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Abstract 

Databases store information about a system and provide a mechanism for data to be accessed and 

manipulated. While advancements in the 1970s provided a relational database model that has 

persisted to this day, web-scale era mass data needs surfacing in the 1990s and the early 2000s 

revealed limitations in the scalability of the relational model. As systems grew and transitioned 

into distributed architectures to support mass data storage and parallel processing, a complete 

overhaul of distributed computing technologies evolved that fundamentally departed from the 

relational data model in favor of the NoSQL data model. The course of this research details the 

scaling problems encountered by relational databases and the NoSQL solutions that made web-

scale systems possible. 

 Keywords: SQL, NoSQL, horizontal scaling, distributed systems 
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Performance Optimizations of NoSQL Databases in Distributed Systems 

Introduction 

A database comprises the methodology and implementation for which data are stored, 

structured, and manipulated in a system. Most often, databases are implemented when data must 

be persistent, that is, must remain available even when the process that created the data has 

ended. Historically this has been done using a relational database management system, or an 

RDBMS. The relational database model utilizes a spreadsheet-like approach to organizing data 

by storing it into tables and includes a straightforward querying language called SQL, or 

Structured Querying Language, to access and manipulate the data within a database. The 

relational database model became widely known and used beginning in the late 1970s and 1980s 

when the technology matured and was commercialized by some of the world’s largest 

technology companies like Oracle (Tiwari, 2011). However, this development predates the 

invention of the World Wide Web, created by Tim Berners-Lee in 1990, which marked the 

beginning of the web-scale era where applications began to be simultaneously accessed by 

millions of users around the world (Andrews, 2013).  

While RDBMSs had served and continue to serve small and medium size applications 

extremely well, the unforeseen rates of data generation brought about during the transition into 

web-scale systems led to challenges with the relational model, namely, datasets that could not be 

physically stored on a single server and instead had to be distributed across many servers. This 

can be quantified by some of the world’s largest technology companies such as Google and 

Amazon, which respectively had 900,000 and 450,000 servers running across their worldwide 

server farms in 2013 (“Facts and Stats,” 2013). Fast forward three years to 2016 and Gartner 
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estimates placed the Google server count at 2.5 million, almost three times their 2013 count 

(Google Data Center FAQ, 2017). As data generation rates skyrocketed in the early 2000s, 

companies like Google and Amazon realized that the relational database model would not be 

able to scale horizontally across thousands of servers to support billions of users as relational 

databases tend to favor vertical scaling, or increasing the computational power on a small 

number of servers as needs increase. This spurred a period of research that ultimately resulted in 

the rise of  NoSQL databases, which can stand for either Not only SQL or No SQL to indicate that 

some departure has been made from the relational model, either in part or in whole (Foote, 

2018).  

The following research describes the history of SQL and NoSQL databases, each model’s 

core architecture and properties, and why the properties of SQL limit its horizontal scalability 

while the NoSQL model thrives in a distributed, horizontally scaled system. The terms SQL 

model and relational database model will be used interchangeably throughout the course of this 

research. 

History of SQL and NoSQL Technologies 

 To fully understand NoSQL, it is important to first discuss the problem that led to its rise 

in popularity and use. As previously mentioned, the use of SQL and the relational database 

model emerged in the late 1970s. This was due to the combined research efforts of Ray Boyce, 

Ted Codd, and Donald Chamberlin, whose work became well-known after Boyce and 

Chamberlin published “SEQUEL: A Structured English Query Language” in 1974 (as cited in 

Chamberlin, 2012). The invention of SQL and the relational database model on which it relies 

marked a transformational improvement in the ability of developers to define and manipulate 
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data. With the help of these technologies, a significant abstraction in the data management 

process was introduced through the definition of an intuitive data structure and a simple querying 

language that could carry out complex inner processes. To the surprise of it its creators, the 

popularity and use of SQL grew rapidly after its commercialization in the 1970s and 1980s, 

leading to its eventual formalization by the ANSI and ISO standards groups (Chamberlin, 2012). 

From the time of its commercialization onwards, SQL became industry-standard practice for 

database management and is now a fundamental component of a formal computer science 

education. 

