
A 3D Simulator for Intelligent Environment
Experiments

Yannick Francillette, Eric Boucher, Sébastien Gaboury and Abdenour Bouzouane
Université du Quebec à Chicoutimi

LIARA
555, boulevard de l’université

Chicoutimi (Qc), Canada G7H 2B1
Email: (yannick.francillette1, eric.boucher1, sebastien gaboury, abdenour bouzouane)@uqac.ca

Abstract—The advances in sensor networks, electronics and
ambient intelligence make creation of intelligent environments
(IEs) possible. However, on account of economic and logistic
issues the implementation of physical IEs is difficult in research
domain. That makes it harder for researchers to experiment new
approaches in IE domain.

In this article, we propose a simulator to build virtual IEs.
Simulators are a good alternative to physical IEs. Indeed, virtual
IEs does not require expensive resources. Moreover, researchers
and designers can conduct experiments anytime and repeat
scenarios easily.

Our simulator provides users with a set of virtual sensors
and actuators. Our virtual sensors try to reproduce behavior
of physical sensors and to produce datasets with the same
properties as those generated by real sensors. Our proposition
contains a tool to build a home from scratch and a model to
define scenarios and behaviors of occupants. It also proposes
an interface to control occupants directly. Virtual sensors collect
data and generate datasets. Scientists and designers can use these
datasets to evaluate and design new approaches in IE domain.

I. INTRODUCTION

Intelligent environments (IE) can enhance humans’ quality
of life and societies significantly. Indeed, they can assist
people in some daily activities in order to increase comfort
and efficiency. These systems realize the vision of Mark
Weiser [1]. Computing is everywhere in service of people
instead of being represented by one computer in one room
and used by only a few people. In general ways, IEs use
several methods to collect and analyze pertinent data in order
to provide an appropriated behavior. Consequently, researchers
aim to discover models in order to: (i) limit the requirement of
expensive sensors; (ii) increase computation speed, efficiency,
robustness and flexibility.

Development of new approaches requires access to a dataset.
It is possible to use datasets that come from previous im-
plementations and experiments (CASAS for example [2]).
However, in some cases, generation and usage of new datasets
is required. Unfortunately, it is very difficult to generate
new datasets for several reasons: (i) physical IEs are very
expensive; (ii) acquisition of data is a time-consuming process;
(iii) a lack of suitable participants can make it difficult to
conduct some experiments.

Using of a virtual IE is one solution to generate datasets eas-
ily and quickly. Virtual IEs provides researcher with serveral

advantages [3]. For example, buying of physical sensors and
recruiting of suitable participants are not required. Moreover, it
is easy and fast to act on environments’ configuration (change
size of rooms or list of sensors and actuators) and subjects’
behavior. In this article, we present a simulator which aims to
help IE designers in their building process.

II. PROPOSITION

A. General overview

Our proposition is composed of three layers. Figure 1 shows
the general model. Layer named ‘’Databases“ contains two
databases. The first one contains datasets generated by simu-
lation and the second one is used as an interface between exter-
nal program and our virtual actuators. Layer named ‘’Virtual
world“ refers to all models related to environment’s behavior.
Finally, layer named ‘’Scenarios“ refers to all tools provided
by our proposition to implement and execute scenarios.

Databases

Dataset Accuator Database

Virtual world

Sensor List

Sensor

Environment
Electricity

Walls Furnitures

InoccupantsLights

Scenarios

Environment
behaviour

Inhabitants
behaviour

Direct
control

Script

Fig. 1: Scheme giving an overview of the system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Constellation

https://core.ac.uk/display/362660162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


B. Sensors and accuators

Our simulator includes several categories of sensors. This
collection allows users to conduct experiments with different
configurations of sensors. Table I resumes the set of sensors
included in our solution.

Sensors list
Type Value Description
RFID Numeric Strenght of the signal between the

antena and the RFID tag
Pressure plate

Boolean

true if an entity pressures
PIR motion true if an entity moves in its range

Contact true the two part are connected
Flow meter true if an faucet is opened
Electricity Numeric Active and reactive power on a line
Ultrasound Numeric Distance where the beam is stoppedInfrared

TABLE I: List of sensors that are included in our simulator.

