Exhaustive generation of atomic combinatorial differential operators
 GASCom 2012, LaBRI, Université de Bordeaux

Hugo Tremblay ${ }^{1}$
Gilbert Labelle ${ }^{1}$ Srečko Brlek ${ }^{1}$ Alexandre Blondin Massé ${ }^{2}$
${ }^{1}$ Université du Québec à Montréal
${ }^{2}$ Université du Québec à Chicoutimi

June 26, 2012

Outline

Preliminaries

General combinatorial differential operators

Generating all atomic differential operators

History lesson

19811984
20092012

1980

History lesson

$$
D \rightarrow D \rightarrow \cdots \rightarrow D
$$

D^{n}

History lesson

$$
D \longrightarrow D
$$

$$
G(D)
$$

History lesson

History lesson

Goal : Study the irreducible components of $\Omega(X, D)$.

Outline

Preliminaries

General combinatorial differential operators

Generating all atomic differential operators

Species of structures

Definition
A species of structures is a functor

$$
F: \mathbb{B} \longrightarrow \mathbb{B}
$$

where \mathbb{B} is the category of finite sets with bijections.
For any finite set U, the elements of $F[U]$ are called F-structures on the set U.

Example (Species of simple graphs) Let $U=\{\bullet, \Delta, \boxed{\bullet}\}$ and $F:=\mathcal{G}_{3}$. We have,

$$
\mathcal{G}_{3}[U]=\left\{\begin{array}{lll}
\Delta & , & , \\
0 & \square & \Delta
\end{array}\right.
$$

Example (Cont.)
Moreover, for the bijection

$$
\sigma: U \longrightarrow\{a, b, c\}
$$

defined by

$$
\sigma(\bullet)=a, \sigma(\Delta)=b \text { and } \sigma(\boldsymbol{\square})=c,
$$

we have

Some basic combinatorial operations

Definition
The sum of F and G is a functor

$$
(F+G): \mathbb{B} \longrightarrow \mathbb{B}
$$

where $(F+G)[U]:=F[U]+G[U]$ (disjoint sum).
Definition
The product of F and G is a functor

$$
(F G): \mathbb{B} \longrightarrow \mathbb{B}
$$

where

$$
(F G)[U]:=\sum_{\left(U_{1}, U_{2}\right)} F\left[U_{1}\right] \times G\left[U_{2}\right]
$$

and $U_{1}+U_{2}=U$ (disjoint sum).

Example (Sum)

Example (Sum)

Example (Sum)

$$
\mathcal{G}_{3} \simeq \mathcal{G}_{3}^{0}+\mathcal{G}_{3}^{1}+\mathcal{G}_{3}^{2}+\mathcal{G}_{3}^{3}
$$

Example (Product)

$$
\operatorname{situ}=\left\{\begin{array}{lll}
0 & \hat{0} & 0 \\
0 & \hat{A} & \Delta \\
0
\end{array}\right\}
$$

Example (Product)

Example (Product)

Example (Product)

Example (Product)

$$
\begin{aligned}
& \mathcal{G}_{3}^{1} \simeq X E_{2}
\end{aligned}
$$

Molecular and atomic species

Definition
A species M is molecular if and only if

$$
M \simeq F+G \Longrightarrow F \simeq 0 \text { or } G \simeq 0
$$

Molecular and atomic species

Definition
A species M is molecular if and only if

$$
M \simeq F+G \Longrightarrow F \simeq 0 \text { or } G \simeq 0
$$

Definition
A molecular species $A \neq 1$ is atomic if and only if

$$
A \simeq F G \Longrightarrow F \simeq 1 \text { or } G \simeq 1
$$

Molecular and atomic species

Definition

A species M is molecular if and only if

$$
M \simeq F+G \Longrightarrow F \simeq 0 \text { or } G \simeq 0
$$

Definition

A molecular species $A \neq 1$ is atomic if and only if

$$
A \simeq F G \Longrightarrow F \simeq 1 \text { or } G \simeq 1
$$

For example, \mathcal{G}_{3} is not molecular (and therefore not atomic) whilst $X E_{2}$ is molecular non-atomic. Furthermore, X and E_{2} are both atomic.

Characterization of molecular species

We have $M(X)$ molecular and $H \leq \mathbb{S}_{n}$ stabilizer of a $M(X)$-structure.