 The concept of a NoSQL database, or a database that departs from the relational 

architecture and properties in any way, is not as modern as it may seem, as lots of data storage 

applications were in existence throughout many domains prior to the RDBMS and SQL 

advancements. However, the emergence of NoSQL as a widely used and well-known technology 

was not brought about until the need for mass scalability by web-era applications introduced 

distributed and parallel computing in the 1990s and early 2000s (Tiwari, 2011). An early 

indicator of this need was recognized by search engine company Inktomi, which struggled to 

scale its relationally based systems and eventually collapsed. This problem was also encountered 

by search engine company Google, founded only two years after Inktomi, which experienced 

similar problems with efficient processing, effective parallelization, and scalability as its 

relational systems grew and evolved (Tiwari, 2011). To solve these problems, Google 

completely redesigned their system architecture by creating a distributed filesystem, a column-

oriented NoSQL data store, a distributed coordination system, and a MapReduce-based parallel-

execution algorithm, effectively optimizing each layer of their application stack (Tiwari, 2011). 
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Four papers were released by Google in the early 2000s detailing each of these optimizations 

which laid the groundwork for other companies to replicate Google’s work and transition their 

systems into a maintainable NoSQL-based web-scale architecture. These four advancements will 

be defined and discussed in greater detail in later sections to demonstrate why this transition 

fundamentally relied on a departure from the relational database model in favor of NoSQL 

technologies.  

 After Google released the papers detailing their system overhaul, developers at Yahoo! 

soon replicated Google’s design which ultimately resulted in an open-source distributed 

computing stack called Apache Hadoop.  This system was soon adopted by some of the world’s 

largest websites like Yahoo! and Facebook which were facing similar challenges in scaling their 

relational data architectures at the time (Vance, 2009). In 2007, online shopping giant Amazon 

published similar work detailing its NoSQL datastore Dynamo, which also departed from the 

relational model in order to support the scalability of Amazon’s systems as they struggled to 

manage the spike in activity during holiday seasons using a relational architecture (Brockmeier, 

2012). It is at this time that the term NoSQL began to gain traction, although it was reportedly 

first used in 1998 when developer Carlo Strozzi created a lightweight, open-source relational 

database that did not use SQL (Foote, 2018). While there has been some ambiguity since the 

term’s inception concerning whether the acronym translates to No SQL or Not only SQL, both 

are generally accepted and refer to the same technology (Foote, 2018). With two web giants, 

Google and Amazon, actively utilizing NoSQL technologies to support their worldwide systems 

and an open-source counterpart Apache Hadoop becoming more popular with smaller-scale 

organizations, NoSQL gradually became a widely known and implemented technology for 
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storing and managing data, especially in large distributed systems where the horizontal scaling 

capability of NoSQL is most utilized. 

SQL and NoSQL Data Architectures and Core Properties 

Simply stated, NoSQL is an umbrella term for any data storage system that doesn’t 

follow the well-established RDBMS architecture or properties (Tiwari, 2011). To follow the 

RDBMS architecture, a database must be organized into tables with rows and columns 

representing pre-defined relationships between the data objects. To follow the RDBMS core 

properties, the database must comply with the ACID components of atomicity, isolation, 

consistency, and durability (Amazon, n.d.). It is important to note here that a database must only 

digress from the RDBMS model in one of these categories, architecture or properties, to be 

considered a NoSQL database, although many digress in both. An example of this is the Neo4j 

graph database, which does not follow the RDBMS data architecture but does, in fact, maintain 

the ACID properties (Tiwari, 2011). 

Difference Between SQL and NoSQL Data Architectures 

 SQL.  The relational database provides a straightforward storage approach using 

rows,  columns, and tables much like a spreadsheet. In a relational database, tables are 

representative of entities, or objects, in a system, each entity holding its own data. Each column 

determines a certain attribute of that entity, with one column reserved as a unique identifier for 

the row, or primary key. These entities, represented through tables, can then interact by 

referencing one another through foreign keys, which are references to the primary key of another 

table. The database tables must be row-oriented, which simply means that all data within a row 

are stored together. SQL can then be used to search and manipulate a database through queries 
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and insert/update statements so long as the developer has accurate knowledge of the tables, their 

attributes, and how they are connected through primary and foreign keys. 

 NoSQL.  NoSQL diverts from SQL entirely and represents a much broader set of data 

architectures whose only uniting property is that they do not follow the relational model 

described above. As NoSQL has grown and evolved, four general categories have emerged to 

represent the different data architectures available; however, many combinations of these 

categories have been created and are often referred to as multimodal NoSQL databases. The four 

main NoSQL data architectures are described in detail in the following sections. Popular 

implementations of each category are included along with several examples of web-scale 

companies that have used the NoSQL category to scale their systems. 

