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Abstract 

Product and data science teams for the auto insurance industry have been trying to increase 

pricing segmentation with validated rating variables to decrease rate subsidization. The criminal 

background data availability provided a new behavior variable to test against insurance-based 

credit scores as a potential predictive variable in the generalized linear rating model. Criminal 

background was analyzed using a Poisson Log Linear model and other key insurance rating 

variables for predicting loss costs. The study supported the inclusion of the criminal background 

data in combination with insurance-based credit score as the variable’s addition could improve 

the overall fit of the predictive model. The study also acknowledged there was a statistically 

significant association between criminal background and insurance-based credit score, but the 

overall size of the effect was small and weak. The overall contribution of value criminal 

background variable needs to be considered with a full rating dataset to determine if other, less 

powerful variables could be removed from the generalized linear to reduce the overall model 

complexity.  

 Keywords: auto insurance, criminal background, segmentation, loss cost 
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Section 1: Foundation of the Study 

The property and casualty insurance industry is rapidly changing as carriers can collect 

vast amounts of driver information to predict how individuals will behave while driving and 

paying insurance premiums (Kiviat, 2019). New usage-based insurance offerings and increased 

access to individual behavior variables allow carriers to better segment risks and calculate 

accurate premiums to address expected loss costs (Bian et al., 2018). Data-driven predictive 

analytics enables carriers to allocate loss costs and expenses, which results in risk segmentation 

(Kiviat, 2019). Advanced analytics also provides carriers with more statistical tools to handle 

larger numbers of complex modeling variables. The methods of sorting and ranking data the 

carriers use are actuarially sound, and the variables used for rating need to be classified as being 

fair as defined by their predictive strength in the ratemaking algorithm (Bian et al., 2018).  

Background of the Problem 

Auto insurance’s primary role is to provide financial protection to individuals by offering 

a financial instrument to transfer risk with insurance premiums (David, 2015). Insurance carriers 

need to determine the level of risk associated with each transaction, and the amount of premium 

charged needs to cover the loss costs, including expenses. The optimal approach to auto 

insurance ratemaking and design is a risk distribution problem between the insured and the 

insurance carrier (Bernard et al., 2015). The advancements in financial modeling allow carriers 

to avoid charging the same premiums for the entire portfolio, which would underprice 

unfavorable risks, and as an adverse effect, would overprice standard risks (David, 2015). To 

mitigate adverse selection, carriers seeking growth in a highly competitive industry can no longer 

average price large risk pools and need to search for viable portfolio segmentation opportunities.  
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Cost-based pricing for risk segmentation is a traditional actuarial approach to ratemaking 

to match the appropriate premium to cover the associated loss costs (Segovia-Vargasa et al., 

2015). Guelman (2012) stated the purpose of ratemaking approaches is to estimate future loss 

costs as defined as the ratio of all future claims’ estimated costs against the coverage provided to 

cover the risk expenses and the exposure. Revising rates based on the consumer’s variables will 

affect the profitability of a business book based on the level of premiums an individual is paying 

based on the risk profile (Segovia-Vargas et al., 2015). Average risk pricing and restricted rating 

variables eventually lead to higher rates for auto insurance costs for all consumers (Weiss et al., 

2010).  

One of the more important auto insurance developments was the use of insurance-based 

credit history data for risk classification to predict losses (Golden et al., 2016). Rating on an 

individual’s credit history has been researched due to the controversial nature of what is 

considered to be a biased variable (Cather, 2018; Golden et al., 2016; Krippner, 2017). Krippner 

(2017) stated the credit approaches were not perfect, and the regulators have argued the use of 

credit-based categories would not remove the unfair treatment, as some individuals did not 

necessarily fit the assigned credit categories. The individual departments of insurance have 

considered regulatory blocks on credit for premium development, which is currently the most 

predictive of the auto insurance rating variables on loss cost. Private passenger auto studies have 

shifted away from socio-demographic underwriting factors to differentiate risks from Global 

Positioning Systems (GPS) to track vehicle information such as mileage, traffic conditions, and 

individual driving patterns (Ma et al., 2018). It is critical for auto insurance carriers to validate 

rating variables, and GPS rating is expensive. The majority of the financial services sector, 
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including insurance carriers, is more likely to invest in data and not manufactured devices, which 

are outside of the necessary core competencies for an insurance company (Husnjak et al., 2015).  

Auto insurance applications since the 1950s have included questions concerning an 

individual’s criminal background based on concerns of fraud and increased risky behavior. 

Carriers find underwriters cannot successfully act on information unless the data being provided 

can be verified. While the questions about past misdemeanors and felonies are asked, the data 

only recently became available in the United States for verification. Research through the ODEN 

Insurance Services Inc. regulatory database showed the individual Departments of Insurance, 

except for sequential rating in California, is silent on criminal background data in rating. 

Additional research through the Casualty Actuarial Society and recent academic insurance 

journals do not produce studies, supporting the verification or use of criminal background data in 

rating. Insurance carriers are looking to increase actuarially validated behavioral predictors of 

loss beyond the traditional sets of underwriting variables to create segmentation in rating and 

increase competitive advantages (Golden et al., 2016).  

Problem Statement 

The general problem to be addressed is the lack of identification and verification of 

highly predictive variables for auto insurance pricing and rate accuracy, resulting in the need for 

insurance carriers to perpetuate premium subsidization. Kang and Song (2018) stated research 

and development teams would need to consider several dozen rating factors for insurance 

modeling and predicting the target response. Selecting the top contributing predictor variables in 

a data set allows a modeling team to construct a regression model, with high interpretability and 

compelling prediction accuracy (Isotupa et al., 2019). Carriers must also mine existing company 

data to mirror actual customer experience to support accurate driver segmentation (Zhuang et al., 
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2018). The insurance-based credit score variable is one of the most predictive variables for loss 

costs, and each department of insurance highly regulates the variable due to the correlation with 

sensitive classifications, including race and income (Morris et al., 2017). While underwriting 

variables outside of personal driving history are actuarially proven to be correlated to loss costs, 

most state departments of insurance would prefer to limit financial history rating variables in 

auto insurance (Morris et al., 2017). The specific problem to be addressed is the failure of auto 

insurance carriers to use criminal background data resulting in rate subsidization within the auto 

insurance industry, causing carriers to charge higher premiums for drivers with clean 

backgrounds and lower loss costs. 

Purpose Statement 

The purpose of this quantitative study is to examine if an individual’s criminal 

background is correlated to a person’s future driving behavior and if it is predictive of future loss 

costs. Risk segmentation attempts to mitigate pricing subsidization between lower and higher 

risk drivers, which supports market efficiency and addresses the increase of social risk cost and 

the loss of equity (Duan et al., 2018). The research by Hoy (1982) showed higher-risk classes 

receive coverage at an actuarially uniform premium, while lower-risk classes receive less than 

full coverage at an actuarially uniform premium. Hoy (1982) highlighted if the proportion of 

lower-risk class falls below a determined breakeven threshold, the competitive equilibrium will 

no longer be a no-subsidy segmentation approach. Lower-risk classes would subsidize the 

higher-risk classes, which would not meet management and shareholder expectations in the 

current economic and competitive climate. 

Private passenger auto premiums serve two primary purposes for a property and casualty 

carrier, one being the premium should be able to cover the expense and risk obligation, and the 
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other should price the insurance premiums equitably for specific risk classes (Cova et al., 2016). 

Individual criminal background information has only recently become available as third-party 

data available in public and private databases. Including personal criminal background as a rating 

or underwriting variable would potentially allow carriers to further segment higher-risk drivers 

for accurate pricing, which would allow carriers to balance profitability with equitable pricing in 

the market. 

Nature of the Study 

Morgan (2018) stated the most frequently discussed means of differentiating qualitative 

and quantitative research designs can be determined by the data produced from the research 

outcomes. A quantitative research approach produces numerical data supported by validated 

analytical analyses, and a qualitative research approach produces results based on words 

(McCusker & Gunaydin, 2015). The qualitative research design will also view the research 

approach through a wide lens to determine patterns of relationships through an unspecified set of 

concepts (Morgan, 2018).  

The proposed correlational design was developed to test the predictive strength of defined 

independent rating variables against a specific dependent variable, pure premium, which is 

defined as being the estimated incurred losses divided by the earned car year exposures for a 

book of business (Frees et al., 2016). Correlational research is focused on explaining 

relationships between two or more variables in one or two populations (Curtis et al., 2016). 

Quantitative researchers want to establish why and how variables differ and determine how one 

independent variables’ variance may be associated with the variances in another independent 

variable (Curtis et al., 2016).  
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Discussion of Method  

Creswell and Creswell (2018) stated research designs are the methods, which connect the 

steps from broader assumptions to detailed procedures for aggregating data and conducting the 

appropriate analysis. A quantitative approach for the proposed research design was selected 

based on the requirements for creating a formal path to providing replicable numerical outcomes. 

For quantitative research approaches, variables are isolated and defined by categories, which can 

frame hypotheses before the data being collected and used for testing and modeling (Brannon, 

2016). 

The study aims to determine the predictive strength of independent rating variables for 

auto insurance ratemaking purposes. A qualitative approach was not selected as being an 

appropriate method for the study because the independent variables require verification and 

cannot be manipulated (Curtis et al., 2016). Descriptive quantitative approaches are more 

appropriate for the social sciences, where verifiable data are not as readily available for analysis 

(Siedlecki, 2020). The qualitative approach is not a hypothesis testing design, so there are no 

independent or dependent variables, and there are only variables of interest (Siedlecki, 2020).  

Discussion of Design  

Casual observation offers an approach to quantitative research, which underscores 

design-based inference methods (Imbens & Rubin, 2015). The causal-comparative design tries to 

influence specific causal facts for defined subpopulations and is associated with identification 

strategy research designs (Samii, 2016). The research approach strives to find relationships 

between the dependent and independent variables after events have taken place.  

The correlation design is better aligned with the proposed study, as there are specific 

hypotheses to test and is concentrated on variances in variable relationships. A quantitative 
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research design is an objective and systematic process to define variables and test relationships 

for potential correlations between the variables (Bloomfield & Fisher, 2019). Quantitative 

approaches align well with financial services and pricing research as the methodology strives to 

find an exact answer to a hypothesis using objective and balanced scientific methodologies 

(Bosco et al., 2015).  

Summary of the Nature of the Study  

In property and casualty insurance, quantitative research provides an opportunity to work 

with extensive collections of numerical data sets using statistical measurements and outcomes to 

classify relationships and patterns within the data. Multivariate classification ratemaking has 

rapidly advanced during the past ten years, which allows for different types of statistical 

approaches for segmenting and pricing individual risks (Miljkovic & Fernândez, 2018). 

Predictive modeling affords insurance carriers the critical advances of the equitable pricing of 

risks, a better competitive advantage, and protection from adverse selection, allowing for better-

informed decision-making driven by verified data (McCusker & Gunaydin, 2015).  

Research Questions 

Multivariate classification ratemaking has rapidly advanced during the past ten years, 

which allows for different types of statistical approaches for segmenting and pricing individual 

risks (Miljkovic & Fernândez, 2018). Predictive modeling affords insurance carriers the critical 

advances of the equitable pricing of risks, a better competitive advantage, and protection from 

adverse selection, allowing for better-informed decision-making driven by verified data (Shi et 

al., 2015). Miljkovic and Fernândez (2018) stated predictive modeling is used for risk 

classification for individual risks. At the aggregate level, the predictive models can assist with 

quantifying risk segments of a portfolio. 
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Current auto insurance pricing approaches use generalized linear modeling with the most 

common approach to handling zero inflation being the frequency-severity model and the 

Tweedie compound Poisson model (Shi et al., 2015). With the rapid advancements in data 

collection and open-source statistical code, carriers are now able to collect large amounts of 

external and internal data to support more advanced modeling (Kafková & Křivánková, 2014).  

RQ1. What is the predictive impact of an individual’s criminal background on auto 

insurance loss costs? 

RQ2. What is the relationship between the insurance-based credit score and criminal 

background? 

RQ2.a. What is the outcome of the predictive model if the insurance-based score is 

removed and is replaced with the criminal background variable? 

Hypotheses 

A property and casualty insurance carrier was identified to provide a modeling data set 

with appended criminal background data. A Data Science Team will ensure the data set is 

sequestered and validated. A Chi-Square Test will determine the association between the 

predictor variables (Krzywinski & Altman, 2015). The multiple linear regression is practical for 

estimating the properties of predictor variables, and the estimated regression coefficients are 

dependent on the predictors in the model (Fang et al., 2016). Future behavior is challenging to 

predict, and individual risk models are developed and calculated by historical loss events 

(Krzywinski & Altman, 2015). The most predictive variables in the current Generalized Linear 

Model will be used for the study’s variable testing. The coefficient of determination, R squared, 

will determine the degree of interrelation and dependence between the variables (Krzywinski & 

Altman, 2015).  
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Data Set  

A random sample of approximately 448,755 auto insurance records from a cleansed, 

normalized data set of non-standard auto risks from 2014 to 2017 will be appended with third-

party driver-level criminal background data. A data test with a random sample of drivers over 

five years was run with vendor data to determine the hit rate and rating lift potential. The 

countrywide driver criminal background hit rate was approximately eight percent with a loss 

ratio, the percentage of total claims paid with the total earned premiums, 10 – 20 points higher 

than the average loss ratio for the business. The appended data set was researched and tested by 

independent actuarial groups for validity and reliability. The normalization of the data set allows 

for control and accuracy throughout the analysis (Zhu et al., 2017). For modeling purposes, a 

75/25 split for a training data/test approach will validate the hypothesis testing for each of the 

research questions. For insurance ratemaking, 2,890 incurred claims are required for full 

credibility (Casualty Actuarial Society, 1990). Pure premium is the incurred losses and loss 

adjustment expenses divided by earned car years or frequency multiplied by severity, which is 

the dependent variable for each model to determine the expected value of the outcome for 

insurance loss costs (Werner & Modlin, 2016). The predictor variables are the current rated 

policy variables, which a carrier includes in the filed class plans along with the appended driver 

background variable (Kafková & Křivánková, 2014). Each model’s predictor variables will 

target loss frequency and average loss amounts for continuous and categorical variables. 

H1o = There is no additional incremental predictive ability of the current pure premium 

(DV) model with the addition of the criminal background data. 

H11 = There is additional incremental predictive ability of the current pure premium 

(DV) model with the addition of the criminal background data. 
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The ability to segment risk elements supports insurance carriers with appropriate risk 

level pricing and mitigates overcharging risks, which should be paying lower premiums for less 

risky driving behavior (Pechon et al., 2019). Verification of insurance rating variables with third 

party data is also costly and adds to the expense ratio. If verified data are not significant, the new 

variable will not be supported by the business case and rejected as credible support for 

ratemaking (Porrini, 2015).  

H2o = There is no statistically significant correlation between an individual’s criminal 

background and insurance-based score. 

H21 = There is a statistically significant correlation between an individual’s criminal 

background and insurance-based score. 

The state departments of insurance require clear analytical support of predictive variables 

used in ratemaking (Ranganathan et al., 2017). The criminal background variable needs to be 

reviewed for predictive strength, along with the current rating variables, to determine the level of 

significance. The approach should also determine if there is any interaction between the most 

predictive variable, credit score, and the individual’s criminal background and if the independent 

variables have multicollinearity affecting the accuracy of the regression model accurate (Pechon 

et al., 2019).  

H2ao = There is no increase in the incremental predictive ability of pure the premium 

model with the addition of the criminal background data and the removal of the insurance-based 

score variable. 

H2a1 = There is an increase in the incremental predictive ability of the pure premium 

model with the addition of the criminal background data and the removal of the insurance-based 

score variable. 
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Property and casualty carriers use insurance-based scores in underwriting and rating, and 

the practice is controversial, with many consumer groups disagreeing with the use of credit for 

premium development (Morris et al., 2017). Finding a more predictive variable for pricing 

segmentation would provide carriers more flexibility in ratemaking and also provide alternatives 

to large markets, such as California ranked as the largest auto insurance market as reported by 

the National Association of Insurance Commissioners, which have banned the use of credit 

scores for premium development (National Association of Insurance Commissioners, 2019). 

Some departments of insurance, and consumers, may find validated criminal background may 

not correlate with questionable classifications (Morris et al., 2017). 

Theoretical Framework 

In the current fast-paced and growing data environment, auto insurance ratemaking based 

on business analytics allows carriers to develop premiums using non-traditional rating and 

underwriting information (Frees et al., 2014). The auto industry defines rating variables such as 

insurance-based scores, prior insurance bodily limits, and homeownership as non-traditional as 

they do not conform to the traditional descriptive characteristics for the vehicle or the individual 

(Pechon et al., 2019). Carriers who fail to further segment risks with strong predictive variables 

can be subject to adverse selection in the marketplace leading to the unintended retention of 

lower premium policyholders with higher associated loss costs.  

State Regulations  

Insurance carriers are required to justify their premium development approaches and 

profitability targets for business lines using loss and expense controls (Kimball & Boyce, 1958). 

Auto insurance ratemaking is regulated in approximately half the states, with the other half being 

classified as more of an open and competitive environment (Weiss & Choi, 2008). Challenges 
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with the execution of standardized ratemaking led to a constant cycle of new product 

development, which required regulatory overview at the state level (Kimball & Boyce, 1958). 

Regulation of insurance rates at the state level became a more advanced solution, and Congress 

enacted the Mccarran-Ferguson Act declaring continued regulation and taxations by the states for 

the business of insurance was of the public interest (Weiss & Choi, 2008).  

Application Variables 

For property and casualty insurance carriers to adequately price the risks, ratemaking 

relies on accurate estimation of future loss costs associated with the coverage provided (Garrido 

et al., 2016). The modern modeling approaches for auto insurance pricing methodology are 

developed using generalized linear models because the means of the frequency and severity 

processes are expressed through linear combinations of rating variables found in the traditional 

insurance application for an insurance contract (Quijano-Xacur & Garrido, 2015). Traditional 

application rating variables such as household drivers, vehicles, traffic violations, and accidents 

are used by all carriers and are the baseline point for rating. Those variables are the starting 

point, and innovative carriers seek new, validated rating variables to differentiate the products in 

the marketplace. 

