
Title A Petri Net Approach to Generate Integer Linear Programming
Problems

Author(s) Nakamura, Morikazu; Tengan, Takeshi; Yoshida, Takeo

Citation IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E102-A(2): 389-398

Issue Date 2019-02-01

URL http://hdl.handle.net/20.500.12000/47489

Rights ©2019 IEICE

IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.2 FEBRUARY 2019
389

PAPER Special Section on Mathematical Systems Science and its Applications

A Petri Net Approach to Generate Integer Linear Programming
Problems

Morikazu NAKAMURA†a), Takeshi TENGAN††, and Takeo YOSHIDA†, Members

SUMMARY This paper proposes a Petri net based mathematical pro-
gramming approach to combinatorial optimization, in which we generate
integer linear programming problems from Petri net models instead of
the direct mathematical formulation. We treat two types of combinatorial
optimization problems, ordinary problems and time-dependent problems.
Firstly, we present autonomous Petri net modeling for ordinary optimiza-
tion problems, where we obtain fundamental constraints derived from Petri
net properties and additional problem-specific ones. Secondly, we propose
a colored timed Petri net modeling approach to time-dependent problems,
wherewe generate variables and constraints for timemanagement and for re-
solving conflicts. Our Petri net approach can drastically reduce the difficulty
of the mathematical formulation in a sense that (1) the Petri net modeling
does not require deep knowledge of mathematical programming and tech-
nique of integer linear model formulations, (2) our automatic formulation
allows us to generate large size of integer linear programming problems, and
(3) the Petri net modeling approach is flexible for input parameter changes
of the original problem.
key words: mathematical programming, integer linear programming, Petri
net, colored timed Petri net, autonomous Petri net

1. Introduction

Mathematical programming is a potent and useful technique
for decision making and problem-solving, which can be ap-
plied to a wide variety of real-world problems [1]. Partic-
ularly, integer linear programming problems, a class of the
mathematical programming formulation, can model many
optimization problems [1]–[5]. They can be solved effi-
ciently even for practical size by using optimization tools,
so-called solvers, such as CPLEX [6], Gurobi Optimizer [7],
and some free software tools.

However, limited users get benefits from the mathemat-
ical programming approaches. The main reason should be
the difficulty of the mathematical formulation. Users need
to formulate their problems as mathematical programming
problems, which requires deep knowledge of mathematical
programming and enough skills for formulating integer lin-
ear programming [1].

Petri nets, a mathematical modeling language, are used
to model much variety of concurrent systems such as com-
puter systems, network systems, manufacturing systems, and
so on [8]. Petri nets are also a powerful tool for analysis of

Manuscript received May 1, 2018.
Manuscript revised September 10, 2018.
†The authors are with Computer Science and Intelligent Sys-

tems, Faculty of Engineering, University of the Ryukyus, Okinawa-
ken, 903-0213 Japan.
††The author is with Information Systems, Faculty of Interna-

tional Studies, Meio University, Nago-shi, 905-8585 Japan.
a) E-mail: morikazu@ie.u-ryukyu.ac.jp
DOI: 10.1587/transfun.E102.A.389

modeled systems and provide an intuitively understandable
graphical presentation of the system’s structure and behavior
[8], [9]. Once we know some simple rules on Petri nets, we
can start system modeling immediately.

This paper presents a methodology to formulate inte-
ger linear programming problems based on Petri nets. In
our previous letter paper, we reported this approach only
for scheduling problems [10]. In this paper, we categorize
roughly combinatorial optimization problems into ordinary
problems and time-dependent ones, and then propose au-
tonomous Petri net modeling approach to the former type
and colored timed Petri net modeling one to the latter type
for mathematical formulations. Our proposal can drastically
reduce the difficulty of the mathematical formulation of op-
timization problems.

In [11], the authors proposed a method in which given
integer linear programming problems are converted into Petri
net models, and then they solve the reachability problem of
the converted Petri nets instead of the original ones. It is
quite impressive for Petri net research communities, but the
direction is opposite from our approach. The objective of
our research is to replace direct mathematical formulation
by the Petri net modeling. As far as we know, there are no
researches for Petri net basedmethods to generate integer lin-
ear programming problems for combinatorial optimization
problems.

We also developed a software tool to generate mixed
integer linear programming problems from colored timed
Petri nets. We employCPNTools [12] for Petri netmodeling,
which can export Petri netmodels intoXMLdocuments. Our
methodology is much more useful, compared to the direct
formulation with integer linear programming problems.

In this paper, we explain the definitions and basic prop-
erties on Petri nets in Sect. 2. We present fundamental con-
straints derived from basic properties of autonomous Petri
nets and show an example of our approach in Sect. 3. In
Sect. 4, we propose colored timed Petri net approach for
scheduling problems and resource assignments with time
constraints. Finally, we conclude with some remarks and
future works in Sect. 5.

2. Petri Net Basics

A Petri net is a 4 tuple PN = (P,T,Pre,Post). P =
{p1, p2, ..., pn} and T = {t1, t2, ..., tm} are a set of places and a
set of transitions, respectively. A place is denoted by a circle
and a transition by a bar. Pre(p, t) and Post(p, t) represent

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

390
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.2 FEBRUARY 2019

the weight on the arc from place p to transition t and from
transition t to place p, respectively. A Petri net is called
as an ordinary Petri net if Pre(p, t) and Post(p, t) are both
∈ {0, 1},∀(p, t) ∈ P × T and as a generalized Petri net if
Pre(p, t) and Post(p, t) are non-negative integer.

