
Efficient computation of the outer hull of a
discrete path?

S. Brlek1, H. Tremblay1, J. Tremblay1, and R. Weber1

Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal,

CP 8888 Succ. Centre-ville, Montréal (QC) Canada H3C 3P8
brlek.srecko@uqam.ca, hugo.tremblay@lacim.ca,

jerome.tremblay@uqam.ca

Abstract. We present here a linear time and space algorithm for com-
puting the outer hull of any discrete path encoded by its Freeman chain
code. The basic data structure uses an enriched version of a the data
structure introduced by Brlek, Koskas and Provençal. Since path inter-
section is achievable in linear time and space thanks to the use of qua-
ternary trees for representing points in the discrete plane Z×Z on which
neighborhood links are added. Then, by combining the well-known wall
follower algorithm we obtain the desired result with two passes resulting
in a global linear time and space algorithm. As a byproduct, the convex
hull is obtained as well.

Keywords: Freeman code, lattice paths, radix tree, discrete figures,
outer hull, convex hull.

1 Introduction

The ever-growing use of digital screens in industrial, military and civil applica-
tions gave rise to a new branch of study of discrete objects: digital geometry,
where objects are sets of pixels. In particular, their various geometric properties
play an essential role, for allowing the design of efficient algorithms for recogniz-
ing patterns and extracting features: these are mandatory steps for an accurate
interpretation of acquired images.

Convex objects play a prominent role in several branches of mathematics,
namely functional analysis, optimization, probability and mathematical physics
(see [1] for a detailed account of convex geometry and applications). In Euclidean
geometry, given a finite set of points, the problem of finding the smallest convex
figure containing all of them gave rise to the geometric notion of convex hull.
On the practical side, the computation of the convex hull proved to be one of
the most fundamental algorithm as it has many applications ranging from oper-
ational research [2] to design automation [3]. It is also widely used in computer
graphics, and particularly in image processing [4]. For example, the Delauney

? with the support of NSERC (Canada)

triangulation of a d-dimensional set of points in Euclidean space is equivalent to
finding the convex hull of a set of d+ 1-dimensional points [5].

It is well known that for the Euclidean case, algorithms for computing the
convex hull of a set S ⊂ R2 run in O(n log n) time where n = |S| (see [6, 7]).
One can also show that such algorithms are optimal up to a linear constant (see
[8–10] for the general case).

By restraining the problem to computing the convex hull of simple polygons,
linear asymptotic bounds are achieved (see [11, 12]). The digital version of this
problem is a little more involved. First instance, one can compute the convex hull
of a set of pixels S by first computing the Euclidean convex hull of S and then
digitalizing the result [13]. This automatically yields O(n log n) asymptotical
bounds in the worst case. However, linear asymptotic bounds are obtained when
considering discrete paths encoded by elementary steps. Indeed, Brlek et al.
provided a linear time algorithm for computing the discrete convex hull of non
self-intersecting closed paths in the square grid [14]. It is based on a very efficient
factorization of the path in Lyndon words.

The situation is more complicated for intersecting paths. In this paper, we
describe a linear algorithm for computing the outer hull of any discrete path. This
goal is achieved by using the data structure described in [15] where the authors
designed a linear time and space algorithm for detecting path intersection. It
rests on the encoding of points in the discrete plane Z× Z by quaternary trees
deduced from the radix order representation of binary coordinate points. Then,
each path is dynamically encoded by adding a pointer for each step of the discrete
path encoded on the four letter alphabet {0,1,2,3}. Starting from that, the wall
follower algorithm used for maze solutions allows to take at each intersection the
rightmost available step. The resulting two-passes algorithm is linear in space
and time. As a byproduct, the convex hull of any discrete path is computed in
linear time.

2 Preliminaries

Given a finite alphabet Σ, a word w is a function w : [1, 2, . . . , n] −→ Σ denoted
by its sequence of letters w = w1w2 · · ·wn, and |w| = n is its length. For a ∈ Σ,
|w|a is the number of letters a in w. The set of all words of length k is denoted
by Σk. Consequently, Σ∗ =

⋃∞
i=0Σ

i is the set of all finite words on Σ where
Σ0 = {ε}, the set consisting of the empty word. Σ∗ together with the operation
of concatenation form a monoid called the free monoid on Σ. For any word
w ∈ Σ∗, the kth power of w is defined recursively by wk = wk−1 ·w with w0 = ε.