Definition

1.

$$
M(X)[U] \simeq \frac{X^{n}}{H}[U]=\{\lambda H \mid \lambda:[n] \leadsto \backsim U, \text { bijection }\}
$$

for any finite set U, where $[n]:=\{1,2, \ldots, n\}$ and $\lambda H=\{\lambda \circ h \mid h \in H\}$.
2.

$$
\frac{X^{n}}{H_{1}} \simeq \frac{X^{m}}{H_{2}} \Longleftrightarrow \begin{cases} & n=m \\
\text { and } & \begin{array}{l}
\\
\\
\\
H_{1} \operatorname{Conj} H_{2} \text { in } \mathbb{S}_{n}
\end{array}\end{cases}
$$

Characterization of molecular species

We have $M(X, T)$ molecular and $H \leq \mathbb{S}_{m, n}$ stabilizer of a $M(X, T)$-structure.

Definition

1.

$$
M(X, T)[U] \simeq \frac{X^{m} T^{n}}{H}[U]=\{\lambda H \mid \lambda:[m+n] \stackrel{\sim}{\rightarrow} U, \text { bijection }\}
$$

for any finite multiset U, where $[m+n]:=\{1,2, \ldots, m+n\}$ and $\lambda H=\{\lambda \circ h \mid h \in H\}$.
2.

$$
\frac{X^{m_{1}} T^{n_{1}}}{H_{1}} \simeq \frac{X^{m_{2}} T^{n_{2}}}{H_{2}} \Longleftrightarrow \begin{cases}\text { and } & \left(m_{1}, n_{1}\right)=\left(m_{2}, n_{2}\right) \\ & H_{1} \operatorname{Conj} H_{2} \text { in } \mathbb{S}_{m, n}\end{cases}
$$

Remark

$\mathbb{S}_{m, n} \leq \mathbb{S}_{m+n}$ permutes the set

$$
\{1,2, \ldots, m, m+1, m+2, \ldots, m+n\} .
$$

For example,
$(132)(45) \in \mathbb{S}_{3,2}$
$(12)(59)(47) \in \mathbb{S}_{3,7}$
$(14) \in \mathbb{S}_{5,8}$
$\operatorname{ld}_{\mathbb{S}_{m+n}} \in \mathbb{S}_{m, n}$.

Outline

Preliminaries

General combinatorial differential operators

Generating all atomic differential operators

Operator D

Definition

The derivative of F is a functor

$$
D F: \mathbb{B} \longrightarrow \mathbb{B}
$$

where $D F[U]:=F\left[U^{+}\right]$, with $U^{+}=U \cup\{*\}$.

$$
D^{n} F=\left\{\begin{array}{lll}
F & \text { if } & n=0 \\
D D^{n-1} F & \text { if } & n \geq 1
\end{array}\right.
$$

Example (Linear orders)
We have $D L \simeq L \cdot L \simeq L^{2}$. For example, let $U=\{a, c, g, m, o, s\}$.

Example (Linear orders)
We have $D L \simeq L \cdot L \simeq L^{2}$. For example, let $U=\{a, c, g, m, o, s\}$.

$$
g \longrightarrow a \longrightarrow s \longrightarrow c \longrightarrow o \longrightarrow m \in L[U] .
$$

Example (Linear orders)
We have $D L \simeq L \cdot L \simeq L^{2}$. For example, let $U=\{a, c, g, m, o, s\}$.

$$
g \longrightarrow a \longrightarrow s \longrightarrow * \longrightarrow c \longrightarrow o \longrightarrow m \in D L[U] .
$$

Example (Linear orders)
We have $D L \simeq L \cdot L \simeq L^{2}$. For example, let $U=\{a, c, g, m, o, s\}$.

$$
(g \rightarrow a \longrightarrow s, c \longrightarrow o \rightarrow m) \in L^{2}[U]
$$

We know how to define a differential operator associated to

$$
L_{n} \simeq X^{n}
$$

We know how to define a differential operator associated to

$$
L_{n} \simeq X^{n} \rightarrow D^{n}
$$

We know how to define a differential operator associated to

$$
L_{n} \simeq X^{n} \rightarrow D^{n}
$$

Can we do this with any species?

We know how to define a differential operator associated to

$$
L_{n} \simeq X^{n} \rightarrow D^{n}
$$

Can we do this with any species? "Yes" (A. Joyal, 1984).