We call p an input place of t when Pre(p, t) > 0 and
an output place when Post(p, t) > 0, respectively. •t and
t• show the set of the input places and the set of the output
places of t, respectively. Similarly, •p and p• are the set of
input and the set of output transitions of p, respectively.

A marking M tr = (M (p1), M (p2), ..., M (pn)) is the
vector which represents the number of tokens in each place.
Here tr shows the transpose of matrices. A marking Mi

shows a token distribution, and it represents a state of the
system at a time. Hence, the initial marking M0 means the
initial state of the system.

Transition t is enabled at marking M when M (p) ≥
Pre(p, t),∀p ∈ •t and transition t can be fired when it is
enabled. The firing of t removes the same number of tokens
as Pre(p, t) from each place p ∈ •t, and adds the same
number of tokens as Post(p, t) to each place p ∈ t•.

If we regard Pre and Post as a |P | × |T | matrix, respec-
tively, we can represent the condition for transition ti to be
enabled x(i) times at M as follows:

M − Pre · x ≥ 0, (1)

where 0 is the zero vector of size |P |, xtr =

(x(1), x(2), ..., x(|T |)) is a vector, called as firing count vec-
tor, which represents how many times the corresponding
transitions are enabled at the current marking M . Moreover,
change of a marking can be expressed by the matrix form.

M ′ = M + (Post − Pre) · x (2)
M ′ = M + A · x, (3)

where A = (Post − Pre) is the incident matrix of the Petri
net. We call the equation the state equation of the Petri net.

A solution y of the following equation,

ytr · A = 0, (4)

is called as a P-invariant. By multiplying y to the equation
(3),

ytr · M ′ = ytr · (M + A · x) = ytr · M . (5)

This shows that the weighted total sum of marking cannot
be changed for the places corresponding to the non-zero
elements of y. That is, we can characterize the conservative
property based on P-invariants. Similarly, a non-negative
solution x of A · x = 0 is called as a T-invariant.

Colored Petri nets have tokens to which colors, showing
some attributes, are assigned. Colors of tokens in the input
places can be preconditions for firing. On firing, the values
of the produced tokens for the output places are calculated
based on predefined functions. Therefore, colored Petri nets
have mighty modeling power. More details are explained in
the literature such as [12].

For quantitative analysis of the dynamical behavior of

a system, many researchers introduced time to Petri nets
[13]–[15]. We can categorize the ways of timing into three
types, FD (Firing Duration), HD (Holding Duration), and
ED (Enabling Duration) [13]. The FD is to assign time to
transitions, where the firing of transition takes time. The HD
is referred to as place time Petri nets, where tokens cannot
be used for firing for a particular period after located in the
place. The last one, the ED, is such that a transition cannot
be fired for a given period after enabled. In this paper, we
use timed Petri nets with the FD even though we can allow
other types in our approach.

Timed Petri nets are a six-tuple TPN =

(P,T,Pre,Post,T S, D), where TS is a set of time stamps,
usually positive real numbers, and D : T → T S is a function
to show the firing duration time of transition t ∈ T . A time
stamp is also attached to tokens when tokens are generated to
record the time. In the timed Petri net, transition t is enabled
at time τ when each input place of t has more than or equal
to Pre(p, t) tokens and its time stamp is no more than τ. By
firing t at time τ, the token distribution should be changed
according to the same rule of the Petri net described above
except that we attach the time stamp τ + D[t] to each output
token.

Petri nets are autonomous if the firing of transitions
can be taken place at any timing, that is, in an autonomous
manner [9]. Based on this definition, the generalized Petri
nets are autonomous. On the contrary, the timed Petri net
is a non-autonomous Petri net since the system evolution is
conditioned by time. Autonomous Petri nets enable us to
describe what happens only, while timed Petri nets not only
what happens but also when it happens. It is clear that timed
Petri nets cannot be converted into autonomous Petri nets.

3. Mathematical Modeling with Autonomous Petri Nets

This section proposes amethod to generate integer linear pro-
gramming problems for ordinary combinatorial optimization
problems from autonomous Petri net models.

Firstly, we present fundamental constraints of integer
linear programming problems, derived from autonomous
Petri net properties. Secondly, as an example, we apply our
method to a well-known optimization problem, the traveling
salesman problem.

3.1 Fundamental Integer Linear Constraints

We summarize here fundamental integer linear constraints
extracted from autonomous Petri nets.

For a given PN = (P,T,Pre,Post) and M0, we can
formulate integer linear constraints.

3.1.1 State Equation and Firing Condition

Let Mk, k = 1, 2, 3,, K be markings evolved from
M0 by firing with its firing count vector xk =

(xk (1), xk (2), ..., xk (|T |)),

Mk−1 + (Post − Pre) · xk = Mk, k = 1, ..., K (6)

NAKAMURA et al.: A PETRI NET APPROACH TO GENERATE INTEGER LINEAR PROGRAMMING PROBLEMS
391

Mk−1 − Pre · xk ≥ 0, k = 1, ..., K (7)
xk (i) ∈ {0, 1},∀k, i (8)

The constraints (6), (7) show the state equation and
the firing condition, respectively. We need these constraints
when original optimization problems are represented as fir-
ing evolutions of Petri nets. K is predetermined by taking
the target problems into accounts.

3.1.2 Firing Counts

If we need to restrict such that only one transition can be
fired at a time, the following constraint should be required.

|T |∑
i=1

xk (i) = 1,∀k (9)

The total firing count for each transition ti can be lim-
ited. If vector x′ is given in which x ′(i) shows the desired
upper bounds of the firing count for each transition ti , we
can use the following constraint.