Actuarial Ratemaking 

Credibility theory is one of the cornerstones in actuarial science and is one of the highest 

accuracy theories based on the Bayesian interpretation of probability (Xie et al., 2018). Linear 

models have limited application in actuarial science stemming from the fat the insurance data are 

right-skewed, or discrete from the claims frequency models, therefore the linear models need to 

be broadened to Generalized Linear Modeling (Pechon et al., 2018). Using Generalized Linear 

Modeling, premium development is no longer reliant on normal distribution assumptions and can 
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be more flexible and include distributions using exponential modeling such as Poisson and 

Gamma distributions (Xie et al., 2018). Advancements in statistical modeling, supported by 

increased computing power, allow for variable testing using multiple linear regression and 

Generalized Linear Modeling. For state regulatory filings, both approaches to linear modeling 

are accepted by state actuarial departments. 

Verified Third-Party Data  

Auto insurance producers seek to place risks with the right carrier at the best available 

premium in the market. Using inaccurate data for developing rating models or pricing can lead to 

revenue loss, process inefficiencies, and potentially the inability to comply with insurance 

statutes and regulations (Gao et al., 2016). Unverified data provides producers and insureds 

avenues to create pricing gaps in ratemaking and leads to average pricing across pools of risks 

instead of providing the right rate for each risk. Unless rating variables are verified, the carrier 

cannot use those variables for meaningful rate segmentation, and it is unlikely the respective 

departments of insurance would approve filings without the appropriate actuarial exhibits. 

Premium Subsidization  

The analysis of premium subsidies emphasizes increased insurance demand compounds 

moral hazard in the market, and the effects have been mostly silent in supporting literature 

(Jaspersen & Richter, 2015). The markets studied have been open insurance markets, focusing on 

the demand effects of subsidies and the associated assumption models (Jaspersen & Richter, 

2015). Many regulators and consumers view auto insurance pricing as a win-lose relationship, 

and the one entity which gains from the pricing advantage causes the other party to lose 

(Hinterhuber & Liouzu, 2017). In reality, subsidies alter the structure of the insurance contract as 

they reduce the premiums and increase the wealth of the insured (Hinterhuber & Liouzu, 2017). 
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Outside of the insurance structure’s specific design, premium subsidies need to be financed, and 

the two logical choices in auto insurance are the larger risk population or the specific group 

driving the loss costs. The current market structure does not allow for carrier subsidization due to 

the tight margins and shareholder return on equity requirements.  

Modeling 

The Generalized Linear Model accounts for dependence in a straightforward approach, 

which is accepted by the individual departments of insurance and is also easy to implement and 

explain to executive management teams (Garrido et al., 2016). Additionally, the total loss cost 

can also be modeled directly with the Tweedie distribution, which uses the aggregate claims as a 

compound Poisson-Game sum and assumption of independence between claim counts and claim 

size (Quijano-Xacur & Garrido, 2015). The predictive variables can be evaluated with multiple 

linear regression for strength, and then integrated into Generalized Linear Models and Tweedie 

distributions for overall model contributions.  

Performance Measurements 

Premium, losses, and expenses are the variables used to determine the property and 

casualty insurance carrier’s overall profitability. The combined ratio measures the underwriting 

profit of a business line for a carrier and aggregates the loss ratio and the expense ratio (Graham 

& Xie, 2007). A combined ratio under 100 is considered to be an underwriting profit. The loss 

adjustment expenses divided by net earned premiums defines the loss ratio, and underwriting 

expenses divided by net written premiums defines the expense ratio. 
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Figure 1 

Relationships Between Theories and Variables 

 

Discussion of Relationships Between Theories and Variables  

The study’s theoretical framework will test the relationship between criminal background 

and insurance-based credit scores on pure premium or loss costs. Criminal background has not 

been used in auto insurance premium development and has only recently been verified by a 

third-party vendor. The independent variables, criminal background, and insurance-based credit 

score will be modeled with the dependent variable pure premium to determine if a predictive 

relationship exists. Modifying variables would include driver violations and accidents. 

Summary of the Conceptual Framework  

Prior literature supports validated third-party variables for auto insurance ratemaking 

(Lemaire et al., 2015). Current searches of auto insurance carrier filings with the individual 
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departments of insurance and current literature are silent on verifying criminal background as a 

predictor of future loss costs in ratemaking. The modeling and validation approaches are within 

the acceptable actuarial science methodology guidelines and can be supported with the necessary 

actuarial exhibits for rate filings fulfilling regulatory guidelines. Criminal background for 

additional segmentation in ratemaking further mitigates rate subsidization from the pool of auto 

insurance risks and rates the individual risk with better accuracy. 

Definition of Terms 

There are industry terms and definitions, which are important for the research study 

concerning auto insurance ratemaking. In auto insurance, the financial performance relationship 

is expressed in pricing and various profit measurements (Shim, 2017). The dependent variable, 

pure premium, the key independent variables, insurance-based credit score, and criminal 

background, along with central insurance financial performance variables, have been reviewed in 

additional detail. Any further industry acronyms will be fully defined throughout the study, if 

necessary. 

Combined Ratio, Performance Measure. The combined ratio adds the percentages of the 

loss ratio and expense ratio to determine the overall business profitability (Graham & Xie, 2007). 

Expenses include loss adjustment expenses and underwriting costs. A carrier with a combined 

ratio of over 100 percent is not profitable and requires either loss or expense reductions to 

maintain a target ratio acceptable to management and shareholders. 

Criminal Background, Independent Variable. Criminal background is defined as the most 

recent eight-to-ten years of an individual’s misdemeanor and felony convictions records. An 

individual’s criminal records do not include convictions for driving violations or accidents, and 
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there is no overlap with driving backing and an individual’s criminal history. Only convictions 

are considered as part of an individual’s criminal background. 

Insurance-Based Credit Score, Independent Variable. Fair and Isaac developed credit 

scoring in the early 1960s with the base algorithm supporting the estimation of risks as related to 

credit products using a consumer’s personal information such as annual income, occupation, and 

overall financial responsibility (Livieris et al., 2018). Credit scoring became one of the most 

noteworthy and successful operations research methods and was adapted by the insurance 

industry to identify those consumers who exhibit more risky behavior (Livieris et al., 2018). An 

insured-based credit score is calculated from public and private consumer variables, representing 

the probability of an insured filing a loss or paying their premiums on time (Kiviat, 2019).  

There is a strong correlation between insurance-based credit scores and incurred losses, 

verified by multiple studies with no study reporting a lack of a strong statistical relationship 

being published in the peer-reviewed literature (Ahlgrim & Jones, 2014). Of the studies 

conducted, an insurance-based credit score is in the top three most predictive variables and is 

most often the most reliable for liability coverages (Brockett & Golden, 2007). The use of 

insurance-based credit scores is controversial, and departments of insurance would prefer to 

eliminate the rating variable due to the challenge of determining why there is a correlation 

between scores and incurred losses. 

Modern practices of using insurance-based credit scores for ratemaking have also come 

to social science researchers’ attention, concerned with the topic of risk management in 

consumer finance (Gennaioli et al., 2015). Gennaioli et al. (2015) argued risk management 

measurement systems are unstable and require constant maintenance with new data to maintain 

their predictive power. The current systems can refresh data daily, and social scientists and 
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insurance regulators do not acknowledge if individual risky financial decision-making translates 

to risky driving behavior even with the proper actuarial and statistical support. 

Loss Ratio, Performance Measure. A carrier’s auto insurance loss ratio is the relationship 

between incurred losses and earned premiums (Graham & Xie, 2007). Loss ratios are calculated 

as a percentage of the incurred losses divided by earned premiums. Incurred losses are paid 

claims, including loss reserves. Loss reserves are liabilities for known losses, which have not 

been paid by the carrier. Earned premiums are the portion of written premium earned during the 

policy period. 

Pure Premium, Dependent Variable. Pure premium estimates the incurred losses, 

including loss adjustment expenses divided by the earned car year exposures (Graham & Xie, 

2007). The pure premium can also be expressed as frequency multiplied by severity. The 

statistical approaches will allow a researcher to model frequency and severity with different 

statistical models or with pure premium in one model. 

Assumptions, Limitations, Delimitations 

When insurance carriers face the challenge of pricing insurance risks, there are usually 

unrealistic assumptions that various types of claims events are independent (Bermúdez et al., 

2018). With advancements in data collection, computing power, and model sophistication, 

researches have verified the positive correlation between claims types and introduced 

multivariate regression models to ease the independence assumption between claims counts from 

a policy (Bermúdez et al., 2018). The analytical and data developments also allow carriers access 

to more information to augment data sets and expand forecasting and modeling capabilities for 

more flexibility in ratemaking approaches. 
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Assumptions 

Private passenger auto carriers use multiple linear regression models to accomplish 

accepted a priori ratemaking approaches for insurance modeling (Baumgartner et al., 2015). 

Morata (2009) stated when assuming independence between claims events, the rates could be 

calculated by adding the premiums for each line coverage, dependent on the rating factors 

selected. A path to working through the concern of heterogeneity for a priori ratemaking includes 

segmenting risks into homogeneous rate classes, so the insureds belonging to a specific class are 

paying similar rates (Antonio & Beirlant, 2007). For auto insurance, grouping the risks into 

homogeneous classes can be accomplished using classifications variables such as insured-based 

credit score or criminal background because the values can be determined at the start of the 

ratemaking process. Different types of multiple regression models will be investigated, so in 

some instances, the independence assumption will be relaxed for additional flexibility in testing 

approaches. 

An assumption will be made to account for long-tailed severity distributions that the 

marginal distribution follows a generalized linear model (Frees et al., 2016). A generalized linear 

model allows for selecting the dependent variable distribution and permits the inclusion of 

explanatory variables in the normal modeling process (Antonio & Beirlant, 2007). For auto 

insurance ratemaking, the generalized linear model approach can be used for continuous and 

discrete results (Frees et al., 2016). 

Limitations 

The study’s primary limitation is the recent introduction of the verified criminal 

background data and the shorter development period for losses being analyzed with the 

dependent variable, pure premium. The pure premium is the average incurred loss by exposure 
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unit and equals the product of the frequency of claims events per earned car year and claims 

severity. An earned car year is the time in units, exposed to loss during the policy period. In 

property and casualty insurance, claims sometimes require several years to be settled, and seven 

years of data would have been preferred for modeling purposes (Denuit & Trufin, 2018). 

Increasing the population sample to the maximum number of policy records for the states with 

available reduces the standard error and increases the credibility for the proposed research.  

The study’s data extract is from a private passenger auto carrier and includes data from 

the exposure period January 2017 through June 2019 evaluated in February 2020. Modeling data 

are historical, developed loss data, and excludes any expense or catastrophic information. The 

proprietary insurance-based credit scores are provided by a third-party vendor, which are 

grouped, eliminating any association with personal identification information. A potential 

observed limitation may be removing personal identification information, which is a normal 

process for insurance carriers and is not used in the modeling or rating process (Denuit & Trufin, 

2018). The removal of personal identification information protects an individual’s sensitive 

information, and it also helps mitigate perceived biases where rating information may support 

ethnic or gender profiling.  

Delimitations 

The dataset was limited to the most influential predictive variables used in the 

generalized linear model used for auto insurance ratemaking. While all of the variables in the 

current generalized linear model have positive values, the study’s modeling iterations can be 

better managed with a streamlined dataset without losing model integrity. The variables with the 

most significant contributions within the model will help determine if the new variable being 

introduced contributes to the model’s overall fit for rating accuracy (Ajiferuke & Famoye, 2015).  
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Because California is a highly-regulated premium-subsidization model, it will not be 

included in the dataset. The California Department of Insurance prescribes the rating and 

underwriting variables allowed by auto carriers, including the sequential rating model for 

developing premiums. The approval of Proposition 103 also mandated the prior rate approval 

process increasing review times and decreasing rate segmentation by allowing consumer 

intervention in the insurance pricing process. The objective was designed to reduce rate 

differences between drivers. Instead, the proposition resulted in the higher-priced nonstandard 

market becoming more populated and increased the need for rate subsidization by the standard 

markets (Ippolito, 1979). 

The removal of personal identification information through de-identification is necessary 

to ensure information is not inadvertently linked back to the consumers who own the data 

(Garfunkel, 2015). When variables contain identifying information such as policy numbers, 

names, or geolocation information, there may be a conflict between the intended goals of the 

underlying data being used and privacy protection (Garfunkel, 2015). No policy numbers, names, 

or zip codes were included in the dataset. Insurance-based credit scores were coded to groups, 

and the individual scores were not included in the dataset for analysis purposes.  

Significance of the Study 

Cather (2018) stated there is a recurring theme in scholarly research concerning property 

and casualty insurance, where adverse selection from average pricing risk pools can create a 

pricing event, which left unchanged, may cause a negative financial impact on a carrier. Adverse 

selection occurs when an insurance carrier’s earned premiums cannot cover the incurred losses 

due to underpricing high-risk consumers by failing to identify the predictive variables 

contributing to the loss costs. Adverse selection affects carriers relying on classifications to 
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segment risks into pricing categories with similar characteristics (Cohen & Siegelman, 2010). 

The insurance-based credit score was the last significant rating variable defined in the 1990s, 

which is a derivation from traditional credit scores designed for use in the insurance industry, 

and are highly controversial. Consumer and legal groups continue to pressure the state 

departments of insurance to have insurance-based credit scores reduced or removed entirely.  

Telematics is the technology, which allows carriers to collect navigation, safety, and 

driving behavior information through electronic devices (Ayuso et al., 2019). Full telematics 

systems are expensive and challenging to integrate into the auto insurance operations model, 

even with smartphone technology, including accelerometers. Fundamental changes in-vehicle 

data sharing, sales, operations, and pricing in the automobile and insurance industries would 

need to occur before the widespread adoption of telematics programs (Ayuso et al., 2019). The 

introduction of the criminal background data may provide an additional predictive variable to 

property and casualty carriers who do not have the resources to invest in full telematics programs 

and are looking for acceptable options outside of an insurance-based credit score.  

Reduction of Gaps  

The study intends to research and potentially validate personal criminal background as a 

predictive behavior variable, which may help segment risks for accurate premium development 

at the individual risk level. Risk classification for property and casualty insurance is faced with 

internal and external challenges when examining segmentation variables due to conflicts in 

efficiency, equity, and social objectivity (Aseervatham et al., 2016). Rating variables need to be 

observable and in data-driven carriers, verifiable, to adequately price and structure the risk 

(Cohen & Siegelman, 2010). Carriers strive to reduce data irregularities by collecting, validating, 

and classifying applications to develop individual premiums, which at times cause public and 



23 

 

insurance department concern (Aseervatham et al., 2016). From the carrier perspective, 

unverified variables lead to premium leakage, overall average pricing, and decreased 

differentiation due to underrepresentation of the risk at the time of rating.  

Insurance regulators and state legislations are inclined to propose and implement 

restrictions for segmentation variables to prohibit those rating, and underwriting variables 

deemed discriminatory (Thiery & Schoubroeck, 2006). The task of providing support and the 

actuarial verification of the new variables which are not biased or discriminatory falls with the 

carriers and the associated statistical exhibits. The decision to introduce additional risk 

classification through rate segmentation requires a well-funded and statistically significant 

justification for department rate filings (Cummins & Tennyson, 1992). The path for determining 

a differentiation approach should bridge the conflict between an individualistic moral rights 

approach and an insurance group approach to equity (Thiery & Schoubroeck, 2006).  

Implications for Biblical Integration 

Researchers have been developing studies to define ethics and morals displayed in certain 

types of individual consumer behavior (Cova et al., 2016). Some regulators and legislators would 

prefer insurance carriers treat individuals as a generic pool of risks and ignore specific 

identifying characteristics. For criminal background, a subsidization approach would effectively 

ignore the risky behavior displayed by a group of individuals and penalize clean individuals 

creating a financial imbalance. Johnson et al. (2016) noted the Christian interpretation of 

redistributive guidelines and social justice is not always consistent due to the blurred definition 

of what is considered to be justice.  

The implications are while some people may argue social justice is based on human 

rights, there is a difference between selecting to engage in risky behavior and working through 
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economic injustices. Ishida et al. (2016) stated insurers had made significant devising processes, 

which effectively target probable risky and fraudulent claims related to actions with statistical 

modeling and business intelligence software. Applying situation-specific moral intensity to 

rating variables and underwriting criteria can be critical in pricing outcomes because it creates a 

bridge between appropriate moral conduct and personal behavior choices, supported by both 

regulators and consumers (Ishida et al., 2016). 

Relationship to Field of Study 

Cummins and Xie (2016) highlighted insurance was constructed of several concepts. The 

two most notable are the accurate statistical models of insurance risk pools originating from 

probability theory and actuarial science and the insurance firm’s financial models and the 

pricing, derived from financial theory (Cummins & Xi, 2016). Insurance demand theory and the 

application of different analytical approaches are grounded in economics, and the components of 

modeling and financial theory create the basis of the field of finance and insurance economics 

(Mankaï & Belgacem, 2016). Auto insurance is explicitly a method of allocating different types 

of financial risk and providing services associated managing the risk (Cummins & Xie, 2016). 

The original financial models integrated insurance rating variables into an economic 

context with many models resulting in financial market equilibrium or an attempt to mitigate an 

arbitrage position (Lee et al., 2005). A step toward integrating finance, insurance, and statistical 

theory is by using models, which incorporate realistic claims distributions with predictive 

variables into the financial ratios used to set rates for insurance products (Lee et al., 2005). Auto 

insurance is driven by analytical competition, and the choice of an appropriate business model is 

a critical business and financial decision (Kim & Min, 2015). A carrier’s business model is an 

essential driver of innovation and a source of value creation for the organization and the 
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stakeholders (Soleymanian et al., 2019). As insurance carriers create new products and services, 

product research and development teams need to develop new business models to realign their 

systems and processes to support the influx of new data and information (Kim & Min, 2015).  