Combinatorics on words imposed itself throughout the years as a very efficient
tool to study digital geometry, that is the branch of geometry dealing with
discrete sets of pixels (see [16, 17]). There is a bijection between the set of pixels
and Z2 obtained by mapping (a, b) ∈ Z2 to the unitary square whose bottom
left vertex coordinate is (a, b). Therefore, we may consider pixels as elements of
Z2. By definition, a discrete figure S is a set of pixels, i.e. S ⊂ Z2. Also, S is
called 4-connected if each pair of pixels share a common edge and 8-connected

if each pair of pixels share a common edge or vertex. Since any discrete figure
is a disjoint collection of 8-connected figures, we will consider from now on that
discrete figures are 4 or 8-connected.

A convenient way of representing discrete figures without hole is to use a
word describing its contour. In 1961, Herbert Freeman proposed an encoding
of discrete objects by specifying their contour using the four elementary steps
(→, ↑,←, ↓) ' (0, 1, 2, 3) [18]. This encoding provides a convenient representa-
tion of discrete paths in Z2. By definition, a discrete path P is a sequence of
points P = {p1, p2, . . . , pn} where pi and pi+1 are neighbors for 1 ≤ i < n.
Intuitively, two points u and v are neighbors if and only if u = v ± e where
e ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}. For convenience, we include the unit line seg-
ment between any two consecutive points (i.e. linel) of the discrete path P as
part of P . This allows us to define a topology on any discrete path by replacing
linels with rectangles of very small width (see Section 4).

It is clear from these definitions that any discrete path P is represented by a
word w ∈ F∗ where F = {0, 1, 2, 3} is the Freeman alphabet. For example, the
word w = 001100322223 represents the discrete path shown in Figure 1(a). One
says that a word w ∈ F∗ is closed if and only if |w|0 = |w|2 and |w|1 = |w|3.
Further, w is called simple if it codes a non self-intersecting discrete path. For
instance, w = 001100322223 is non-simple and closed.

0 0

1

1

0 0

3

2222

3

(a)

0
1

0

3 0 3

3000
1

(b)

Fig. 1: (a) A discrete path coded by the word w = 001100322223; (b) and its
first difference word ∆(w) = 01030330003

It is sometimes useful to consider encoding of paths with turns instead of el-
ementary steps. Such encoding is obtained from the contour word w = w1 · · ·wn

by setting

∆(w) = (w2 − w1)(w3 − w2) · · · (wn − wn−1)

where subtraction is computed modulo 4. ∆(w) is called the first differences
word of w. Letters of ∆(w) ∈ F∗ are interpreted via the bijection (0, 1, 2, 3) '

(foward, left turn,u-turn, right turn). For example, one can verify in Figure 1(b)
that ∆(w) = 01301101301 and that it codes the turns of w.

Now, every path w is contained in a smallest rectangle, or bounding box such
that we can define the point W as in Figure 2(a). W is easily obtained in linear
time by keeping track of the extremum coordinates while reading the word. It
is worth mentioning that in the case of a closed simple path u, this coordinate
corresponds to the point W of the standard decomposition of u obtained by
considering the following four extremal points of the bounding box: W (lowest
on the left side), N (leftmost on the top side), E (highest on the right side) and
S (rightmost on the bottom side) (see Figure 2(b)).

W

(a)

W

S

E

N

(b)

Fig. 2: (a) Smallest rectangle containing a discrete path and the point W ; (b)
Standard decomposition of a self-avoiding closed path

3 Outer and convex hull

Now, let S be a 8-connected discrete figure. The outer hull of S, denoted Hull(S)
is the boundary of the discrete figure without hole and of minimal area containing
S, i.e. the non self-intersecting path following the exterior contour of S. Definition
1 extends this notion of the outer hull to any discrete path.

Definition 1. Let P be any discrete path. Then, Euclidean(P) ⊂ R2 is the
simply connected subset of R2 of minimal area containing P and Hull(P) is the
unique boundary of Euclidean(P), i.e. Hull(P) = ∂(Euclidean(P)).