We know how to define a differential operator associated to

$$
L_{n} \simeq X^{n} \rightarrow D^{n}
$$

Can we do this with any species? "Yes" (A. Joyal, 1984). Can we generalize this idea?

Definition

The partial cartesian product with respect to T of $\Omega_{1}(X, T)$ and $\Omega_{2}(X, T)$ is a functor

$$
\Omega_{1}(X, T) \times T \Omega_{2}(X, T): \mathbb{B} \times \mathbb{B} \longrightarrow \mathbb{B}
$$

where, for any finite two-set (U, V) of sort X and T respectively, a $\Omega_{1}(X, T) \times{ }_{T} \Omega_{2}(X, T)$-structure s is a pair $s=\left(s_{1}, s_{2}\right)$ where $s_{1} \in \Omega_{1}\left[U_{1}, V\right]$ and $s_{2} \in \Omega_{2}\left[U_{2}, V\right]$ with $U_{1} \cup U_{2}=U$ and $U_{1} \cap U_{2}=\varnothing$.

Example
$\mathcal{C}(X+T) \times{ }_{T} F(X+T)$-structure on (U, V) with $U=\{1,2, \ldots, 9\}($ sort $X)$ and $V=\{a, b, c\}$ (sort T).

Example
$\mathcal{C}(X+T) \times{ }_{T} F(X+T)$-structure on (U, V) with $U=\{1,2, \ldots, 9\}($ sort $X)$ and $V=\{a, b, c\}$ (sort $T)$.

Definition

Let $\Omega(X, T)$ and $F(X)$ be two-sort and one-sort species respectively. One defines $\Omega(X, D) F(X)$ by

$$
\Omega(X, D) F(X):=\Omega(X, T) \times\left._{T} F(X+T)\right|_{T:=1} .
$$

Example $(\mathcal{C}(X+D) F(X)$-structure on $(U, V))$

By definition, $\mathcal{C}(X+T) \times\left.{ }_{T} F(X+T)\right|_{T:=1}$-structure on U

Example $(\mathcal{C}(X+D) F(X)$-structure on $(U, V))$

By definition, $\mathcal{C}(X+T) \times\left.{ }_{T} F(X+T)\right|_{T:=1}$-structure on U

Molecular and atomic differential operators

$\Omega(X, D)$ is molecular (resp. atomic) $\Longleftrightarrow \Omega(X, T)$ is molecular (resp. atomic).

Molecular and atomic differential operators

$\Omega(X, D)$ is molecular (resp. atomic) $\Longleftrightarrow \Omega(X, T)$ is molecular (resp. atomic).
$+$
Any species can be uniquely decomposed as a sum of products of atomic species (Y.-N. Yeh (1985)).

Molecular and atomic differential operators

$\Omega(X, D)$ is molecular (resp. atomic) $\Longleftrightarrow \Omega(X, T)$ is molecular (resp. atomic).
$+$
Any species can be uniquely decomposed as a sum of products of atomic species (Y.-N. Yeh (1985)).

It is enough to consider only atomic differential operators to study all differential operators.

Computation of $\frac{X^{m} D^{k}}{K} \frac{X^{n}}{H}$

Theorem (G. Labelle \& C. Lamathe 2009)
For any subgroups $H \leq \mathbb{S}_{n}$ and $K \leq \mathbb{S}_{m, k}$, we have
(i) $\frac{X^{m} D^{k}}{K} \frac{X^{n}}{H}=\frac{X^{m} T^{k}}{K} \times\left._{T} \frac{(X+T)^{n}}{H}\right|_{T:=1}$,
(ii) $\frac{(X+T)^{n}}{H}=\sum_{k=0}^{n} \sum_{\omega \in \mathbb{S}_{n-k, k} \backslash \mathbb{S}_{n} / H} \frac{X^{n-k} T^{k}}{\omega H \omega^{-1} \cap \mathbb{S}_{n-k, k}}$,
(iii) $\frac{X^{a} T^{k}}{A} \times{ }_{T} \frac{X^{b} T^{k}}{B}=\sum_{\tau \in\left(\pi_{2} A\right) \backslash \mathbb{S}_{k} /\left(\pi_{2} B\right) \frac{X^{a+b} T^{k}}{A \times_{\mathbb{S}_{k}} B^{\tau}},}$,
(iv) $\left[\frac{X^{a} T^{k}}{A}\right]_{T:=1}=\frac{X^{a}}{\pi_{1} A}$,
where $\omega \in \mathbb{S}_{n-k, k} \backslash \mathbb{S}_{n} / H$ means that ω runs through a system of representatives of the double cosets $H_{1} \sigma H_{2}, \sigma \in \mathbb{S}_{n}$;
$\pi_{i} G=\left\{g_{i} \in \mathbb{S}_{n_{i}} \mid\left(g_{1}, g_{2}\right) \in G\right\}, G \leq \mathbb{S}_{n_{1}, n_{2}} ;$
$B^{\tau}=(\mathrm{ld}, \tau) B\left(\mathrm{Id}, \tau^{-1}\right) ; A \times_{\mathbb{S}_{k}} B$ is the fibered product (pullback) of A by B over \mathbb{S}_{k}.

