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Abstract: In the present work the influence of the level of oxygen doping on the 

structure of TiN films was investigated by dedicated experiments. The films were 

deposited at 400oC in an all metal UHV device by unbalanced magnetron sputtering at 

the same Ar and nitrogen flow rates, but the oxygen flow rate was changed in the 

experiments, incorporating oxygen in the range of 4 and 20 at.%. The structure of the 

films was investigated by XRD, Auger electron (AES) and X-ray photon electron (XPS) 

spectroscopy and transmission electron microscopy (TEM). The results discovered the 

crystal face anisotropy in the incorporation-segregation of oxygen leading to the change 

of the <111> texture to <002>. The structure analysis revealed that the <002> texture is 

developing also by competitive growth of crystals, which is the result of the limitation 

of the growth of the <111> oriented crystals by the TiO2 layer developing on their 

growth surface by the segregated oxygen species. The oxygen incorporating in the 

crystal lattice on the 002 crystal faces of the <002> oriented crystals is segregated by 

surface spinodal decomposition, developing nm sized 3D TiO2 inclusion both in the 

bulk of the columns and the column boundaries. 
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1. Introduction 

TiN thin films are applied preferentially as protective or hard surface coatings on 

tools and component parts on various instruments, including also the devices used in 

mechatronics. Their structure and properties are sensitively controlled by doping 

materials. Beside the most frequently used Si and Al, oxygen is playing an important 

role in tailoring the structure and by this way the mechanical and chemical properties. 
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It is generally experienced that by doping the TiN film by oxygen the 

structure is modified.The texture changed from <111> to <001> with increase 

of oxygen concentration:  the <111> texture changed to <001> if the oxygen 

concentration was higher than 15 at.%[1-3]. Ehiasarian et al. reported on the 

development of <001> texture in TiN film deposited by high power impulse 

magnetron sputtering (HIPIMS)[4]. In these experiments the deposition started 

at high oxygen partial pressure (as contamination related to the degassing of the 

system) incorporating ~18 at.% oxygen and after the degassing, as the oxygen 

pressure decreased, the concentration of incorporated oxygen is decreased to 2 

at.%. The volume fractions of crystals at the surface of the film with random 

<001> and <111> orientations were 10%, 64% and 26%, respectively. These 

indicated that the development of the <001> texture started but had not 

completed at this film thickness. Considering the V-shaped morphology of the 

<001> oriented single crystal columns Ehiasarian et al. suggested that the 

<001> texture could be developed by competitive growth[4]. However, the 

mechanisms which could control the competitive growth at oxygen doping 

beyond a critical level has not been completely clarified yet. 

In the present work structural information has been collected on oxygen 

doped <111> and <001> oriented TiNfilms which could validate the 

competitive nature of the growth of crystals in both cases responsible for the 

texture development. Only films with homogenous oxygen concentration 

distribution along the thickness have been considered. In the present paper 

results on selected samples are reported. 

2. Experimental details 

Titanium nitride thin films with thicknesses around 1.3 μm were deposited in 

a home made laboratory scale magnetron sputter unit [5] at 400ºC substrate 

temperature, at 0.2 nms-1 deposition rate on 20×20 mm2<001> oriented Si single 

crystal substrates covered by native oxide. The octagonal all-metal high vacuum 

chamber of 75 litre volume was evacuated by a 540 l/s turbo-molecular pump 

producing 2×10-4 Pa background pressure. The magnetic fields of closely 

disposed magnetron sources arranged on an arc segment were highly 

interacting, leading to a far extended active plasma volume arriving to the 

substrate. A planar rectangular metallic Ti target (165×85×12 mm3 in size) of 

99.95% purity (PLANSEE GmbH) was used. The discharge plasma was excited 

reactively in a mixture of Ar, N2 and O2 by a close-loop controlled dc power 

supply. The discharge power for each deposition run was 500 W. The Ar gas 

flow rate was stabilized by a solenoid valve actuated mass flow controller 

(MFC-Granville Phillips S 216), and measured by a GFM 17 Aalborg mass 

flow meter. The nitrogen flow rate was controlled by Aalborg DFC 26 digital 
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mass flow controller. Introduction of oxygen gas was manually controlled by 

using a high precision needle valve (Granville Phillips type).  

X-ray diffraction (XRD) and transmission electron microscopy (TEM) 

techniques were used for the analysis of the microstructure of the films. A 

Bruker AXS D8 Discover diffractometer equipped with Göbel-mirror and a 2D 

position sensitive (GADDS) detector system with Cu Kα radiation were used 

for XRD analysis. The intensity was acquired at four detector positions at 

nominal 2θ angles of 20°, 40°, 60° and 80°, covering the range of about 7° – 

93°, while the samples were positioned at θ = 10°, 20°, 30° and 40°, 

respectively. In the present diffraction patterns the Si 400 reflection is not 

shown because the measurements have been carried out at sample position 

θ=30° and not at θ=34.56°.  

