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Summary. — Noise of non-astrophysical origin contaminates science data taken by
the Advanced Laser Interferometer Gravitational-wave Observatory and Advanced
Virgo gravitational-wave detectors. Characterization of instrumental and environ-
mental noise transients has proven critical in identifying false positives in the first
aLIGO observing run O1. In this talk, we present three algorithms designed for
the automatic classification of non-astrophysical transients in advanced detectors.
Principal Component Analysis for Transients (PCAT) and an adaptation of LAL-
Inference Burst (PC-LIB) are based on Principal Component Analysis. The third
algorithm is a combination of a glitch finder called Wavelet Detection Filter (WDF)
and unsupervised machine learning techniques for classification.

1. – Introduction

The advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) detec-
tors are two 4 km interferometers at Hanford, Washington (H1) and Livingston, Louisiana
(L1) [1,2]. The Italian 3 km interferometer Virgo is expected to join the advanced detec-
tor network early next year [3]. The detector duty cycle and sensitivity to astrophysical
signals will be determined by noise sources created by the instruments and the envi-
ronment. In particular, as the detector noise is non-Gaussian short-duration transients
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will limit the sensitivity of searches for transient astrophysical sources such as compact
binary coalescences [4].

The detectors contain many environmental and instrumental sensors, which produce
auxiliary channels of data that can be used to monitor the detector behaviour and track
the causes of short-duration noise artifacts. Auxiliary channels that are not sensitive to
gravitational waves can be used to identify noise transients, also known as “glitches”, in
the detector output and veto those events [5-7]. Classification and categorization of tran-
sients using individual channels of data may provide valuable clues for the identification
of their sources, which can aid in efforts to eliminate them [8,9]. So far classification has
mainly been achieved by visual inspection of spectrograms of the transients, but auto-
matic classification is essential for future detections of astrophysical gravitational-wave
signals.

Three methods for fast classification of transients have been developed for the anal-
ysis of aLIGO and Virgo data. They are Principal Component Analysis for Transients
(PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection
Filter with Machine Learning (WDF-ML). We will report on the comparison of these 3
methods on simulated data as in [9]. The same methods have been successfully applied
to data from the 7th aLIGO engineering run (ER7), which began on the 3rd of June
2015 and finished on the 14th of June 2015.

2. – Transient classifying algorithms

Three different classifying algorithms were developed for the fast classification of noise
transients in the detectors. Most of the technical details have been described in [9] and
application on real data have been reported in [10]. Here we give a brief outline of the
three methods and some examples of their classification efficiency on simulated and real
data.

To find transients in the data we use event trigger generators (ETGs). ETGs typ-
ically search for excess power in individual interferometers and output the time, SNR,
frequency, duration and other parameters of transients found in the data. PC-LIB uses
Omicron, the main ETG used by the LIGO Scientific Collaboration’s (LSC) detector
characterization group [11,12]. WDF-ML [13] and PCAT have their own internal ETGs.

2.1. PCAT . – PCAT uses a technique called Principal Component Analysis (PCA)
that allows for dimensional reduction of large data sets [9, 14]. In the first stage of the
PCAT analysis, the data are downsampled to 8192 Hz, whitened and high-pass filtered
at 10 Hz. Then PCA is applied to all of the noise transients found by the ETG in all the
analyzed segments of data.

A projection of the original waveforms on to the Principal Components (PCs) allows
for the calculation of scale factors for each PC called PC coefficients. Noise transients of
different types are separated in the PC coefficient parameter space. This allows PCAT to
classify the transients by applying a Gaussian Mixture Model (GMM) machine learning
classifier to the PC coefficients [15].

2.2. PC-LIB . – LALInference Burst (LIB) is a Bayesian parameter estimation and
model selection tool, which uses a sine-Gaussian signal model to estimate parameters
of gravitational-wave bursts [16]. It can also be combined with Omicron to be run as
a search [17]. PC-LIB adapts LIB for the classification of transients by replacing the LIB
sine-Gaussian signal model with a new signal model created from a linear combination
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Table I. – The table shows the LIB, PCAT and WDF-ML results for simulated data set. The
values show the percentage of the different morphologies classified in each type. The total number
of simulated waveforms was 1000 of each type. The total number of glitches analysed were 1309
for PCAT, 1452 for LIB and 1814 for WDF-ML.