Summary of the Significance of the Study 

Including criminal background as a potential variable for predicting auto insurance loss 

costs could provide a distinctive pricing capability reducing the need for average pricing and 

premium subsidization by auto insurance carriers. The study will reduce the literature and 

research gap for predictive variables and better define the impact of misdemeanor and felony 

activities on individual risk assessment. In current academic literature, there has been no mention 

of the verification or use of criminal background behavior for rating or underwriting for auto 

insurance premium development. The research may also provide moral paths to help Christians 

better understand the social justice for pricing risks based on individual behavior and choices.  

Financial modeling progressions allow insurance carriers to avoid charging an average 

premium level for the entire risk portfolio, which underprices unfavorable risks and overprices 

standard risks. The majority of carriers have access to similar data, barring usage-based 

information, and any new information provides segmentation and competitive advantage over 

other auto insurance carriers. With a countrywide hit rate of eight percent, carriers can either 

price accurately for those higher frequency risks or send those risks to another carrier. The 

remaining risks would be afforded a lower total premium to match their actual driving 

experience, attracting the more profitable lower-frequency risk to support profitability and 

product growth.  
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A Review of the Professional and Academic Literature 

The property and casualty insurance ratemaking process is an experience rating system, 

which uses an insured’s driving record to determine future policy premiums (Najafabadi et al., 

2017). Some of the basic actuarial approaches originated from studies of claim count frequency, 

which was believed to frame the overall risk classification rather than claim severity or the 

claim’s overall cost (Jeong et al., 2017). Ratemaking takes into consideration the frequency per 

earned exposure to determine premiums for individual risks. 

For modern ratemaking, the insurance industry uses a bonus-malus contract system, 

which allows for specific results based on either positive or negative outcomes (Najafabadi et al., 

2017). A bonus-malus rating approach for auto insurance is only based on the claims events 

modifying the premium development (Gómez-Déniz, 2016). The pure premium calculation has 

been based on modeling both the frequency and severity of loss events in a combined claims 

model (Jeong et al., 2017). Actuaries have a customary practice of assuming independence when 

using frequency and severity for premium determination using loss costs (Najafabadi et al., 

2017).  

As additional data elements become available for statistical modeling, carriers can 

observe more and new dependence patterns, which had not previously attracted enough attention 

due to the relevant data’s non-accessibility (Hua, 2015). The increased computing power and 

advancement in statistical approaches have made advanced models available, which describe 

new dependence patterns and are easier to understand and implement for ratemaking and 

department of insurance filings (Jeong et al., 2017; Jeong et al., 2018). The cutting-edge 

statistical modeling allows for testing new variables and provides insights on potential 

predictors, including observed individual behaviors leading to increased loss events.  
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Actuarial Ratemaking 

The bonus-malus approach for insurance pricing was developed while studying other 

auto insurance rating variables such as age and sex of the driver as well as vehicle attributes and 

the territory where the risk is underwritten (Lemaire et al., 2015). Lemaire et al. (2015) explained 

all a priori and a posteriori classification variables should be incorporated and validated for the 

model to ensure drivers are not penalized with higher surcharges and cumulating an a priori 

premium increase. Consumers and departments of insurance have valid concerns of double-

counting similar effects due to certain variables being associated with higher claims propensity, 

and a bonus-malus approach is necessary to avoid excessive penalties for riskier drivers (Gómez-

Déniz, 2016).  

Several methodologies can predict the expected number of loss events, and traditional 

linear modeling can be used to identify significant risk classification variables, determine tariff 

classes, and develop premiums (Dionne & Vanasse, 1992). An accurate ratemaking approach 

allows insurance carriers to cover expected losses and expenses using modeling, which describes 

the claims frequency distribution. Yip and Yau (2005) stated the claims count distribution in auto 

insurance ratemaking is assumed to follow the Poisson and negative binomial distributions. 

Poisson and negative binomial models with a regression component incorporate all available loss 

information to accurately predict accident distributions (Dionne & Vanasse, 1992). A negative 

binomial distribution with applied regression elements provides a reasonable estimation of the 

actual loss event distribution (Yip & Yau, 2005). Under the deductible agreement in the auto 

insurance contract, a claim will not be opened if the amount claimed is small, creating an excess 

of zero claims. Eryilmaz (2016) and Gómez-Déniz (2016) highlighted the modeling of claim 

frequency distributions using compound models. The zero-inflated Poisson model is receiving 



28 

 

more interest as the approach considers discrete count data in order to allow for the occurrence of 

excess zeros. The method is widely used to streamline the claims estimation process and increase 

prediction accuracy in the industry. 

Rating. Auto insurance premium development can be completed in two phases, with a 

priori rating in the first phase, where carriers use verified and observed risk classification 

variables to segment a risk pool into homogeneous risk classes (Tan, 2016a). While the a priori 

risk characteristics are important to all carriers, they do not complete the full risk profile and 

require new a priori variables along with a posteriori rating in the second phase (Tan, 2016a). 

Under a bonus-malus system, the framework of credibility premium is established to address the 

residual heterogeneity based on claims experience information, which is considered an 

unobservable risk only provided by the individual’s loss history (Gómez-Déniz, 2016). 

Credibility theory is the merging different groups of data sets to obtain an accurate 

overall estimate and provides actuaries with methods to develop insurance premiums for a 

heterogeneous book of business (Najafabadi et al., 2017). Credibility theory is a group of 

quantitative approaches, which allow carriers to model future premium patterns based on 

historical experience and is the weighted sum of the sample mean and the written premiums 

(Gómez-Déniz, 2008). The calculated weighted factor is the credibility factor used in the 

experience rating (Karmila et al., 2020). Payandeh and Amir (2010) stated several different 

approaches could lead to the same credibility factor expression, such as the distribution-free 

method and the Bayesian methods. 

Historical Modeling and Underwriting. Boyer and Owadally (2015) stated the 

existence of profitability cycles based on linear time series analysis was proven to be present in 

property and casualty insurance. Property and casualty insurance uses nonfinancial models for 
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pricing, and the Sandmo-Leland model is based on the assumption the carrier takes a risk-averse 

position and suggests the price of a policy equals the expected cost of the policy plus a risk 

premium (Choi et al., 2002). Researchers also agree there is little evidence supporting the fact 

the insurance cycle follows a linear autoregressive pattern, which means any cyclicality in carrier 

profitability is not predictable as defined by a traditional economic framework (Boyer & 

Owadally, 2015). The autoregressive process is a type of statistical modeling, which provides a 

fundamental interpretation of insurance market performance, does not provide adequate 

representation, and is not the only available description for insurance cycles. 

Regulatory Environment. Schwarcz (2018) highlighted property and casualty insurance 

carriers must comply with a complicated and restrictive state-based regulatory system, which the 

controlling body prohibiting what each department considers excessive and unfair rates. The 

current regulations evolved from a group of regulatory and market conditions, which no longer 

exist in most of the property and casualty insurance markets. The continuation of the traditional 

insurance rate regulation in many states represents a failure of the jurisdictions to evolve with the 

technology and markets the departments manage (Eling & Pankoke, 2016; Frezal & Barry, 2019; 

Schwarcz, 2018). Landes (2015) argued there are two conceptions in property and casualty 

insurance, one is having the ability to distinguish between insurance as a general association 

agreement among individuals based on risk pooling and specific agreements where a carrier acts 

as an intermediary between policyholders. The distinction provides different definitions of 

fairness where one is based on the collaboration between individuals in the risk pool, where the 

other is based on the equity of the contract between the insurer and the insured (Frezal & Barry, 

2019). The second concept is premiums should be developed on the expected losses to better 

reflect the risk of the insured (Landes, 2015). 
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In property and casualty insurance, the ability to accurately rate and assign a premium to 

the individual risk is defined as actuarial fairness, which has evolved to be more powerful with 

the influx of data and advancements in data science modeling. Eling and Pankoke (2016) stated 

the appearance of data science magnifies old debates concerning the fairness of insurance 

ratemaking, with the introduction of new data supporting the consumer. The role of historical 

insurance regulations becomes even more unclear. The Consumer Federation of America (CFA), 

in its disapproval of price optimization and the fixing of margins based on the consumer’s 

willingness to pay, stressed the movement of pricing away from the historical cost-based 

approach to be unfairly discriminatory (Frezal & Barry, 2019).  

Insurance commissioners universally provide the guidelines where rates should be 

adequate to cover loss costs and are not considered discriminatory, as in the case of charging 

different rates for risks of a similar underwriting background. Premiums paid by consumers 

should match their overall risk exposure as closely as possible and are the products of the 

probabilities of losses and expected losses (Landes, 2015). Rate regulations in the auto insurance 

industry are designed to ensure the carrier rates are not excessive or unfairly discriminatory, 

leading to underpricing riskier consumers leaving less risky people to subsidize the earned 

premiums needed to cover incurred losses (Schwarcz, 2018). When requirements are not met, 

such as a carrier not validating underwriting criteria or rating variables, resources are transferred 

to the low-risk individuals to the high-risk individuals, and the insurance instrument changes the 

policyholders’ expected value (Lehtonen & Liukko, 2015). The insurance approach is actuarially 

unfair because the expected benefit of the low-risk consumer is reduced, while the expected 

benefit of the high-risk consumer is increased.  
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The increasing complexity and number of regulations are also highlighted as being an 

important threat to the insurance industry, and there is little to no literature on the costs and 

benefits of insurance regulation due to the difficulty of capturing and measuring the information 

(Eling & Pankoke, 2016). Economic research suggests insurance rate regulation is not in the 

public interest as studies have documented the markets thrive when states can deregulate rules as 

the industry has several hundred competing carriers (Lehtonen & Liukko, 2015). In line with 

these findings, property and casualty carriers in most markets can earn reasonable and not 

excessive profit margins compared to other financial service industries. For the present time, rate 

regulation is often ineffective, cyclical, politicized, and can effectively weaken competitive 

market conditions by discouraging market entry and causing individual carriers to dissolve 

(Schwarcz, 2018).  

Big Data and Regulation. The combination of technology, effects, and capabilities has 

been rolled up under the definition of big data (Zuboff, 2015). Big data tends to be an 

arrangement of information systems and the ability to separate vast quantities of data to allow 

data mining for patterns to be used for predictive analytics (Yeung, 2016; Zuboff, 2015). For the 

insurance industry, catching up with the tidal wave of additional available data has allowed 

machine learning algorithms on various datasets, which had been previously unavailable. Over 

the past 20 years, the United States and other countries have started to prohibit insurance 

discrimination based on group characteristics, so finding additional variables from new data 

sources is critical to the rate segmentation goals for insurance carriers (Meyers & Van 

Hoyweghen, 2018).  

Modern data protection regulations somewhat rely on a model of privacy self-

management where the law provides consumers with a set of rights, enables them to control their 
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personal data, understanding those people will weigh the benefits and costs of sharing their data 

(Yeung, 2016). Cohen (2015) argued the approach places the responsibility on both parties as the 

party creating or capturing the data must notify the consumer, and the consumer needs to consent 

to the actions taking place. Critics, including consumer advocates, argue the consumer is unlikely 

to give a tremendous amount of thought to consent to data sharing and are invited to share 

personal data in return to digital services and online purchases (Zuboff, 2015). There is 

overwhelming evidence the consumer neither reads nor understands the online privacy policies, 

and most companies try to enable practical solutions to provide informative notices and protect 

personal information (Cohen, 2015; Meyers & Van Hoyweghen, 2018; Yeung, 2016). For 

entering into a financial contract such as auto insurance, carriers must have the consumer sign an 

acknowledgment statement they understand a third-party entity will be providing their public and 

personal data, which will be used for underwriting and rating purposes. Departments of 

Insurance have increasingly taken cues from consumer advocates and legal groups trying to 

remove private data sources because they feel individuals are not making sound decisions when 

making complex decisions involving privacy in specific contexts (Zuboff, 2015). When new data 

sources are introduced from third-party vendors, the regulatory approval process is extensive and 

ensures the carriers are transparent concerning the data being ordered and the consumer 

understands what data are being used for ratemaking and underwriting for segmentation 

purposes. 

Adverse Selection. It has become important for insurance carriers to innovate when 

designing a priori and a posteriori rating approach by developing representative probabilistic 

models based on statistical methods for distributing the number of claims allowing the carriers to 

match premiums to risks fairly and equitably. The integration of new types of pricing data and 
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verified rating variables allows carriers to attract and retain consumers by adopting innovations, 

which allow the carrier to lower premiums and improve products (Tzougas et al., 2019). If an 

insurance carrier can develop new pricing methods, or introduce new rating variables, to identify 

and attract lower-risk individuals, those individuals would have a financial incentive to change to 

the innovative carrier to save money by paying a lower rate to match their level of riskiness 

(Cather, 2018).  

One carrier’s gain is another carrier’s loss, and the loss of lower-risk insureds can affect 

carriers’ profitability by taking away the lower loss ratio portion of the portfolio through the 

adverse selection process. Those carriers which select not to innovate cannot survive in the 

highly competitive market place, and the hundreds of carriers in the market will continue to file 

new rate class plans with updated approaches and pricing structures. Demand friction, the 

economic friction keeping markets from operating according to the perfect competition model, 

affects the classification of individuals who have different valuations along the demand curve 

(Spinnewijn, 2017). Spinnewijn (2017) stated the studies analyzing the importance of adverse 

selection in insurance markets reveal the insurance contract’s overall value and the importance of 

pricing each risk adequately. 

The Future of Property and Casualty Insurance Data and Modeling. Nicholson 

(2019) stated a range of factors are shaping the future of the insurance industry, including 

technology and consumer expectations, which have become compelling forces based on recent 

trends and developments in a competitive environment. Technology allows for more innovation 

and efficiencies for newly formed insurance carriers, which are customer-centric and offer better 

products and services with new business models designed to disrupt the traditional property and 

casualty markets (Charpentier, 2017). The traditional insurance market is very slow to change, 
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and those carriers embracing the new data and statistical advancements are experiencing a shift 

away from traditional actuarial science to a robust data science structure for product pricing. 

Binder and Muꞵhoff (2017) of McKinsey & Company suggested in the next 10 years, 40 percent 

of the insurance industry positions, which currently exist, will no longer be needed, and 20 

percent of the positions needed in the future do not exist in the industry today. Binder and 

Muꞵhoff (2017) also predicted the property and casualty insurance industry would change more 

in the upcoming years than it has in the past 100 years.  

New open-source data and the advancements in statistical modeling in open code are also 

allowing rapid development in artificial intelligence and machine learning, which are creating 

products and services with the potential to continually disrupt the environment actuaries were 

used to studying (Richman, 2018). The future expansions of quantum computers and high-level 

quantum algorithms will ignite an explosion of modeling possibilities, likely to restructure the 

entire industry (Charpentier, 2017). With the transition to insurance digital platforms, insureds 

will have a portal potentially consisting of blockchain technology, artificial intelligence, 

computer learning, complex algorithms, and big data sources with insurance carriers at the end of 

the portal (Nicholson, 2019). With new verified third-party data, matching interests can be paired 

with optimal premiums where carriers could operate at high efficiency, speed, and accessibility. 

Usage-Based Insurance. From an insurance rating standpoint, the more a vehicle is 

driven on the road, the larger the overall exposure period and the vehicle’s time to be involved in 

a loss event. Traditional premium calculation approaches for auto insurance carriers were mainly 

based on general factors such as observable vehicle make factors and driver demographic 

variables, which could be collected and verified for rate orders of premium calculation (Casualty 

Actuarial Society, 1990). Most carriers supplement the a priori approach to premium 
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development with driver violations and accident history to improve the overall rate accuracy. 

Even though there was broad adoption and use of the base models created decades ago, there are 

still limitations, specifically with the actual vehicle exposure, which is challenging to capture and 

validate (Baecke & Bocca, 2017).  

Pay-As-You-Drive. Consumers are charged directly for where and how are far they drive 

in Pay-As-You-Drive programs, which are possibly due to new information and communication 

technology (Dijksterhuis et al., 2015). The Pay-As-You-Drive programs addressed what 

consumers felt were shortcomings in traditional insurance programs as the programs are viewed 

as being transparent and fair because individuals are paying for coverage based on their own 

driving behavior instead of being charged a rate from an aggregated pool of consumers. 

Individuals who drive safely and defensively should pay lower premiums, and consumers who 

drive risky and aggressively should be paying higher premiums to cover their loss costs 

(Weidner et al., 2017).  

The challenge with Pay-As-You-Drive programs is validating even the most 

straightforward data, such as data and mileage from odometer readings, without the cost of 

monitoring outstripping the benefit of collecting the data. Self-reporting is not an adequate 

measurement as individuals have no incentive to provide accurate information. The insured 

needs to be willing to have the information verified with digital information capture and could 

range from pre-paid premiums by purchasing miles to full behavior-based telematics Pay-As-

You-Drive insurance (Dijksterhuis et al., 2015). With more people enrolling in such programs, 

benefits from large-scale usage will start to drive down device costs as already experienced with 

digital data (Husnjak et al., 2015). 
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Telematics. Devices installed into vehicles through the onboard diagnostics port can 

interface and collect data for both driver behavior and actual miles driven validating the real-time 

exposures for the insurance carrier (Husnjak et al., 2015). The original data collection devices 

needed to have the data pushed to the insurance carriers and included all of the data the device 

was equipped to store and transmit. From a consumer perspective, connecting the miles driven to 

the vehicle would be the most accurate way to assess exposures. The driving behavior variables 

can also be evaluated and used for premium calculations, and univariate predictive performance 

over three months is long enough to obtain enough data with the highest predictive power 

(Baecke & Bocca, 2017). Driving behavior over time follows the patterns of normal behavior 

and is relatively consistent. If driving data from over one to four years is used, some individual 

driving behavior is not current enough to be considered for predictive modeling (Baecke & 

Bocca, 2017).  

