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Abstract  

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at 

the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, 

we apply a novel methodology to perform genome-wide association analysis of mean and 

variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, 

putamen, thalamus, intracranial volume, cortical surface area and cortical thickness), integrating 

genetic and neuroanatomical data from a large lifespan sample (n=25,575 individuals; 8 to 89 

years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in 

thalamus volume and cortical thickness. The variance-controlling loci involved genes with a 

documented role in brain and mental health and were not associated with the mean anatomical 

volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume 

variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), 

allows identifying different degrees of brain robustness across individuals, and opens new 

research avenues in the search for mechanisms controlling brain and mental health.  
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Introduction  

Phenotypic variability is key in evolution, and partly reflects inter-individual differences in 

sensitivity to the environment 1. Genetic studies of human neuroanatomy have identified shifts in 

mean phenotype distributions (e.g., mean brain volumes) between groups of individuals with 

different genotypes 2, and have documented genetic overlaps with common brain and mental 

disorders 3. Despite the evolutionary relevance of phenotypic dispersion evidenced in multiple 

species and traits 1, 4, the genetic architecture of variability in human brain morphology is 

elusive.  

 Phenotypic variance across genotypes can be interpreted in relation to robustness, i.e., the 

persistence of a system under perturbations 1, 4 and evolvability, the capacity for adaptive 

evolution 5. High phenotypic robustness is indicated by low variation in face of perturbations, i.e. 

phenotypes are strongly determined by a given genotype. In contrast, lack of robustness 

corresponds to high sensitivity, yielding phenotypes with overall larger deviations from the 

population mean in response to environmental, genetic or stochastic developmental factors. 

Neither increased or decreased robustness confers evolutionary advantages per se 1, and their 

consequences for adaptation need to be understood in view of the genotype-environment 

congruence. Reduced robustness (and thus increased variability of trait expression) can be a 

conducive to adaptive change 5, and increased variability of phenotypic expression can in itself 

also be favored by natural selection in fluctuating environments 6. Thus, recognizing genetic 

markers of sensitivity can aid in identifying individuals who are more susceptible to show 

negative outcomes when exposed to adverse factors –either genetic or environmental– and 

otherwise optimal outcomes in the presence of favorable factors. Such variance-controlling 

genotypes may be conceived as genomic hotspots for gene-environment and/or gene-gene 
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interactions, with high relevance for future genetic epidemiology studies 7. Data from this type of 

approaches may complement existing genetic association methods and contribute to establish the 

genetic basis of phenotypic variance (i.e., heritability), allow identifying different levels of brain 

robustness across subjects, and open new research avenues in the search for mechanisms 

controlling brain and mental health.  

 To provide a proof-of-principle of the hypothesis of a genetic regulation of brain volume 

variability, we conducted a genome-wide association study of intragenotypic variability in seven 

key subcortical regions and intracranial volume (ICV) using a harmonized genotype and imaging 

data analysis protocol in a lifespan sample (n=25,575 individuals; 8 to 89 years, mean age 51.9 

years; 48% male, Methods and Supplementary Table S1 and Supplementary Table S2). 
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Materials and Methods  

Participants  

Data from 25,575 unrelated European-ancestry individuals were included (mean age 51.9 years, 

ranging from 8 to 89 years old; 48% male), recruited through 16 independent cohorts with 

available genome-wide genotyping and T1-weighted structural MRI. Extended information on 

each cohort reported in Supplementary Methods and Supplementary Table 1 includes 

recruitment center, genotyping and brain imaging data collection, sample-specific demographics, 

distribution of brain volumes and, when relevant, diagnoses (795 individuals had a diagnosis). 

Written informed consent was provided by the participants at each recruitment center, and the 

protocols were approved by the corresponding Institutional Review Boards.  

 

Genotypes  

Only participants with European ancestry (as determined by multidimensional scaling) were 

included in the final set of analyses, in recognition that the inclusion of subjects from other 

ethnicities can potentially add genetic and phenotypic confounding. Except for the UK Biobank 

cohort, all directly genotyped data were imputed in-house using standard methods with the 1000 

Genomes European reference panel. After imputation, each genotyping batch underwent a 

quality control stage (MAF < 0.01; Hardy-Weinberg equilibrium p < 10-6; INFO score < 0.8). 