Cross-sectional (X-TEM) and plan-view specimens were prepared by 

mechanical cutting, grinding and ion beam thinning techniques for TEM 

investigations [6, 7]. A Philips CM20 transmission electron microscope 

working at 200 kV and equipped with a Ge-detector NORAN EDX analyzer 

was applied for the conventional TEM investigation and chemical analysis. The 

high-resolution TEM investigation was carried out in a 300 kV JEOL 3010 

TEM. Selected area electron diffraction (SAED) was applied to analyze the 

variation of the texture along the thickness of the film. The "ProcessDiffraction" 

software [8, 9] made possible both the qualitative and quantitative evaluation of 

the selected area electron diffraction patterns. Reflection high energy electron 

diffraction (RHEED) made it possible to determine the orientation of crystals 

penetrating to the surface of the film. 

The chemical composition and its variation along the thickness of the films 

were investigated by Auger electron spectroscopy (AES) and X-ray photon 

electron spectroscopy (XPS) depth profiling. Sample rotation and glancing 

angle ion bombardment techniques were applied during depth profiling; the 

atomic concentrations were calculated by applying the sensitivity factor (RSF) 

method. In case of the XPS spectra the background was removed by the Shirley 

method and the following RSF parameters were used: 1.8 for Ti2p, 0.42 for N1s 

and 0.66 for O1s [10, 11]. 

3. Results 

3.1. Structure of the coating incorporated 4 at.% oxygen 

3.1.1. TEM and SAED analyses  

Fig. 1 shows the cross-sectional bright field transmission electron 

microscopic (X-TEM) image of the TiN film containing 4 at.% oxygen, while 

the selected area diffraction patterns taken from the various areas of the film 

along the thickness are given in the insets a-f. According to the X-TEM image 
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the film exhibits the characteristic zone T structure of V-shaped columns [12, 

13].The crystal size is initially small and increases continuously with film 

thickness due to the V-shaped morphology of columns. The column tops are 

faceted. The reflection high energy electron diffraction pattern (inset g in Fig. 1) 

indicates that the crystal columns nucleated on the substrate proceeded to the 

surface of the film are <111> oriented. 

 

Figure 1. Cross sectional TEM image and SAED patterns of the 

TiN film containing 4 at.% oxygen. SAED patterns were  

taken from the areas marked by circles. 

The SAED pattern taken from an area including both the substrate and the 

whole cross section of the film (inset f in Fig. 1) confirms the existence of 

<111> texture identified also by XRD. The strong 111 reflection is in the 

direction of the 001 reflection of Si single crystal substrate and proves clearly 

that the texture axis is parallel to the substrate surface normal, the <001> 

direction of the Si single crystal substrate, in agreement with the direction of 

column’s axes. The SAED patterns taken successively along the film thickness 

clearly demonstrate the successive evolution of the <111> texture. The small 

crystals developed on the substrate by nucleation are randomly oriented (inset 

a). Intensity of the 111 reflection in the direction of the substrate surface normal 

is increasing with film thickness (insets b, c and d). The simultaneous 
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development of the V-shaped morphology of the <111> oriented crystals 

nucleated on the substrate can be clearly observed. The SAED pattern of the 

upmost part of the film (Fig. 1 inset e) shows already a complete <111> texture 

in accordance with the RHEED pattern (Fig. 1 inset g).  

The N/Ti ratio in the bulk determined by XPS was 1.12 and the film 

contained 4 at.% oxygen as bulk contamination. The N/Ti ratio and the 

concentration of oxygen were homogeneous in the film. 

3.1.2. X-ray diffraction analysis 

The XRD spectrum of the undopedTiN film containing 4 at.% oxygen, 

shown in Fig. 2a, agrees well with the cubic TiN structure (JCPDS card number 

38-1420). The spectrum contains traces of 002 and 220 reflections in addition to 

the strong 111 and 222 ones, indicating presence of the randomly oriented 

crystals developed on the substrate in the first stage of film growth, as indicated 

already by the SAED pattern (inset a in Fig. 1). The XRD confirmed the strong 

<111> fiber texture with a texture coefficient TC≈1, in agreement with the 

SAED pattern of whole cross section of the film (inset g in Fig. 1). The size of 

coherent scattering domains calculated from line broadening of 111 and 222 

XRD reflections [14, 15] was 6.2 nm not taking into account the instrumental 

broadening of the diffractometer. 

 

Figure 2. XRD diffraction patterns of TiN films containing  

different concentration of oxygen: a) 4 at.%; b) 20 at.%. 

 

 

3.2 Structure of the coating incorporated 20 at.% oxygen 

3.2.1 XRD analysis 

The XRD pattern of the film is shown in Fig. 2b. This pattern contains a 

strong 200 reflection, while the intensity of the 111, 220 and 311 reflections are 

very weak. These indicate that the film is grown with <001> texture but 

contains again randomly oriented crystals. 