K∑
k=1

xk (i) ≤ x ′(i),∀i (10)

3.1.3 Marking Counts

It is not often but sometimes we need to restrict the marking
counts by a given vector m.

K∑
k=1

Mk (i) ≤ m(i),∀i (11)

or, in case that the exactly same counts as m is required,
K∑
k=1

Mk (i) = m(i),∀i (12)

3.1.4 Boundedness and Safeness

Some essential characteristics of the system behavior are rep-
resented by markings. The boundedness constraint requires
for place p not to hold tokens more than some specified
number U:

Mk (p) ≤ U, k = 1, ..., K (13)

We call a PN with initial marking M0 to be bounded if
the above condition (13) is holding for all the places and all
markings from M0. The bounded Petri nets become a safe
Petri net when U = 1 for all the places in the condition (13).
Note that the boundedness and the safeness described here
are behavioral properties but not the structural ones.

3.1.5 Final Marking

The finalmarking corresponds to the final state of the system.

We can restrict the final marking of place p if the desired
final state is known. In case that the desired final marking is
given as Mf , we need the following constraints:

MK (p) = Mf (p),∀p ∈ P (14)

Note that for a partial set of places, we can use this constraint.
Moreover, sometimes we want to ensure some places

need to include tokens more than or less than a pre-defined
value. In this case, we can use ‘≥’ or ‘≤’ in Constraint (14)
instead of equality.

3.2 Example

The fundamental integer linear constraints based on prop-
erties of autonomous Petri nets are useful for mathematical
modeling of ordinary combinatorial optimization problems
such as knapsack problems, graph coloring problems, vehi-
cle routing problems, and traveling salesman problems, and
so on. Fundamental constraints are used in building blocks
for integer linear programming formulation.

As an example, in this section, we show the Petri net
based formulation for the traveling salesman problem:

Input: a graph G = (V, E, d) with the set of N cities V ,
|V | = N , the set of directed edges E, where (vi, vj) is
set if there is a directed path between vi and vj , function
d : E → R returning the real value distance between
the two cities connected by a directed edge, and a city
o ∈ V where the office of the salesman locates.

Output: The shortest route such that the salesman starts
from o, visits once each city, and returns to o.

In our Petri net modeling, each city vi corresponds to
place Pi , and each directed edge (vi, vj) is represented by
transition t with two arcs; from Pi to t and from t to Pj .
As the distance between vi and vj , di, j = d(i, j), we set the
weight d(t) to the corresponding transition t. The initial
marking M0 includes one token in place o and no token in
the others.

Figure 1 shows an example of five cities problem. For
feasible solutions, the Petri net model should evolve from
M0 such that the length of the firing sequence from M0 is
equal to the number of cities plus one, the final marking Mf

is the same as M0, but any other pairs of markings should be
different.

Note that only one transition can be fired at any mark-
ing Mi since M0 includes only one token and the number of
tokens cannot be changed in any marking thanks to the ex-
istence of the P-invariant ytrI = 1tr = (1, 1, ..., 1). A weight
vector d for the transitions represents the distance between
two cities since the firing of a transition corresponds to the
move from the origin city to the destination.

The following formulation can be generated from the
fundamental constraints such as the state equation and fir-
ing condition, the marking counts, and the final marking
constraint. Additionally, we generate the problem-specific
objective function.

392
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.2 FEBRUARY 2019

Fig. 1 Example of traveling salesman problem.

[TSPIP-PN]

min
|P |∑
k=1

|T |∑
i=1

xk (i) · d(ti) (15)

s.t .
Mk−1 + (Post − Pre) · xk = Mk, k = 1, ..., |P | (16)
Mk−1 − Pre · xk ≥ 0, k = 1, ..., |P | (17)
|P |∑
k=1

Mk = 1 (18)

M0 = M|P | (19)
Mk (i) ∈ {0, 1}, i = 1, ..., |P |, k = 1, ..., |P | (20)
xk (i) ∈ {0, 1}, i = 1, ..., |T |, k = 1, ..., |P |, (21)

where 1 means ones-vector (1, 1, ..., 1)tr of size |P |. The
constraints (16) and (17) show the state equation constraint
and the firing condition constraint. The constraint (18), the
marking count constraint, ensures that the salesman visits
once each city. The constraint (19), the final marking con-
straint, confirms the salesman finally returns to o. The objec-
tive function (15) denotes the total distance of the obtained
route.

The Petri net based formulation for ordinary combi-
natorial optimization can be performed by building blocks
based on fundamental constraints shown in Sect. 3.1.

3.3 Discussion

Integer linear objective functions and constraints can formu-

late many combinatorial optimization problems. However,
users need to know the basic mathematical programming
theory even for simple problems. Moreover, it is not straight-
forward to represent the feasible solution space of the target
problem by integer linear objective function and constraints.
We sometimes need elaborate techniques for mathematical
programming formulation [1].

The following is a well-known integer programming
formulation for the traveling salesman problem in the litera-
ture [1], where the constraints for avoiding subtours cannot
be obtained straightforwardly from the problem definition.

[TSPIP]

min
∑

(i, j)∈E

di, j · xi, j (22)

s.t . ∑
i, (i, j)∈E

xi, j = 1,∀ j ∈ V (23)∑
j, (i, j)∈E

xi, j = 1,∀i ∈ V (24)∑
(i, j)∈E,i∈S, j∈S

xi, j ≤ |S | − 1,

∀S ⊆ V \ {1}, |S | ≥ 2 (25)
xi, j ∈ {0, 1},∀i, j (26)

Binary decision variable xi, j holds 1 if the salesman
traverses from city i to j, otherwise 0. The constraints (23)
and (24) explain the coming into city j is from one city and
the going out from city j is to one city, respectively.