Outline

Preliminaries

General combinatorial differential operators

Generating all atomic differential operators

Lattice of set partitions

Recall that the set of partitions of $\{1,2, \ldots, m\}$ forms a complete lattice with

$$
\hat{0}=\{\{1\},\{2\}, \ldots,\{m\}\} \text { (finest partition) }
$$

and

$$
\hat{1}=\{\{1,2, \ldots, m\}\} \text { (coarsest partition). }
$$

The partition $\sup \left(p 1, p 2, \ldots, p_{k}\right)$ is the finest partition which is coarser than each of the p_{i} 's.

Example

Let

$$
\begin{aligned}
& p_{1}=\{\{1,3\},\{2\},\{4,5\}\} \\
& p_{2}=\{\{1,2\},\{3\},\{4,5\}\} \\
& p_{3}=\{\{1\},\{2,3\},\{4,5\}\}
\end{aligned}
$$

then,

$$
\sup \left(p_{1}, p_{2}, p_{3}\right)=\{\{1,2,3\},\{4,5\}\}
$$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $g=\{(25),(461),(3),(7),(8)\}$
2.

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $g=\{\{2,5\},(461),(3),(7),(8)\}$
2.

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $g=\{\{2,5\},\{4,6,1\},(3),(7),(8)\}$
2.

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $g=\{\{2,5\},\{4,6,1\},\{3\},(7),(8)\}$
2.

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $g=\{\{2,5\},\{4,6,1\},\{3\},\{7\},(8)\}$
2.

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2.

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[g_{s}^{*}(1), g_{s}^{*}(2), g_{s}^{*}(3), g_{s}^{*}(4), g_{s}^{*}(5), g_{s}^{*}(6), g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1, g_{s}^{*}(2), g_{s}^{*}(3), g_{s}^{*}(4), g_{s}^{*}(5), g_{s}^{*}(6), g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1, g(2), g_{s}^{*}(3), g_{s}^{*}(4), g_{s}^{*}(5), g_{s}^{*}(6), g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1,5, g_{s}^{*}(3), g_{s}^{*}(4), g_{s}^{*}(5), g_{s}^{*}(6), g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1,5, g(3), g_{s}^{*}(4), g_{s}^{*}(5), g_{s}^{*}(6), g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1,5,3, g_{s}^{*}(4), g_{s}^{*}(5), g_{s}^{*}(6), g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1,5,3,4, g_{s}^{*}(5), g_{s}^{*}(6), g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1,5,3,4, g(5), g_{s}^{*}(6), g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1,5,3,4,2, g_{s}^{*}(6), g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1,5,3,4,2,6, g_{s}^{*}(7), g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=\left[1,5,3,4,2,6,7, g_{s}^{*}(8)\right]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=[1,5,3,4,2,6,7, g(8)]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=[1,5,3,4,2,6,7,8]$

A few more definitions

Let $g \in \mathbb{S}_{m}$ and $s \subseteq\{1,2, \ldots, m\}$.

1. \hat{g} is the partition of $\{1,2, \ldots, m\}$ obtained by replacing each cycle of g by the corresponding set,
2. $g_{s}^{*}(x):=\left\{\begin{array}{cl}g(x) & \text { if } x \in s \\ x & \text { otherwise }\end{array}\right.$

Example
Take $g=(25)(461)(3)(7)(8) \in \mathbb{S}_{8}$ and $s=\{2,3,5,8\}$.