Key-value stores.  Key-value stores are used to represent key-value pair data. The pairs 

are stored in a HashMap or an associative array with unique keys and a pointer to the data value 

for that key. Instead of using a query language like SQL, key-value stores access data using the 

HashMap get, put, and delete operations, which have an amortized time complexity of O(1), or 

constant time, lending very high performance (Tiwari, 2011). The key-value NoSQL data 

architecture does not require that values adhere to a pre-defined schema but rather stores each 

value as a binary large object (BLOB). This means that for some keys the value could point to a 

string, while other keys will point to a document, integer, or some other data type (Saravanan, 

2019). This provides a minimally structured architecture that allows greater flexibility in storing 

data. 

Representing key-value data in a relational database results in a two-column database 

where the unique key is in one column and the value is in the other column. However, all values 
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must adhere to the same predefined data structure, unlike the NoSQL approach which provides 

greater flexibility for value types. To access a key-value pair, a SQL query must be used which 

finds a particular key by searching the entire key column in linear time, or using an index for 

faster performance when one is available. Thus, key-value stores provide a significant 

performance improvement for searches, insertions, and deletions compared to the relational 

model because the key-value NoSQL approach relies on constant time operations whereas the 

relational approach relies on linear time operations and is dependent on its indexing technology 

to execute queries faster. 

Nonetheless, systems with well-defined entities and relationships are often best defined 

upfront using a relational database in small systems. If entities have many attributes that need to 

be accessed separately, storing all of these attributes together as one BLOB related to a single 

key can create confusion when accessing the data and may make more sense simply using a 

relational architecture and SQL. For this reason, key-value databases are best implemented in 

systems where the data and relationships between them are more varied. A common use of key-

value store databases is in caching, which provides an in-memory reference of the most-used 

data in an application to reduce disk accesses and boost performance. Because the data stored in 

a cache can vary widely and should be accessible extremely quickly for the cache to function 

effectively, a key-value data store can perform well in this situation (Tiwari, 2011).  Amazon’s 

original Dynamo database falls under this category, as well as the popular Cassandra, Voldemort, 

and Redis databases. The Redis database has been implemented at Snapchat, StackOverflow, and 

Craigslist as a part of their fundamental data architectures (Redis, n.d.). 
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Columnar databases.  Columnar databases, also called wide-column or column-oriented 

data stores, are similar to the relational architecture in that the data are stored in rows and 

columns, however they differ in that the orientation of the database relies on the columns, not the 

rows. This means that instead of storing database information on disk in row-groups, the data of 

each column are stored together in a column-group. To ensure that related information can still 

be viewed as a unit as in the row-oriented approach, each unit of data is structured as a key/value 

pair where the primary identifier, called primary key in relational databases but a row-key in 

columnar databases, is the same across column entries even though they are not physically 

located together on disk. To illustrate this, consider the following data stored relationally in 

Table 1. 

Table 1 

Relational database storing employee names and bonuses 

 

In this relational, row-oriented database, the data are stored on disk by row-groups as 

displayed in Figure 1. 
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Figure 1. Representation of data storage locations on disk using the relational model. 

In a NoSQL columnar approach, the data would be stored on disk by column groups as 

shown in Figure 2. 

 

Figure 2. Representation of data storage locations on disk using the columnar model. 

As Figure 2 displays, the data in the columnar approach are stored in column-oriented 

groups, and each entry is a key-value pair. Column-oriented data stores also provide column-

families to keep related columns nearby, so in this example the first and last name entries could 

be combined into a column-family bucket that stores the first and last name together. This 

transforms the database to Figure 3. 
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Figure 3. Columnar model using column-family buckets. 

 An important characteristic that most columnar databases maintain is a sorted order, 

which is key to their efficient processing capabilities. The units of data are sorted by row-key, as 

Figures 2 and 3 display. As data grows on a given node, this sorted order is maintained. That is, 

if a new data item is added to a previously existing row-key, say an employee who formerly had 

no bonus now has a $1000 bonus, the row-key for that employee must be inserted into the bonus 

column-group in sorted order, not simply appended at the end of the group. As a node becomes 

full, it splits into multiple nodes, which also maintain a sorted order with each other, providing 

one continuously sorted column-store even across nodes. Because the database maintains this 

sorted-order property, data seeks by row-key value are extremely efficient because the 

distributed architecture can quickly determine which node a row-key is on (Tiwari, 2011). 

