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Development of a stochastic virtual smart meter data set for a 

residential building stock - methodology and sample data set 

Existing electricity smart meter data sets lack sufficient details on building 

parameters to evaluate the impact that home characteristics can have on 

electricity consumption. An extensive, open-source virtual smart meter (VSM) 

data set with corresponding building characteristics is provided. The 

methodology used to develop the VSM data is presented in detail. The data set 

consists of a variety of homes representative of a subset of the Canadian single-

family home building stock. The building characteristics cover a wide range of 

values that are based on probability distributions developed using a segmentation 

and characterization process. The resulting framework and VSM data set can be 

used by researchers to develop classification models, verify load disaggregation 

algorithms, and for a variety of other purposes. 

Keywords: smart meter data; building energy simulation; residential; 

Subject classification codes: include these here if the journal requires them 

Introduction 

Estimating the energy use of multiple buildings, such as at the city- or regional-scale, is 

commonly referred to as building stock energy modeling (BSEM) or urban building 

energy modeling (UBEM). BSEM can be accomplished with a number of well-

documented techniques (Swan and Ugursal 2009).  One such technique makes use of 

building archetypes to simplify the modeling approach through a process of 

segmentation and characterisation of the building stock characteristics (Reinhart and 

Cerezo Davila 2016).  

Building archetypes have been developed for numerous cities and countries 

across the globe. One of the key issues facing archetype development is the lack of 

reliable and accurate information on the buildings (Booth, Choudhary, and Spiegelhalter 

2012). The accuracy of the building stock model depends on the quantity and quality of 



available data. In addition, data sources vary widely at municipal, regional and federal 

levels, which makes it difficult to apply a single methodology across all building stocks. 

This work is part of a broader study to provide a new methodology for using 

electricity smart meter data as a data source for building stock characterisation and 

segmentation. A key component of this research consists in the development of 

classification models using machine learning on smart meter data sets. With a 

sufficiently large smart meter data set with known building characteristics, classification 

models could be developed and used to determine the characteristics from smart meter 

data for a variety of regions. However, this approach depends on two factors: 1) 

sufficient smart meter data availability, and 2) building characteristics that are 

associated with each set of smart meter data. To discuss the possibility of classification 

modeling, smart meter data availability must first be addressed. 

Smart meter data 

As of 2017, over 770 million electricity smart meters have been installed globally (IEA 

2019). This amount has been steadily increasing in recent years, in particular due to 

significant interest in the Asia-Pacific region. There are 79 million meters in the United 

States of America alone (IEA 2019). The global market in terms of installed units 

increased by over 12% from 2016 to 2017 as countries seek to convert their building 

stock to new metering technologies (IEA 2017). 

In the province of Québec, Canada, there are over 3.7 million electricity smart 

meters (Hydro-Québec 2016) currently installed, primarily for the 3.6 million household 

residential market (2016 data, Natural Resources Canada 2019a). These meters collect 

data at 15-minute intervals and are mostly used for billing purposes (Hydro-Québec 

2012).  



Smart meters are very prevalent and could present an interesting opportunity to 

extract information about residential energy consumption. While numerous applications 

are possible for analysing smart meter data, the authors focus primarily on developing 

classification models of residential smart meter data based on known building 

characteristics. 

Supervised machine learning classification of smart meter data 

While the purpose of this paper is not to discuss classification model development, a 

brief mention is made here for context. Supervised machine learning classification can 

be performed on electricity consumption data to estimate building parameters, so long 

as the classification algorithm has sufficient data to train the model. Unsupervised 

machine learning is typically unsuited for this process, as there is limited information on 

a building that can be extracted from electricity consumption data without training the 

model.  

Some classification studies have been performed on real smart meter data (see 

e.g.  Beckel et al. 2014; Carroll et al. 2018; Neale et al. 2019).  To classify smart meter 

data requires: 

1) Electricity consumption at a given sampling rate (classification predictor); 

2) Known building parameters (classification response). 

3) An appropriate classification algorithm (e.g. discriminant analysis). 

Since the objective of the authors is to use classification on smart meter data, it is 

important to discuss available smart meter data sets. 