Large amounts of data and digital technologies have raised privacy concerns, and security 

issues as the information being transferred between electronic devices compare to a form of 

involuntary user observation without providing disclosure statements (Barth & de Jong, 2017). 

With the increase in data sharing across digital platforms, the consumers need to find and 

understand how the data are being used, and ultimately, which entity owns the data being 

collected. An individual’s driving habits include the time of day, patterns, hard braking, distance 

traveled, and of most interest to the insurance carrier, speed, and acceleration (Bellatti et al., 

2017; Vavouranakis et al., 2017). Surveys report the consumers are open to participating in 

telematics programs, but a significant portion of drivers are concerned the insurance carriers may 

be tracking their destinations and sharing data with unknown third parties (Bellatti et al., 2017). 

While carriers are careful about not sharing personal identification indicators, the possibility of 
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linking via quasi-indicators remains. Research from online service providers shows reliable 

privacy statements and risk awareness do not change in line with modified preferences, and 

although users are aware of privacy risks, they tend to share private information in exchange for 

discounts and personalized services (Baecke & Bocca, 2017).  

Mobile Applications. While providing some of the most predictive variables for 

insurance premium development, onboard diagnostics telematics can be an expensive method for 

collecting verified data for insurance carriers who specialize in financial services. Innovations in 

smartphones and mobile devices include advanced motions sensors and accelerometers 

providing, a new platform of distributed sensing devices (Castignani et al., 2015). Insurance 

carriers are working with vendors who can pair the driver to the vehicle and collect mileage and 

driving behavior data. Vavouranakis et al. (2017) agreed the best practice for recognizing driving 

patterns is using the accelerometer data from the smartphone technology due to the ability of the 

algorithm to detect sharp turns, lane changes, and increased speed.  

The drawbacks of mobile device technology are there are human decisions involved, and 

the smartphone device needs to be with the driver for device-to-vehicle pairing. The different 

input variables are collected at different rates, and an interpretation layer needs to be introduced 

to perform event detection based on different time series from different devices and data carriers 

along with normalization and scoring logic (Castignani et al., 2015). Mobile technology can help 

provide aggregated benefits, including changing the risk assessment process, including the 

ratemaking process, which results in lowering overall risk and obtaining dynamic statistics and 

verified driving behavior data (Ohlsson et al., 2015). The challenge is getting consumers to 

actively download insurance applications and allow carriers access to private information to 

determine a premium (Vavouranakis et al., 2017). 
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Modeling Approaches 

Insurance carriers depend on statistical models to predict future claims events and 

forecast financial protection for both the consumer and the company (Davoudi Kakhki et al., 

2018). There are also requirements set by the independent state departments of insurance to 

provide actuarial, or mathematical and statistical exhibits to ensure the right methodology, 

approaches, and outcomes are used to set rates within each program. Understanding the 

dependent relationships between a dataset of predictor variables and zero-inflated count 

outcomes, which follow the traditional insurance claims patterns, are the basis for 

comprehending risk factors driving the ratemaking decisions (Chowdhury et al., 2019). The zero-

inflation occurrences are because the carriers only reimburse for losses, which meet the contract 

parameters or exceed a threshold. There is also evidence individual insureds would rather pay for 

low payment loss events to avoid a potential premium increase for reporting the claim and 

receiving reimbursement (Davoudi Kakhki et al., 2018).  

Multiple Linear Regression. Regression analysis, or linear modeling, is a core approach 

in statistical modeling used for auto insurance data analysis and decision support (Fox, 2016). Of 

particular use for auto insurance modeling, linear models have three different uses of 

summarizing data, predicting future events, and predicting the results of interventions (Frees et 

al., 2014). In predictive modeling, carriers analyze data to build models, which will be used to 

estimate an unknown future quantity using one or more known independent predictor variables. 

Fox (2016) stated for linear regression approaches, analysts are interested in using characteristics 

of policyholders such as age, sex, and driving experience along with the vehicle attributes to help 

explain the target-dependent variable, pure premium. Modeling insurance risks with high 

accuracy and prediction rates is critical to insurance carriers as the modeling of past claims is 
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necessary for estimating loss costs, which is the cornerstone of pricing in the insurance industry 

(Davoudi Kakhki et al., 2018).  

Classification is used in the property and casualty insurance industry based on attributes 

of the rating variables, and the performance of the classification process is dependent on how 

well the discriminant function, which is a function of variables used to assign independent 

variables into one of two or more groups (Khashei et al., 2012). The classification process is 

used to minimize the misclassification rate for the targeted problems performed on both the 

modeling data set and the hold out data set. The classification approach of assigning numerous 

events into different separate groups performs a critical role in business decision-making for 

insurance ratemaking (Davoudi Kakhki et al., 2018). Combining several models or creating 

hybrid models improves predictive performance using multiple linear regression models to return 

additional general and more accurate models (Khashei et al., 2012). 

Generalized Linear Modeling. Average losses are expected to equate to pure premium, 

which is the product of expected claims frequency and severity, resulting in at least a financial 

breakeven state. Statistical approaches can be used with frequency and severity models to 

classify the risk classes characterized by independent rating factors (Xie & Lawniczak, 2018). 

Insurance carriers use Generalized Linear Modeling for risk classifications and can allow for 

response errors to develop from exponential outcomes from modeling. There has been much 

research and advancements for predictive modeling when finding the optimal solution to reduce 

overall bias. Generalized Linear Models possess the property of providing unbiased estimates on 

the book of business level, which suggests the models can also deliver accurate prices at the 

business level (Wüthrich, 2019). Carriers will model loss costs, and the bias is defined as the 

difference in the predicted loss costs and the actual observed value (Fuzi et al., 2016). A 
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minimum bias method is an approach used by insurance carriers to assign restrictions within 

classification ratemaking. Fuzi et al. (2016) stated the minimum overall bias considers both the 

estimation of premium, the product of frequency and severity for each class of insured, and the 

related number of earned exposures.  

The Generalized Linear Models are considered acceptable approaches for the department 

of insurance filings because the models can be described and replicated by the carriers and other 

entities reviewing the filings for adequate actuarial support. Insurance regulators are not 

interested in reproducing the carrier models or results. Insurance departments need an analysis 

based on the aggregated loss experience for their reviews and analysis (Xie & Lawniczak, 2018). 

A filing review conducted by a regulator needs to be supported by key findings based on the 

rating factors used in developing the model and at the industry level. However, the models also 

have drawbacks, which require the modeler to specify how the covariates interact and what 

functional form they should take in the resulting regression function (Wüthrich, 2019). Insurance 

carriers use several dozen risk factors for rating, which also raises the question of whether a 

carrier or the regulators can focus only on the most predictive rating factors during the approval 

process (Xie & Lawniczak, 2018).  

Interaction Variables. An issue, which may need to be addressed in modeling claims 

frequency and severity, is the modeling of interactions (Valecky, 2016). The data preparations 

for multiple linear regression or generalized linear modeling will focus on optimizing the 

selection and transformation of variables with the assumption the variables in the dataset have an 

individual effect on the dependent variable (Goldburd et al., 2020). Researchers need to consider 

the situation where two or more variables may have a related effect on the dependent variable, 

which creates a situation that could have an inadvertent inflated outcome on the target variables. 
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Goldburd et al. (2020) called the effect and dependency of one predictor variable on another, an 

interaction. In auto insurance claims modeling, a potential interaction set of variables could be 

age x gender, which can be added to the pure premium model to determine if the model 

outcomes are affected (Valecky, 2016).  

Tweedie Compound Poisson Models. Claims events in insurance are considered to be 

an all or nothing proposition. For insurance claims models, loss events occur in a probability 

mass at zero or in a non-negative amount higher than zero over time, following a right-skewed 

Tweedie compound Poisson distribution (Qian et al., 2016). The challenge for the insurance 

carriers is to predict the size and rate of recurrence of future claims accurately. Yang et al. (2018) 

stated highly right-skewed, mixed point data with a point mass at zero cannot use transformation 

techniques to normality by power transformation, and will employ Tobit models or Tweedie 

distributions to simultaneously model frequency and severity of claims. Due to the Tweedie 

Generalized Linear Model’s ability to model zeros and continuous positive outcomes 

simultaneously, the approach is a highly used for auto actuarial study methodology. The most 

significant drawback of the Tweedie Generalized Linear Model is the underlying logarithmic 

mean, which is a linear shape and not flexible enough for auto insurance modeling (Yang et al., 

2018). Qian et al. (2016) noted in auto insurance modeling, the risk does not monotonically 

decrease as age increases, although nonlinearity can be modeled by adding splines. Low-degree 

splines may not be suitable to capture the nonlinearity and high-degree splines often result in 

overfitting, which in turn produce unstable estimates (Qian et al., 2016). To reduce the restrictive 

linear assumptions of Generalized Linear Models, Generalized Additive Models can model the 

continuous variables by smoothing functions estimated from the data (Yang et al., 2018).  
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Advanced Statistical Pricing Models. Moro et al. (2017) stated the increase of 

knowledge through data mining had driven carriers to increase their accumulation of data, but 

there is a gap between having the ability to access more information and the application of 

knowledge and improved decision-making. For many insurance carriers, having more data does 

not necessarily indicate better predictive pricing models. The data have provided the opportunity 

to implement flexible models with machine learning techniques becoming more mainstream in 

data analytics, providing highly configurable and accurate algorithms, which can work well with 

both structured and unstructured data (Baudry & Robert, 2019).  

The use of decision trees has become a progressively accepted alternative predictive 

modeling tool for building classification and regression models (Quan & Valdez, 2018). Carriers 

can increase premiums and filter risks through underwriting rules to balance the underlying risks 

(Bärtl & Krummaker, 2020). Innovations to the original approaches, such as random forests and 

gradient boosting models, have broadened the capabilities of using decision trees as predictive 

models (Henckaerts et al., 2018). Decision trees using multivariate response variables can model 

correlated responses when using insurance claims data. The addition of multivariate response 

variables provides advantages of the univariate decision tree models to rank critical explanatory 

variables and high predictive accuracy (Quan & Valdez, 2018).  

While advanced statistical modeling is applicable and relevant for predictive modeling in 

auto insurance, the respective insurance departments will only allow rate-filing submissions with 

multivariate regression models or Generalized Linear Models. The data and technological 

advancements have steered data scientists toward machine learning and big data analytics, which 

changed the trajectory of predictive analytics and statistical modeling. Few peer-reviewed papers 

in property and casualty insurance literature go beyond Generalized Linear Models (Henckaerts 
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et al., 2018). Actuaries and product managers need transparent and interpretable ways to explain 

pricing models to stakeholders and the insurance departments. Insurance pricing models are 

heavily regulated and need to meet specific actuarial support requirements, which establish a 

means for algorithmic accountability (Pasquale, 2015). Kaminski (2019) argued consumers have 

the right to understand the logic behind the pricing decisions, which are used to determine the 

premium for coverage. Pasquale (2015) stated the consumer, product managers, and regulators 

should receive the information in varying levels of detail and scope, and the insured should be 

charged a fair premium base on their risk profile to reduce adverse selection. If the diversity of 

the portfolio is not reflected in the ratemaking, lower-risk insureds will non-renew their coverage 

and would instead seek coverage, which priced the premium based on the merits of the 

individual’s risk profile (Wüthrich & Buser, 2019). By finding balance in consumer 

segmentation and risk pooling, the insurance carrier can avoid adverse selection and offer the 

insured the right rate.  

Price Optimization. In mature markets, increases in data and modeling sophistication 

allow carriers to optimize pricing approaches (Spedicato et al., 2018). Insurance carriers are 

looking to model the cost of the insurance coverage and the overall demand for a commodity 

product. The loss cost approaches to pricing individual risks define the price of a policy as the 

ratio all future claims’ estimated costs compared to the coverage provided to cover the exposure 

(Guelman & Guillén, 2014). Indicated rate changes project a revised set of rates, which will 

directly impact the profitability of a book of business and the amount of premium charged and 

the insured’s reaction to the rate change. Spedicato et al. (2018) argued it is now to an insurance 

carrier’s advantage to model the cost of the coverage offered and the overall demand before and 
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after rate changes. Current policyholder retention modeling, and with consumer conversion 

probability modeling provide the basis for pricing optimization (Bolancé et al., 2018).  

The value of insurance consumers is higher in those who create larger profit margins, 

which are greatly influenced by price and highly dependent on the consumer’s willingness to 

purchase the policy (Guelman & Guillén, 2014). Price reduction models-based optimization 

modeling would be useful and would require a dynamic way of setting prices for auto insurance, 

which is against state regulations requiring the filing and approval of rating structures. Bolancé 

et al. (2018) acknowledged the current regulatory environment lags the necessary flexibility to 

allow for proactive price optimization and allowing for consumer pricing tiers based in part on 

observed and historical demand behavior. 

Variables in the Study 

The existing pricing methods and approaches for auto insurance ratemaking are evolving 

with increased involvement due to changes in the political and economic environments and the 

changing consumer needs from the industry (Störmer, 2015). Bernard et al. (2015) argued the 

consumer faced an unpredictable random loss and could select to pay their insurance carrier a 

premium in return for sharing the risk of future loss. The ideal design involves determining the 

amount of loss covered by the insurance carrier, which is defined as the indemnity, and 

forecasting the corresponding premium covering both the carrier and the insured’s security 

(Bernard et al., 2015). The changing consumer needs also shape the pricing structure. Seventy-

five percent of insurance carriers have a pricing focus on risk-based costs over consumer-based 

pricing (Störmer, 2015). Carriers trying to generate profitable and equitable growth, strive to 

strike a balance with validated rating variables, which aligns better with the overall individual 

risk and customer-oriented ratemaking. 
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Bonus-Malus System. In auto insurance, a posteriori rating used for premium 

development is used to compliment a priori rating and consists of Bonus-Malus System levels, 

which build on each other to create the ratemaking environment (Tan et al., 2015). The carrier 

determines the Bonus-Malus System levels, and each consumer enters at a starting level and 

renewal, moves up or down the levels based on transaction rules depending on the risk’s claims 

and driver behavior changes during the policy period (Tan, 2016b). Insurance carriers will 

continue to monitor all drivers and vehicles on the policy for change created by claims activity 

on all vehicles and violations incurred by each driver. The levels have premium adjustment 

coefficient relativities assigned to independent rating variables multiplied with a base premium 

in a rate order of calculation to determine the final premium amount (Tan et al., 2015). Drivers 

are assigned to a vehicle along with their associated violations, or an average of all policy 

violations for average driver rating to calculate vehicle level premiums, which are aggregated in 

the rate order of calculation to determine the final policy premium.  

Risk-Based Pricing Model. In a risk-based auto insurance pricing model, the rates 

charged to individual insureds are customized to reflect the underlying risk characteristics and 

driving behavior of the combination of vehicles and drivers listed on the policy (Isotupa et al., 

2019). One of the critical items to note is auto insurance carriers will only cover loss events on 

listed vehicles on the policy and can only accurately price the entire risk if all drivers with access 

to the vehicles are also listed and rated. Undeclared drivers are a known risk, and carriers will 

address the underpriced insurance fraud from not listing the underlying risks with various forms 

of third-party underwriting reports for household members. In a social pricing model, all 

policyholders will pay the same premium in an average pool-based rating approach (Störmer, 

2015). With risk-based pricing approaches, higher-risk insureds should pay higher premiums 
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than low-risk insureds as the vehicle and a priori, observable characteristics, are correlated with 

the anticipated loss experience (Isotupa et al., 2019). The insurance departments in the United 

States use risk-based models. The regulations vary significantly on whether or not uncontrollable 

characteristics such as age, gender, and marital status can be used as rating variables, or only 

allow those characteristics such as type of car, garaging zip code, and the distance each vehicle is 

driven.  

Rate Order of Calculation. The rating algorithm used to develop premiums for each risk 

needs to consider the various independent rating variables in conjunction with the underwriting 

rules. There is a separate base rate for each line coverage, which is not an average rate, and the 

coefficient factors are applied as either a series of multipliers, addends, or some unique 

mathematical equation as defined in the rate order of calculation (Werner & Modlin, 2016). The 

complexity of the rate order of calculation, and the order of the rating variables, will vary by the 

insurance carrier. Those carriers who can identify predictive independent variables outside of the 

mainstream rating variables (e.g., credit score, prior bodily injury limits, and homeownership) 

will differentiate themselves in the marketplace, allowing for a more refined risk-based insurance 

model with rating characteristics, which match the individual risk profile. 

Pure Premium. Werner and Modlin (2016) defined pure premium, or loss costs, as the 

measurement of average losses per exposure unit and described the portion of the risk’s expected 

costs, which were purely aligned to losses: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿

𝑁𝑁𝑃𝑃𝑃𝑃𝑁𝑁𝑃𝑃𝑃𝑃 𝐿𝐿𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿
 𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 𝐸𝐸 𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝐹𝐹 

 
The assessment of pure premiums has highlighted an essential issue in modeling and estimating 

of risk classification factors, by selecting the appropriate approach to pure premium modeling 



47 

 

(Jee, 1989). A central issue arising from estimating pure premium, or claims frequency and 

severity, is selecting the appropriate form for the statistical model. Using a flexible category such 

as a hybrid model would take advantage of both additive and multiplicative functional forms for 

estimating the pure premium. The estimation of the pure premiums for rate class plans using 

regression approaches requires a function form for the statistical model with the most customary 

options being linear and log-linear models (Harrington, 1986). There is also a need for refined 

statistical modeling and methods for selecting interaction terms for pure premium models to 

improve overall predictive accuracy and mitigate bias in predicted values (Jee, 1989).  