Several additional advantages result in the columnar approach. First, null values are not 

stored when a value does not exist within a column. This contrasts relational models which 

allocate space for each column of a row entry and enter a null placeholder if there is no value for 

that row-column value, which can be overwritten later if the data state changes. Second, database 

columns do not need a-priori definition or declaration as they would in a relational database. 
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Because the columns can accept any data type so long as it can be persisted to an array of bytes, 

maintaining columns with varied data-type entries is possible (Tiwari, 2011). One final 

advantage that column-oriented data storage provides is that aggregate functions on column 

stores access contiguous memory. While a relational model would have to skip through the entire 

database of information to find and add each employee’s bonus into one aggregate sum, if for 

example the average employee bonus was requested, the columnar approach stores all of the 

bonuses together so that the information that is relevant to the search is accessible in contiguous 

memory and can be processed much faster (Monash, 2011). 

Columnar databases help distributed databases optimize performance by storing related 

information together in a new way, namely by column-groups as opposed to row-groups. 

However, to piece the data of a particular member back into a single unit, multiple column-

families must be accessed to retrieve all instances of the row-key and the data it contains. For 

example, in the database in Figure 4, both the name column-family and the bonus column-group 

would need to be accessed to combine related information on row-key 2 back into a single unit. 

Depending on how the data will most often be accessed, a relational model may be more 

efficient for smaller, minimally distributed systems because related data for each key will be 

stored together. For a highly distributed web-scale architecture, however, processing data in a 

row-oriented fashion is less efficient than processing it by column-groups. Just as indexes are 

used in relational databases to mitigate inefficiencies and provide quicker access to database 

information, indexes can be kept on NoSQL columnar databases as well to make re-grouping 

row-key entries faster.  
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Some popular columnar databases include HBase, Hypertable, and Bigtable, which is the 

column-oriented sorted data store originally developed by Google that will be discussed in 

greater detail in later sections. Besides Google’s use of Bigtable, HBase has been used by 

Facebook, Hulu, and Yahoo!, amongst others (Tiwari, 2011). 

Document-style databases.  Document-style databases are like key-value stores in that 

each document is assigned a unique identifier internally which corresponds to all of the data for 

that record (similar to the key-value BLOB). However, each document maintains a greater 

structure than the key-value BLOB as document data can be stored in JSON, XML (eXtensible 

Markup Language), or BSON (Binary Encoding Of JSON). Like columnar databases, document-

style databases only store information on the non-null attributes of an entry and do not pay 

attention to non-required attributes that are not included in a particular entry. This means that 

space is not wasted on null attributes and allows a system to hold more entries than it would in a 

SQL approach in the case of a sparse database. Document databases provide document indexing 

using the primary identifier of the document as well as the properties of the document which 

boosts search performance (Tiwari, 2011). Figures 4 and 5 demonstrate a simple SQL database 

and its NoSQL document store representation, respectively. 

 

Figure 4. Example single-table SQL database holding job applicant records. 
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Figure 5. Document-style representation of the data from two entries of the database in Figure 4. 

In Figure 5, a sparse row-entry, with the id of 1, and a dense row-entry, with the id of 2, 

are shown to demonstrate how document data stores ignore non-existent data points, while the 

SQL representation in Figure 4 still allocates space for each attribute even though many of the 

columns are empty for most of the entries. 

Document-style databases are like relational databases in that the data for an object or 

entity are stored together, not split apart as in columnar databases. A major disadvantage of 

document databases, however, is that they cannot perform joins like a relational database can. 

This can make data analysis and querying expensive, because the more loosely defined structure 

provides less information for algorithms to work with when searching for or grouping data 

(Saravanan, 2019). As previously noted, however, many NoSQL databases store specific 

metadata and indexes to make querying the data more efficient. Nonetheless, in a join-heavy, 

minimally distributed system a document-style database will likely perform much more poorly 

than a relational database. 
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Two of the most popular document-style databases include MongoDB and CouchDB. 

MongoDB has been implemented by Intuit and Github, amongst others, and CouchDB has been 

implemented at Apple, BBC, Cern, and more (Tiwari, 2011). 

Graph databases.  Graph databases model data using nodes and relationships where a 

node represents an entity or object and a relationship represents the connection between two 

nodes. Graph databases predetermine relationships, meaning that the database does not have to 

figure out how nodes are connected at query time using primary and foreign keys but rather has 

direct links to any related nodes. Because of this, resolving relationship paths can occur 

significantly faster in graph databases compared to a relational model.  

