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Summary. — The dynamical approach based on numeric solution of the time-
dependent Schrodinger equation is applied to description of transfer and rearrange-
ment of nucleons in nucleus-nucleus collisions. The results of calculation of neutron
transfer cross sections for reaction *He + '°7Au and total reaction cross sections for
reactions °He + 28Si, °Li + 28Si are in agreement with experimental data.

1. — Theory

The processes of neutron transfer are widely studied both experimentally and theoret-
ically. For theoretical description of neutron rearrangement and transfer in collisions of
atomic nuclei we used the time-dependent Schrodinger equation (TDSE) approach [1,2]
for the external neutrons combined with the classical equations of motion of atomic
nuclei with centers 7 (t),72(¢). The evolution of the components 11,19 of the spinor
wave function W(7,¢) for the neutron with the mass m during the collision of nuclei was
determined by eq. (1) with the operator of spin-orbit interaction Vis

(1) ih%\l/(ﬁ t) = {—;mA + W (7, 71 (t), 7 (t) + Vis(7, Fl(t),Fz(t))} (7).

We assume that before contact of the surfaces of spherical nuclei, W = Vi (|7 — 71 (¢)|) +
Va(|7 = 72(t)), Vos = Vis1 (7= 71(t)) + Vis2 (7 — 72(t)).

The initial conditions for the wave functions were obtained using the shell model
calculations with the parameters providing neutron separation energies close to the ex-
perimental values. The mean field V4 (r), Va(r) of the Woods-Saxon volume type was used
for 9Li, 28Si, and 7 Au nuclei. For the ®He nucleus (represented as a system a +n +n),
a new parametrization of the mean field for external neutrons was used [3,4] based on
the results obtained by Feynman’s continual integrals method [5,6].
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2. — Results for *He+'9"Au collision

An example of the evolution of the probability density for the external neutrons of
the %He nucleus in the collision with the 7 Au nucleus at near-barrier energy was given
in ref. [2]. During a slow (adiabatic) relative motion of the colliding nuclei the external
neutrons of the 5He nucleus are penetrating into the *7Au nucleus and populating the
slowly changing two-centre states, the probability density for which fills a large part of
the volume of the target nucleus. The neutron transfer probability p (b, E) depending
on the impact parameter b and energy E was calculated by integration of the neutron
probability density after collision [1-4]. The neutron transfer cross section was calculated
by integration of the neutron transfer probability over the impact parameters b > byin

o0

(2) o(E)= /p(b,E)bdb,

bmin

because collisions with 0 < b < by, lead to fusion.

In the analysis of experimental cross sections for formation of isotopes one must also
take into account the possibility of their formation via fusion of colliding nuclei with
the subsequent evaporation of nucleons and a-particles. For this purpose, we used the
computational code of the statistical model available in the NRV web knowledge base [7].

Comparison of experimental data on the formation of isotopes 1?6Au and 3Au in
the reaction ®He 4 '97Au with the theoretical calculations is shown in fig. 1. It can be
seen that in this case the contribution of fusion-evaporation to the experimental data is
negligible due to the high Coulomb barrier of the formed compound nucleus preventing
evaporation of a-particles. The formation of '®Au is due to neutron stripping from He
to the bound states of the Au nucleus. The formation of %6 Au is due to neutron pickup
from '97Au to the metastable states of the "He nucleus and neutron knockout by the
a-cluster of He.
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Fig. 1. — The cross sections for formation of isotopes '?®Au (left) and '*®*Au (right) in reaction
®He + '"Au. Symbols are the experimental data from ref. [8]; dash-dotted curves are the
results of calculation of fusion-a3n-evaporation (left) and fusion-an-evaporation (right) within
the NRV web knowledge base [7]; dashed curves are the results of neutron transfer (or knockout)
calculations within the TDSE approach; solid curves are the sums of the corresponding transfer
and fusion-evaporation channels. Arrows indicate the position of the Coulomb barrier.
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3. — Results for °Li + 28Si and °He + 2%Si collisions