Claims Frequency and Severity Modeling. The modeling of auto insurance claims 

frequency and severity is a detailed and important process providing the foundation for 

ratemaking for the various line coverages (Park et al., 2018). The claims experience for auto 

losses is conditional on random outcomes of claims frequencies and severities. By design, a risk 

may incur and more than one claim can happen during the policy period and the amount on any 

given portfolio is challenging to predict (Omari et al., 2018). Insurance carriers need to settle 

claims for future periods, and it is critical for the insurers to sufficiently model historical and 

current claims data to forecast future claims for ratemaking and reserving. Park et al. (2018) 

stated carriers are confronted with the challenges of selecting applicable statistical distributions 

for claims data and determining how well the designated distributions fit. Claims frequency and 

severity are often dependent, with claims counts being negatively associated with collision 

coverages because drivers who file multiple claims per policy term are typically involved in 

minor loss events (Garrido et al., 2016).  

There are two central approaches for combined claims modeling to account for the 

potential dependency between the claims frequency and severity. Shi et al. (2015) compared the 
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conditioning and use of claims count as a covariate for modeling the average claim size 

distribution and marginal Generalized Linear Models to fit the model to the frequency and 

severity elements and link them through a copula, which is a function that couples multivariate 

distribution functions to one-dimensional marginal distribution functions. The most common 

model used in modern auto insurance ratemaking is a frequency-severity model based on a 

Generalized Linear Model in which the claims frequency is a covariate in the severity regression 

model (Frees et al., 2014; Garrido et al., 2016; Jeong et al., 2017). 

Insurance-Based Credit Score. Act 1452 of 2003, is referred to as the National 

Conference of Insurance Legislators (NCOIL) Model, which was developed to integrate 

insurance-based credit scoring for personal auto lines of insurance (Lacy, 2017). The Act 

addresses insurance-based credit for underwriting and ratemaking (Insurance Information 

Institute, 2019). The Act also prohibits certain events from being considered under the Federal 

Fair Credit Reporting Act (FCRA), which requires notices to individuals applying for insurance 

and ensures specific actuarial justifications to be met before a carrier can use insurance-based 

credit for underwriting or ratemaking (Lacy, 2017).  

Insurance carriers use insurance-based credit scores with the actuarial support that how 

an individual manages their finances is a good predictor of loss activity; statistically, people with 

a lower insurance-based credit score are more likely to file a claim (Brockett & Golden, 2007; 

Insurance Information Institute, 2019; Lee et al., 2005; Stiff et al., 2019). Adding the insurance-

based credit score as a rating variable from either proprietary or credit vendor developed models 

allows the insurance carrier to pair the risk with an accurate premium helping to prevent lower-

risk drivers from subsidizing higher-risk drivers. The Insurance Information Institute (2019) 

highlighted it is important to recognize insurance-based credit scores are not the same as 
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consumer-credit scores as one score predicts insurance losses, and the other predicts credit 

delinquencies. Insurance carriers can also order insurance-based credit reports on the primary 

named insured on a policy without an extensive list of personal information (Einav et al., 2016).  

Data such as ethnic group, income, age, gender, address, and marital status are not part of 

the insurance-based credit score, yet state departments of insurance still feel correlations are 

being developed based on suspect classifications (Stiff et al., 2019). Andreeva and Matuszyk 

(2019) argued the insurance industry expressed concern, since gender was associated with risk, 

of removing the variable would lead to higher insurance premiums for women. Regulators make 

assumptions that by removing a variable from the overall insurance rate order of calculation, the 

individuals’ premiums in the corresponding risk classes would be the same. However, 

differences will remain due to proxy variables, which are approved for use in underwriting and 

rating. Regulators recognize the correlation of the uncertain variables and the resulting 

insensitivity of the model’s predictive strength, yet there is no course of action for how those 

correlations should be addressed and the overall suggested path to a solution (Einav et al., 2016).  

An insurance-based credit score will use information from a driver’s credit history and 

confirmed to be statistically correlated with loss costs (Insurance Information Institute, 2019; Liu 

& Schumann, 2005). The various state departments of insurance will restrict some factors within 

the insurance-based credit score, such as total available credit, debt from financing for health 

reasons, and certain types of credit lines (Lacy, 2017). The introduction of big data analytics also 

leads to carriers having new information such as the underlying insurance-based credit variables 

and improved computing power, which opened up advanced predictive analytics. Carriers have 

data and advanced statistics to work with daily, which increased concerns about the lingering 

risk of discrimination for certain risk classes (Favaretto et al., 2019).  
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Liu and Schumann (2005) stated the challenges carriers encounter when using 

classification algorithms to build insurance-based scoring models are selecting the variables from 

several private and public data sources. The variables used for modeling may have many 

observations and a large number of associated features, which may be unrelated to the insurance-

based credit predictive strength, but also may be redundant due to their high intercorrelation 

(Žliobaitė, 2017). Data Science teams in the industry spend time after the data preparation 

running correlation analysis to quantify the linear association’s direction and strength between 

two variables. Without the intermediate correlation analysis, the classification algorithms would 

deteriorate from having several irrelevant and redundant features, which would increase the 

computation time, and decrease the model accuracy and scoring interpretation (Liu & Schumann, 

2005).  

Criminal Background. The insurance industry has not addressed individual criminal 

background in part due to the inability to verify a person’s history, and there is also a concern 

about the perception of potential bias in criminal history data. Carriers are progressively relying 

on data-driven predictive models to help with decision-making, and due to the disruptive nature 

of the observational data, the models may systematically disadvantage individuals belonging to 

specific risk groups (Žliobaitė, 2017). The occurrence of systematically disadvantaging a driver 

in an auto insurance risk group may happen even if all personal identification information is 

removed before modeling. As the insurance industry begins taking greater advantage of data 

analytics and additional available personal data, socially sensitive decisions could have weighty 

impacts on individuals such as higher rates for auto insurance, and in some cases, a refusal for 

coverage (Carmichael et al., 2016). As carriers move toward more multifaceted forms of socially 

sensitive decision-making, the analytical groups need to find ways to ensure the use of data 
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mined and used for modeling does not lead to unjust discrimination against certain groups due to 

age, ethnicity, or gender (Roy & George, 2017).  

One area of criminal background, which remains in the forefront of insurance 

investigations, is the problem with insurance fraud globally due to its low-risk, high-reward 

payoff attracting criminals and creating a financial burden to carriers and policyholders (Derring 

et al., 2006; Nagrecha et al., 2018). The fraud hit rates tend to be higher for non-standard auto 

carriers who write drivers who fall outside of the lower-risk category and have trouble paying 

insurance premiums. Nagrecha et al. (2018) argued some individuals who pose a higher risk to 

the insurance carriers are those drivers who incur multiple accidents, have prior violation 

convictions, and prefer to carry state minimum liability insurance coverage. By identifying these 

individuals before binding coverage, the insurance carriers can properly underwrite, or correctly 

price, the risks and reduce rate subsidization for lower-risk insureds (Barraclough et al., 2016).  

Nagrecha et al.’s (2018) study referenced the association of higher-risk individuals and 

those consumers who are more likely to commit insurance fraud. However, the literature is silent 

on the claim frequency and severity and the predictive strength of overall criminal behavior. 

Until recently, insurance carriers could ask a misdemeanor or felony conviction question but 

could not verify the answers. Third-party vendors can now supply this information and determine 

if there is a correlation between loss costs and criminal behavior. Crimes are offenses against 

society, and individuals have been observed committing crimes at any time and place and in any 

form (Tayal et al., 2015). Society is careful about assessing penalties to crimes to ensure people 

are not continuously reprimanded for the same crime in several different areas. In societal 

contexts, the rationale for committing crimes appears to correlate with other risky decision-

making aspects by individuals (Lipton, 2018). The larger question becomes, can predictive 
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modeling support the correlation between criminal behavior and increased in auto insurance loss 

costs.  

Motor Vehicle Moving Violations. Between 1899 and 1903, hundreds of state and local 

governments passed legislation to address motor vehicle accidents and had little coordination 

between jurisdictions and public officials (Vinsel, 2019). The current regulations continue to be 

disjointed and governed by state and local law enforcement agencies. Each state defines and 

codes basic violations differently for each of the 50 states. Violations are grouped in categories, 

which closely follow the classifications in the vehicle code for each state, with only moving 

violations being considered for rating evaluation and non-moving and clerical citations being 

removed from the analysis (Palumbo et al., 2019). In the case of multiple violations occurring on 

the same day, the violation and conviction with the highest associated rating violation are 

assigned for rating purposes. 

The driver violation calculations will use a driver-averaging rating approach, which 

calculates an average driver relativity based on the driver-violation-accident combination. 

Instead of using the assigned individual driver relativities, the approach uses an average of all of 

the drivers on the policy. The approach minimizes questions about the highest driver rating to the 

highest vehicle rating as well and prevents assignment questions mitigating concerns about 

riskier driver manipulation (Blesa et al., 2020).  

Moving Violations and Criminal Background. One area of agreement between the 

respective departments of insurance is treating and counting driver moving violations and 

criminal driver background. While carriers are permitted to account for convictions incurred by 

driving and risky personal behavior, the carrier cannot double-charge for a conviction if it could 

potentially occur in both categories (Feest, 1968). The data preparation for criminal background 
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includes careful scrubbing to review conviction data types to ensure two violations do not appear 

on different reports. The data sources are also different as moving violations originate from the 

traffic court system, and the state departments of motor vehicles and the criminal driver 

background occurrences are obtained from the state and federal departments of correction. 

The data source for the research study has both the datasets containing violations and 

convictions from both the departments of motor vehicles and the state and federal departments of 

correction. Data are cross-referenced to ensure a criminal conviction such as vehicular homicide 

is categorized and validated through the jurisdiction where the incident occurred. The 

departments of insurance also treat the categories differently. Insurance carriers can only use 

between 24 and 36 months of driving moving convictions for underwriting and rating, where 

carriers can use between eight to ten years of criminal driver background data for evaluation 

(Vinsel, 2019).  

Historical Claims. Carriers need to settle loss events, which may occur from in-force 

books of business in future periods, and the historical claims experience can be used to model 

current and future events and to set reserves (Omari et al., 2018). Claims frequency is a predictor 

of driver risk levels and depends on both the individual’s claims history and the current 

evaluation period (Asamoah, 2016). Miljkovic and Grün (2016) argued the modeling of 

insurance claims events tends to be more forecasting art than actuarial science. A modeler will 

need to analyze and make well-supported assumptions during the modeling process for pricing 

and reserving. 

The data sets containing claims data have many zeros, no payment incurred, which 

provides researchers with a fat-tailed, right-skewed distribution rather than a normally distributed 

set of data (Gan & Valdez, 2018). An error in the modeling on one end of the tail can negatively 
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influence premium and loss reserve adequacy. For the study, data transformation will involve 

creating a new distribution based on the logarithmic transformation of the claims’ amount to 

create a symmetric distribution for modeling purposes (Miljkovic & Grün, 2016). The 

generalized linear model approach is based on the normal distribution of modeling approaches, 

and the distributions can be discrete, continuous, or both combined (Asamoah, 2016).  

Proof of Prior Insurance Coverage. Proof of prior insurance coverage verifies a 

consumer carried in-force state minimum limits liability coverages for vehicles without a lapse 

between coverage effective dates. For traditional standard auto insurance markets, insureds with 

prior coverage allowed carriers to offer discounted rates as carriers acknowledge there is a robust 

unconditional relationship between policyholder tenure and the policy’s overall riskiness 

(Kofman & Nini, 2013). While some researchers argue about average switching costs, which are 

substantial when comparing acquisition expenses, the higher retention rates for standard insureds 

center on customer claim satisfaction during the policy period (Honka, 2014). Insureds tend to 

look for another insurance carrier when they have had a claim, and the process, coverage, or 

payment did not meet expectations (Barraclough et al., 2016).  

The non-standard insurance market is defined differently by the various property and 

casualty insurance carriers and ranges from higher-risk behavior with multiple driver violations 

to frequent accidents or state minimum liability coverage limits, and most importantly, the 

inability to pay insurance premiums. Proof of prior insurance was one of the first proxies for 

financial responsibility before insurance-based credit scores became one of the most robust 

predictive variables for estimating loss costs (Stiff et al., 2019). Lapses in prior insurance 

coverage can indicate higher than average claims frequency and severity for risk, and premium 

discounts can be offered to those insureds who persist longer (Honka, 2014). Carriers want to 
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attract lower-risk consumers to decrease portfolio loss costs and new business acquisition 

expenses. 

The research study data will include auto insurance records with continuous insurance 

coverage and various levels of lapses in coverage. Kofman and Nini (2013) observed strong 

negative relationships between loss ratios, claims costs to premium, and policy persistency. 

Guelman and Guillén (2014) suggested insurance carriers would proactively reduce their profit 

margins slightly to increase overall renewal rates for a book of business. Bolancé et al. (2018) 

also argued the optimal pricing structure for insureds should consider the impact of the renewal 

book on the pricing segmentation for the overall portfolio of risks.  

Driver Age and Experience. In terms of non-controllable, individual rating attributes, 

age has a high impact on rated premium development (Kelly & Nielson, 2006). Youthful drivers 

are new drivers who have recently earned a driving license and generally have not acquired 

enough driving experience compared to mature drivers with fully developed visual scanning 

strategies, which come from years of driving experience (Yeung & Wong, 2015). Age-related 

changes in perception and performance posed another important consideration at the other end of 

the age spectrum. Senior citizens comprise the fastest growing driving population and maturing 

adults are also associated with higher rates of collisions and fatalities as people experience a 

general decline of behavioral and cognitive abilities with age (Mikoski et al., 2019).  

The age-value function over a life cycle has an inverted U-shape due to two patterns of 

marginal adverse events for cost and risk over a longer period (O’Brien, 2018). Seniors and 

middle-aged drivers have a comparable disutility from cost, and seniors place less importance on 

safety, resulting in a lower value of statistical life, which is a dollar value assigned to the benefits 

of health and safety regulations (O’Brien, 2018). Youthful drivers also place a lower weight on 
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safety and higher importance on the cost compared to middle-aged drivers, which suggests a 

lower value of statistical life for youthful drivers (Yeung & Wong, 2015). From a safety aspect, 

driver reaction time is critical, especially in complex, compact urban environments (Brown et al., 

2007).  

For the study, age groups are broken into logical categories and tend to align closely with 

other carriers writing similar target markets of risks. The actuarial analysis does support both 

youthful and mature drivers, classified into risk groups, present a greater risk for ratemaking 

purposes as a higher number of drivers in these groups will incur losses relative to other age 

group cohorts (Yeung & Wong, 2015). Insurance regulators have been under substantial pressure 

to ban the use of rating segmentation based on age, and consumers demand property and casualty 

carriers should not be able to discriminate. The ethical argument is the use of age is an individual 

characteristic variable which is discriminatory for risk classification and was deemed to be weak 

because an individual would face an equal probability of moving through each age classification 

group through the course of a driving lifetime (Brown et al., 2007).  

Vehicle Rating. Many of the rating variable discussions centered on the various driver 

variable characteristics. The insurance carrier is providing traditional coverage for the listed 

vehicles on the policy, and those attributes are also carefully researched. Auto carriers have been 

aware of increasing vehicle repair costs, and as more information becomes available, insurers 

become more involved in the development and application of the data (Cole et al., 2015). The 

Highway Loss Data Institute collects and distributes data on collision claims frequency per 100 

earned vehicle year for each model of vehicle, which is made available to the public and is used 

by the majority of property and casualty insurance carriers to help determine rating relativity for 

each make, model and year available (Joksch, 1981). The Highway Loss Data Institute 
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publication is still the gold standard in modeling make, model, body style, deductibles, and if 

there is, a youthful driver involved in the loss event. Cole et al. (2015) stated there are logical 

differences between the frequencies for vehicles with low versus high deductibles and with the 

inclusion of a youthful driver, so the frequencies need to be standardized to the same mix of 

deductibles, and driver age groups when modeling. 

 Of the 24 significant variables linked to the risk, the most relevant variables include: the 

age of the driver and the years of driving experience, accidents and violations occurring in the 

last five years, the type of vehicle, the vehicle power, the vehicle price, and the age of the vehicle 

(Blesa et al., 2020). The Insurance Services Office (ISO) provides auto insurance carriers with 

auto rating symbols, which define categories and rating relativities for vehicles based on year, 

make, and model, or the carrier develops a proprietary classification system for vehicle rating. 

The insurance carrier has developed a Vehicle Attribute Rating approach, which uses a Vehicle 

Symbol Rating generalized linear model based on historical policy and loss experience to 

establish if any vehicle attributes like curbweight, maximum horsepower, or base price 

significantly influence claims loss costs. A data set from the carrier used private passenger auto 

data from accident years 2004-2006 and was scrubbed for accurate records and tested for 

homogeneity. The policy accounts for the model data and contains the vehicle attributes from 

each Vehicle Identification Number (VIN) provided by the Highway Loss Data Institute. For 

pre-1981 vehicles, attributes are not available, and a separate analysis based on historical data 

was completed to develop a common symbol category factor. 

Coverages, Limits, and Deductibles. Auto insurance covers damage to the insureds 

vehicle and includes damages to the driver and others due to an injury caused by an accident, 

such as medical treatments, payments for pain and suffering, and lost wages (Kadiyala & 
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Heaton, 2017). Liability insurance includes the coverages, which provide compensation for 

injuries. Depending on the type of policy purchased, it will provide compensation for either 

third-party or first-party damages up to the limits of liability. The Physical Damage coverages 

are those coverages, which protect the vehicles listed on the policy. Collision coverage will 

provide protection if the vehicle is involved in an accident with another vehicle or an object. 

Comprehensive coverage will protect for listed events incurred by the vehicle, excluding the 

events identified under the collision coverage (Gaffney & Ben-Israel, 2016).  