The constraint (25) is for avoiding subtours. Without
this constraint, we can have infeasible solutions, that is, the
route for the salesman can include disjoint cycles. Note that
it is not straightforward to obtain the constraint (25) from
the problem definition. We often need such technique for
mathematical formulation.

Note also that the number of inequalities for the con-
straint (25) can be an exponential order. Some researchers
reduced the number of constraints for the subtour avoidance
successfully [16], [17], but the formulations became more
complicated.

The direct formulation of combinatorial optimization
requires not only the basic knowledge of the mathemati-
cal programming theory but also a technique to represent
the feasible solution space by integer linear constraints and
the objective function. On the contrary, our Petri net ap-
proach for ordinary combinatorial optimization can formu-
late mathematical programming problems by utilizing fun-
damental integer linear constraints derived from properties
of autonomous Petri nets.

4. Timed Petri Net Modeling for Time-Dependent Op-
timization Problems

As described in the previous section, autonomous Petri nets
are effective to model combinatorial optimization problems

NAKAMURA et al.: A PETRI NET APPROACH TO GENERATE INTEGER LINEAR PROGRAMMING PROBLEMS
393

for generating integer linear programming problems. How-
ever, it is not always useful. For time-dependent optimization
problems such as scheduling problems and resource assign-
ments with time constraints, autonomous Petri nets are no
longer suitable.

This section considers scheduling problems and re-
source assignments for flexible manufacturing systems to
be modeled with S4R (Systems of Sequential Systems with
Shared Resources) nets. S4R is a class of Petri nets that is
suitable for modeling flexible manufacturing systems [18]–
[20]. These problems require to treat time to express the
duration of tasks. Additionally, to reduce the complexity of
modeling, we introduce colors. Hence, in this section, we
employ colored timed Petri nets for the modeling language
for practical time-dependent optimization problems.

The scheduling problems we treat in this paper is de-
fined as follows:

Input: SP = (T ASK,RS,RR,PRE,RT,PT), where T ASK
is the set of tasks, RS the resource set, RR : T ASK →
2RS is the resource requirement of each task, PRE is the
precedence relation between tasks, RT : T ASK → R
is the release time of tasks, and PT : T ASK × RS → R
returns its processing time. These input data satisfy the
following conditions.

1. There are multiple sequential systems, and each
system includes ordered tasks, that is, the order
determines PRE, the precedence relations.

2. Each task can be processed with a single resource
type.

3. Multiple resources may be available for each re-
source type, that is, they have the same function-
ality but may be different capacities.

4. The processing time for each task with each re-
source is known in advance, and it is deterministic.

Output: The optimum schedule for processing all tasks, that
is, the start time and the end time under the following
conditions:

1. No resource can be assigned to more than one task
at a time.

2. Resource is always available for processing, that
is, no breakdown.

3. Operations cannot be interrupted until their com-
pletion, that is, no preemption.

The scheduling problems with the above conditions can
be applied to wide varieties of flexible manufacturing sys-
tems [13], [19].

4.1 Modeling with Colored Timed S4R net

The input data SP specified above are obtained from the
domain knowledge of target problems.

In our modeling, we employ a timed Petri net with
the FD. That is, each task corresponds to a transition. Each
sequential system can bemodeled as a state machine of a line

Fig. 2 Colored timed Petri net model for a scheduling problem.

structure by inserting a place between adjacent transitions.
The places express the state of the process in sequential
systems. Secondly, we add a single source pI and a single
sink pO.

The Petri net model we explained here is called a sound
workflow net. The soundness ensures the followings [21]:

1. Only the single source place includes a token at the
initial state, and only the single sink place has a token
at the final state.

2. All the states reachable from the initial state can lead to
the final state.

Figure 2 shows an example of S4R, where the subnet
drawn with black ink represents a sound workflow net.

After modeling all the sequential systems, we add re-
source places for each resource type, and then connect by an
arc from a transition (a task) to the required resource place
and vice versa.

In real manufacturing systems, there may be several
types of resources. Moreover, even for the same resource
type, they can be multiple with different capacities. For
representing such characteristics, we introduce colors to the
model.

As we described above, there are two types of places in
our Petri net models, the places in the workflow subnet and
the ones in the resource subnet. Each resource place shown
as rp corresponds to a resource type, and it can contain
different kinds of tokens, that is, resources with various ca-
pacities. For example, suppose we have assembly machines
as a resource type. We may be allowed to use one high-

394
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.2 FEBRUARY 2019

speed machine and two middle-speed ones of the assembly
machine.

Let RP and WP be the set of resource places and the
set of workflow places, respectively. Therefore, the set of
places of our Petri net model can be represented by

P = RP ∪WP (27)

We assign a color to each resource place rpi ∈ RP by
color function C:

C : RP → ResourceType (28)
ResourceType = {RS1,RS1, ...RSr } (29)

For each place p ∈ P, we locate initial tokens as follows:

M0(p) =

{UN IT } (p = pI)
∅ (p ∈ WP \ {pI })
{rtp1 , ..., rtpnp

} (p ∈ RP)
(30)

where UN IT shows a token without color, that is, a normal
token, and rtpi , i = 1, 2, ..., np are colored tokens correspond-
ing to resources, and np means the number of resources of
the resource type C(p).