3.2.2 TEM and SAED analyses  
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The cross-sectional bright field TEM image of the TiN film doped with 20 

at.% oxygen is shown in Fig. 3. This film exhibits also the characteristic zone T 

structure of V-shaped columns as identified in the non-doped film shown in 

(Fig. 1). Accordingly the size of crystals developed by nucleation on the 

substrate is small and these crystals are randomly oriented producing the weak 

111, 220 and 311 reflections present in the XRD pattern. Crystals with the 

preferred <111> orientation are grown in V-shaped columns. The column tops 

are with shallow cup-shape morphology, resulting in a low surface roughness.  

 

Figure 3. Cross sectional TEM image of the TiN sample  

containing 20 at.% oxygen 

The high resolution phase contrast TEM image of columns reveals a 

substructure of the columnar crystals [16]. This substructure is well detectable 

both in the cross sectional and plan view specimens. The bulk of the columnar 

single crystals contains necklace-like chains of fine grains showing up in white 

fibres in the phase contrast X-TEM image (Fig. 4a). In the plane view 

specimen, containing the cross section of the columns, it is clearly to be seen 

that these fibres are arranged in a honeycomb-like structure (Fig. 4b). The 

analysis of the selected area diffraction pattern of the film, shown in Fig. 5, 

proves that beside the c-TiN phase (JCPDS card: No.38-1420) the tetragonal 

TiO2 phase (JCPDS card: No.82-0514) (110 diffraction spot marked by an 

arrow) is also present. Considering the sharp diffraction line of the TiN phase, 

one can conclude that the size of TiN crystals is large, while the size of TiO2 
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crystals can be in the nanometer range due to the diffuse reflection. One can 

also conclude that the crystals of both phase are oriented (the film is textured 

with <001>TiN), and the TiN and TiO2 crystals are epitaxially related 

(TiN<001>//TiO2<110>). The TiO2nanocrystals are with 3D morphology. 

The chemical composition and the volume fraction of phases have been 

determined by XPS analysis. Accordingly the 65% of oxygen incorporated into 

the films was dissolved in the crystal lattice, while 35% was present in TiO2 

segregates. 

 

Figure 4. The phase contrast X-TEM image (a) and plan view TEM image of TiN 

coating containing 20 at.% oxygen show the distribution of 3D TiO2 segregated phase. 

TiO2 segregates are shown in white contrast. 

 

Figure 5.Selected area electron diffraction pattern of the TiN coating  

containing 20 at.% oxygen. The TiO2 110 reflections are marked by arrows. 

3.3 Structure of the coating incorporated 11 at.% oxygen 
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Preliminary XRD and X-TEM investigations of the film revealed that the 

film was grown with columnar structure according to the zone T structure and 

the texture is strong <111>. According to the XPS analyses no oxygen has been 

dissolved into the crystal lattice but it was present in TiO2 phase. The phase 

contrast TEM images of the cross sectional specimens revealed a very detailed, 

fragmented bulk structure of the columnar TiN crystals shown in Fig. 6. The 

columnar crystals are constituted of lamellar-like domains ordered in sub-

columns separated by a foreign phase showing up clearly as white lines in the 

phase contrast images. This thin inter-domain layer can be attributed to the TiO2 

phase. 

 

Figure 6. Phase contrast X-TEM image of the TiN coating containing 11 at.% oxygen. 

4. Discussion and conclusions 

By analyzing the X_TEM images one can conclude that the structure of the 

all three coatings with increasing oxygen concentration is characterized by the 

zone T structure. This structure develops by a pathway of structure evolution 

constituted from three characteristic growth regimes developing three kind of 

structures in well distinguished thickness ranges [12, 13,17]. This pathway is 

characterized by the competitive growth of crystals controlled by the 

dependence of the growth rates on the various crystal faces. According to the 

present results, the growth rate is the largest on the <111> crystal faces up to a 

given concentration of oxygen (about 15 at.%) at 400oC substrate temperature. 

While at 20 at.% oxygen concentration an other effect has to control the growth 

rate of crystals on the various faces. 

The phase contrast TEM images revealed that the interaction of oxygen on 

the different crystal faces and the growth mode of the TiO2 phase are different 

in case of crystals growing with <111> and <001> orientation. In case of <111> 

oriented crystals, where the growth crystal faces are the 111, the oxygen is 

completely segregated by the surface atomic processes (kinetic segregation). 



 Effect of oxygen doping on the structure of TiN surface coatings 323 

 

The segregated oxygen nucleates the TiO2 phase, which is growing in 2D layer 

at the columns boundaries and on the growth surface. Consequently, this 2D 

surface covering oxide layer will cover the growth surface and limits the further 

incorporation of Ti, i.e. the growth of <111> oriented crystals. While in case of 

crystals with <001> orientation on the 001 crystal faces absorb (dissolve) a 

large part of impinging oxygen species and the excess oxygen species form 3D 

TiO2 segregates incorporated into the bulk of TiN crystals. These do not limit 

the growth of the <001> oriented crystals, consequently at high oxygen 

concentration (e.g 20 at.%) the <001> oriented crystals will win the competitive 

growth developing a coating with columns of V-shaped morphology and with 

<001> texture. That is the same mechanism as discovered and described in case 

of oxygen doped Al thin films [12, 13,17]. 
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