For traditional consumers, purchasing insurance must increase the expected cost to the 

insured, or otherwise, the insurance carriers would not be able to remain solvent as the expected 

cost increase with higher limits or lower deductibles should be compensated with a decrease in 

risk (Kadiyala & Heaton, 2017). Most state governments, through the independent departments 

of insurance, require vehicle owners to carry state minimum liability limits to create a financial 

responsibility contact in case of an accident involving other drivers or passengers (Hsu et al., 

2015). One item to note is the purchase of auto liability or physical damage coverages neither 

reduces the frequency or severity of accidents, and it only serves to mitigate the financial losses 

of individuals involved in a vehicle loss event (You & Li, 2017). The relationship in insurance 

markets is described by adverse selection theory, which describes situations in which insureds 

retain some of the information involving their overall risk level, which is unavailable to the 

insurance carriers when making underwriting or pricing decisions (Hsu et al., 2015). If adverse 

selection is existent, those drivers who purchase higher liability limits and lower physical 

damage deductibles are likely to be at higher risk in accident situations, creating a positive 

correlation between coverage and risk (You & Li, 2017).  
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 For the research study, the data set will be auto insurance records with liability coverages 

purchased at state minimum financial responsibility limits and with collision and comprehensive 

coverages at five hundred dollars. The consistency between limits and deductibles will allow the 

researcher to have a standardized data set without needed additional transformations. Hsu et al. 

(2015) argued insured individuals who submit claims to their insurance carriers are more likely 

to have purchased higher limits and lower deductibles, so leveling the data set at state minimum 

limits will also standardize the claims frequency and severity distributions. 

Summary of the Literature Review 

For the auto insurance industry, carriers must analyze and select a highly predictive set of 

risk variables with their associated factors to predict accurate future claims distributions. The 

industry is experiencing an increase in validated data sources and benefiting from advanced 

computing power, allowing for the development and implementation of sophisticated pricing 

model approaches. The data-driven analytics allows auto insurance carriers to segment risks 

based on individual behavior characteristics to avoid average rating for a large pool of risks. 

Finding predictive variables, which can be verified and supported with actuarially sound 

statistical models, benefits the consumers purchasing the coverages and the carriers providing the 

financial instruments to distribute risk equitably. 

Peer-reviewed articles from academic journals and primary source books were reviewed 

for actuarial ratemaking, variable selection, and predictive modeling for premium development 

and loss analysis. Journal articles focused on criminal insurance activity were directly addressing 

insurance fraud and the submission of fraudulent claims. Due to the lack of verifiable data, the 

literature is silent on criminal background behavior being collected or used to develop auto 

insurance premiums for risk segmentation. 
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 Predictive models are used to segment insurance risks based on forecasted loss events 

using the underlying rating variables and historical claims data. Criminal behavior as a rating 

variable should be an associated high loss ratio, which carriers can show to be actionable. Instead 

of pricing the entire book of business with an assumed even probability of criminal background, 

an auto insurance carrier needs to consider introducing the additional variable to remove 

assumptions from premium development approaches. Due to state regulatory restrictions, rating 

variables must be observable and actuarially validated before being used for pricing 

segmentation. Until recently, property and casualty insurance carriers did not have substantiated 

individual criminal background data available for predictive modeling. The research study will 

not predict which drivers are more likely to commit criminal offenses, but will be able to 

determine if drivers with criminal backgrounds are unprofitable enough to warrant premium 

increases between 10 and 20 percent to offset higher loss costs. 

Transition and Summary of Section 1 

 Research and the insurance industry have indicated there is a need for additional 

predictive variables to support further risk segmentation to avoid average pricing and rate 

subsidization by lower risk drivers (Ishida et al., 2016; Nagrecha et al., 2018; Nicholson, 2019; 

Roy & George, 2017). The research study will increase the depth of literature on predictive 

rating variables available for actuarial analysis and support for rate and rules filings at the 

individual departments of insurance. The lack of identifying and verifying highly predictive 

rating variables for auto insurance pricing to help reduce the need for rate subsidization is the 

general problem to be focused on with the study. A quantitative correlational analysis was 

conducted to address the research questions and determine the predictive strength of key 

independent rating variables. The next section of the research study will discuss the role of the 
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researcher, the dataset with the appended third-party information, the population and sampling, 

as well as the analytical approaches and the verification of reliability and validity of the research. 
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Section 2: The Project 

The quantitative study is focused on determining the criminal background variable 

predictive strength in estimating loss costs for auto insurance ratemaking. Based on the 

information from the auto property and casualty literature review, there is a gap in the research 

for how risky personal behavior may translate to risky driving behavior. The data and analysis 

presented in The Project section will provide the details for the analytical approach and 

verification process for modeling the criminal driver background variable impact with an auto 

insurance book of business.  

The Project section encompasses the full range of procedures necessary to conduct the 

research study, the overview of the purpose of the study, the role of the researcher, driver data 

access, research methodology and design, data population and sampling, data collection, 

analytical approaches, and a review of the validity and reliability of the data. This section is 

essential to fulfill the requirements of a properly executed quantitative research study. 

Purpose Statement 

The purpose of this quantitative study is to examine if an individual’s criminal 

background is associated to a person’s future driving behavior and if it is predictive of future loss 

costs. Risk segmentation attempts to mitigate pricing subsidization between lower and higher 

risk drivers, which supports market efficiency and addresses the increase of social risk cost and 

the loss of equity (Duan et al., 2018). The research by Hoy (1982) showed higher-risk classes 

receive coverage at an actuarially uniform premium, while lower-risk classes receive less than 

full coverage at an actuarially uniform premium. Hoy (1982) highlighted if the proportion of 

lower-risk class falls below a determined breakeven threshold, the competitive equilibrium will 

no longer be a no-subsidy segmentation approach. Lower-risk classes would subsidize the 
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higher-risk classes, which would not meet management and shareholder expectations in the 

current economic and competitive climate. 

Private passenger auto premiums serve two primary purposes for a property and casualty 

carrier: one being the premium should be able to cover the expense and risk obligation, and the 

other should price the insurance premiums equitably for specific risk classes (Cova et al., 2016). 

Individual criminal background information has only recently become available as third-party 

data available in public and private databases. Including individual criminal background as a 

rating or underwriting variable would potentially allow carriers to further segment higher-risk 

drivers for accurate pricing, which would allow carriers to balance profitability with equitable 

pricing in the market. 

Role of the Researcher 

The researcher’s quantitative study role is to work with the insurance carrier’s data 

science team and a third-party vendor to provide validated data to append to an existing auto 

insurance dataset for statistical analysis. The study’s selected approach is a correlational design 

to support the potential impact of individual criminal background behavior on auto insurance 

loss costs. With the proposed dataset and the amount of data available, a quantitative research 

method is the preferred analytical approach for statistical analysis (Creswell & Creswell, 2018).  

To restrict personal identifiable information (PII) data from being used in the analyses, 

the carrier’s data science team conducted the data extract from the existing non-standard auto 

data warehouses. The dataset from 2014 to 2017 included 20 states with individual departments 

of correction contributing to the third-party vendor database. Data from 2014 – 2017 was used to 

ensure developed incurred losses and earned exposures would be available for the loss cost 

calculations and determine if the criminal background variable has predictive strength in 
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estimating pure premium. The data science team appended criminal background variables to 

448,755 non-standard auto insurance records, which also contain an insurance-based credit 

variable so the researcher could determine if there is a correlation between the two driver rating 

variables. The criminal background variable will also be introduced to the current Generalized 

Linear Model both with and without the insurance-based credit variable to determine the model’s 

predictive strength when including the additional variable. Based on the correlational design, 

outside of appending the criminal background data to the individual driver records, no additional 

data elements or PII data are included with the finalized records. 

Multiple linear regression using Generalized Linear Models will be the modeling 

approach using the Pearson correlation coefficient r for the parametric statistic (Krzywinski & 

Altman, 2015). The Generalized Linear Model is the current actuarially approved method for 

pricing the auto line of business filed with the state departments of insurance. Both independent 

variables, insurance-based credit score and criminal background, are evaluated for contributions 

to predicting the dependent variable, expressed as loss costs, and in determining correlation. An 

evaluation of each research question and the supporting hypotheses is necessary to determine if 

statistical significance exists. 

Participants 

The research study dataset was extracted from an existing property and casualty auto 

insurance pool of non-standard auto policyholders. No human participants or their associated PII 

data were made available during the study. Three years of experience data were selected to allow 

for earned exposure and incurred loss development for the pure premium calculation. Witt 

(1974) stated full credibility implies the current loss experience was adequate to conducting 

ratemaking based on the sample of experience alone. If it were possible to study a more 
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considerable amount of similar data, the rates developed would be no more reliable than the rates 

based on the selected loss data given 100 percent credibility.  

An extract from the insurance record data included 20 states, and all records with 

complete driver information are in the data extract. The data science team appended the most 

recent criminal conviction occurrence for all drivers with an event. The third-party database 

contained data from all 50 states and also included federal criminal convictions. The third-party 

criminal history is independent of driving history captured by the state departments of motor 

vehicles, and the conviction data are cross-referenced and validated to ensure no overlap in the 

external data sources. 

Research Method and Design 

The complexity of current property and casualty business models requires research 

designs, which provide experimental control using large amounts of data from an organized set 

of policy records and quantitative analysis (Collins et al., 2009). Design methods are 

foundational studies to assess and develop approaches based on historical research (Lock & 

Seele, 2015). Collins et al. (2009) stated the research design should advance the analytical 

methodologies and support the underlying hypotheses and provide potential improvements. A 

quantitative research approach was selected over a qualitative research approach because the 

archival dataset has historical numerical and categorical data instead of records based on surveys 

and observations (McCusker & Gunaydin, 2015). 

Discussion of Method 

Brockett and Golden (2007) stated correlations are a statistical means of determining the 

relationship between a risk factor and the likelihood of a loss event. A quantitative correlational 

research approach is applicable based on the theoretical framework, which will test the 
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relationship between the dependent variable, pure premium, and the independent variables, 

criminal background, and insurance-based credit score. The statistical analysis will determine the 

relationship between the variables and the strength and contribution of each variable to the model 

(Brannon, 2016). 

The variables and the research questions’ desired outcomes determined the quantitative 

approach over a qualitative or mixed methods approach. The population of archival numeric and 

categorical data is from the carrier’s policy data warehouses. The data science team also 

appended claims and third-party data for modeling. In contrast, qualitative approaches for 

research studies provide a method to describe and document analytical overviews from small 

study samples to extrapolate to the broader general population (Siedlecki, 2020). 

Discussion of Design 

A correlation design will help establish if a relationship is present between criminal 

background, insurance-based credit scores, and pure premium. The research study defines the 

nature and the magnitude of the relationship between the variables (Salkind & Frey, 2020). 

Bosco et al. (2015) also underscored the facts citing a quantitative correlational approach 

supports research involving both financial services and pricing studies as the method is trying to 

find a single answer to the proposed hypothesis. The experimental and descriptive quantitative 

approaches were not a good fit for the proposed research study. The approaches are directed 

toward research subjects in natural environments and could be considered more preliminary 

research for simple statistical designs (Edmonds & Kennedy, 2017). 

Salkind and Frey (2020) stated the experimental and quasi-experimental approaches to 

quantitative research require independent, dependent, and control variables, including a control 

procedure to distinguishing a cause and effect relationship. Edmonds and Kennedy (2017) 
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outlined the descriptive design as more in line with a survey directed to a random sample within 

a target population. Researchers conduct surveys to observed trends and behaviors within the 

sample population, and the proposed research study is to determine the correlation between 

variables (Bosco et al., 2015). The experimental, quasi-experimental, and descriptive designs are 

not compatible with the dataset and the hypothesis developed for the correlational study. The 

experimental, quasi-experimental, and descriptive designs would also require manipulating the 

data collection (Siedlecki, 2020). 

Key Independent and Dependent Variables. The dataset represents rating variables, 

including the most recent appended criminal conviction events to the insurance records from a 

non-standard auto carrier. The segmentation of criminal events into 23 categories for 

misdemeanor and felony convictions are determined by the vendor and standardized across the 

reporting events from the individual departments of correction. There was an eight percent hit 

rate for drivers with criminal background data from the population of the 20 states selected for 

the study. Nagrecha et al. (2018) stated given the limitations of using the probability of criminal 

activity alone for a policy, the research requires metrics, which measure the overall impact on 

loss costs and should include all underwritten policies with the associated losses and earned 

exposures. A significant component of the study is all drivers who did have a criminal conviction 

in their background would be offered insurance coverage at the proper premium and were not 

underwritten away as an unacceptable risk (Kurlychek et al., 2006). 

The insurance-based credit score is a well-established rating variable and is ranked within 

the top three most important loss predicting variables when evaluating individual line coverages 

during multivariate modeling (Brockett & Golden, 2007). The direct statistical relationship 

between the primary named insured’s financial stability and future loss events can help the 
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carrier determine underwriting rules and rate segmentation (Stiff et al., 2019). Rating categories 

determine buckets of insurance-based credit scores, and the study used a vendor-filed and 

approved model. There were 14 credit categories defined by the vendor for analysis and rating 

purposes, with no individual scores being present in the dataset and only the credit bucket 

associated with the insurance record available for the study.  

For this correlational design, the modeling of two independent variables against the target 

variable, or the dependent variable, determines the relationships between the variables within the 

non-standard auto insurance policy population (Curtis et al., 2016). The pure premium was 

calculated for each insurance record by summing the incurred losses and dividing by the sum of 

the earned exposures, divided by 365 days to adjust for daily earnings. This method allows the 

models to determine the projected values for insurance loss costs (Werner & Modlin, 2016). 

Using the pure premium method allows for a frequency and severity approach using Generalized 

Linear modeling (Frees et al., 2014; Garrido et al., 2016; Jeong et al., 2017). 

Summary of Research Method and Design  

A correlational analysis based on a quantitative approach was selected because of the 

historical numerical data to determine the predictive strength of the primary independent variable 

with the dependent target variable. A quantitative design was determined to be more appropriate 

than a qualitative, observational approach to collecting data. For successfully implementing a 

new variable into the underwriting or ratemaking solution, actuarially sound statistical support 

needs to accompany any filing made with the state departments of insurance (Spedicato et al., 

2018).  
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Population and Sampling  

Lock et al. (2016) stated all individuals or subjects of interest, including all of their 

associated elements, are defined as the population. For financial and pricing studies, a researcher 

may be working with a sample or subset from a large population of available recorded 

occurrences. The dataset and records selected for modeling determine the difference between a 

sample and the full population (Lock & Seele, 2015). The quantitative study’s target modeling 

population is a subset of insurance records between 2014 and 2017, from 20 states with fully 

developed losses and earned exposures required to determine a more accurate forecast of the 

dependent variable, pure premium. 

Discussion of Population  

The researcher had a large population of non-standard auto records from a property and 

casualty insurance carrier to append the criminal background variable for modeling. Auto 

insurance carriers retain insurance records for six years to meet state regulatory requirements 

before archiving the data for additional research purposes. Data Science and actuarial teams 

prefer to use eight to ten years of data brought to current rate level for predictive modeling. The 

additional data does not add incremental value to smaller-scale studies outside of ratemaking 

(Quan & Valdez, 2018).  

Discussion of Sampling  

The convenience sample of insurance records included all policies for the 3 years 

between 2014 and 2017 from 20 states (Edmonds & Kennedy, 2017). Using the most recent 

three years of experience data allowed for loss and exposure development and facilitated the 

most recent criminal conviction event to be appended to the dataset. Etikan et al. (2016) stated in 

cases where the data were readily available, and convenience sampling is a suitable approach as 
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the records from the target population are homogeneous. There would be no difference from a 

random sample. Included in the three years of data are 448,775 insurance records with rating 

variables for modeling. The team ordered criminal history reports for each driver on the policy. 

The data appended included the single most recent criminal conviction on record or a clean 

criminal history report for each driver. 

Summary of Population and Sampling  

The full population of ten years of non-standard auto insurance records provided a readily 

accessible pool of risks for appending the criminal background variable to driver records. The 

researcher and the supporting data science team had the required experience grounded in 

insurance-based pricing and modeling knowledge to select an appropriate and credible dataset 

using a convenience sampling approach for the quantitative study (van Rijnsoever, 2017). During 

the three years with developed losses and exposures, all insurance data are available for 

modeling with a criminal background report for each listed driver. The characteristics of the 

convenience sample used for modeling were homogeneous as the elements for rating and 

evaluating each insurance record are the same (Etikan et al., 2016). 

Data Collection  

Cotteleer and Wan (2016) stated data acquisition phases could be shorter by using 

corporate archival information as a reliable way to bridge the gap into developmental research 

with large amounts of standardized data available for studies. The researcher and the carrier’s 

data science team had the required industry expertise to select an appropriate and credible 

dataset, normalized, and summarized at the risk record level. The use of corporate archival data 

allowed for the losses and exposures to develop to provide a more accurate dependent variable, 

pure premium, to support statistical analysis. 
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Instruments 

For the non-standard auto dataset, the carrier’s data science group will work with the 

researcher to determine the necessary elements for the data extract and the appropriate period. 

The data science group will query the necessary variables so the researcher will not have access 

to PII data at the policy level. The team will provide the data to the researcher in both a 

Statistical Analysis System (SAS) file, and a Comma Separated Values (CSV) file. SAS 

OnDemand for Academics is available for Generalized Linear Modeling (GLM), and IBM 

Statistical Package for Social Sciences (SPSS) is available for variable categorization and the 

initial exploratory data analysis. The data variable library is easily accessible from a Microsoft 

Excel file. Surveys and interviews are not needed to complete this study. 

Data Collection Techniques 

The data science analyst will write a SAS query to pull the necessary variables from the 

carrier’s Policy Enterprise Data Warehouse (EDW), Billing Data Warehouse, and Claims Data 

Warehouse. The analyst will also consolidate the line coverage level variables up to the policy 

level. The raw data stored in the various EDWs was normalized for insurance carrier actuarial 

pricing and reserving and at the lowest level possible for modeling and the policy number 

replaced with a record identification number. 