By referring to the resource requirement of each task,
RR, we can connect from each transition t ∈ T to rpi , and
vice versa. We denote the set of arcs added here by ˆPre and

ˆPost to differentiate from Pre and Post in the workflow net.
Moreover, let each token have a color representing its

capacity to calculate the duration time when the correspond-
ing resource is assigned to a transition:

D : Ti × M0(rpi) → TS (⊆ R) (31)

where Ti is the subset of T such that ˆPre(rpi, t) , 0,∀t ∈
Ti , M0(rpi) is the initial marking of resource place rpi .
The time stamp of all the tokens produced by firing can be
calculated by adding this duration time to the start time of
the firing. Finally, we obtain a colored timed Petri net for
the scheduling problem SP, CT PN = (P × RP,T,Pre ∪

ˆPre,Post ∪ ˆPost, TS,D,C).
Figure 2 is an example of colored timed S4R nets, where

the subnet drawn with black color shows the workflow net
and the subnets colored with blue, green, and red corre-
spond to the resource net. Note that each resource type
may have multiple colored tokens, in which different colors
in a resource place denote different capacity but the same
functionality.

For the scheduling problem, the feasibility of the sched-
ule can be verified with the following conditions [5], [13].

Proposition 1. A schedule is feasible if and only if the fol-
lowing conditions are satisfied:

1. All the precedence relations are satisfied.
2. The release time conditions are satisfied.
3. There exist no resource conflicts.

The structure of S4R provides us the following useful
property;

Property 1. Timed S4R nets are persistent in a sense that
once a transition is enabled, it can be fired sooner or later.

Proof. S4R netsmay include conflicts for the shared resource
usage. When a shared resource is assigned to a task, the task
shall return the resource without any consumption so that
other tasks can use it. Moreover, the workflow net of S4R is
sound. Therefore, all the transitions can be fired. �

Thanks to Property 1, all we have to do for resolving
resource conflicts is to introduce variables and constraints to
make the priority between taskswhich use the same resource.
Moreover, we need to introduce variables to specify which
resource to be used for each task since the processing time
depends on the capacity of resources. Time-related variables
are also necessary, that is, the start time and the end time for
each task, where these values cannot contradict the release
time, the precedence relations, and the priorities for shared
resource usages.

4.2 Generating Mixed Integer Programming Problems

For an obtained colored timed Petri nets CT PN =

(P,T,Pre ∪ ˆPre,Post ∪ ˆPost, TS,D,C), release time RT ,
and M0, we generate the basic input data for scheduling
problem, SP = (T ASK,RS,RR,PRE,RT,PT), as follows:

T ASK = {1, 2, ..., n} ← T = {t1, t2, ..., tn} (32)
RS = {1, 2, ..., R}, R = | ∪rp∈RP M0(rp) | (33)
RR(j) = {1, ..., |M0(rp) |} ← ˆPre(t j, rp) , 0,
∀t j ∈ T (34)
PRE = {(i, j) |there exists p ∈ P such that
Pre(p, t j) , 0 ∧ Post(p, ti) , 0} (35)
RT (j) = RT (t j),∀ j (36)
PT (j, k) = D(t j, rtr,k), k ∈ RR(j), ˆPre(t j, r) , 0,
∀t j ∈ T (37)

4.2.1 Variables

Let us define s j and e j to denote the start time and the end
time of task j,∀ j ∈ T ASK , respectively.

To represent the resource assignment, ∀ j ∈

T ASK,∀k ∈ RR(j),

xkj =
{

1 if task j is assigned to resource k
0 otherwise (38)

To denote the priority of the resource usage among
tasks which use the same resource, ∀(i, j) ∈ T ASK×T ASK ,
RR(i) = RR(j),

yi, j =

1 if tasks i and j are assigned the same
resource and i precedes j

0 otherwise
(39)

NAKAMURA et al.: A PETRI NET APPROACH TO GENERATE INTEGER LINEAR PROGRAMMING PROBLEMS
395

4.2.2 Constraints

To enforce that exactly one resource is assigned to each task
j, the following constraint is necessary.∑

k∈RR(j)

xkj = 1,∀ j ∈ T ASK (40)

To state the start and the end time, the following con-
straint should be defined.

s j +
∑

k∈RR(j)

(PT (j, k) · xkj) − e j = 0,∀ j ∈ T ASK (41)

For the precedence relation (j, i), the following con-
straint is required.

s j + (
∑

k∈RR(j)

(PT (j, k) · xkj)) ≤ si,∀(j, i) ∈ PRE (42)

The following constraint ensures that task j starts after
task i if yi, j = 1.

ei − s j +U · yi, j ≤ U,
∀i, j ∈ {(i, j) |i , j,RR(i) = RR(j)} (43)

where U is a sufficiently large number.
To ensure that the priority variables y are properly set,

that is, one of yi, j and yj,i is 1 and the other 0 if tasks i and
j are assigned to the same resource, otherwise both of them
0, the following constraints are needed.

yi, j + yj,i ≤ 1,∀i, j ∈ {(i, j) |i , j,RR(i) = RR(j)}(44)
xki + xkj − yi, j − yj,i ≤ 1,
∀i, j ∈ {(i, j) |i , j,RR(i) = RR(j)} (45)

To guarantee that the sequencing variables yi, j and yj,i
are zero if tasks i and j are assigned to different resources in
the same resource type, the following constraint is necessary.

xli + xkj + yi, j + yj,i ≤ 2,∀l, k, l , k,∀i, j (46)

Finally, the release time constraints can be denoted as
follows:

s j ≥ RT (j),∀ j ∈ T ASK (47)

4.2.3 Objective Function

The objective function will try to minimize the makespan of
the schedule even though other objectives are also available.

min max
j∈TASK

e j (48)

For formulating as a linear function, we minimize a new
variable emax under the following linear constraints:

min emax (49)

emax ≥ e j,∀ j, (j, i) < PRE, ∃i ∈ T ASK (50)

4.2.4 Feasibility

The previous subsection explains the variables, the con-
straints, and the objective function. We can briefly confirm
that themixed integer linear programming problems are valid
with respect to Proposition 1 as follows:

1. All the precedence relations are satisfied with the con-
straints (41). (42).

2. The release time conditions are satisfied by the con-
straint (47).

3. There exist no resource conflicts by the constraints (43),
(44), (45), and (46).

4.3 Resource Assignments with Time Constraints

Resource assignment problems with time constraints are a
scheduling problem in which the objective function is to
minimize the total cost to accomplish a given deadline [18].