Electricity smart meter data available for classification studies 

There are very few open-source residential electricity meter data sets with known 

building characteristics. Those that do exist have very little information on the 



buildings. Utilities are often reluctant to share the meter data due to privacy reasons. Of 

the electricity data sets that were found, the works were divided into two common 

themes: 1) smart meter data for occupant behaviour analysis, and 2) high-resolution 

submetered electricity for load disaggregation studies. Data sets were researched based 

on their location, number of homes in the sample, sampling frequency, trial duration 

and relevant building characteristics, which are presented in Table 1. 

Table 1. Summary of open-source residential smart meter data sets with relevant building information 

Data set Loc. # homes Sampling 
period 

Trial 
duration 

Building information Ref. 

Smart meter data sets 

CER electricity 
customer 
behaviour trial 

Ireland 4232 30 minutes 1.5 years Occupant social data, 
appliance use, some building 
geometry information. 

CER (2012) 

PNNL 
GridWise 
Demonstration 
Project 

USA 112 15 minutes ~1 year Occupant surveys Hammerstrom, 
Ambrosio et al. 
(2007), 
Hammerstrom, 
Brous et al. 
(2007) 

Load disaggregation data sets 

UMass Smart* 
Home Dataset 
(2017 release) 

USA 7 1 minute Varies (1-
2 years) 

Weather data, very detailed 
submetered electricity 
consumption. 

Barker et al. 
(2012) 

UMass Smart* 
Microgrid 
Dataset 

USA 443 1 minute 24 hours Electricity consumption only. Barker et al. 
(2012) 

REFIT smart 
home dataset 

UK 20 Mixed 2 years Building occupant survey 
data, complete building 
description, high-resolution 
appliance electricity use. 

Murray et al 
(2017). 

Almanac of 
Minutely 
Power dataset 2 

Canada 1 1 minute 2+ years Building geometry Makonin et al. 
(2016) 

Dutch 
Residential 
Energy Dataset 

The 
Netherlands 

1 1 second 6 months Building geometry, 
occupancy, appliances, indoor 
temperature 

(Nambi et al. 
2015) 

ECO dataset Switzerland 6 1 second 8 months Occupancy data Kleiminger et 
al. (2015) 

Carleton high-
resolution 
electricity data 
set – Study 1 

Canada 12 1 minute ~14 
months 

Type, vintage, building 
surface area, number of 
occupants 

Saldanha & 
Beausoleil-
Morrison 
(2012)  
 

Carleton high-
resolution 
electricity data 
set – Study 2 

Canada 231 1 minute ~1 year Type, vintage, building 
surface area, number of 
occupants 

Johnson & 
Beausoleil-
Morrison 
(2017) 

1 Includes the 12 homes from the study by Saldanha & Beausoleil-Morrison (2012). 

The smart meter data sets are characterized by a relatively high number of 

homes and a monitoring period exceeding 1 year. They focused on occupancy 

behaviour and contained little or no details on the characteristics of the buildings. The 

Irish Commission for Energy Regulation (CER) electricity customer behaviour trial 



(CER 2012) is the best example of open-source smart meter data with over 4000 single-

family homes. Relevant building characteristics include the type of building (detached, 

semi-detached), building floor area and number of occupants. The CER data set does 

not include any heating or cooling electricity use as these Irish homes tend to have no 

cooling system and have non-electric heating (Beckel et al. 2014). 

Load disaggregation data sets are included in this review since they typically 

contain more detailed information on the building’s characteristics and the high-

resolution electricity consumption data can be aggregated. Due to the sheer quantity of 

data and measurement points, load disaggregation studies typically limit the scope of 

the monitoring to a smaller number of homes and/or shorter monitoring period. There is 

therefore little diversity in house types for these types of studies. The UMass Smart 

Microgrid Dataset has the highest sample of buildings with 443 homes, however it only 

contains the electricity consumption data and no building information (Barker et al. 

2012).  

The available data sets are therefore inadequate for developing classification 

models based on the electricity consumption at sampling rates representative of 

electricity smart meter data. There is either too limited information on the building to 

classify data, too few homes to represent the diversity of the building stock, or too little 

data to represent a full year of electricity consumption.  