The difference between Definition 1 and the preceding one lies in the use of
an Euclidean figure instead of a discrete figure to describe the outer hull. This
choice is not arbitrary as it allows the treatment of discrete line segments by
embedding them in an Euclidean figure of area 0 (namely the line segment itself,
see Figure 3 for an example using the path coded by w = 021).

By definition, the boundary of a line segment in Euclidean space R2 is the
segment itself. We will express such boundary in Z2 by a closed and simple

word, e.g. the horizontal line segment coded by 0 will be expressed by 02 (see
Figure 3). The following Proposition 2 ensures that Definition 1 is a convenient
generalization of the outer hull to discrete paths.

0

2

1

(a)

2

3

(b)

W 0

2

1
3

(c)

Fig. 3: (a) The path w = 021, (b) its first diference word ∆(w) = 23 and (c) its
outer hull Hull(w) = 0213

Proposition 2 Let P be any discrete path. Then, Hull(P) is a simple and closed
discrete path. Furthermore, if P codes the boundary of a discrete figure S then
Hull(P) = Hull(S) (i.e. the two definitions coincide).

Proof. By definition, ∂(Euclidean(P)) is a subgraph of P , that is any vertex and
edge of ∂(Euclidean(P)) is in P (see Figure 4 for an example). Consequently,
it is a finite union of connected line segments of R2. Since any finite union of
closed sets is closed, ∂(Euclidean(P)) is closed (see [19]). Now, we show that it
is also simple. Let AB and CD be two segments of ∂(Euclidean(P)) intersecting
each other at vertex x. Consider the right angles (Ax, xD) and (Cx, xB) sharing
only the common vertex x. Since the line segments associated to those angles
form two non-intersecting 8-connected paths, ∂(Euclidean(P)) is simple. Finally,
if P codes the boundary of a discrete figure S, then P is simple and closed by
definition. This gives P = Hull(P) and since Hull(S) is the boundary ∂(S) of S
by definition, we have

Hull(S) = ∂(S) = P = Hull(P).

Since there is a bijection between discrete paths in Z2 and words on F , we
identify the path P with its coding word w and we write Hull(w) instead of
Hull(P).

Finally, we recall some basic notions concerning digital convexity, for which
a detailed exposure appears in [14, 17]. Let S be an 8-connected discrete figure.
S is digitally convex if it is the Gauss digitalization of a convex subset R of R2,
i.e. S = Conv(R) ∩ Z2. The convex hull of S, denoted Conv(S) is the convex
Euclidean form of minimal area containing S. In the case of a closed simple

(a) (b)

Fig. 4: (a) A self-intersecting path P ; (b) Euclidean(P) and its boundary

path w, Conv(w) is given by the Spitzer factorization of w (see [20, 14]). Given
w = w1w2 · · ·wn ∈ {0, 1}∗, one can compute the NW part of this factorization
as follows: Start with the list (b1, b2, . . . , bn) = (w1, w2, . . . , wn). If the slope
ρ(bi) = |bi|1/|bi|0 of bi is strictly smaller than that of bi+1 for some i, then

(b1, b2, . . . , bk) = (b1, . . . , bi−1, bibi+1, bi+2, . . . , bk).

By repeating this process until it is no longer possible to concatenate any words,
one obtains the Spitzer factorization of w. The NE, SE and SW parts of the
factorization are obtained by rotations.

4 Algorithm

Let w ∈ F∗ be a discrete path and Gw = (V,E) its graph representation where
V and E are respectively the vertices and edges sets of w. Remark that the
application g : w 7→ Gw is not bijective since it is not injective (see Figure
5 for instance). Now, Gw admits the following topology T (Gw): Identify any
edge to the rectangle [0, 1] × [0, δ] where δ ∈ R is small and gluing them at
coincident vertices, considering that the intersection of such rectangles is in
T (Gw). Intuitively, this topology is obtained by inflating the edges of Gw as
in Figure 5. One can easily show that T (Gw) is closed under arbitrary unions
and finite intersections thus making it a topology. Moreover, the connectedness
of Gw implies that of T (Gw). Further informations on topological aspects of
graph theory can be found in [21]. With this topology, Gw can be seen as a
connected maze. Now, T (Gw) is homeomorphic to a connected region R as in
Figure 5. The problem of determining the outer hull of Gw is thus equivalent
to describing the boundary ∂(R) of R. Now, provided one starts on ∂(R), the
solution can be achieved by using the so-called ”right-hand rule” or ”wall follower
algorithm” for traversing mazes. Applying this rule, the idea of our algorithm is
to walk along the path, starting at an origin point on the outer hull and turning

systematically right at each intersection and returning to the origin point. The
preceding discussion guarantees that the resulting walk is then precisely the
outer hull of w.