Our proposition uses the following models to simulate
sensors’ behavior. Contact sensors can be put on furniture such
as drawers or doors. This kind of sensor returns current state
of furniture linked with it. Flow meters act the same way. The
only difference is that flow meter must be put on a faucet.
Pressure plates return ‘’true” when an entity collides with its
collision box. Ultrasound and infrared sensors draw a raycast
from their position, with an angle of 90 degrees and a length
l. If the raycast is cut, the sensor returns distance where it is
cut. RFID systems and PIR motion sensors use collider boxes
and raycasts. When an entity collides with a box, a raycast is
drawn between the sensor and the entity. If nothing intercept
the raycast, PIR motion sensor return ”true”, RFID antenna
computes the signal strength. We use the following formula to
compute this value:

RSSI(x) = (−9, 1333ln(x)−10.726)×(1−cos(a))+noise(s)

Where x and a are respectively the distance and the angle
between the antenna and the RFID tag. noise() is a function
to generate noise and s is the seed of this function.

C. Inoccupant’s interactions

Once intelligent environment defined, occupants must inter-
act with it in order to generate data. Our proposition provides
users with two modes to control occupants’ interactions. The
first one is named ‘’direct control” and allows users to control
an occupant through keyboard and mouse. Users control
occupant’s walk and interact with any furniture. The second
mode uses scripts to perform different scenarios. Occupants
follow and perform activities defined in scripts. Once script
is defined, no additional user action is required during the
simulation.

We use the behavior tree model to define scripts. Behavior
tree is a formalism that is used in planning [4], [5], [6]. In this
model, the main goal of an entity is divided in sub activities.
The entity has to complete these activities in order to reach
its goal. An activity is defined by the couple “objective” and

“behavior”. Basically, in an activity several actions are done
in order to reach or maintain a particular state. This specific
state can be an environment state. For example, a door is
locked or a light is on. It can be an entity’s internal state.
For example, in our context, occupant must not be hungry.
The term “behavior” refers to behaviors the entity adopts in
order to reach the objective.

The model uses a tree structure to organize the activities. In
this tree, leaves represent activities. Other nodes are operators.
They define how the tree evolve according to current state of
activities. Indeed, at each time, activities are in one of the
following states:

• Not running: activity has not started yet.
• Running: activity has started but is not finished yet.
• Succeeded: objective of the activity has been reached.
• Failed: objective of the activity has not been reached and

it is impossible to reach it in the future.
‘’Succeeded’ and ‘’Failed” are the two states that trigger

tree evolution. These states are called ”ending state”. In order
to return current state, each activity contains a function that
checks if objective is reached or not.

Activity tree evolves according to ending states of activities
and type of operators. Several operators with different oper-
ational semantic can be added according to needs. However,
we propose the following operators because they are the most
common in behavior tree implementations:

• Sequence: it executes node sequentially. It starts from the
first one and each time a node ends in succeeded state it
starts the next one. If a child ends in failed state, it ends
in a failed state.

• Selector: it executes node sequentially until one ends in
succeeded state. In this case, it ends in succeeded state.
If all child are in failed state, it ends in failed state.

• Repeat: it execute its only children until this one ends in
succeeded state.

• Parrallel: it executes node parallelly. If a child ends in
failed state, it ends in a failed state.

In our solution, behavior tree can be put on occupants or
environment’s entities. For example, a behavior tree can be put
on a phone in order to program a call or on a coffee machine
in order to define machine cycle.

D. Implementation

We use Unity game engine to build our
simulator. This project is available for download on
https://github.com/Iannyck/shima. Our project uses an SQLite
for our databases.

III. EXAMPLE

We propose a scenario example to show datasets generated
by our simulator. In this example, we propose smart home.
Figure 2 shows a picture of this home architecture. Table II
shows list of sensors implemented in this environment.

