Running time of Algorithm 3 for random discrete paths of length
105 to 107, with each point representing the mean running time of 100 random
discrete paths of same length

and GP2 . It is clear that each graph admits exactly two faces: Its interior
and its exterior. Further, these two faces are completely determined by a
walk on their boundary. We now wish to compute the faces of the so-called
overlay graph O(P1, P2), that is the graph such that there is a face F in
O(P1, P2) if and only if there are faces F1 in GP1 and F2 in GP2 such that F
is a maximal connected subset of F1∩F2

2. For example, Figure 11 illustrates
two Jordan polyominoes represented by their boundary and their associated
overlay graph.

The following result is a corollary of the well-known Jordan curve theorem
for polygonal arcs : Any Jordan curve divides the plane into two distinct
region; The interior and the exterior (see [12] for one of the numerous proof).

Proposition 6.1. Let γ be a Jordan polygonal curve in R2 and p, q ∈ γ. Let
ξ be a Jordan polygonal arc from p to q such that ξ is in the interior of γ.
Then, ξ ∪ γ divides R2 into exactly three regions whose boundary are Jordan
polygonal curves.

2This definition comes from [10] where the authors give an O(n log n) algorithm for
computing the overlay of two regions in the plane.
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Figure 11: (a) The graph of P1 = ((0, 0); 010121232303). (b) The graph of
P2 = ((0, 0); 0011122123300323). (c) The overlay graph O(P1, P2)

Now, applying Proposition 6.1 to the overlay O(P1, P2) of two intersecting
Jordan polyominoes, it follows that the boundary of all faces of O(P1, P2) is
a Jordan curve (in fact, it is a Jordan polygonal curve).

6.1 Overlay algorithm

Given two Jordan polyominoes P1 = (p1;w1) and P2 = (p2;w2), we now give
a linear time and space algorithm for computing the overlay of P1 and P2.
Like Algorithm 3, it is based on the wall-follower algorithm for traversing
mazes and makes extensive use of the enriched radix tree data structure
described in Section 4. We also make the assumption that w1 and w2 codes
their respective boundary in a counterclockwise fashion. This is done without
loss of generality since one can compute the orientation of a word in linear
time using its turning number [4, 9, 17].

Remark that the overlay O(P1, P2) does not need to be connected. This
occurs when the boundaries of P1 and P2 do not intersect, so that these cases
need to be handled separately.

We can now describe Algorithm 4. As a first step, we check if the bound-
ing boxes are disjoint. If it is the case, then the polyominoes are also disjoint.
Otherwise, we compute the enriched radix tree T associated with P1 and P2

described in Section 4. Next, we check if the boundary of P1 and P2 inter-
sects. In the case of nonintersecting boundaries, the overlay O(P1, P2) is not
connected and there are three cases to consider:

(i) The bounding box of P1 is included in the bounding box of P2, which

20



Algorithm 4 Computing the overlay of two Jordan polyominoes.

Input: Two positively oriented Jordan polyominoes P1 and P2

Output: The set of faces of the overlay graph O(P1, P2).
1: function Overlay(P1 = (p1;w1) and P2 = (p2;w2))
2: if BoundingBox(P1) ∩BoundingBox(P2) = ∅ then

3: return {(P1, {0}), (P2, {1}), (P̂1, P̂2, ∅)}
4: else
5: . We insert P1 and P2 in the data structure
6: T ← EnrichedRadixTree()
7: T.WritePath(w1, 0)
8: T.JumpTo(p2 − p1)
9: T.WritePath(w2, 1)

10: if no point of T is visited at least twice then
11: if BoundingBox(P1) ⊂ BoundingBox(P2) then

12: return {(P1, {0, 1}), (P2, P̂1, {1}), (P̂2, ∅)}
13: else if BoundingBox(P2) ⊂ BoundingBox(P1) then

14: return {(P2, {0, 1}), (P1, P̂2, {0}), (P̂1, ∅)}
15: else
16: return {(P1, {0}), (P2, {1}), (P̂1, P̂2, ∅)}
17: end if
18: else
19: return NonDisjointOverlay(T )
20: end if
21: end if
22: end function

means that P1 ⊂ P2;

(ii) the bounding box of P2 is included in the bounding box of P1, which
means that P2 ⊂ P1;

(iii) the polyominoes are disjoint.

