REACTIVE ELECTRON/MOLECULE COLLISIONS: FROM MECHANISMS TO NEW STATE-TO-STATE CROSS SECTIONS AND RATE COEFFICIENTS

J. Zs. Mezei^{(a,b)1}, E. Djuissi^(b), A. Abdoulanziz^(b), F. Iacob^(c), N. Pop^(d), D. Talbi^(e), V. Laporta^(f), M. Ayouz^(g), V. Kokoouline^(h) and I. F. Schneider^(b)

^(a) Institute for Nuclear Research, Hungarian Academy of Sciences, H-4001 Debrecen, Hungary
^(b) LOMC, CNRS, Normandie Université, Le Havre, 76056 Le Havre, France
^(c) West University of Timisoara, 300223 Timisoara, Romania
^(d) Politehnica University of Timisoara, 300223 Timisoara, Romania
^(e) LUPM, CNRS, Université de Montpellier, 34095 Montpellier, France
^(f) P. Las.M.I.Lab. Nanotec, CNR, 70126 Bari, Italy
^(g) LGPM, CNRS, CentralSupelec, Univ. Paris Saclay, 91190 Gif-sur-Yvette, France
^(h) University of Central Florida, Orlando, 32816 Orlando, Florida, USA

Electron-impact dissociative recombination, ro-vibrational (de)excitation and dissociative excitation of molecular cations are at the heart of molecular reactivity in the cold ionised media [1], being major molecular ion destruction reactions, and producing often atomic species in metastable states, un-accessible through optical excitation.

$$AB^{+} + e^{-} \to AB^{*,**} \to \begin{cases} A + B \\ AB'^{+} + e^{-} \\ A + B^{+} + e^{-} \end{cases} , (1)$$

These processes involve super-excited molecular states undergoing pre-dissociation and autoionization, having thus strong resonant character. We use methods based on Multichannel Quantum Defect Theory and R-Matrix Theory [2], capable to account for the strong mixing between ionization and dissociative channels, open - direct mechanism - and closed - indirect mechanism, via capture into prominent Rydberg resonances [3] correlating to the ground and excited ionic states, and for rotational effects. These features will be illustrated for several cations of high astrophysical and planetary relevance such as H_2^+ [3], CO^+ [4], SH^+ [5], CH^+ [2,6], N_2^+ [7], ArH^+ [8], $CH_2NH_2^+$ [9]. Results for reactions similar to (1) but involving the neutral target CO_2 [10] will be also displayed. Comparisons with other existing theoretical and experimental results will be given.

References

- [1] I. F. Schneider, O. Dulieu, and J. Robert (editors) 2015 Eur. Phys. J. Web of Conf. 84.
- [2] J. Zs. Mezei et al, ACS Earth. Space. Chem. 3, 2376 (2019).
- [3] M. D. Epee Epee et al, *MNRAS* **455**, 276 (2016).
- [4] Y. Moulane et al, A&A 615, A53 (2018).
- [5] J. Zs. Mezei et al, J. Chem. Phys. 146, 204109 (2017).
- [6] K. Chakrabarti et al, J. Phys. B. 51, 104002 (2018).
- [7] D. A. Little et al, *Phys. Rev. A* **90**, 052705 (2014).
- [8] A. Abdoulanziz et al, MNRAS 479, 2415 (2018).
- [9] C. H. Yuen et al, MNRAS 484, 659 (2019).
- [10] V. Laporta et al, Phys. Rev. A 91, 012701 (2015).

¹ mezei.zsolt@atomki.mta.hu