We have implemented two scenarios in that virtual smart
home. In the first scenario, the inhabitant has perform the
following activities:



{Kitchen}

{Living room}

{Bedroom}

{Corridor}

{Bathroom}

Kitchen03

Kitchen04

Kitchen01

Kitchen02

PIRMotionSensor

KitchenSink

BathroomSink WC

Ultrasound1
Ultrasound2

Ultrasound3

Bedroom1

Bedroom2

Bedroom3

Bedroom4

Fig. 2: Screenshot of our smart home architecture.

Sensors list of our example by rooms
Room Sensors ID

Kitchen

RFID Kitchen01
RFID Kitchen03
RFID Kitchen04

Flow meter KitchenSink
Kitchen (at ceiling) RFID Kitchen02

Bedroom

RFID Bedroom1
RFID Bedroom2
RFID Bedroom3
RFID Bedroom4

Corridor
Ultrasound Ultrasound1
Ultrasound Ultrasound2
Ultrasound Ultrasound3

Living room PIR Motion PIRMotionSensor

Bathroom Flow meter BathroomSink
Flow meter WC

TABLE II: List of sensors in our example. Figure 2 shows
position of sensors.

• Make coffee: the inhabitant uses the machine to make a
cup of coffee.

• Cook eggs: the inhabitant uses a frying pan and the
cooker to cook eggs.

• Wash dishes: the inhabitant washes each plates that are

in the kitchen sink.
• Dress the table: the inhabitant takes his meal a fork and

his beverage a put them to the table in the living room.
• Undress the table: the inhabitant takes the dishes on the

living room’s table and put them into the kitchen sink.
In the second scenario, the inhabitant has to flush the toilet

basin then use a detergent to clean the bathroom sink.
In the cooking scenario, the inhabitant mainly triggers the

RFID antenna (he moves several items in the kitchen), the
movement detector, the flowmeter and he generates changes
into the electricity consumption. In the bathroom scenario, he
triggers the ultrasound sensor into the corridor, the contact
sensor which is on the bathroom door and the flowmeter.
Tables III, IV, V and VI shows datasets generated by these
scenarios.

IV. RELATED WORKS

Some IE simulators have been proposed in order to support
researchers. SIMACT provides users with an interface to
design smart homes and scenarios [7]. In scenarios, user has
to detail the sequence of steps involved in the realization
of activities. The simulation use Java and run into a 3D
environment designed with SketchUp. The simulator store data



Timestamp Phase Active power Reactive power
18:50:39:369 Phase 1 98 0
18:50:39:904 Phase 1 98 0
18:50:40:620 Phase 1 98 0
18:50:40:226 Phase 1 897 0
18:50:40:404 Phase 1 897 0
18:50:40:941 Phase 1 897 0
18:50:41:105 Phase 1 897 0

TABLE III: Sample of the electricity dataset generated by our
example. This sample only shows phase 1. In our example,
reactive power is always equal to 0 because of our electronic
device settings.

Timestamp Sensor ID Signal (DB) Tag
18:50:19:743 Kitchen01 -44.21692 TagSpoon
18:50:19:743 Kitchen01 -44.1373 TagMug
18:50:20:626 Kitchen04 -43.40419 TagMug
18:50:20:626 Kitchen04 -51.76328 TagFrypan
18:50:20:970 Kitchen02 -50.53626 TagFrypan
18:50:20:970 Kitchen02 -41.93156 TagSpoon

TABLE IV: Sample of the RFID dataset generated by our
example.

about objects interaction into a database. However, SIMACT
does not really simulate physical behavior as sensors, it detects
when an action is performed on an object and store the contact
information.

PerSim 3D is an enhancement of PerSim 1.5 proposed
in [8]. It proposes several categories of sensors that can be
selected and set into the virtual smart home. PerSim also
allows the user to design the architecture of the home. Like
in SIMACT, the user can play and see the simulation through
a 3D rendering of the scene. PerSim provides the user with
more kinds of sensors than SIMACT, however, PerSim seems
not to record simulated sensors raw data. In fact, sensor data
is transformed in order to provide the fact that it is activated
or not.