When all samples were combined, over 5 million distinct markers passed quality control 

genome-wide. Additional filters on genotyping frequencies were applied to the final merged 

dataset based on statistical considerations for genotype frequency in variance-controlling 

detection, as described below. Genetic data analysis was conducted using PLINK 8, with R 9 

plugin functions when appropriate (https://www.cog-genomics.org/plink/1.9/rserve).  
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Brain features  

Three-dimensional T1-weighted brain scans were processed using FreeSurfer 10 (v5.3.0; 

http://surfer.nmr.mgh.harvard.edu). Mean cortical thickness and eight well-studied volumetric 

features were selected for analysis moving forward, as literature findings on large datasets show 

that their mean population value is influenced by common genetic variation 2: accumbens, 

amygdala, caudate, hippocampus, pallidum, putamen, thalamus and ICV. Cohort-wise 

distribution of values is summarized in Supplementary Figure S1 and Supplementary Figure S2. 

Generalized additive models (GAM) were implemented in R (https://www.r-project.org) to 

regress out the effects of scanning site, sex, age, diagnosis and ICV (for subcortical volumes and 

cortical surface only), and outliers (±6 standard deviations from the mean) were removed. 

Hereafter, brain volumes correspond to residuals from those GAM fits unless otherwise 

specified. As noticed on violin plots of brain features stratified by sample (Supplementary Figure 

S1), some of the traits display a wider distribution in the UK Biobank than in the other cohorts, 

which may be related to a broader phenotypic repertoire captured by a much larger sample size; 

in addition, at each cohort, individuals on the very ends of the distributions might have been 

considered outliers/anomalous, and were probably removed at each imaging center during early 

quality control stages. 

 

Statistical analyses  

Genome-wide association statistics were computed for genetic effects on the mean and variance 

of the volumetric feature distributions in multiple stages. The data were analyzed and visualized 

in R with the aid of appropriate packages. Although the current dataset includes subjects across a 
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broad range of ages, the cross-sectional nature of the data (one image per individual) makes the 

main focus of the models below the analysis of gene-gene (epistasis) and gene-environment 

interactions. For each marker, an additive genetic model was computed with  = β + β sample + β + β + β + β + β SNP +  

where  is the normalized phenotype variable; SNP is the relevant marker coded additively and  

stands for regression residuals. Four genomic principal components ( - ) were included, to 

control for population stratification and cryptic relatedness, and to make the results 

consistent/comparable with a previous large-scale analysis of genetic variation and brain 

volumes 2. Then, the distribution of residuals ( ) was normalized via rank-based inverse normal 

transformation (INT) to prevent statistical artifacts. Scale transformations like INT have been 

shown to aid genetic discovery by constraining mean-effects and reducing the effect of 

phenotypic outliers, which reduces Type I error rates without sacrificing power 11, 12. 

Specifically, INT was applied to transform each subject’s residualized phenotype ( ) as  

INT = ϕ rank − 0.5
 

where rank  is the rank within the distribution,  stands for sample size (without missing 

values) and ϕ  denotes the standard normal quantile function. Intuitively, all phenotype values 

are ranked and the ranks are mapped to percentiles of a normal distribution. Those INT-

transformed residuals were passed as input for the variance-model using Levene’s test centered 

at the median, implemented with R’s car package (https://cran.r-project.org/package=car). In 

short, = − ̃  is calculated from the transformed residuals, with ̃  as the median of 

group  (here, genotype) and these, in turn, to compute the  statistic:  

= ∑ ̅∙ ∙̅∙∑ ∑ ̅ ̅∙ , 
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where  is the number of observations in group ,  is the number of groups (2 or 3 different 

genotypes), and ∙̅  denotes the mean in group . For potentially significant associations, 

between-sample differences in minor allele frequencies were assessed, to avoid spurious results 

due to issues with genotype imputation. Also, to prevent increases in false positive rates arising 

from small groups 13, only markers with at minimum (non-zero) genotype count of at least 100 

were included. This value was chosen based on literature about power and statistical 

considerations of genome-wide association studies for phenotypic variability 13.  