Input: Addition to the input data for scheduling problems
shown above, deadline Deadline and a resource cost
vector RC, such that RC(i) ∈ N ,∀i ∈ RS.

Output: The minimum cost resource assignment so that the
makespan of the schedule does not exceed Deadline.

For resource assignmentswith time constraints, we need
to change a few points in the mixed integer linear program-
ming problem for the scheduling problem.

Firstly, the deadline constraint can be represented by
using variable emax in the scheduling problem, constrained
by (50).

emax ≤ Deadline (51)

To specify whether or not the schedule plan includes
resource i, we introduce an integer vector z, and add the
following constraints.

zk ≥ xki ,∀i ∈ T ASK,∀k ∈ RS (52)

Note that this constraints ensure that zk ≥ 1 if at least one
task is assigned resource k.

Therefore, the following new objective function mini-
mizes the total resource cost:

min RCtr · z (53)

4.4 Software Tool for Generating Integer Linear Program-
ming Problems

We implemented a software tool with Ruby language, where
we employ CPNTools [12] for a Petri net modeling tool. Our
Ruby program generates integer linear programming prob-
lems from XML documents exported from CPN Tools. It
means we can obtain mathematical programming problems

396
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.2 FEBRUARY 2019

Fig. 3 Colored timed Petri net model for a resource assignment problem using CPN tools 4.0.

Table 1 Petri net model for example.
(a) Place and Initial Marking

Place Role Initial Marking
Resource1 Resource Pool for Taski,1 C35, C20, C65, C70
Resource2 Resource Pool for Taski,2 &Taski,3 C30, C45, C55
Resource2 Resource Pool for Taski,4 C40, C25, C55
Pi,1 Pre condition for Task Ti,1 UNIT
Pi,2 Post condition for Task Ti,2 φ
Pi,3 Post condition for Task Ti,3 φ
Pi,4 Post condition for Task Ti,4 φ
Pi,5 Post condition for Task Ti,5 φ

Cx in Initial Marking means an attribution of the corresponding token and shows the specification (capacity) of the resource.
(b) Transition (Task Size)

Transition(Task) Task Size[unit]
Ti,1 1,750, 1,200, 3,100, and 1,250 for i = 1, 2, 3, 4, respectively
Ti,2 3,200, 2,200, 3,600, and 3,100 for i = 1, 2, 3, 4, respectively
Ti,3 3,400, 2,100, 4,050, and 2,500 for i = 1, 2, 3, 4, respectively
Ti,4 2,150, 1,100, 4,300, and 1,400 for i = 1, 2, 3, 4, respectively

The average processing time for each task can be determined from the task size and the capacity of the assigned resource, Cx.
(c) Colored Token (Capacity and Cost)

C20 C25 C30 C35 C40 C45 C55 C65 C70
Capacity [unit/min.] 20 25 30 35 40 45 55 65 70

Cost 5 10 15 20 30 35 80 200 250

by Petri net modeling without direct mathematical formula-
tion of target problems.

We show an example of a resource assignment prob-
lem with time constraints, in which we minimize the total
resource cost under the time constraint in task scheduling
problems. Figure 3 shows a colored timed Petri net model
for manufacturing systems created by CPN Tools. Note that
the Petri net model is a S4R net even though we omitted the
source and the sink node in themodel. There are four sequen-
tial systems and three resource places with initial resource
sets (initial marking). Tables 1(a), 1(b), and 1(c) explain the
details of the place, the transition sets, and colored tokens,
respectively.

We generated by our software tool a mixed integer

programming problem from the S4R net shown in Fig. 3.
The generated problem includes 175 variables and 634 con-
straints. Finally, by using Gurobi optimizer, we solved the
problem and obtained the optimum solution. Table 2 shows
the results, the total cost and the selected resources, for three
cases Deadline = 900, 600, 300.

4.5 Discussion

As shown in the example, our method can formulate integer
linear programming problems for time-dependent optimiza-
tion problems such as scheduling and resource assignments
by modeling colored timed Petri nets. Our approach and the
developed software can be applied to the problems based on

NAKAMURA et al.: A PETRI NET APPROACH TO GENERATE INTEGER LINEAR PROGRAMMING PROBLEMS
397

Table 2 Optimum resource assignments (results).
Resource1 Resource2 Resouce3

Deadline Total Cost C35 C20 C65 C70 C30 C45 C55 C40 C25 C55
900 45 X X X
600 80 X X X X
300 340 X X X X X

the S4R class even though we just showed one example due
to the space limitation.

The objective of this paper is to propose a Petri net based
approach to integer linear programming formulation against
the direct mathematical formulation. We summarize here the
merits of our approach, compared to the direct formulation,
from the viewpoints of Easiness for Formulation, Scalability
for Formulation, and Flexibility for Parameter Change:

Easiness for Formulation: Our approach requires only the
domain knowledge of the target system and the basic
rules of colored timed Petri nets. Once we model the
target system with colored timed Petri nets, our tool
can generate the corresponding mathematical program-
ming problem. For the direct formulation, we need the
knowledge and formulation skills for the mathematical
programming in addition to the domain knowledge.