(a) (b) (c)

Fig. 5: (a) The paths w1 = 333300221100001122333 and w2 =
22002211113300001122333 have the same graph representation Gw; (b) The
maze associated to Gw by the topology T (Gw) and (c) a homeomorphic con-
nected region R

To efficiently implement this procedure, several problems must be addressed.
First, as stated before, the walk needs to start on a coordinate of the outer
hull, otherwise the resulting path may not describe the correct object. This can
be solved by choosing the point W associated with the contour word w as the
starting point. Secondly, in the case of a path that returns toW before continuing
on (the simplest of which is the path coded by w = 021, see Figure 3), one must
make sure that the algorithm does not stop until every such sub-paths have been
explored. An easy solution to this is to keep a list of all neighbors of W . One can
easily show that this list has at most two elements. Finally, one needs to recognize
intersections and decide of the rightmost turn. We solve this problem by using a
quaternary tree structure keeping information on neighborhood relations. This
so-called radix quadtree structure was first introduced by Brlek et al. in [15] for
detecting path intersections. Given a discrete path w starting at (x, y) ∈ N2 and
staying in the first quadrant, the quaternary tree structure associated to w (see
[17] and [15] for the generalization to all four quadrants) is described as follows:
G = (N,R, T) is a quaternary tree where N is the set of vertices associated
to points in the plane and R and T are sets of directed edges representing
respectively paternity and neighborhood relations. More precisely, there is a
vertex r ∈ R from (x, y) to (x′, y′) if and only if (x′, y′) is a child of (x, y), that
is if (x′, y′) = (2x+α, 2y+β) where (α, β) ∈ {0, 1}2. In the same manner, there
is a vertex t ∈ T from (x, y) to (x′, y′) if and only if (x′, y′) is a neighbor of
(x, y), that is if (x′, y′) = (x, y) +e where e ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} (see
Example 3). One should note that the quadtree structure is described in [15] with

unidirectional edges while in this paper all edges are considered bidirectional.
Further, by following the procedure described in [15] to build the quadtree,
one adds neighborhood links between non-visited nodes during the recursion
process. This is easily fixed by adding a boolean label to each neighborhood
edge indicating if that specific edge is part of the discrete path or if it has been
added by a recursive call. This ensures that the points u and v are neighbors
if and only if there is a neighborhood edge between these two vertices in the
quadtree structure.

Example 3 Let w = 001100322223 be the word coding the discrete path in Fig-
ure 1 translated to the origin. The quaternary tree structure associated to w is
represented in Figure 6. Parenthood and neighborhood relations are respectively
represented by black and red edges. Visited nodes are marked by red squares. Note
that the actual tree being infinite, several unvisited nodes are not drawn for the
sake of readability.

(0,0)

(0,1)

(0,2) (0,3) (1,2) (1,3)

(1,0)

(2,0)

(4,0) (4,1)

(2,1)

(4,2)

(3,0) (3,1)

(1,1)

(2,2) (2,3) (3,2) (3,3)

Fig. 6: Quaternary tree corresponding to the word w = 001100322223. Neigh-
borhood edges added by recursive calls are omitted.

It is worth mentioning that this structure is computed in linear time and
space. Moreover, it can be generalized to any discrete path as opposed to paths
staying in the first quadrant.

This gives rise to the following Algorithm 1 to compute the outer hull of
a discrete path w: Begin by constructing the quaternary tree G associated to
w. Then, starting at the point W of the bounding box, travel along the path
w. At intersections, for each neighbor v of the current coordinate c, compute
Step(v − c), the letter associated to the vector v − c (e.g. Step((1, 0)) = 0,
Step((0, 1)) = 1, Step((−1, 0)) = 2 and Step((0,−1)) = 3). Then, compute the
first difference ∆(wc ·Step(v− c)) of the word formed by the current letter wc of
w and Step(v − c). This gives the turn associated to v. Finally, choose the turn

closest to 3 (i.e. the rightmost turn). This procedure ends when returning to the
point W .