1. $\hat{g}=\{\{2,5\},\{4,6,1\},\{3\},\{7\},\{8\}\}$
2. $g_{s}^{*}=(25)$

Algorithm

Require: $M=\frac{X^{m} D^{n}}{H}$, where H is generated by $\left\{g_{1}, g_{2}, \ldots, g_{i}\right\}$. Ensure: true, if M is atomic and false, otherwise.
1: Construct the list of partitions $\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{i}$ of $\{1, \ldots, m+n\}$;
2: Construct the partition $p=\sup \left(\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{i}\right)$;
3: for k from 1 to $|p|-1$, do
4: for each k-subset $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\} \subseteq p$, do
5: $\quad c=\bigcup_{1 \leq i \leq k} c_{i}$;
6: \quad if $\forall g \in\left\{g_{1}, g_{2}, \ldots, g_{i}\right\}, c$ is stable under g and $g_{c}^{*} \in H$, then
7: return false.
8: \quad end if
9: end for
10: end for
11: return true.

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.
1: Construct the list of partitions $\hat{g}_{1}, \hat{g}_{2}, \ldots, \hat{g}_{i}$ of $\{1, \ldots, m+n\}$;

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.
1: $\quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right)$;

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.
1: $\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right)$;
2: Construct the partition $p=\sup \left(\hat{g}_{1}, \hat{g}_{2}\right)$;

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.
1: $\quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right)$;
2: $p=\{\{1,2\},\{3\},\{4,5\}\}$;

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.
1: $\quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right)$;
2: $p=\{\{1,2\},\{3\},\{4,5\}\}$;
3: for k from 1 to $3-1$, do

10: end for

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.
1: $\quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right)$;
2: $p=\{\{1,2\},\{3\},\{4,5\}\}$;
3: for $k=1$ do
4: for each k-subset $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\} \subseteq p$, do

9: end for
10: end for

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.
1: $\quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right)$;
2: $p=\{\{1,2\},\{3\},\{4,5\}\}$;
3: for $k=1$ do
4: \quad for $\left\{c_{1}=\{1,2\}\right\} \subseteq p$, do

9: end for
10: end for

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.

$$
\text { 1: } \quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right) ;
$$

$$
2: \quad p=\{\{1,2\},\{3\},\{4,5\}\} ;
$$

3: for $k=1$ do
4: \quad for $\left\{c_{1}=\{1,2\}\right\} \subseteq p$, do
5: $\quad c=\bigcup_{1 \leq i \leq k} c_{i}$;

9: end for
10: end for

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.

$$
\text { 1: } \quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right) ;
$$

$$
2: \quad p=\{\{1,2\},\{3\},\{4,5\}\} ;
$$

3: for $k=1$ do
4: \quad for $\left\{c_{1}=\{1,2\}\right\} \subseteq p$, do
5: $\quad c=c_{1}$

9: end for
10: end for

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.

```
1: \(\quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right)\);
2: \(p=\{\{1,2\},\{3\},\{4,5\}\}\);
3: for \(k=1\) do
4: for \(\left\{c_{1}=\{1,2\}\right\} \subseteq p\), do
5: \(\quad c=c_{1}\)
6: if \(\forall g \in\left\{g_{1}, g_{2}\right\}, c\) is stable under \(g\) and \(g_{c}^{*} \in H\),
    then
```

 8: \(\quad\) end if
 9: end for
 10: end for

Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.

```
1: \(\quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right)\);
2: \(p=\{\{1,2\},\{3\},\{4,5\}\}\);
3: for \(k=1\) do
4: \(\quad\) for \(\left\{c_{1}=\{1,2\}\right\} \subseteq p\), do
5: \(\quad c=c_{1}\)
6: \(\quad\) if \(\quad g_{1}(c)=c, g_{2}(c)=c\) and \(g_{1}{ }_{c}^{*}=(12) \in H\),
    \(g_{2}{ }_{c}^{*}=\mathrm{Id} \in H\) then
8: end if
9: end for
10: end for
```