 Consider, for example, the following relational model of persons, department members, 

and departments as visualized in Figure 6. To find the names of all people in the persons table 

given a department id of 111, the database must first search the dept_members table for that 

department id and gather all corresponding person id’s which can then be used to search the 

persons table and find matches. This results in a lot of searching over irrelevant entries to find 

the needed information. 
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Figure 6. Adapted from “The Basics of NoSQL Databases – and Why We Need Them”, by N. 

Saravanan, 2019, Reprinted from https://www.freecodecamp.org/news/nosql-databases-

5f6639ed9574/. Reprinted with permission. 

 

 In the graph database visualized by Figure 7, predetermined relationships between these 

three entities eliminate searches over irrelevant data and allow for immediate access when 

resolving relational paths. 

 

Figure 7. Adapted from “The Basics of NoSQL Databases – and Why We Need Them”, by N. 

Saravanan, 2019, Reprinted from https://www.freecodecamp.org/news/nosql-databases-

5f6639ed9574/. Reprinted with permission. 

 

 One disadvantage to the graph approach, however, is that changing a relationship 

between two nodes requires a regressive update to the entire relationship path because when a 
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link is broken, the rest of the path cannot remain intact or the data will become dirty (Saravanan, 

2019). Thus, a database with persistent relationships that will be infrequently changed once 

created could be suitable for a graph database. Two well-known graph databases include Neo4j, 

which has been implemented at Walmart (Neo4j, n.d.), and FlockDB, which has been 

implemented at Twitter (Tiwari, 2011). Because social networks are easily represented using 

graphs, they have become a very common use-case for storing data in a graph database. 

NoSQL data architectures summary.  These four categories make up the primary 

approaches to structuring data using a NoSQL model and each provide their own strengths and 

tradeoffs when compared with relational systems. It is important to note that most complex data 

ecosystems implement many types of databases, often both SQL and NoSQL models, in order to 

optimize different aspects of a system. As the following sections will demonstrate, while 

relational models are at times optimal in small systems, their poor horizontal scalability severely 

limits their use in large distributed systems. 

Difference Between SQL and NoSQL Core Properties 

 The four NoSQL categories allow for more tailored data structures that better fit the 

characteristics of the data they store; however, NoSQL’s advantage in distributed systems relies 

on its ability to scale horizontally, which is a direct result of its core properties. 

 ACID properties.  The core properties governing relational databases are atomicity, 

consistency, isolation and durability. A database cannot be considered relational if it does not 

uphold these properties. Atomicity implies that transactions must be all-or-nothing, that is, all of 

the changes of a transaction must complete, or the entire transaction gets rolled back. For 

example, in a banking system, if a credit is made to account B successfully, the corresponding 
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debit from account A must complete. If a failure occurs that prevents the account A debit from 

completing, the entire transaction is rolled back, and the account B credit is reverted to its 

original state. Consistency requires that the state of data for an entire system remains the same at 

the beginning and end of a transaction. Building on the first example, if the sum of accounts A 

and B prior to the transaction equals $100, after completing the transaction between these 

accounts their combined sum must remain $100. Isolation seeks to hide intermediate states of 

transactions from other transactions so that multiple transactions can be run concurrently. 

Drawing on the original example once again, the isolation property ensures that any extraneous 

transactions looking at accounts A and B see the transferred funds in either account A or account 

B, but not in both, nor in neither. Finally, durability ensures that upon completion of a 

transaction, changes to the data are persistent and cannot be lost even in the event of a system 

failure. This is often enforced by logging transactions before completing them, so that if the 

system fails after the logging but before the transaction completes, the necessary information is 

available to restore the database to its previous state (IBM, 2019). Together, these properties 

define the “highest level of transactional integrity in database systems” making relational 

databases highly reliable and fault-proof (Tiwari, 2011). As further sections will demonstrate, 

however, the rigidity that the ACID properties impose on relational databases produce severe 

limitations in their ability to scale horizontally and support large distributed systems. 

 CAP theorem.  Barring exceptions like Neo4J, which more closely adheres to the Not 

only SQL naming convention as it meets some but not all of the qualifications of an RDBMS, 

most NoSQL datastores do not maintain ACID properties and instead adhere to the CAP 

theorem, which stands for Consistency, Availability, and Partition Tolerance and states that of 
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these three properties, one must be compromised to allow for the other two in large, distributed 

systems. The CAP theorem was originally developed by Eric Brewer, one of the founders of 

Inktomi, which was mentioned earlier as one of the first companies to run into the issues of 

RDBMSs in large distributed systems. While Inktomi did not survive the transition, the research 

Brewer conducted in his attempt to scale Inktomi laid the foundation for other companies to 

finish what he started. Brewer originally shared his research regarding the CAP theorem during a 

keynote at the ACM Symposium on the Principles of Distributed Computing in 2000 (Brewer, 

2000).  