Otherwise, in the case of intersecting boundaries, the connected overlay
O(P1, P2) is computed using the function NonDisjointOverlay described
in Algorithm 5.

The function NonDisjointOverlay is implemented as follows. First,
we choose (p, p′) an arc of T and then we follow the counterclockwise path
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induced by this arc, taking the leftmost turn at each intersection until return-
ing to the point p. While following the path, we delete any visited arc from
T as the path is followed. Since each neighborhood arc of T belongs to the
boundary of exactly one face of the overlay graph, we obtain a list of Jordan
polygonal curves, describing the boundaries of all the faces of O(P1, P2). It
remains to identify each face to its associated poylomino(es). This is easily
achieved by keeping track of the colors of the arcs in any given path. This
procedure is described more formally in Algorithm 5. It uses a “first-in-first-
out” queue to keep track of the various visited points3.

Theorem 6.2 (Correctness of Algorithm 5). For any two Jordan polyomi-
noes P1 and P2 intersecting on their boundary, Algorithm 5 returns all faces
of O(P1, P2).

Proof. The first time Line 4 is executed, no face of the overlay graph has been
computed yet. Lines 7 and 8 initialize a new face by choosing an outgoing
arc at the current point p. Now, two cases can occur depending on whether
p has any outgoing arc.

If p has at least one outgoing arc, then we follow the path induced by
this outgoing arc, turning left at intersections, while keeping track of the
edge colors (Lines 10 to 14). By the wall-follower algorithm, this defines the
boundary of a face of O(P1, P2). It is worth noticing that this face has not
been previously computed since each arc appears in the boundary of exactly
one face of O(P1, P2) and arcs are deleted as they are followed (Line 13).

Otherwise, p is simply dequeued from Q and no new face is computed.
Finally, at the end of the loop, all outgoing arcs for all points in the structure
have been considered exactly once. Since each arc in the structure belongs
to the boundary of exactly one face (edges are represented by arcs in both
directions) of the overlay graph, all such faces have been computed.

Corollary 6.3 (Correctness of Algorithm 4). For any two Jordan polyomi-
noes P1 and P2, Algorithm 4 returns all faces of O(P1, P2).

Proof. Two cases can occur depending on whether O(P1, P2) is connected or
not. It is immediate that O(P1, P2) is connected if and only if P1 and P2

intersect on their boundary. In the opposite case, it remains to verify the
two polyominoes relative positions. Since this is easily done by keeping track
of extremum coordinates, we have the result.

3A similar algorithm is presented in [10]. It utilizes a doubly-linked list and a plane
sweep method to achieve a O(n log n) time bound for the Euclidean case.
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Algorithm 5 Computing the overlay of intersecting Jordan polyominoes

Input: An enriched radix tree containing two Jordan polyominoes
Output: The set of faces of the overlay graph O(P1, P2).

1: function NonDisjointOverlay(T : enriched radix tree)
2: O ← ∅
3: Let Q be a queue containing all points of T ;
4: while Q is not empty do
5: s← the first element of Q;
6: if s has at least one outgoing arc (s, s′) then
7: F ← NewFace(s, ε, ∅)
8: e← (p, p′)← (s, s′)
9: repeat

10: F.Colors.Add(e.color())
11: F.Word← F.Word · Freeman(p′ − p)
12: p′′ ← Leftmost(e)
13: T.Delete(e)
14: e← (p, p′)← (p′, p′′)
15: until p = s
16: O.Add(F )
17: else
18: Q.Dequeue(s);
19: end if
20: end while
21: return O
22: end function

Example 6.4. Let

P1 = ((0, 0); 0315234211233)

P2 = ((0, 2); 01031231233).

The overlay O(P1, P2) is represented in Figure 12. Since their boundary
intersects, Algorithm 5 applies. After computations, we obtain the following
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Figure 12: The faces of the overlay of P1 = ((0, 0); 0315234211233) and
P2 = ((0, 2); 01031231233) after using Algorithm 5.

faces for the overlay:

Face∞ = {(0, 0), 150301030323323, ∅}
Face1 = {(0, 0), 031323321233, {blue}}
Face2 = {(0, 2), 0123, {blue,red}}
Face3 = {(0, 3), 00121233, {red}}
Face4 = {(2, 3), 0123, {blue,red}}
Face5 = {(3, 3), 0123, {red}}
Face6 = {(2, 4), 0123, {blue}}
Face7 = {(1, 1), 011233, ∅}.