Objectives 

The principal objective of the authors is to estimate building characteristics from 

anonymous electricity smart meter data, an approach previously described in Neale et 

al. (2018). While this would normally be accomplished by training classification models 

using a smart meter data set with known building parameters, no such data sets are 

extensive enough to perform that task at this stage. The main objective therefore is to 



develop a virtual smart meter (VSM) data set with known building characteristics using 

batched building energy simulations. The VSM data set will be used to develop a clear 

link between building characteristics and electricity consumption at actual smart meter 

data resolution. 

The single-family home market is targeted as it is a significant portion of the 

residential building stock in Canada, representing 16.5% of secondary energy use (2017 

data, NRCan 2020). Expansion to other markets is possible in future work. Given the 

need to train classification models for many different building characteristics, the 

building characteristics must be generated in a way to be as representative as possible of 

the building stock, to minimize combinations of parameters that are not likely to appear 

in the chosen market.   

The developed framework must therefore have the capability to: 

• Generate single-family homes using building energy simulation; 

• Use building characteristics and conditions typical of the chosen market 

using probability distributions, wherever possible; 

• Determine the electricity consumption of the home, effectively 

producing a “virtual smart meter data profile”; 

• Link the building characteristics to the virtual smart meter data profile 

for each generated building; 

• Generate a large quantity of homes (e.g. 100 000+ homes) to best cover 

the range of possible building parameters for classification model 

development, i.e. via batch simulation. 

Methodology  

The methodology used to develop the framework and produce the VSM data set for an 



example building stock is presented in a way that can facilitate applying it to other 

building stocks. A sample set of VSM data with the corresponding building 

characteristics is provided as supplementary material with the paper. This open-source 

data set can be used to test classification algorithms and study the impact of various 

building parameters and occupancy profiles on electricity use at typical smart meter 

sampling periods.  

The framework concept is divided into two main components illustrated in 

Figure 1: 1) Generator, which is the component that produces the VSM data profiles, 

and 2) Classifier, which is the classification model module. While the Generator 

component is the focus of this paper, it is relevant to present the Classifier module in 

part to justify certain choices made in the development of the former.  

 

Figure 1. Virtual smart meter data generation (Generator) and classification (Classifier) processes 

The Generator component consists of five parts, described as {1A} to {1E} in 

Figure 1. First, the building parameters are generated randomly {1A} to ensure a unique 
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building is generated upon each iteration of the model. This is accomplished by 

generating building characteristics according to predetermined probability distributions. 

A building simulation is then performed {1B} and the data are output in a specific 

format corresponding to typical smart meter data {1C}. The module then determines 

whether additional profiles are required {1D} and the process would continue. If the 

data generation is complete, the VSM profiles are compiled into a single data bank for 

future use {1E}.  

The Classifier component then reads the data bank and develops a classification 

model based on the smart meter data and known building parameters {2A}. The result 

would then be validated using real smart meter data for the targeted building stock, i.e. 

the building characteristics for the real smart meter data would be compared with 

predicted values from the classification process {2B}.  

Virtual smart meter data generation 

Virtual smart meter (VSM) data is defined here as electricity consumption data 

generated using a physics-based building energy model at 15-minute intervals, though 

other sampling rates are possible. The sampling rate selected for the virtual data should 

match the one used by the local electricity distributor.  

VSM data is intended to replicate the electricity consumption for single-family 

homes of various compositions. While the methodology behind the model can be 

applied to any region, the characteristics selected are representative of homes found in 

the province of Québec, Canada.  

Development of a virtual smart meter framework 

As illustrated in Figure 1, the purpose of the developed framework is to stochastically 

generate a set of building parameters and then execute a building energy simulation 



using those parameters. The framework produces a VSM data profile that consists of 

electricity consumption data (in kWh) at 15-minute intervals, which is 35 040 data per 

home for a year. Each data profile is paired with the building parameters that are used to 

generate it. This process is then repeated the desired number of times to create a large 

data set for classification. As an example, the authors typically generate 200 000 homes 

with corresponding inputs and electricity consumption, which is well over 7 billion 

data. 