 An additional validation stage was implemented in recognition that, despite the 

conservativeness of the previous approach, variables like sex and batch might still confound the 

variance test results 14, 15. Generalized additive models for location scale and shape (GAMLSS) 

were applied to the top significant results from Levene’s tests. Variants were selected for 

additional inspection based on their p-values in the variance analysis, using linkage 

disequilibrium-based clumping with default parameters on PLINK (Levene’s test p-values below 

1×10-4 over 250kb windows and an LD threshold of r2=0.5, http://www.cog-

genomics.org/plink/1.9/postproc#clump). As indicated next, this resulted in 1,799 genotype-

phenotype associations that were further examined via GAMLSS. For consistency with Levene’s 

test (which does not have a pre-specified inheritance model), GAMLSS tests were evaluated 

under 4 relevant paradigms: additive scale (A1 allele coded as continuous: 0, 1 or 2), dominant-

like (0 copies of A1 allele vs either 1 or 2 copies), recessive-like (2 copies of A1 allele vs either 

1 or 0 copies) and heterozygote (dis)advantage-like (1 copy of A1 vs either 0 or 2 copies). This 

resulted in 1,799 times 4 = 7,196 tests.  

Briefly, GAMLSS are semi-parametric regression type models that allow the parameters 

of the distribution of the response variable (mean, variance, skewness and kurtosis) to be 
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modelled as linear/non-linear or smooth functions of the explanatory variables 16. Here, mean 

and dispersion in the distribution of raw brain phenotypes (as extracted from FreeSurfer) were 

modeled as a function of genotype, sex, scanner, diagnose, ICV (when relevant) and an 

additional P-spline term for age as function of sex, through penalized varying coefficients with 

10 intervals 16, 17. GAMLSS were fitted through a normal distribution with the default identity 

link for location ( ) and log link for scale ( ). Unless otherwise specified, all other parameters 

were set to default from R’s GAMLSS implementation. It is worth noting that Levene’s test was 

here adopted as main discovery strategy as it provides some advantages over the GAMLSS’ R 

implementation, e.g.: GAMLSS are computationally more expensive (from seconds to minutes 

per marker-phenotype test), and do not allow different inheritance models to be directly tested in 

the same run.  
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Results  

Genome-wide association statistics were computed for genetic effects on the variance and mean 

of the volumetric feature distributions. Consistent with previous large-scale analyses on genetics 

of neuroimaging volumetric measures 2, 18, features included bilateral (sum of left and right) 

amygdala, caudate nucleus, hippocampus, nucleus accumbens, pallidum, putamen and thalamus, 

as well as ICV and mean cortical thickness. 96.9% of the included participants were healthy 

controls (n=24,780); the remaining 3.1% were diagnosed with a brain disorder (n=795; including 

psychosis, depression, and attention deficit hyperactivity disorder, Supplementary Table S2). The 

analyses were conducted in a two-stage protocol. For each genotype, we conducted a standard 

association test for the GAM-transformed brain volumes 11, adjusting for scanning site, sex, age, 

diagnosis, and ICV (for the subcortical volumes only). Residuals from that model were then 

INT-transformed and submitted to genome-wide Levene’s tests to investigate if specific alleles 

associate with elevated or reduced levels of phenotypic variability. For relevant markers, 

variances explained by mean and variance models were estimated from the INT-transformed 

volumes before fitting regression models using a previously reported approach 7.  

A mega-analysis of 25,575 unrelated subjects of European ancestry identified candidate 

loci associated with differential levels of phenotypic variability overall on two out of the ten 

volumetric features (mean thickness and thalamus) (Figure 1). A loci displayed an association 

with Pallidum volume (Supplementary Figure S3) but was discarded as between-cohort allelic 

frequencies showed significant differences, indicating potential uncertainty in genotype 

imputation. Genomic inflation factors (lambda) ranged between 1.01 and 1.07 for the ten 

different variance-GWAS (Supplementary Figure S3). A conventional mean phenotype GWAS 

with additive model on the same set of variants, with INT-transformed phenotypes, showed 70 
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significant loci influencing four volumetric traits after adjustment for genomic inflation 

(accumbens [2], amygdala [5], caudate [10], hippocampus [12], pallidum [7], putamen [6], 

thalamus [4], ICV [9], cortical surface area [7] and mean cortical thickness [8]) (Supplementary 

Figure S3). Manhattan plots for both mean- and variance-GWAS are displayed as Supplementary 

Figure S3.  