The specifics of the three CAP domains are as follows. Consistency in CAP is not the 

same as its ACID counterpart. Here, consistency means that reads and writes are consistent so 

that concurrent operations both see a valid and consistent data state. This is more aligned with 

the isolation and atomicity properties of ACID and ultimately means there can be no stale data 

(Tiwari, 2011). Availability implies that the system is ready to serve the moment it’s needed. 

Minor delays and minimal hold-ups are not tolerated in the CAP definition of availability. If a 

system is not ready on demand, it is not available (Tiwari, 2011). Partition tolerance deals 

with the fact that NoSQL databases scale out, not up, implying that the data are partitioned into 

many units instead of one, stronger unit as storage needs increase. Due to this design, partition 

tolerance is “the ability of a system to continue to serve requests in the event that one or more of 

its cluster members become unavailable” (Tiwari, 2011, p. 174). In other words, failing nodes do 

not cause a failing system. 

 CAP not only differs from ACID in the composition and definition of its properties, but 

more importantly in that the CAP theorem recognizes a compromise is necessary to accomplish 
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the efficiency and parallelization of a distributed system while ACID is a rigid set of rules that 

cannot be compromised (Brewer, 2012). While the CAP theorem at first garnered backlash by 

those who argued that a compromise in any of the three categories was not a viable solution, his 

theorem was proven by Seth Gilbert and Nancy Lynch (2002), which solidified that NoSQL was 

the way forward for large, distributed systems.  

Why Distributed Systems Need CAP 

 It is not impossible to maintain the ACID properties in a large, distributed system. It is 

extremely complex and involves challenges regarding multi-database isolation, blocking, and 

resource unavailability, but strictly speaking it is possible (Tiwari, 2011). While the four ACID 

properties of atomicity, consistency, isolation, and durability will exist in such a system, the core 

CAP property of availability is still compromised because resources are locked frequently, and 

sometimes for long periods of time if a transaction is complex, making all other clients wait for 

the needed resources to become available. In many cases, the wait times are significant which is 

an unrealistic compromise in a system serving millions of users in real-time. As the following 

sections will discuss, consistency is a much more realistic compromise in the CAP system as 

availability is crucial and partition failures are inevitable due their reliance on hardware. Once 

consistency is compromised, however, the ACID properties are no longer maintained, and the 

system must transition into a NoSQL solution. 

Google’s Distributed Architecture Optimizations 

 With an understanding of the underlying differences between SQL and NoSQL 

architectures and properties, the optimizations originally published by Google and later open-
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sourced can now be discussed in detail to provide an in-depth understanding of how a NoSQL 

data architecture was created to support web-scale distributed applications. 

Google File System and the CAP Compromise 

The foundational layer of Google’s architecture overhaul, detailed by Ghemawat, 

Gobioff, and Leung (2003), describes the system as “a scalable distributed file system for large 

distributed data-intensive applications” (p. 1). The authors note that to accomplish the Google 

File System, hereafter referred to as GFS, they had to make a “marked departure from some 

earlier file system assumptions” which led them to “reexamine traditional choices and explore 

radically different design points” (p. 1). From a high-level, the GFS architecture consists of the 

GFS master-server and many GFS distributed servers called chunkservers which contain chunks, 

or file fragments. The GFS master contains only metadata that maps 64-Bit unique identifiers for 

chunks called chunkhandles to their respective chunkservers. The chunkservers each contain 

many chunks.  

The request model involves a client which sends the GFS master the chunk index and 

filename of the data it is looking for, gaining the chunkhandle and the byte range of the chunk 

data in return. The client can then use this chunkhandle to access the appropriate GFS 

chunkserver which then returns the chunk data that the user is ultimately seeking. To maintain 

the state of the database, the GFS master also interacts regularly with the chunkservers 

independent of client requests in a process called heartbeat messages so that it can give the 

chunkservers instructions and collect their states (Ghemawat et al., 2003). This process is 

visualized by the authors in Figure 8. 
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Figure 8. Adapted from “The Google file system”, by Ghemawat, Gobioff, and Leung, 2003, ACM SIGOPS 

Operating Systems Review, 37(5), 3. Reprinted with permission. 