Algorithm 1 Outer hull

Require: A word w ∈ F∗ coding a discrete path
Ensure: A simple word w′ ∈ F∗ describing Hull(w)
1: Construct the quaternary tree G associated to w rooted in W
2: Let W be the leftmost lowest coordinate on the bounding box of w
3: Let N be the set of all visited neighbors of W
4: c← W + (1, 0) if it is in N or W + (0, 1) otherwise
5: w′ = Step(c− W)
6: while c 6= W and N 6= ∅ do
7: turn = 2 mod 4
8: for each neighbor v of c do
9: if [Step(v− c)− Lst(w′)] + 1 mod 4 ≤ [turn] + 1 mod 4 then

10: turn← Step(v− c)− Lst(w′)
11: next← v

12: end if
13: end for
14: w′ = w′ · Step(next− c)
15: remove c from N

16: c← next

17: end while
18: return w′

Theorem 4 (Correctness of Algorithm 1) For any word w ∈ F∗, Algo-
rithm 1 returns Hull(w).

Proof. Let Hull(w) be of length k ∈ N+. We use the following loop invariant:

At the start of the ith iteration of the while loop in
Line 6, w′ is a prefix of length i of the contour word
associated to Hull(w).

The invariant holds the first time Line 6 is executed, since at that time, w′

is the first step of the outer hull of w computed at Line 5. Now, assume the
invariant holds before the ith iteration of the loop. Then, Lines 8 to 13 find the
rightmost turn at the current coordinate c. Then in Line 14, w′ is concatenated
with the step of this turn. By the right-hand rule for solving simply connected
maze, considering rightmost turns yields coordinates on the outer hull of w.
Consequently, at the end of the iteration, w′ is a prefix of the contour word
associated to Hull(w) of length i+1. Finally, at the end of the loop, w′ is a prefix
of the contour word associated to Hull(w) of length k, that is w′ = Hull(w). Note
that since any neighbor of W is on Hull(w), Line 15 will effectively remove every
element from N yielding, at termination, an empty set. ut

We end this section by showing that Algorithm 1 is linear in time and space.
First, the quaternary tree structure is constructed in linear time (see [15]). Also,
as stated before, the point W is easily computed in linear time. Consequently,
computations in Line 1 are done in linear time. Next, Line 2, 4 and 5 each take
constant time. Moreover, the set N is constructed in linear time by accessing
neighborhood informations of the root in the quaternary tree structure, so Line
3 takes linear time. Now, since any coordinate has at most four neighbors, the
for loop in Line 8 is executed at most four time per iteration of the while loop.
Line 15 takes constant time. This is due to the fact that N contains at most two
elements. Since instructions in Line 7, 9, 10, 11, 14 and 16 are all computed
in constant time, at most k(4c1 + c2) computations occur during the execution
of the while loop where k ∈ N+ is the length of Hull(w) and c1, c2 ∈ R some
constants, thus making Algorithm 1 linear in time. Finally, it follows from the
fact that the quaternary tree structure occupies linear space that our algorithm
is also linear in space.

Example 5 Consider the word w = 001100322223 of Example 3. Then, Algo-
rithm 1 yields w′ = 001001223223 (see Figure 7). One can easily verify that w′

is a simple path describing the outer hull of w, so Hull(w) = w′.

0 0

1

0 0

1

22

3

22

3

(a) w′ = 001001223223

0
1

3 0
1

1
0

1

30
1

(b) ∆(w′) = 01301101301

Fig. 7: Outer hull of w = 001100322223

5 Convex hull of discrete paths

We now show how Algorithm 1 can be used to compute in linear time and space
the convex hull of any discrete path. It relies on the following obvious result:

Proposition 6 Let w ∈ F∗ be a boundary word coding a discrete path. Then,

Conv(w) = Conv(Hull(w)).

Proof. If w is simple, then Hull(w) = w so the claim holds. Now, suppose w is
non-simple. Then by definition, Hull(w) is the boundary of w. Since, Conv(w)
is the convex figure of minimal area containing w, it must also contain Hull(w)
and thus Conv(w) = Conv(Hull(w)).