The team will append criminal history events for each driver in the population, and the 

activity codes are aggregated at the record level. The criminal background reports are classified 

as Federal Credit Reporting Act (FCRA) information, and all report orders have the consumer’s 

approval at the new business quote. Activity codes were dividing into logical categories for 

future analysis at the event level. No-hit reports warranted a separate category for no criminal 

background activity. The approach for ordering reports on all drivers follows the same 
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guidelines, which are in place for ordering an insurance-based credit report on all risks being 

quoted for insurance so ensure fair treatment of individual risks. 

Data Organization Techniques  

Three years of archive data from 2014 to 2017 were available in both CSV and SAS file 

format for analysis purposes. The CSV file is formatted to import into SPSS to categorize 

nominal variables and ensure all data fields are ready for modeling. New variables were created 

in SAS to aggregate incurred losses and earned exposures at the record level. Earned exposures 

needed to be divided by 365 (days) to calculate the pure premium variable by dividing total 

incurred losses by earned exposures for each record.  

The data file storage includes a secure personal hard drive, a flash drive, and the SAS file 

in SAS OnDemand cloud storage. After the research publication, the destruction of all data files 

is necessary to remain in compliance with the Non-Disclosure Agreement with the insurance 

carrier. The data science team has the original raw dataset and can retain the information to 

comply with federal guidelines. The overview of the approach and the data elements used will 

allow for the replication of the analysis. 

Summary of Data Collection  

Corporations with growing archival data provide new analytical opportunities, which 

researchers need to leverage to gain significant product development insights and enhanced 

business cases. While some academics are more inclined to conduct organic field studies, more 

researchers are finding having access to increased amounts of new data allows for advanced 

business analytics with a reduced level of risk and shorter timelines (Cotteleer & Wan, 2016). 

The three years of archival data extracted by the carrier’s data science group and the appended 

driver background conviction events will allow for multiple linear regression analysis of the 
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target variables with pure premium. Individual surveys or interviews are not needed to develop 

the dataset, and the extract did not include any PII data. The archival dataset will be the basis of 

the statistical analysis for each research question, and the destruction of all data files will occur 

upon publication of the study. The carrier’s data science team will retain a copy of the dataset to 

comply with federal guidelines. 

Data Analysis  

Each variable will require exploratory data analysis to understand the data structure and 

verify assumptions before conducting inferential statistics, which will drive the types of 

statistical tests and the appropriate models. The dependent variable for insurance modeling does 

not have a normal distribution because each policy record will not have a loss event to calculate 

individual loss costs. Historically, claims frequency data follows a Poisson or negative binomial 

distribution (Yip & Yau, 2005). For skewed independent variables, as long as the residuals have 

a normal distribution, those variables can be used in linear regression models.  

Variables Used in the Study  

The dataset is archival data from an insurance carrier, and there are no variables with 

missing data. During exploratory data analysis (EDA), an outlier review will determine if any 

data needs to be imputed or truncated. The criminal background variable is a categorical 

variable, which follows a similar zero-point, right-skewed distribution as the dependent variable. 

The insurance-based credit score variable converts to a categorical grouping as the carrier files a 

credit group instead of an actual score, which follows a normal distribution. The incurred losses 

divided by the earned exposures create the pure premium variable for each risk. The results 

skew-right due to the large number of zero-incurred claims. A log transformation converts the 

pure premium to a normal distribution to meet the assumptions of inferential statistics (Bamattre 
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et al., 2017). For categorical variables, Cramer’s V is a nonparametric measure to test the 

strength of the relationship between two variables and is appropriate for testing the criminal 

background and insurance-based credit score variables (Morgan et al., 2013). 

The correlational study includes modeling from a one-parameter exponential family of 

distributions, which can accommodate zero-point distributions (Haberman & Renshaw, 1996). 

The logistic regression model, where the dependent variable is dichotomous, is the consistent 

choice for auto insurance modeling (Klieštik et al., 2015). Since most of the study’s available 

variables are categorical, using binned-variables and a Poisson Regression Generalized Linear 

Model approach is an appropriate method for hypothesis testing insurance claims event data 

(Goldburd et al., 2020; Little, 2013). Additional variables for the Generalized Linear Model 

portion of the study include age, past driving violations, financial responsibility indicators, and 

months of prior insurance. Interaction variables, which are the product of multiplying two 

independent variables, are also available for modeling the strength of the two independent 

variables (Allison, 1977).  

Table 1 

Correlational Model Variables 
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Hypothesis 1  

The lognormal transformed dependent variable, pure premium, comes close to a normal 

distribution and compares the count events with a Poisson Regression Generalized Linear Model 

approach (Goldburd et al., 2020). The model test uses an alpha set to the 0.05 level to determine 

an association between the criminal background variable and the dependent variable. The null 

hypothesis, stating there is no incremental predictive strength for criminal background, will be 

rejected if р < 0.05, which is statistically significant (Leech et al., 2015). 

Hypothesis 2  

The dataset has a large population sample size for a Chi-Square and Cramer’s V to test 

the relationship between criminal background and insurance-based credit score. For the Chi-

Square Test of independence, the significance level is set to p < 0.05 to assess whether to accept 

or reject the null hypothesis and determine if the two independent variables of interest are 

unrelated (Morgan et al., 2013). The Cramer’s V statistic provides information concerning the 

strength of the relationship between criminal background and insurance-based credit score and is 

similar to reading a correlation score with an outcome close to zero indicating no relationship 

(Weihs et al., 2018). 

For the second set of hypotheses statements, the initial iteration of the Poisson Regression 

Generalized Linear Model will be run with the criminal background variable and tested at a 

significance level of р < 0.05. The same version of the model will run with the insurance-based 

credit score, a significance level of р < 0.05, and the criminal background variable removed. 

Variable selection is an essential step in statistical model evaluation, providing the simplest 

model for the data set provided to improve prediction outcomes and retaining the goodness of fit. 



76 

 

The Akaike’s information criteria (AIC) can evaluate each iteration of the model and select the 

model with the smallest AIC value (Kimura & Waki, 2018).  

Summary of Data Analysis  

Insurance rating variables are distinctive due to the event-specific, right-skewed data, 

present with both the dependent variable and the contributing independent variables used for 

modeling. The ability to use inferential statistics and models aligned with categorical variables 

helps provide the required analytical support used in ratemaking (Ranganathan et al., 2017). The 

statistical review of the criminal background variable must support the purpose statement and 

needs to determine the magnitude and strength of the relationship to pure premium. The analysis 

also needs to address if an interaction exists with the most predictive independent rating variable, 

the insurance-based credit score. 

The research questions and the associated hypotheses framed by the Chi-Square and 

Cramer’s V tests, test the level and strength of the relationship between two variables, are 

appropriate for testing the criminal background and insurance-based credit score variables with 

pure premium (Morgan et al., 2013). The Poisson Regression Generalized Linear Model uses the 

lognormal transformed dependent variable, pure premium, to compare the count events 

(Goldburd et al., 2020). Evaluating and ranking the models with a combination of the smallest 

AIC value and fewest number of variables from the data set supports the variable selection 

process to improve overall prediction performance (Kimura & Waki, 2018). 

Reliability and Validity  

The study’s causal-comparative design attempts to find specific relationships between the 

independent variable, criminal background, and the dependent variable, pure premium. 

Reliability and validity are review processes, which attempt to evaluate the overall quality of the 
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data collection approach and the supporting measurements and statistical analyses (Heale & 

Twycross, 2015). Reliability addresses the consistency of the study’s measurements, and validity 

indicates how accurately the method addresses the measurement approaches (Uraschi et al., 

2015). 

Reliability  

The study’s design addresses reliability during the data collection and data analysis 

phases of the research (Yin, 2018). The carrier’s data science will query the archival dataset in 

the study consistent with an auto insurance actuarial approach. An enterprise data warehouse 

team cleanses and normalizes the data before storage. Accuracy and consistency are necessary to 

ensure repeatable tests at different times and for different sample populations (Barnes et al., 

2018). Even though the archival dataset is not public, insurance carriers are held to the same 

standards when filing actuarial exhibits with the individual departments of insurance. The 

actuarial support exhibits follow a similar format across carriers.  

The study introduces a second independent variable, insurance-based credit scores, to 

explore possible alternative explanations during statistical testing (Yin, 2018). Comparing each 

variable within the Generalized Linear Model and against each other may help explain the why 

or the how of the potential outcomes (Uraschi et al., 2015). The archival data for the study allows 

for more advanced statistical modeling with a larger dataset and quickly appending available 

third-party data for testing purposes. The dataset used in micro-organization research can 

increase the statistical significance by reproducing the study with additional information (Barnes 

et al., 2018).  
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Validity  

The validity determines the research methodology’s accuracy and whether the approach 

produces the intended results (Watson, 2015). Heale and Twycross (2015) stated criterion 

validity explains the correlation between the variables of interest, the statistical testing approach, 

and whether the testing results correlate with previous test results. Both insurance-based credit 

score and criminal background reviews for correlation with the dependent variable pure 

premium. The insurance-based credit score is currently the most predictive variable in auto 

insurance pricing and serves as the baseline for a test with pure premium (Bärtl & Krummaker, 

2020; Brockett & Golden, 2007; Golden et al., 2016; Insurance Information Institute, 2019; Lee 

et al., 2005; Morris et al., 2017). An archive dataset, the selected research variables, and a 

Generalized Linear Modeling approach will determine a correlation between the variables. 

Content validity determines if the selected instrument for measurement used for a study is 

appropriate for the data and the research design (Creswell & Creswell, 2018). The concerns 

involving content validity are not statistical and instead are focused on the amount and level the 

archive data used in the study is enough to determine sample behavior (Watson, 2015). The 

insurance loss cost study uses a historical dataset instead of an instrument to measure the 

criminal background behavior. 

The construct validity involves the precision of the forecasts and measurements for the 

outcomes of the research questions posed (Heale & Twycross, 2015). The most significant 

challenge for construct validity is matching the categorical variables with the correct statistical 

tests. The data science team and recent publications on insurance modeling offered guidance for 

appropriate approaches. Bian et al. (2018) supported using a Generalized Linear Model for the 

validation process of testing insured’s loss costs and matched criminal background behavior. For 
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categorical or binned data, Poisson Regression Generalized Linear models are appropriate and 

mitigate construct validity concerns (Little, 2013). 

Summary of Reliability and Validity  

The study design and quantitative approach with an archival dataset support the research 

questions and apply them to the current insurance industry pricing methodology. There is an 

expectation the archive data will help moderate the risks associated with reliability and validity, 

and the study is using the same statistical models from research published in academic journals 

to evaluate rating variables (Cather, 2018; Frees et al., 2014; Garrido et al., 2016). The data 

science team will also provide suggestions for ensuring the study approach is accurate. 

Reliability and validity reviews are critical steps, and the study should strive to 

accomplish to ensure the research is replicable (Yin, 2018). Reliability specifies the level and 

degree the study measurements are consistent, and the research is replicable. Validity tries to 

address the accuracy of the modeling and the actual outcomes of the study. The use of archival 

data may decrease the overall risks associated with reliability and validity and may improve the 

quality of the study’s outcomes.  

Transition and Summary of Section 2  

The quantitative, correlation study examines the potential relationships between the 

independent variables, criminal background, and insurance-based credit score, with the 

dependent variable pure premium. The purpose of the study, research questions, and the 

hypotheses are relevant to the research approach and provide the analysis direction. The 

Generalized Linear Modeling approach supports the research questions and hypotheses and is 

similar to other published auto insurance studies referencing rating variables (Tan et al., 2015; 
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Tan, 2016a, 2016b). The data science team mitigates concerns involving reliability and validity 

with the use of archive data. 

The final section addresses the outcomes of running the analyses for the research 

questions, and the results of measurements and modeling assessments. A brief study overview, 

an examination of the research questions, and the related hypotheses and the statistical 

significance of the outcomes occur in the final section of the study. The section will outline the 

auto insurance industry’s applications, the recommendations for immediate and future actions, 

and additional research to pursue. The section will conclude with an evaluation and reflection of 

the study and the overall research process.  
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Section 3: Application to Professional Practice and Implications for Change 

The research was completed to determine if there are potential rating variables, which 

will improve the predictive models used for auto insurance pricing to decrease the need for rate 

subsidization. Carriers have access to more robust data, providing advanced business insights for 

more accurate model outcomes. Including the criminal background variable to the existing 

Generalized Linear Model allowed for the testing of relationships between the independent 

variables and the overall goodness of fit of the various model iterations (Kimura & Waki, 2018). 

The dataset with non-standard auto insurance records was used to test the research 

questions and the supporting hypotheses. The section will include an overview of the research 

approach and how it applies to the finance field. The analysis outcomes provide a detailed 

discussion of the descriptive statistics, tests conducted, and the hypotheses’ results for the 

research questions. The Akaike Information Criteria, measuring the goodness of fit with in-

sample prediction error for the Poisson Regression General Linear Models, had the lowest AIC 

score when both of the key independent variables were included in the model. 

Overview of the Study 

The purpose of the quantitative, correlational study was to test the predictive relationship 

of criminal background with insurance-based credit scores and pure premium to determine if 

pricing segmentation opportunities exist. Research on the industry reveals carriers using average 

pricing are under pressure to find risk segmentation opportunities to provide a better match for 

an individual’s risk profile based on rate differentiation (Lass et al., 2016). Investing in premium 

development design based on updated risk factors allows for heightened competition and 

decreased rate subsidization.  
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The study expanded on business process innovation research and addressed the criminal 

background variable’s verification and rating use (Ohlsson et al., 2015). The first research 

question addressed the criminal background variable’s predictive impact on insurance loss costs, 

which were modeled with the dependent variable, pure premium. Criminal background was 

included in the Generalized Linear Model to determine if the variable improved the goodness of 

fit for predicting future pure premiums. The pure premium model had a better overall fit when 

the criminal background variable was included with other highly predictive variables already 

used for premium development. 

The insurance-based credit score was also compared to criminal background to determine 

if there was an association between the variables. For future department of insurance filings, the 

correlation between a person’s criminal background and credit score would be a question from a 

regulator. While the anticipated correlation was present, the association’s overall strength was 

small and weak, allowing both variables to be used in modeling. 

The last set of analyses was a series of Poisson Generalized Linear Models run with the 

dataset’s strongest predictor variables to determine the new variable’s potential influence for 

forecasting pure premium. Insurance-based credit score has a slightly higher correlation to pure 

premium, while the criminal background variable within the full model had a better goodness of 

fit response than credit when both variables were tested alone.  

Presentation of the Findings 

The study used a sample of archival 448,755 insurance records from 2014 to 2017. The 

single most recent, highest ranked, criminal background event was appended to the records to 

determine if the predictive model fit improved with the additional data. A random sample was 

run to split the dataset into sets for training and testing the models. Table 2 displays the 75/25 
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split, with 335,477 records used for training, 112,275 used for testing, with no excluded records. 

There was one identification variable for each model, either insured loss or pure premium, along 

with iterations of the eleven categorical variables. 

Table 2 

Auto Insurance Training and Test Dataset 

Sample N Percent 
Training 336,477 75.0% 
Testing 112,275 25.0% 
Valid 448,775 100.0% 
Excluded 0 0.0% 

 
Table 3 displays the descriptive statistics for the variables in the dataset. The Data Science team 

provided a scrubbed dataset and all 448,755 records have valid data in all fields with no missing 

or miscategorized data so no imputation was necessary. The Pure Premium variable was a 

skewed-right, scale variable, and was converted with a natural logarithm transformation for 

analysis purposes. 

Table 3 

Descriptive Statistics for Insurance Carrier Variables 

 

Tables 4 and 5 explored the frequency distributions for the two independent variables of interest. 

In Table 4, the criminal background events were separated into groups of events based on an 

individual having a clean record, felony, misdemeanor, or one of the fraud events. Within felony 
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and misdemeanor groups, the events were further segmented into categories increasing the 

granularity of the data being analyzed. The frequency distribution was heavily skewed-right due 

to the high number of clean records in the dataset. 

Table 4 

Criminal Background Frequency Distribution 

 

Table 5 displays the insurance-based credit score distribution, which was separated into credit 

score groups. The insurance-based credit scores were determined by a proprietary model 

provided by a vendor, and the consumer must provide permission for the carrier to run the score 

for rating and underwriting purposes. 

An insurance-based credit score is similar to a consumer credit score, but the insurance 

score range is much wider from top to bottom. The insurance-based credit score was developed 

to determine if a consumer will incur a loss and file a claim. For the insurance dataset, each state 

determines how No Hit and No Score reports will be handled for rating as consumer treatment 
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must be consistent. Those scores will be mapped to an average Score Group providing a more 

normal distribution for the dataset. 

Table 5 

Insurance-Based Credit Scores Frequency Distribution 

 

The research questions examined the criminal background variable’s predictive strength 

with the existing model variables to project pure premiums. Criminal background was also 

reviewed against the insurance-based credit score variable to determine if there was a correlation 

between the two variables and the strength of the association. The final set of analyses 

introduced the criminal background variable to the Poisson Regression Generalized Linear 

Model to determine if including the additional variable improved the model’s fit. Improving the 

model fit would decrease the reliance on price subsidizations by charging the right premium for 

the underlying risk. 
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The results for each research question and related hypothesis were addressed and 

supported by the statistical test results. The analytical outcomes will note any data outliers or 

discrepancies, and any potential impact on the approach. The association test results in research 

question one were statistically significant, and the null hypothesis could be rejected. The 

nonparametric correlational test for research question two between criminal background and 

insurance-based credit score was also statistically significant, and the null hypothesis could not 

be rejected, although the association was small and weak. There was an improved goodness of fit 

for the model for question three when introducing the criminal background variable and 

removing the insurance-based credit score variable, and the null hypothesis could be rejected. 