 

The authors relate that the GFS has a “relaxed consistency model that supports our highly 

distributed applications well but remains relatively simple and efficient to implement” 

(Ghemawat et al., 2003, p. 1). That is, the engineers opted to compromise the consistency of the 

GFS to allow for availability and partition tolerance, as per the CAP theorem. To accomplish 

this, the GFS replicates each chunk in three separate chunkservers which must reside on different 

racks in the server farm. Three is only the default replication rate, and chunks can be replicated 

in higher numbers if requested by overriding the default configuration when storing the chunk to 

chunkservers. If a chunkserver does fail, it is designed to restore its state and start-up in seconds 

no matter what caused its termination. This ability, plus the fact that there are several if not many 

replicas of each chunk, ensures that data are always available on demand despite potential node 

failures throughout the system. Because multiple replicas are stored, it is possible that some may 

not be as up-to-date as others if a recent failure has occurred on the chunkserver where a 

particular replica resides. This means that the data state across replicated chunks can have 

disparities implying a lack of consistency for any read/write operations accessing different, 

unequal replicas at the same time. Because the heartbeat message process can quickly resolve 
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consistency issues due to chunkserver failures, this was not an unreasonable compromise for the 

engineers designing the GFS (Ghemawat et al., 2003). Later sections will show how the third 

layer of Google’s data architecture overhaul, the distributed coordination system, also bolsters 

the consistency of the data to help offset the implications of compromise in this category. 

Bigtable, A Column-Family-Oriented NoSQL Data Store 

The second optimization Google made to overcome the scaling challenges of relational 

databases was Bigtable, a distributed storage system for structured data. While this description 

may seem to imply that Bigtable is relational because it is described as a storage system for 

structured data, the authors explicitly state otherwise by noting that “Bigtable does not support a 

full relational data model; instead, it provides clients with a simple data model that supports 

dynamic control over data layout and format, and allows clients to reason about the locality 

properties of the data represented in the underlying storage” (Chang et al., 2008, p. 1). A more 

technical definition of Bigtable describes it as a “sparse, distributed, persistent multi-dimensional 

sorted map” that is “indexed by a row key, column key, and a timestamp; each value in the map 

is an uninterpreted array of bytes” (p. 1). When cross-referenced with the four NoSQL 

categories, the Bigtable design falls under the columnar or column-oriented data store 

architecture. As a sorted column-oriented map, Bigtable maximizes the processing optimizations 

available with column-oriented data stores. 

Thus, Bigtable is itself a NoSQL data structure, as it departs from the relational model 

and adopts the column-oriented structure instead. The authors of the original Bigtable paper note 

that it relies on the GFS to handle the physical implementation of its storage in a distributed 

fashion (Chang et al., 2008). Just as Hadoop is the open-source corollary to the GFS, HBase is 
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the popular, open-source, sorted ordered column-family store database that was developed after 

Bigtable’s release to make this technology accessible to a wider audience (Tiwari, 2011). 

Distributed Coordination System Using the Chubby Lock Service 

The next layer of Google’s architectural overhaul, the chubby lock service for distributed 

coordination, became a necessity after distributed systems were recognized as the way forward in 

web-scale data storage. However, this layer does not relate directly to the advantages of NoSQL 

in distributed systems, so it will only be described in brief. Essentially, now that system data 

could successfully be stored and accessed over thousands of nodes using the GFS and Bigtable, 

some guidelines needed to be put in place to ensure that conflicts between clients accessing the 

same resources at the same time were minimized. Because consistency was the chosen 

compromise in the GFS, the chubby lock service is not a fault-proof solution, but instead 

provides a mechanism to bolster consistency as much as possible across nodes. 

The problem that a large, distributed, highly accessed system faces with consistency is as 

follows. Client A and B both want to access resource R, which is some data in one of the nodes 

on a distributed system. Client A sends a request to resource R, but a failure occurs. Then client 

B sends a request to resource R, and resource R begins communicating with B. After the failure 

with client A is resolved, resource R fulfills client A’s requests, based on the logs that were 

saved before the failure, and at this point may be sending back data that client B manipulated in 

some way, thereby giving client A incorrect data to its original request.  