Scalability for Formulation: “Scalability for Formula-
tion” means here how the formulation can be performed
when the original problem size becomes large. The
number of variables and constraints can often be more
than O(n), where n is the target problem size. For ex-
ample, these numbers for both the resource assignment
problems shown in the previous example and the tra-
ditional job-shop scheduling problems are proportional
to the square of the number of tasks, O(n2) when we
ignore the other input parameters such as the number
of resources [22].
The Petri net modeling in our approach is just for the
problem domain. Therefore, the modeling effort is only
proportional to the problem size, and then our tool can
generate all the variables and constraints from the Petri
net model. On the other hand, in the direct formulation,
we need to generate directly all the variables and the
constraints, more than the problem size in many cases.
In fact, for the practical size of problems, the number
of constraints becomes several hundred, thousands or
more. The direct formulation approach is quite difficult
to formulate the practical size of integer programming
problems correctly.

Flexibility for Parameter Change: Our approach is flexi-
ble for changing input parameters since we can generate
the new integer linear programming problems just by
modifying the Petri net model for the change. For ex-
ample, when we introduce a new machine to the target
production system, all we have to do is just adding one
token with the capacity information to the correspond-
ing resource place.
On the contrary, in the direct formulation, we need to
add several new variables and many constraints related

to the new resource usage. For the case of the resource
assignment problem in the previous example or job-
shop scheduling problems, the number of new variables
and new constraints we need to add is proportional to
the number of tasks, O(n).

From these three points of view, compared to the di-
rect mathematical formulation, our Petri net approach can
drastically reduce the difficulty of the formulation for time-
dependent combinatorial optimization problems.

5. Concluding Remarks

We proposed a Petri net based mathematical programming
approach for combinatorial optimization, in which we gen-
erate integer linear programming problems from Petri net
models instead of the direct mathematical formulation. With
autonomous Petri netmodeling, we obtain some fundamental
constraints for general cases of integer programming prob-
lems and show that we can formulate easily ordinary com-
binatorial optimization problems by our approach. With
colored timed Petri net modeling approach, we generate vari-
ables and constraints for timemanagement and for serializing
tasks for conflict resolving.

The objective of this paper was to propose a new ap-
proach to generate integer linear programming problems.
Hence, we omitted the evaluation of the computation time
because of limited spaces. However, the computation time
for optimization depends on solvers and mathematical pro-
gramming formulations. For future works, we will evaluate
the computation time carefully and investigate new efficient
constraints.

References

[1] H. Raul Wiliams, Model Building in Mathematical Programming,
5th Edition, Wiley, 2013.

[2] A.B. Keha, K. Khowala, and J.W. Fowler, “Mixed integer program-
ming formulations for single machine scheduling problems,” Com-
put. Ind. Eng., vol.56, no.1, pp.357–367, 2009.

[3] J.C.-H. Pana and J.-S. Chenb, “Mixed binary integer programming
formulations for the reentrant job shop scheduling problem,” vol.32,
no.5, pp.1197–1212, 2005.

[4] D.P. Ronconi and E.G. Birgin, “Mixed-integer programming mod-
els for flowshop scheduling problems minimizing the total earliness
and tardiness,” Just-in-Time Systems, Springer Optimization and Its
Applications, pp.91–105, 2012.

[5] W.-Y. Ku and J.C. Beck, “Mixed integer programming models for
job shop scheduling: A computational analysis,” Comput. Oper.
Res., vol.73, pp.165–173, 2016.

[6] CPLEX Optimizer, http://www-01.ibm.com/software/commerce/
optimization/cplex-optimizer/

[7] GUROBI Optimizer, http://www.gurobi.com
[8] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.

http://dx.doi.org/10.1007/978-3-642-82450-0
http://dx.doi.org/10.1007/978-3-642-82450-0
http://dx.doi.org/10.1016/j.cie.2008.06.008
http://dx.doi.org/10.1016/j.cie.2008.06.008
http://dx.doi.org/10.1016/j.cie.2008.06.008
http://dx.doi.org/10.1016/j.cor.2003.10.004
http://dx.doi.org/10.1016/j.cor.2003.10.004
http://dx.doi.org/10.1016/j.cor.2003.10.004
http://dx.doi.org/10.1007/978-1-4614-1123-9_5
http://dx.doi.org/10.1007/978-1-4614-1123-9_5
http://dx.doi.org/10.1007/978-1-4614-1123-9_5
http://dx.doi.org/10.1007/978-1-4614-1123-9_5
http://dx.doi.org/10.1016/j.cor.2016.04.006
http://dx.doi.org/10.1016/j.cor.2016.04.006
http://dx.doi.org/10.1016/j.cor.2016.04.006
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.gurobi.com
http://dx.doi.org/10.1109/5.24143

398
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.2 FEBRUARY 2019

IEEE, vol.77, no.4, pp.541–580, 1989.
[9] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets,

Springer, 2005.
[10] A.V. Porco, R. Ushijima, and M. Nakamura, “Automatic generation

of mixed integer programming for scheduling problems based on
colored timed Petri nets,” IEICE Trans. Fundamentals, vol.E101-A,
no.2, pp.367–372, Feb. 2018.

[11] A. Kodama and T. Nishi, “Petri net representation and reachability
analysis of 0-1 integer linear programming problems,” Information
Sciences, vol.400-401, pp.157–172, 2017.