 

[Insert Figure 1] 

 

In the variance analysis, the top association was a locus in chromosome 20 between 

SNAP25, PAK7 and ANKEF1, linked to mean cortical thickness variability (rs6039642; 

chr20:9940475:G:A; MAF=0.17; p=2.3×10-8; variance explained variance model: 0.129%; 

variance explained mean model: 0.003%). In addition, an intergenic locus near LINC00347 

showed a borderline significant association with variance in thalamus volumes (rs9543733; 

chr13:75211673:C:T; MAF=0.34; p=6.8×10-8; variance explained mean model: 0.002%; 

variance explained variance model: 0.054%) (Figure 1 and Supplementary Figure S4). Between 

cohorts, no clear differences in allelic frequencies were observed at these loci (MAF between 

0.15 and 0.199 at rs6039642, and MAF between 0.35 and 0.37 at rs9543733). Results were 

consistent when re-analyzing the data from healthy controls only (excluding participants with 

neuropsychiatric diagnoses), and when validating via GAMLSS: p=6.8×10-5 (rs6039642-cortical 

thickness), p=4.8×10-4 (rs9543733-thalamus). Males displayed higher variability than females in 

thalamus volumes according to those GAMLSS models (B=0.047, SE=0.011, p=1.9×10-5), and a 

trend-significant association for higher variability in cortical thickness (B=0.036, SE=0.021, 

p=0.082). Figure 2 shows the relevant phenotype distributions for the top hits for the two models 
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grouped by genotypes generated via the shift function 19. In short, the adopted shift function 

procedure was implemented in three stages: deciles of two phenotype distributions were 

calculated using the Harrell-Davis quantile estimator, followed by the computation of 95% 

confidence intervals of decile differences with bootstrap estimation of deciles’ standard error, 

and multiple comparison control so that the type I error rate remained close to 5% across the nine 

confidence intervals. Decile-by-decile shift function analysis confirmed increased thalamus 

variance among TC heterozygotes than rs9543733 homozygotes (TT, CC). Similarly, major 

allele homozygous subjects for rs6039642 (GG genotype) showed lower cortical thickness 

variance than carriers of the minor allele A.  

 

[Insert Figure 2] 

 

 As mentioned on Methods, associations from the variance models were further examined 

to discard potential artifacts, as variables like sex and batch might still confound the test results. 

Using standard clumping methods on the ten variance-GWAS, the top 1,799 genotype-phenotype 

associations were selected for additional analysis using GAMLSS. As observed above for the the 

pallidum variance-GWAS hit, some of the top markers obtained with Levene’s test can be 

susceptible to genotype imputation quality problems that influence variability in between-cohort 

genotype frequencies and might artificially introduce bias. Hence, markers that were both 

unavailable for one or more cohorts and had strong between-cohort differences in genotype 

frequencies (indexed by a chi-square test p<10-25) were excluded from the plots, giving a total of 

1,526 loci clumped from Levene’s test p-values. Results from Supplementary Figure S5 suggest 

that Levene’s test p-values are not particularly skewed towards false positives and, in some cases 
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(e.g., thalamus, Figure S5i), GAMLSS p-values might be smaller than the output from their 

Levene’s test-based counterpart. In view of those observations, we believe that a conservative 

two-stage approach combining Levene’s test with GAMLSS validation is adequate.  
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Discussion  

To our knowledge, this is the first evidence of genetic loci influencing variability of brain 

volumes beyond their mean value. A conceptually and methodologically similar approach 

revealed genetic control of the variance in body height and body mass index 12. Adding to the 

notion that phenotypic spread in a population is related to genetic variability, the current results 

show that the population variance of cortical thickness and thalamus volume is partly under 

genetic control. Importantly, our findings on brain structure and the previous work on body mass 

index 12 provide converging evidence supporting the notion that common genetic variants 

affecting the mean and the variance of a trait need not be correlated and may influence 

phenotypes through complementary mechanisms.  