The findings are consistent with other supporting studies, which suggest carriers review the 

increase in precision and complexity of adding new variables to the pricing model before 

introducing the model to the market (Lass et al., 2016). 

Hypotheses 1 

The first research question introduced the criminal background variable to a variation of 

the current Generalized Linear Model using the strongest predictive variables to determine if 

increased model fit was possible.  

RQ1. What is the predictive impact of an individual’s criminal background on auto 

insurance loss costs? 

H1o = There is no additional incremental predictive ability of the current pure premium 

(DV) model with the addition of the criminal background data. 

H11 = There is additional incremental predictive ability of the current pure premium 

(DV) model with the addition of the criminal background data. 
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A Poisson Log Linear Generalized Linear Model was run on the testing dataset with the 

identified baseline predictor variables outlined in Table 1 with both the insurance-based credit 

score and the criminal background variables. Table 6 displays four models with the Akaike 

Information Criteria (AIC) score, which estimates the model’s relative quality given a set of data 

and the number of predictor variables used to create the model. All of the models have statistical 

significance with p < 0.001. Model 4, With Insurance-Based Credit Score and Criminal 

Background, had the lowest AIC value indicating a better fit than Model 2, which included only 

the Insurance-Based Credit Score (Kimura & Waki, 2018).  

Table 6 

Relative Quality of Statistical Models 

 

The AIC value, 204287.414, was the lowest for Model 4, and also had a p < 0.001, which 

allowed the null hypothesis to be rejected as there was an incremental improvement in the model 

fit and predictive ability with the addition of the criminal background variable. Model 4, with the 

corresponding variable coefficients, is displayed in Appendix A.  

In Logistic Regression, the Wald Chi-Square test can be used to assess whether or not a 

variable is statistically significant within the selected model. The output for Model 4: Poisson 

Log Linear Model with Insurance-Based and Criminal Background had the Wald Chi-Square 

statistics generated for the categorical variables in the testing or hold-out data set. Table 7 

displays the predictive variables based on higher Wald Chi-Square values and lower p -values. 

The criminal background variable had the highest Wald Chi-Square value, Wald X2 (9, N = 
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112,275) = 951.206, p < 0.001. For the testing data set, the insurance-based credit score variable 

ranked fourth in predictive contributions with a Wald X2 (13, N = 112,275) = 387.964, p < 0.001. 

Table 7 

Wald Chi-Square Analysis of Insurance-Based Credit Score and Criminal Background with 
Incurred Losses 
 

 

While all of the variables selected for modeling were statistically significant, the question 

of model complexity was also reviewed. The number of variables increased by more than one 

when including insurance-based credit score as the variable is also used in an interaction term. 

Using a combination of AIC value, Wald Chi-Square, and the number of predictor variables 

helps develop a better-balanced model selection for expected outcomes. 

Hypotheses 2 

The second research question addressed the concern there may be a significant 

correlation between the most predictive rating variable, insurance-based credit score, and 

criminal background. 
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RQ2. What is the relationship between the insurance-based credit score and criminal 

background? 

H2o = There is no statistically significant correlation between an individual’s criminal 

background and insurance-based score. 

H21 = There is a statistically significant correlation between an individual’s criminal 

background and insurance-based score. 

Figure 2 

Frequency Histogram of Incurred Losses with an Imposed Normal Curve 

 

The normality assumptions are not valid for the insurance dataset, and nonparametric 

tests were the appropriate approach to determine statistical associations between variables 

(Weihs et al., 2018). Figure 2 displays the relative frequencies of incurred losses, claims events, 

with 93.8% of the 448,755 insurance records having no losses associated with the insurance 

record with a mean of 331.23 and a standard deviation of 2772.628. A Pearson Chi-Square Test 
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was used with the large dataset to test the relationships between the binned variables. The Chi-

Square Test displayed in Table 8 had an X2 (117, N = 448,755) = 1037.880, p < 0.001, which 

indicated the relationship between the criminal background variable and the insurance-based 

credit score variable was statistically significant, and the null hypothesis cannot be rejected. The 

criminal background variable had 10 categories, and the insurance-based credit score variable 

had fourteen categories, which made a review of the differences between groups challenging. 

Because both variables had more than two categories defined, the Chi-Square value is also more 

complex to interpret, and the effect size should be considered. 

Table 8 

Pearson Chi-Square Systematic Association Test 

 

While the Chi-Square Test supported a statistically significant association between the 

two independent variables, the Cramer’s V test determined the relationship’s effect size. The 

Cramer’s V value displayed in Table 9, where Cramer’s V = 0.016, p < 0.001, which was closer 

to zero, indicating the overall effect size was small and suggesting a weaker variable association 

between the two independent variables (Leech et al., 2015). 
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Table 9 

Cramer’s V Strength of Association Test 

Nominal by Nominal Symmetric Measures 
N Cramer’s V p 

448,755 0.016 0.000 
 
Hypotheses 2.a. 

The third question addressed the model’s performance if the criminal background was the 

leading independent variable with insurance-based credit score removed.  

RQ2.a. What is the outcome of the predictive model if the insurance-based score is 

removed and is replaced with the criminal background variable? 

H2ao = There is no increase in the incremental predictive ability of pure the premium 

model with the addition of the criminal background data and the removal of the insurance-based 

score variable. 

H2a1 = There is an increase in the incremental predictive ability of the pure premium 

model with the addition of the criminal background data and the removal of the insurance-based 

score variable . 

Table 2 displays the AIC values for the Poisson Regression model’s various iterations 

with the key independent variables. Model 3, with criminal background and without insurance-

based credit score, had a lower AIC score 204710.470, p < 0.001, than Model 2 with only 

insurance-based credit score 205159.662, p < 0.001, and the null hypothesis can be rejected. The 

criminal background variable replacement model had a better goodness of fit than with the 

original independent variables, including insurance-based credit score, and was less complex, 

requiring a lower number of predictor variables. 
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Figure 3 displays the Receiver Operator Characteristic (ROC) curve for Model 4, which 

includes the insurance-based credit score and criminal background variables. The area under the 

curve (AUC = 0.629) determined how well the model could distinguish between classes. When 

the two distributions overlap, as shown in Figure 3, the curves indicated there was a 62.9% 

probability the model will be able to distinguish between positive and negative outcomes for 

incurred losses. An AUC = 0.500 would indicate the model cannot distinguish between positive 

and negative outcomes, with the preferred target range for the outcomes to be between 0.700 – 

0.800. 

Figure 3 

Receiver Operator Characteristic Curve for the Poisson Log Linear Model with Insurance-

Based Credit Score and Criminal Background 

 

The expectation would be to run the criminal background variable with the full 

Generalized Linear Model to determine the overall goodness of fit and the probability of 

accurately predicting the overall pure premium to cover the expected incurred losses. 
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Relationship of Hypotheses to Research Findings 

The research questions and supporting hypotheses were developed to determine if further 

rate segmentation in the auto insurance industry could potentially decrease rate subsidization 

through individual driver variables. Research question one and the second part of question two 

tested the overall goodness of fit for the criminal background variable in relation to the other 

predictive independent variables and the dependent variable in the predictive model. For the 

models where the criminal background variable was introduced, there was an improvement in the 

model’s ability to correctly determine pure premium for the independent variables associated 

with the risk. The Wald Chi-Square outcomes provided additional insights into the relative 

importance of the variables to the model. Criminal background performed well with a higher 

Wald Chi-Square result confirming the value of including the variable in the predictive model. 

The second research question takes into consideration the relationship between insurance-

based credit score and criminal background. While the Chi-Square test was statistically 

significant for variable association, the effect size was small and weak. The performance of the 

model variables behaved differently when evaluated independently, and both variables added 

value to the model. The Receiver Operating Characteristic Curve and the associated Area Under 

the Curve indicated the model with both variables had a slightly better ability to predict incurred 

losses, but there was likely room for additional improvement when making future variable 

adjustments. While the number of predictor variables was the highest in Model 4 displayed in 

Table 2 when the full Generalized Linear Model is evaluated for product pricing consideration, 

other variables with less predictive strength can be removed to reduce the model complexity. 
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Summary of the Findings 

The testing results for the research questions concerning the predictive strength of the 

criminal background variable showed statistical significance for goodness of fit within the 

Poisson Regression General Linear Models. The lower Akaike Information Criteria (AIC) scores 

for the models, which included the new variable, were compelling enough and statistically 

significant, suggesting improved predictive ability when using criminal background to determine 

individual pure premiums. The Wald Chi-Squared tests also provided additional insights into the 

criminal background variable’s strength when compared with the other top predictive variables 

within the model. Lass et al. (2016) stated that a condition for determining rate needs during the 

pricing process was the continuous verification of the current rating structure’s adequacy. 

For the correlation question, due to the larger number of categories, the crosstabulation 

data were challenging to interpret effectively even though the matrix meets the expected and 

observed count criteria (Gloor et al., 2016). While the Chi-Squared test underscored a 

statistically significant association between criminal background and insurance-based credit 

scores, the Cramer’s V test showed the relationship to be small and weak. In the full Generalized 

Linear model, the variables will be evaluated for predictive strength and overall contribution to 

the model fit. 

Applications to Professional Practice 

The research study was intended determine if there were credible ways to decrease rate 

subsidization in the auto insurance industry. Vehicle insurance is a several billion dollar industry 

where risk classification practices have significant economic impacts. Abraham (1985) stated 

risk classification practices also have moral implications because risk sharing is under-analyzed. 

If insureds have different core risk profiles leading to the development of distinctive loss 
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experiences, those insureds should be paying different premiums to cover their exposure. The 

study’s findings also addressed the literature gaps, which did not investigate risky individual 

behavior, partially due to the data not being available for validation. 

The most direct application for the study would be to work with the insurance carrier’s 

Data Science Team to order retrospective data on a larger insured population. Consumers sign 

agreements at the time of application, allowing carriers to order third-party data for rating and 

underwriting purposes. A larger sample with countrywide data and rating variables brought up to 

current rate level with the criminal background data appended would provide an actuarially 

sound approach to pure premium modeling. Kafková and Křivánková (2014) stated the use of 

Poisson Generalized Linear Models for describing and modeling the data are preferred over more 

complex models, which could integrate the criminal background into the iterative modeling 

process. The variable would be incorporated into the model rate order of calculation along with 

the associated coefficients and filed with the insurance departments. Actuarial exhibits of the 

variable performance and credibility would accompany the filing.  

There will be insurance departments, which will not allow the use of criminal background 

to determine rates. In those cases, the data can be used to underwrite the risk before allowing the 

consumer to purchase the insurance. Underwriting criteria allows the carrier to segment risks and 

protect the book of business by decreasing rate subsidization without increasing a consumer’s 

premium. In certain situations, some consumers who have been convicted of insurance or 

financial fraud may not be offered a policy from a carrier and will need to be insured under a risk 

pool plan where premiums are shared across consumers with similar backgrounds at a higher 

rate. Carriers who ask specific underwriting questions concerning criminal convictions but fail to 
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validate the answers with third-party data may find their products subject to adverse selection in 

the future. 

From the collection of teachings in the Book of Proverbs, “People learn from one 

another, just as iron sharpens iron,” and there is a mutual advantage when people and businesses 

can address uncomfortable situations with an agreed upon solution (Proverbs 27:17). By holding 

each other accountable for personal behavior and actions, we sharpen one another and become 

more effective. Using criminal background information to determine accurate premiums will 

allow carriers to fulfill their agreement to provide fair and accurate rates. They will also expand 

on the available literature for auto insurance pricing approaches.  

Cummings and Tennyson (1992) stated auto insurance was designed to define various 

financial risk classes and to develop better methods for controlling the risk. The analytics used to 

drive financial modeling are now the cornerstones for financial and insurance economics 

(Mankaï & Belgacem, 2016). The more carriers understand the underlying risk through 

contributing variables like criminal background, the higher the likelihood the risk will be 

assigned the appropriate premium to cover the exposure. Reducing subsidization helps the 

market effectively manage insurance premiums and allows for informal financial controls in 

favor of regulatory mandates.  

Recommendations for Action 

The supporting statistical analysis to answer the research questions indicated adding the 

criminal background variable could potentially improve the fit of the current pricing model for 

the carrier and increase rate segmentation. The full model was not included in the study due to 

the large number of variables, which would have expanded the analysis’ complexity without 

adding insights to the criminal background variable’s predictive strength. The results of the 
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Poisson Log Linear Model iterations and the Chi-Squared outcomes will be shared with the Data 

Science team. The Data Science team will also want to review the variable relationship between 

criminal background and insurance-based credit scores to understand the association, while 

statistically significant, is small and weak. Retrospective data on the existing policies could be 

ordered from the vendor to append the criminal background data to the larger dataset with more 

historical policies. The Data Science team will need to run the necessary model validation tests 

for goodness of fit, measurement of economic lift, and model stability before working with the 

Product Development team for individual product implementation. 

The Product Research and Development team will want to do additional research with the 

insurance departments for implementation approaches before submitting a rates and rules filing. 

While there are no current regulations concerning using criminal background for rating, some 

departments may want additional review time before providing program approval. For individual 

states, an underwriting rule approach instead of a rating approach may be more appropriate. 

Programs can run the criminal background reports and offer limited coverage, or no coverage, 

based on the information returned in an individual’s report. 

The study will also have implications for sales, marketing, and agent teams who have 

interactions with consumers. Advanced product information should be provided to allow people 

to understand the details of the enhanced underwriting or rating process. Individual driver 

information in its raw format will only be available for the consumer who owns the report. 

Tailored messaging will support the agents involved in the application process when a report is 

returned with actionable activity. Criminal background data are considered Fair Credit Reporting 

Act information safeguards and are in place for proper authorization and consumer protection 

when using third-party data. 
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Recommendations for Further Study 

The criminal background study intended to determine if additional variables could be 

identified to further segment risk to reduce rate subsidization in the auto insurance industry. The 

research addressed the literature gap concerning the use of verified criminal background 

information to improve the predictive model fit. The analysis also showed an association 

between the insurance-based credit scores and determined the relationship was not strong enough 

to remove the criminal background variable from the model. 

Years of research and investment in Onboard Diagnostic (OBD) and mobile applications 

by the insurance industry are being expanded to validate driving behavior and actual miles driven 

(Baecke & Bocca, 2017; Husnjak et al., 2015; Weidner et al., 2017). The capture of the 

additional data underscores the desire for consumers to align their insurance premiums with their 

exposure. Further studies, including data from usage-based insurance records and the driver’s 

criminal background history, may reveal additional characteristics of risky driving behavior, 

which may also present in the usage based insurance data. 

Another actionable area of research would be a correlational analysis between the 

territory and criminal background variables. Regulatory and consumer advocate groups may 

require supporting actuarial justification to determine potential bias in the criminal background 

variable based on urban, suburban, or rural communities. Insurance carriers do not collect data 

on ethnicity or socioeconomic status, and the analysis could be based on United States Postal 

Service and census attributes. 

The criminal background report can reach back as far seven to ten years, depending on 

how long the state department of corrections retains events on each individual. Studies on 

driving violations allow for multiple historical events to be used in both rating and underwriting. 
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A deeper analysis of the criminal background variable may help determine if tiered rating 

relativities may be used for multiple violations or if older criminal events should be surcharged 

differently than more recent criminal activity within the larger rating model. 

Reflections 

The research study developed during discussions at an advisory board meeting 

concerning homeowners’ insurance fraud. The vendor was open to testing the auto insurance 

dataset to determine if the criminal background data from the state and federal databases 

provided insights on loss costs. The one-way analysis supported surcharges for drivers who had 

criminal convictions in their background. While the translation of someone who exhibits risky 

behavior in everyday life to driving behavior was not a surprise, the variable’s performance in 

the predictive model was better than anticipated. 

The dissertation iterative writing process proved to be more challenging than the actual 

data analysis. The iterative writing and research process did become part of a daily routine, and 

at some level, will be missed. The program coursework started within sixty days of the 

completion of a Master of Science in Predictive Analytics, and some time without a deadline or a 

weekly progress report will be welcome. 

People do question the use of a person’s criminal background in the development of 

insurance rates. Committing a criminal act takes into consideration a series of choices. In Paul’s 

letters to the Romans, people are warned they will be subject to governing authorities, which are 

not a terror to good conduct, but to bad choices. Insurance carriers are also studying and 

verifying driving behavior through the use of telematics. The carriers are finding individuals will 

alter driving behavior when they think they are being watched but will revert to normal behavior 

within days (Ayuso et al., 2019). People cannot turn risky behavior on and off, and the research 
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study was able to verify criminal background convictions translate to risky driving behavior 

statistically. 

Summary and Study Conclusions 

The quantitative study’s objective was to determine if the criminal background variable 

was predictive of future loss costs, which would help define additional segmentation and reduce 

premium subsidization. An auto insurance carrier provided a cleansed dataset from 2014-2017 

containing rating variables with the criminal background variable appended. A series of Poisson 

Generalized Linear models were run with various iterations of the criminal background and 

insurance-based credit score variables to determine if the goodness of fit for the predictive model 

improved. The model, including both criminal background and insurance-based credit score 

variables, had the lowest Akaike Information Criteria score providing in-sample prediction error, 

and was statistically significant. The Data Science team will be investing resources for analyzing 

the criminal background variable in the full dataset for the next predictive model. While the 

insurance-based credit score and criminal background had a statistically significant association, 

the size of the effect was small and weak. The predictive model iterations also supported the use 

of criminal background alone if insurance-based credit score was not available in for rating. 

The analysis and the underwriting report’s availability provide an avenue to bridge the 

literature gap by providing the verified data for modeling. Historically, criminal background data 

was not available from a third-party vendor and was extraneous in the underwriting process. 

Introducing a new rating variable incorporates various financial and statistical approaches for 

developing models to predict more appropriate insurance models. Research to better determine 

contributing rate segmentation variables should continue with additional modeling and analysis 

to meet consumer, regulatory, and financial stakeholder expectations.  
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