To mitigate this, a lock system was put in place to help resource R know when it should 

reject a request using advisory locks. The use of the word advisory here is important because 

oftentimes locks are implemented in a strict sense, meaning that if client A has the lock to 
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resource R, no other clients can access resource R until client A releases it and it is their turn to 

obtain it. Because consistency is a viable compromise in web-scale distributed architectures, 

locks follow less strict guidelines. For example, in the example with clients A and B and 

resource R, the lock system may reject client A’s request because it knows that it has an advisory 

lock from B which it gained when it began processing the request from B. Then client A simply 

must resend its request to R but now knows that it is getting a response that may have changed 

from whatever happened during client B’s request. Alternatively, client A’s request can be 

forwarded to a different replica of the data so that it is more likely that it will obtain the 

information it originally requested, although concurrent operations could also have occurred on 

the replica as well. In this example consistency is still compromised but the clients can know 

when an advisory lock may be affecting the results of a request in the case of a failure amidst 

concurrent operations. A deeper description of the chubby lock system implantation of advisory 

locks can be found in the original 2006 paper written by Google engineer Mike Burrows. 

 

MapReduce-based Parallel Algorithm Execution Environment 

 The final optimization in Google’s original distributed data architecture overhaul was the 

MapReduce-based parallel algorithm execution environment. This will also be described in brief 

as it leverages the distributed architecture made available by NoSQL and the CAP compromise 

but in and of itself is not part of the NoSQL architecture. Instead, it was the initial algorithm used 

to efficiently process nodes in parallel and reduce the results of each node into a final output for 

the client. Since the release of the original paper outlining the MapReduce algorithm (Dean & 

Ghemawat, 2004), Google and many other distributed architecture systems have advanced to 
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more modern and superior parallel processing algorithms. However, at their core, all of these 

algorithms rely on the storage of data across many nodes so that parallel processing is possible in 

the first place. 

 The MapReduce algorithm derives its name from its two main stages: map and reduce. 

The process is as follows. A client sends a request for data to the distributed system, for example, 

a count of every instance of the word ‘NoSQL’ across the entire GFS. From a user perspective, 

this is analogous to typing ‘NoSQL’ into the Google search bar. The GFS master sends the 

instruction down to the cluster members through a heartbeat message, and the cluster members 

then process the instruction in parallel. To process the instruction, they search their contents and 

map out all of the instances of ‘NoSQL’ that are found. Then, the results of all of the cluster 

members are reduced into a final output, and this data is sent back to the client (Dean & 

Ghemawat, 2004). By splitting the search field into many nodes, searching them in parallel, and 

combining the results back into a final output, the distributed system is able to efficiently serve 

client A’s request while a non-distributed system, or a system that aimed to keep the number of 

nodes as small as possible to maximize vertical scaling, would process the requests much more 

slowly because each node would have significantly more work to do as it searched its massive 

archive of data (Dean & Ghemawat, 2004). A high view of the MapReduce algorithm is 

visualized in Figure 9. 
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Figure 9. A high-level view of the Map-Reduce algorithm. 

 

Summary of Google’s Distributed Architecture Optimizations 

The original data architecture overhaul initially published by engineers at Google but 

soon replicated by developers around the world fundamentally departs from the relational, 

ACID-constricted model and instead adopts a NoSQL, CAP-oriented approach to allow for 

optimal efficiency and parallelization. The GFS compromises on consistency to allow for high 

availability and partition tolerance in its distributed data storage methodology. Bigtable switches 

the data architecture layer from a row-oriented SQL structure to a column-oriented NoSQL 

structure. The Chubby Lock system bolsters consistency as much as possible with its advisory 

locks, and MapReduce provides an efficient algorithm for running operations on separate cluster 

members in parallel and then reducing the results into one final output. This all fundamentally 

relies on the distributed system, which is where NoSQL makes its entrance as a horizontally-

scaling alternative to the rigid, vertically scaling relational model. 

 

Conclusion 

 The above sections explore the origins of NoSQL as it relates to web-era scalability and 

detail the underlying reasons why SQL could not be scaled in these large, distributed systems. 

The ultimate cause of this limitation relies on the CAP theorem, which proves that distributed 



NOSQL IN DISTRIBUTED SYSTEMS 
 

30 

systems require a compromise in order to support mass storage needs and efficient processing 

through parallelization. Because NoSQL data stores are governed by CAP while SQL data stores 

are governed by ACID, NoSQL is able to scale to meet the demands of distributed computing 

while SQL is not. The first major transition from a relationally structured architecture into a 

NoSQL architecture in a web-scale company happened at Google, whose research helped the 

entire web-scale landscape to adopt the principles and properties of NoSQL in their own 

scalability transitions. 
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