 Variants associated with volumetric dispersion were at loci that have previously been 

linked to neuropsychiatric traits. The significant variance locus for cortical thickness on 

chromosome 20 was located next to PAK7 - a gene conferring risk for psychosis and involved in 

oxytocin gene networks of the brain 20, 21 - and the synaptosome associated protein 25 gene 

(SNAP25) -which participates in synaptic function and increases susceptibility for severe 

psychiatric conditions 22, 23. Moreover, the 13q22 locus related to thalamus variance was near 

LINC00381, a non-protein coding RNA-gene that has recently been associated with hand 

preference in the UK Biobank 24.  

 Variance-controlling alleles can be interpreted as underlying distinct degrees of 

organismic robustness 1. Relevance to medical genetics also comes from the observation that 

several disease phenotypes emerge beyond a phenotypic threshold, which could be reached by 

the influence of high variability phenotypes 25. It is thus important to understand how the 

identified markers relate to brain variability under changing environments (robustness), how they 
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interact with other genetic loci (epistasis) and how they relate to the clinical manifestation of 

disease. Similarly, variance-controlling loci can underlie variability from other genetic factors, 

potentially affecting evolutionary dynamics 4. Identifying the mechanisms by which variance-

controlling genotypes influence gene expression variance in relevant brain structures may 

provide a proof of principle for the functional relevance of the identified genotypes. This type of 

effect on expression has been shown in model organisms 26, and the genomic loci identified here 

represent suitable candidates for targeted gene expression analysis in the human brain. The 

identification of specific genes involved in neural evolution and mental disorders suggests that 

brain variability in human populations is mediated by genetic factors. In so doing it also 

underscores the validity of gene-gene and gene-environment interactions in explaining 

heritability of complex human traits.  

While the present analysis does not follow an additive coding of alleles and thus may not 

be directly studied in relation to other GWAS datasets (e.g., through LD score regression), 

further research may elicit links between the variance-controlling genotypes and both mean and 

variance of other phenotypes. It is also important acknowledging that, even though the 

conventional mean-GWAS identified several hits (70 loci, as mentioned on Results), the 

variance-GWAS did not detect as many associations (2 loci). This is ostensibly due to statistical 

power constrains of variance tests such as Levene’s and GAMLSS, and it may also be related to 

the adopted conservative strategies including inverse-normal transformation and removal of low-

genotype count markers. Those steps, implemented to remove false positives, are probably 

overly conservative under some conditions; larger sample sizes may also aid the discovery of 

new loci.  
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 In summary, the results indicate that beyond associations with mean trait values, 

genotypic architecture modulates the variance of subcortical and intracranial dimensions across 

individuals. The lack of overlap between genetic associations detected by the standard additive 

genetic model and variance-controlling loci indicate independent mechanisms. These findings 

contribute to establish the genetic basis of phenotypic variance (i.e., heritability), allow 

identifying different degrees of brain robustness across individuals, and open new research 

avenues in the search for mechanisms controlling brain and mental health.   
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Figure legends  

Figure 1. Common genetic variants regulate the distribution variance of human subcortical and 

intracranial volumes  

Locus-zoom plots show all markers on the loci (just filtered by MAF during initial QC). Related 

plots, after the additional filter for minor (non-zero) genotype count are included as 

Supplementary Figure S4.  

 

Figure 2. Shift function plots for the top genome-wide significant associations in mean and 

variance model GWAS results  

The results corresponding to the top four mean models’ associations (conventional GWAS) are 

shown on the top rows (“A”, “B”), those corresponding to the top four variance model 

associations are displayed on the lower sections (“C”, “D”). A: Jittered marginal distribution 

scatterplots for the top two mean model associations, with overlaid shift function plots using 

deciles. Genotypes with the minor (effect) allele are shown as a single group. 95% confidence 

intervals were computed using a percentile bootstrap estimation of the standard error of the 

difference between quantiles on 1000 bootstrap samples. B: Linked deciles from shift functions 

on row “A”. C: Jittered marginal distribution scatterplots for the top two variance model 

associations, grouped by reference allele(s) versus effect allele(s) carriers. 95% confidence 

intervals were computed as in “A”. D: Linked deciles from shift functions on row “C”. For the 

mean model associations (“A” and “B”), variances explained by mean and variance parts of the 

model were 0.522% and 0.0004% (hippocampus, rs77956314), and 0.437% and 0.0015% 

(putamen, rs715732).  
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