Examples of the evolution of the probability density for the external neutrons of
the Li nucleus in the collision with the ?Si nucleus at different energies were given in
ref. [9]. During rapid (diabatic) relative motion, the neutron probability density does not
have enough time to fill all the target nucleus, and its change is more local than in the
adiabatic case. After the separation of the nuclei, the wave packet in the surface region
of the target nucleus remains spreading and rotating with a large angular momentum.
At intermediate velocities, a transition from the adiabatic regime to the diabatic one
takes place. In the transition regime, rearrangement of outer-skin neutrons of °Li and
halo neutrons of 5He leads to the increase in the neutron probability density between
the nuclear surfaces. For "Li and “He, this effect is small, therefore, for description of
"Li + 28Si and “He + 28Si collisions, we use the “frozen” optical potential V' (R) in the
Woods-Saxon form. The parameters were obtained by fitting elastic scattering angular
distributions in ref. [9].

For °Li and SHe nuclei, the real part of the optical potential V(R) for nuclei with
“frozen” neutrons was supplemented with the diabatic correction arising from an increase
in the neutron probability density between the surfaces of the nuclei as they approach,

(3) Va(R, Eiab) = V(R) 4 1(Eab)0Va (R, Eiab),

(4) 6Va (R(t), Erap) = /d37‘5p1(7"7 U (|7 = 72(8)])
Q

6 (i) = {150 [ 1 (19~ B )L

where Ut is the mean field for neutrons in the target nucleus, dp;(r,t) = p1(r,t) fpgo) (r),
p1(r,t) is the probability density for the external neutrons of the projectile nucleus,
pgo)(r) is the same density calculated in the absence of interaction of these neutrons with
the target nucleus,  is the region between the surfaces of the nuclei, A is the mass
number of the projectile. The variable parameter (¢) ~ 10 MeV determines the position
Ej.p = (e)A of the transition region, a ~ 2 MeV determines its width. The diabatic
correction Vg (R, El.p) reduces the height B (Fl,p) and shifts to the right the position
Rp (Eap) of the Coulomb barrier

(6) Rp(Fiap) = Rp,o + 0Rp(Elap).

For the imaginary part of the potential we used the approximation with the exponen-
tial dependence

—W1,7“ < Ry

(7) W(r) = { —Wi exp (—beR”) 7> Ry

and the radius R} increasing according to the shift of the barrier position

(8) Ry (Erap) = Ro + k6 Rp(Eran),
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Fig. 2. — The total cross sections for reactions **He + 2*Si (left) and "°Li 4 25Si (right), symbols
are the experimental data from [9] and refs. therein: *He 4 2®Si and °Li 4 2*Si (filled circles),
“He + ?®Si and "Li + 28Si (empty circles); curves are the results of calculation within the TDSE
approach combined with the optical model: (left) for R, = 5.0 fm (solid line) and R, = 4.8 fm
(dashed line), (right) for Rq = 5.8 fm (solid line) and R, = 5.6 fm (dashed line); dash-dotted
lines are the results of calculations for the reactions *He 4 8Si (left) and “Li + 2%Si (right).

where b = 1 fm, k = 2, R, = 5.8 fm for the reaction °Li + 28Si.

The results of calculation of the total cross sections for reactions *SHe + 28Si,
6:7Li + 28Si are shown in fig. 2. It can be seen that they are in good agreement with the
experimental data from [9] and refs. therein.

4. — Conclusions

The enhancements of the total cross sections for reactions $He + 28Si and Li 4 28Si
as compared with He 4 28Si and "Li + 28Si were explained by the influence of external
neutrons of weakly bound projectile nuclei. The time-dependent model shows that the
rearrangement of external weakly bound neutrons of nuclei ®He and ?Li during the colli-
sion determines the energy dependence of the real and the imaginary parts of the optical
potential.
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