Example

Require: $M=\frac{X^{2} D^{3}}{\langle(12),(45)\rangle}$, where H is generated by

$$
\left\{g_{1}=(12), g_{2}=(45)\right\}
$$

Ensure: true, if M is atomic and false, otherwise.

```
1: \(\quad\left(\hat{g}_{1}=\{\{1,2\},\{3\},\{4\},\{5\}\}, \hat{g}_{2}=\{\{1\},\{2\},\{3\},\{4,5\}\}\right)\);
2: \(p=\{\{1,2\},\{3\},\{4,5\}\}\);
3: for \(k=1\) do
4: \(\quad\) for \(\left\{c_{1}=\{1,2\}\right\} \subseteq p\), do
5: \(\quad c=c_{1}\)
6: \(\quad\) if \(\quad g_{1}(c)=c, g_{2}(c)=c\) and \(g_{1}{ }_{c}^{*}=(12) \in H\),
    \(g_{2}{ }_{c}^{*}=\mathrm{Id} \in H\) then
7: return false.
8: end if
9: end for
10: end for
```


Partial results

```
m=8,n=0(130 operators)
X8}\mp@subsup{D}{}{0}/\langle(1 2)(3 4)(5 6)(7 8)
X8}\mp@subsup{D}{}{0}/\langle(1 2)(3 4)(5 6)(7 8),(1 3)(2 4)(5 7)(6 8)
X8}\mp@subsup{D}{}{0}/\langle(56)(7 8),(1 2)(3 4)(5 7 6 8)
X8}\mp@subsup{D}{}{0}/\langle(5 6)(7 8),(1 2)(3 4)(5 7)(6 8)
X8}\mp@subsup{D}{}{0}/\langle(1 2)(3 4)(5 6)(7 8),(1 3 2 4)(5 7 6 8) >
X8}\mp@subsup{D}{}{0}/\langle(5 6)(7 8),(1 2)(3 4)(7 8)
X8}\mp@subsup{D}{}{0}/\langle(3 4)(5 6)(7 8),(1 2)(5 7)(6 8)
X8}\mp@subsup{D}{}{0}/\langle(345)(678),(1 2)(3 6)(4 8)(5 7)
X8}\mp@subsup{D}{}{0}/\langle(345)(678),(1 2)(4 5)(7 8)
X8}\mp@subsup{D}{}{0}/\langle(345)(678),(1 2)(3 6)(4 7)(5 8)
X8}\mp@subsup{D}{}{0}/\langle(1 2)(3 4)(5 6)(7 8),(1 3)(2 4)(5 7)(6 8),(1 5)(2 6)(3 7)(4 8)
X8}\mp@subsup{D}{}{0}/\langle(5 6)(7 8),(3 4)(7 8),(1 2)(7 8)
```


Partial results (cont.)

$m=6, n=2$ (46 operators)
$X^{6} D^{2} /\langle(34)(56),(12)(35)(46)(78)\rangle$
$X^{6} D^{2} /\langle(34)(56)(78),(12)(35)(46)\rangle$
$X^{6} D^{2} /\langle(123)(456),(14)(26)(35)(78)\rangle$
$X^{6} D^{2} /\langle(23)(56)(78),(12)(45)(78)\rangle$
$X^{6} D^{2} /\left\langle(12)(34)(56)(78),\left(\begin{array}{ll}1 & 5\end{array}\right)(246)\right\rangle$
$X^{6} D^{2} /\langle(56)(78),(34)(78),(12)(78)\rangle$
$X^{6} D^{2} /\langle(56)(78),(34)(78),(12)(35)(46)(78)\rangle$
$X^{6} D^{2} /\langle(56),(34),(12)(35)(46)(78)\rangle$
$X^{6} D^{2} /\langle(34)(56),(3546)(78),(12)(56)\rangle$
$X^{6} D^{2} /\langle(56)(78),(34)(78),(12)(35)(46)\rangle$
$X^{6} D^{2} /\langle(34)(56),(3546)(78),(12)(56)(78)\rangle$
$X^{6} D^{2} /\langle(56)(78),(12)(34),(13)(24)(78)\rangle$

Future perspectives

- Algorithm analysis
- Implementation of the theorem in Sage
- Study the factorization of molecular operators
- Develop methods to study $\Omega(X, D) F(X) \simeq G(X)$
- Links between $\Omega(X, D)$ and physics
- Study partial differential operators of the form

$$
\Omega\left(X_{1}, X_{2}, \ldots, X_{k}, \frac{\partial}{\partial X_{1}}, \frac{\partial}{\partial X_{2}}, \ldots, \frac{\partial}{\partial X_{k}}\right)
$$

Thank you!