Recall that Hull(w) is simple (i.e. non self-intersecting) for any path w.
Proposition 6 then yields a very simple procedure for computing the convex
hull of a discrete path using Brlek et al. simple path convex hull algorithm (see
[14]):

1. Start by computing Hull(w) = w′;
2. Compute Conv(w′).

It is clear that the preceding procedure computes the convex hull of a discrete
path in linear time and space. Indeed, we showed in Section 4 that the first step
is computed in linear time and space. Furthermore, it is shown in [14] that the
second step is computed in a similar fashion.

6 Concluding remarks

We presented an algorithm for computing the outer hull of a discrete path. This
led to a procedure for computing the convex hull of any discrete figure. Our al-
gorithm is a significant improvement over the convex hull algorithm presented in
[14] in the sense that computations can be made on any discrete path as opposed
to non self-intersecting ones. Moreover, we proved that such computations can
be made in linear time and space.

Instead of computing the outer hull of a discrete path P as described in
this paper, one could want to compute the largest simply connected isothetic
polygon such that all integers points on its boundary are visited by P . Although
some modifications to our algorithm are necessary in order to perform such
computations, the time complexity would not change.

In addition, this research begs to be generalized to three dimensional discrete
spaces, that is geometry in Euclidean space R3 studying sets of unit cubes. Also,
applications of our algorithm is not limited to convex hull problems. We plan on
using it to study various path intersections problems such as primality, union,
intersection and difference of discrete figures.

References

1. Gruber, P.M.: Convex and discrete geometry. Springer-Verlag (2007)

2. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3(3) (1990) 411–430

3. Kim, Y.S.: Recognition of form features using convex decomposition. Computer-
Aided Design 24(9) (1992) 461–476

4. Kim, M.A., Lee, E.J., Cho, H.G., Park, K.J.: A visualization technique for DNA
walk plot using k-convex hull. In: Proceedings of the fifth international conference
in Central Europe in computer graphics and visualization, Plzeň , Czech Republic,
Západočeská univerzita (1997) 212–221

5. Okabe, A., Boots, B., Sugihara, K.: Spacial tesselations: Concepts and applications
of Voronoi diagrams. Wiley (1992)

6. Graham, R.A.: An efficient algorithm for determining the convex hull of a finite
planar set. Information Processing Letters 1(4) (1972) 132–133

7. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry 16 (1996) 361–368

8. Yao, A.C.C.: A lower bound to finding the convex hulls. PhD thesis, Stanford
University (April 1979)

9. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete
& Computational Geometry 10 (1993) 377–409

10. Goodman, J.E., O’Rourke, J.: Handbook of discrete and computational geometry.
second edn. CRC Press (2004)

11. McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple
polygon. Information Processing Letters 9(5) (1979) 201–206

12. Melkman, A.: On-line construction of the convex hull of a simple polyline. Infor-
mation Processing Letters 25 (1987) 11–12

13. Chaudhuri, B.B., Rosenfeld, A.: On the computation of the digital convex hull and
circular hull of a digital region. Pattern Recognition 31(12) (1998) 2007–2016

14. Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel =
digitally convex. Pattern Recognition 42 (2009) 2239–2246

15. Brlek, S., Koskas, M., Provençal, X.: A linear time and space algorithm for detect-
ing path intersection. Theoretical Computer Science 412 (2011) 4841–4850

16. Blondin Massé, A.: À l’intersection de la combinatoire des mots et de la géométrie
discrète: Palindromes, symétries et pavages. PhD thesis, Université du Québec à
Montréal (February 2012)

17. Provençal, X.: Combinatoire des mots, géométrie discrète et pavages. PhD thesis,
Université du Québec à Montréal (September 2008)

18. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans-
actions on Electronic Computers EC-10(2) (1961) 260–268

19. Kelley, J.L.: General topology. second edn. Springer-Verlag (1955)
20. Spitzer, F.: A combinatorial lemma and its application to probability theory.

Transactions of the American Mathematical Society 82 (1956) 323–339
21. Vella, A.: A fundamentally topological perspective on graph theory. PhD thesis,

University of Waterloo (2005)