In [9], authors propose a 2D simulator. Authors slip their
sensors in two categories: motion and non-motion. The non-
motion sensors are like environment variable. They are in-
creased while the inhabitant do an action where they are
involved. For example, the water consumption is increased
when the inhabitant use a faucet. The motion sensors are
sensors that detect if the inhabitant is in a particular zone. Then
it computes a distance in order to simulate a signal strength,
for example. This simulator works in a 2D world and it does
not provide a real time rendering.

Unlike, some solutions in related works our solution to
generate raw datasets that are similar to the real dataset. It
proposes several kinds of sensors and allows the creation of
virtual intelligent environment from scratch. Moreover, users
can act on entities’ behavior.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have presented our IE simulator. This
simulator allows IE researcher to generate datasets in order
to evaluate their contributions. Moreover, it allows IE design

Timestamp Sensor ID Beam
18:38:46:447 Ultrasound 3 4.108222
18:38:46:868 Ultrasound 3 3.783601
18:38:47:317 Ultrasound 3 3.513622
18:38:47:837 Ultrasound 2 2.883075
18:38:48:601 Ultrasound 1 3.537868

TABLE V: Sample of the ultrasound dataset generated by our
example.

Timestamp Sensor ID Type Value
18:38:55 Flow meter WC true

18:51:43:229 PIRMotionSensor PIR Motion Sensor true
18:51:44:465 PIRMotionSensor PIR Motion Sensor true
18:51:49:532 PIRMotionSensor PIR Motion Sensor true
18:51:50:825 PIRMotionSensor PIR Motion Sensor true

TABLE VI: Sample of the binary dataset generated by our
example.

to evaluate their IE proposition before the implementation of
this one. Our simulator allows the building of the environment
(position of walls, doors, windows and selection of items)
and the selection and positioning of sensors. It proposes a
selection beside several kinds of sensors, RFID, ultrasound and
infrared, pressure plate, contact sensors, flowmeter, movement
detector. These sensors generate data similar to those generated
by physical sensors. Our simulator proposes two modes to
generate datasets. The first one is an interactive mode where
the user control an occupant and can interact with items in the
home. The second mode is a scenario mode where occupants
are controlled by scripts.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American, no.
Communications, Computers, and Network, septembre 1991. [Online].
Available: http://wiki.daimi.au.dk/pca/ files/weiser-orig.pdf

[2] D. J. Cook and L. B. Holder, “Sensor selection to support practical use of
health-monitoring smart environments,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, vol. 1, no. 4, pp. 339–351, 2011.

[3] J. Synnott, C. Nugent, and P. Jeffers, “Simulation of smart home activity
datasets,” Sensors, vol. 15, no. 6, pp. 14 162–14 179, 2015.

[4] P. Ogren, “Increasing modularity of uav control systems using computer
game behavior trees,” in AIAA Guidance, Navigation and Control Con-
ference, Minneapolis, MN, 2012.

[5] A. J. Champandard, M. Dawe, and D. Hernandez-Cerpa, “Behavior trees:
Three ways of cultivating game ai,” in Game Developers Conference, AI
Summit, 2010.

[6] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards a
unified behavior trees framework for robot control,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 5420–5427.

[7] K. Bouchard, A. Ajroud, B. Bouchard, and A. Bouzouane, “Simact: A
3d open source smart home simulator for activity recognition with open
database and visual editor,” International Journal of Hybrid Information
Technology, vol. 5, no. 3, pp. 13–32, 2012.

[8] A. Helal, K. Cho, W. Lee, Y. Sung, J. Lee, and E. Kim, “3d modeling and
simulation of human activities in smart spaces,” in Ubiquitous Intelligence
& Computing and 9th International Conference on Autonomic & Trusted
Computing (UIC/ATC), 2012 9th International Conference on. IEEE,
2012, pp. 112–119.

[9] B. Kormányos and B. Pataki, “Multilevel simulation of daily activities:
Why and how?” in Computational Intelligence and Virtual Environments
for Measurement Systems and Applications (CIVEMSA), 2013 IEEE
International Conference on. IEEE, 2013, pp. 1–6.