We now show that Algorithm 5 has linear time and space complexity.

Theorem 6.5. Let P1 = (p1, w1) and P2 = (p2, w2) be two closed and simple
discrete paths. Then the overlay graph of GP1 and GP2 can be computed in
O(|w1|+ |w2|) time and space.

Proof. All conditions in Lines 2, 10, 11 and 13 are verified in linear time since
the data structure is also computed in linear time (Line 6). Moreover, Line
8 has linear cost by Corollary 4.2. All other lines are done in constant time.

It only remains to count the number of times the while and repeat loops
are repeated in Algorithm . First, notice that no Enqueue operations are
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performed. Moreover, elements of Q are dequeued whenever they have no
outgoing arc, but these arcs are removed at Line 13. Therefore, the while
loop is repeated O(|w1|+ |w2|) times.

Also, the body of the repeat loop is executed once per arc in the data
structure. But the number of arcs is at most 2(|w1| + |w2|), which implies
that the overall time for the repeat loop is O(|w1|+ |w2|) times.

Finally, as Algorithm 4 relies almost entirely on the enriched radix quadtree
structure for storing information, it takes linear space.

We end this section by establishing a simple relation between the number
of faces of the overlay graph and the number of intersection points.

Let e, e1 and e2 be the number of edges of O(P1, P2), GP1 and GP2 re-
spectively. Since P1 and P2 are Jordan polyominoes, we have

v1 = e1 = |w1| and v2 = e2 = |w2|.

Let i be the number of intersection points of the overlay, that is points
with more than two neighbors. Then,

v = v1 + v2 − i and e ≤ e1 + e2.

From Euler’s formula for planar graphs, we know that the number f of
faces of a graph is given by the equation

f = 2− v + e.

Therefore, the number of faces of O(P1, P2) is

f = 2− v + e

≤ 2− (v1 + v2 − i) + e1 + e2

= 2 + i.

6.2 Other operations

If polyominoes are represented by boolean matrices, it is very easy to compute
their intersection, reunion and difference: It suffices to apply the correspond-
ing logical operation bitwise. Here, we are interested in computing them with
respect to the boundary of the polyominoes. Similar algorithms have been
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proposed to compute the area of the intersection, union and difference of two
polyominoes based on a discrete version of Green’s algorithm [3], but linear
algorithms to explicitly describe the resulting polyominoes have never been
provided in the literature.

From Algorithm 4, we can easily design such algorithms, at least in the
case where the two polyominoes P1 and P2 are Jordan polyominoes. However,
the result may not be a Jordan polyomino. In general, such operations yield a
family of polyominoes (with possibly some holes, see Figure 13 for example).

(a) P1 ∪ P2 (b) P1 ∩ P2 (c) P1 − P2

Figure 13: Various boolean operations on two Jordan polyominoes P1 (in
red) and P2 (in blue)

To obtain those boolean operations, we start by computing O(P1, P2).
Then, we choose regions of the overlay corresponding to the desired operation:
P1 ∩ P2 is the set of faces whose color set is {0, 1} (i.e. belonging to P1 and
P2), P1 ∪P2 is the set of faces whose color set is nonempty (i.e. belonging to
P1 or P2) and P1 − P2 is the set of faces whose color is {0} (i.e. belonging
to P1 but not to P2). It follows from Section 6.1 that the intersection, union
and difference of Jordan polyominoes is computed in linear time and space.

7 Concluding remarks

In the previous sections, we showed that linear time and space algorithms
can be obtained by relying on one powerful data structure introduced by
Brlek, Koskas and Provençal in [2]. In particular, we can compute the outer
hull of any discrete path (closed or not) as well as the intersection, union and
difference of two Jordan discrete paths.
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The next natural step would be to extend the ideas to closed discrete
paths that are not necessarily Jordan curves, i.e. polyominoes having holes.
In the same spirit, it would be interesting to check what complexity can be
achieved when computing the overlay of multiple polyominoes instead of just
two, as it appears here.
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