Classifier SG G

PCAT Type 1 99% 0%

PCAT Type 2 1% 100%

LIB Type 1 99.9% 5%

LIB Type 2 0.1% 95%

WDF Type 0 99.5% 2.4%

WDF Type 1 0.3% 46.1%

WDF Type 2 0.2% 51.5%

of PCs calculated from the waveforms of known transient types [18, 19]. These known
transients may have been previously classified by examining spectrograms of the tran-
sients or by one of the other methods. Thus PC-LIB can only classify transients that
have occurred in the data many times before. When transients of a new type start to
appear in the data new signal models must be created.

2.3. WDF-ML. – Wavelet detection filter (WDF) is the ETG [13] used by WDF-ML
method. The data are firstly down-sampled and then whitened using parameters esti-
mated at the beginning of each locked segment. After whitening, a wavelet-transform is
applied, using a bank of wavelets, as described in [9].

The wavelet coefficients identified by the WDF-ML ETG are further cleaned using a
wavelet de-noising procedure where only wavelet coefficients above the noise level are re-
tained [9]. WDF-ML produces a list of wavelet coefficients, frequency, duration and SNR
for each transient. The dimensions of the wavelet coefficients are then reduced by apply-
ing PCA and Spectral Embedding [20,21]. The transient classification is then performed
by applying a machine learning (ML) unsupervised algorithm, the GMM classifier, to
the reduced wavelet coefficients [15].

3. – Results

3.1. Tests on simulated data. – To test and compare these methods we create a
simulated data set in aLIGO Gaussian noise [9]. As example, we report the results
on data set containing 1000 sine Gaussian waveforms and 1000 Gaussian waveforms in
simulated Gaussian noise. The sine Gaussian waveforms have a frequency = 400Hz and
an SNR between 5 and 30. The Gaussian waveforms are centred at f = 0Hz and have an
SNR between 20 and 250. Table I shows the % of detected transients that were classified
in each type. A few low frequency SG, and low SNR G were in the incorrect classes, but
the overall classification efficiency was very good.

3.2. Tests on real LIGO data. – In [10] the above described methods have been applied
on LIGO ER7 real data. Some examples of real glitches for ER7 LIGO Livingston have
been reported in fig. 1.
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Fig. 1. – Spectrograms, generated using [22], of typical transient types found in the aLIGO
Livingston (L1) ER7 data. (a) L1: A transient characterized by a tear drop shape in the
spectrogram. (b) L1: A “whistle” glitch that often has a long duration and occurs at high
frequencies.

Glitches of different types are often recognised by their shape in a spectrogram such
as those shown in fig. 1. Figure 1(a) shows glitches characterized by a tear drop shape.
Figure 1(b) shows longer duration transients known as “whistles”, which are caused
by radio frequency beats. In this studies all the glitches were labelled and classified
“by hand”. This classification is used as reference to check the efficiency of the auto-
matic classification pipelines. In the ER7 data from aLIGO Livingston PCAT missed
90 transients and classified 95% of the remaining transients correctly. PC-LIB missed
33 transients and classified 98% of the remaining transients correctly. WDF-ML clas-
sified all transients and 97% of them were correct. In aLIGO Hanford PCAT missed
120 transients and classified 99% of the remaining transients correctly. PC-LIB missed 6
transients and classified 95% of the remaining transients correctly. WDF-ML classified
all transients and 92% of them were correct. We conclude that our methods have a high
efficiency also in real non-stationary and non-Gaussian detector noise.

4. – Conclusion

Three different methods have been developed for the fast classification of noise tran-
sients. Transients are split into types by waveform morphology first, and then can be
split up into further types by frequency and SNR. These pipelines performed very well
either on simulated realistic data or real data. Results are similar for all methods of
classification. The WDF-ML acts also efficiently as Event Trigger Generator. We plan
to introduce in the WDF-ML pipeline different machine learning methods than the un-
supervised one used in these works. Further development and tests on real data have
been done by all of the 3 methods.
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