[12] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri nets and
CPN tools for modeling and validation of concurrent systems,” Int.
J. Softw. Tools Technol. Transfer, vol.9, no.3-4, pp.213–254, 2007.

[13] W.M.P. Van Der Aalst, “Petri net based scheduling,” Operations-
Research-Spektrum, vol.18, no.4, pp.219–229, 1996.

[14] G. Mušič, “Schedule optimization based on coloured Petri nets and
local search,” Proc. 7th Vienna International Conference on Math-
ematical Modeling, Mathematical Modeling, vol.7, Part 1, pp.352–
357, 2002.

[15] M.A. Piera and G. Mušič, “Coloured Petri net scheduling models:
timed state space exploration shortages,” Math. Comput. Simulat.,
vol.82, no.3, pp.428–441, 2011.

[16] C. Miller, A. Tucker, and R. Zemlin, “Integer programming for-
mulations and traveling salesman problems,” J. ACM, no.7, no.4,
pp.326–329, 1960.

[17] A.J. Orman and H.P. Williams, “A survey of different integer pro-
gramming formulations of the traveling salesman problem,” Op-
erational Research working papers, LSEOR 04.67. Department of
Operational Research, London School of Economics and Political
Science, London, UK, 2004.

[18] G. Mejia and C. Montoya, “Applications of resource assignment and
scheduling with Petri nets and heuristic search,” Ann. Oper. Res.,
vol.181, no.1, pp.795–812, 2010.

[19] I.B. Abdallah, H.A. Elmaraghy, and T. Elmekkawy, “Deadlock-free
scheduling in flexible manufacturing systems using Petri nets,” Int.
J. Prod. Res., vol.40, no.12, pp.2733–2756, 2002.

[20] H. Lei, K. Xing, L. Han, F. Xiong, and Z. Ge, “Deadlock-free
scheduling for flexible manufacturing systems using Petri nets and
heuristic search,” Comput. Ind. Eng., vol.72, pp.297–305, 2014.

[21] W.M.P. van der Aalst, “The application of Petri-nets to workflow
management,” J. Circuit. Syst. Comp., vol.8, no.1, pp.21–66, 1998.

[22] E.Driss, R.Mallouli, andW.Hachicha, “Mixed integer programming
for job shop scheduling problem with separable sequence-dependent
setup times,” American Journal of Mathematical and Computational
Sciences, vol.3, no.1, pp.31–36, 2018.

Morikazu Nakamura received the B.E. and
M.E. degrees from University of the Ryukyus in
1989 and 1991, respectively, and D.E. degree
from Osaka University in 1996. He is currently
a professor in Area of Computer Science and In-
telligent Systems, Faculty of Engineering, Uni-
versity of the Ryukyus. His research interests
include theory and applications on mathemati-
cal systems. He is a member of IEEE.

Takeshi Tengan received the B.E. and M.E.
degrees in Electronics and Information Engi-
neering from University of the Ryukyus in 1994
and 1996, respectively. He is currently a senior
associate professor in Information Systems Ma-
jor, Faculty of International Studies, Meio Uni-
versity. His research interests include optimiza-
tion and soft computing. He is a member of the
Japanese Society of Evolutionary Computation.

Takeo Yoshida received the B.E. and M.E.
degrees in electrical engineering from Nagaoka
University of Technology and the D.E. degree
in electrical engineering from Tokyo Metropoli-
tan University in 1991, 1993 and 1997, respec-
tively. He is currently an assistant professor in
theDepartment of Engineering, University of the
Ryukyus. His research interests include depend-
able computing, VLSI design, and graph theory.
He is a member of IEEE and IPSJ.

http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/978-3-642-10669-9
http://dx.doi.org/10.1007/978-3-642-10669-9
http://dx.doi.org/10.1587/transfun.e101.a.367
http://dx.doi.org/10.1587/transfun.e101.a.367
http://dx.doi.org/10.1587/transfun.e101.a.367
http://dx.doi.org/10.1587/transfun.e101.a.367
http://dx.doi.org/10.1016/j.ins.2017.03.014
http://dx.doi.org/10.1016/j.ins.2017.03.014
http://dx.doi.org/10.1016/j.ins.2017.03.014
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/bf01540160
http://dx.doi.org/10.1007/bf01540160
http://dx.doi.org/10.3182/20120215-3-at-3016.00062
http://dx.doi.org/10.3182/20120215-3-at-3016.00062
http://dx.doi.org/10.3182/20120215-3-at-3016.00062
http://dx.doi.org/10.3182/20120215-3-at-3016.00062
http://dx.doi.org/10.1016/j.matcom.2010.10.014
http://dx.doi.org/10.1016/j.matcom.2010.10.014
http://dx.doi.org/10.1016/j.matcom.2010.10.014
http://dx.doi.org/10.1145/321043.321046
http://dx.doi.org/10.1145/321043.321046
http://dx.doi.org/10.1145/321043.321046
http://dx.doi.org/10.1007/s10479-010-0686-1
http://dx.doi.org/10.1007/s10479-010-0686-1
http://dx.doi.org/10.1007/s10479-010-0686-1
http://dx.doi.org/10.1080/00207540210136496
http://dx.doi.org/10.1080/00207540210136496
http://dx.doi.org/10.1080/00207540210136496
http://dx.doi.org/10.1016/j.cie.2014.04.002
http://dx.doi.org/10.1016/j.cie.2014.04.002
http://dx.doi.org/10.1016/j.cie.2014.04.002
http://dx.doi.org/10.1142/s0218126698000043
http://dx.doi.org/10.1142/s0218126698000043