The single-family home building stock for the province of Québec, Canada, is 

characterized by a variety of detached, semi-detached and row houses that typically 

have a basement. The homes are usually either one- or two-storeys and have a variety of 

thermal envelope performance levels and occupancy characteristics. Housing density 

(and therefore housing types) varies across the province, as does the climate. The 

framework therefore must include the following features: 

1) Generating physical characteristics, such as size, shape, number of floors, for 

a home in the province of Québec; 

2) Using a weather data file that represents the climate for each region of the 

province of Québec; 

3) Occupying the virtual home with realistic occupants and internal loads and 

simulating their demands; 

4) Producing the annual electricity use for the heating, cooling, lighting, 

appliances and domestic hot water loads of the home; 

5) Repeating the process a large number of times with statistically 

representative inputs each time. 



In order to generate a set of housing electricity consumption that is realistic, a 

framework had to be developed that could generate parameters that are representative 

for the chosen building stock and that correctly impact the house’s energy use.  

VSM framework details 

The proposed framework consists of two main components: 1) a manager, which 

generates the building characteristics and starts a building energy simulation 

automatically, and 2) the building energy model, which generates the VSM data set 

given the set of selected parameters. The manager is an essential part of the process of 

automating the generation of building parameters and batch building simulations 

required to produce a significant set of VSM data. The logic behind the manager-

building model interaction is illustrated in Figure 2. 

 

Figure 2. Proposed framework including a manager and building energy model 
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The manager is implemented in the Matlab environment (Mathworks 2018). The 

building model used is the Type 56 implemented within the TRNSYS environment 

(Klein et al. 2017). This model takes into account thermal mass to perform a transient 

simulation. Other dynamic simulation environments and building simulation programs 

could work equally well for the task. The building modeling approach for determining 

the building geometry, heating and cooling systems, lighting, appliance, domestic hot 

water and air infiltration loads are discussed in the following sections of the paper. 

Building geometry 

The building is represented as a single-zone rectangular prism. By default, the building 

is oriented with the south-facing wall as the “front” of the home, i.e. the façade that is 

facing the street. If the house type is semi-detached or a row house, one or both of the 

east- and west-facing walls are considered adjacent to another dwelling and not exposed 

to outdoor conditions. Houses can be one- or two-storeys. The heated surface area of a 

home is considered the sum of the floor areas including a basement. The building 

rotation is specified in order to determine the solar gains for each surface. The aspect 

ratio of the building’s depth to width determines the area of each external surface. The 

height of each storey is considered constant (2.4 m).  

External walls and roof surfaces are insulated with specified thermal resistance 

values. Windows are evenly distributed on all external envelope surfaces based on a 

window-to-wall ratio. Walls that are shared between more than one dwelling do not 

contain any windows, such as in semi-detached or row houses.  

The building model includes a basement that is primarily below ground level, 

where the foundation and slab are insulated with a specified thermal resistance value. 

The ground temperature is modelled with a sinusoidal external boundary condition 

described in Equation (1). 



𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐶𝐶0 + 𝐶𝐶1𝑐𝑐𝑐𝑐𝑐𝑐(𝐶𝐶2𝑡𝑡 + 𝐶𝐶3) (1) 

where 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the ground temperature on the outer surface of the building envelope 

(°C), 𝐶𝐶𝑖𝑖 are constants, and 𝑡𝑡 is time (h). Constants are specific to the region where the 

house is located and whether the external surface is a foundation wall or beneath a slab. 

Coefficients in equation 1 were pre-calculated for each region and determined based on 

a 3-D finite-difference type simulation to predict heat transfer in basement walls and 

slabs. 

Heating systems 

The heating system for a home can consist of one of three possible system 

configurations (note: symbols for equations appear at the end of this section):  

(1) Electric element heating, i.e. electric baseboards or an electric furnace. The 

heating load for the home is calculated and a constant coefficient of performance 

(COP) is applied to calculate the electric heating requirement. 𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑖𝑖𝑒𝑒 = 1.0, 

𝐶𝐶𝑃𝑃 = 1.0. 

𝐸𝐸𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐶𝐶𝑃𝑃 × 𝑄𝑄𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒,𝑒𝑒𝑔𝑔𝐻𝐻𝑔𝑔 × ∆𝑡𝑡

𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑖𝑖𝑒𝑒
 (2) 

(2) Non-electric heating, i.e. a natural gas or heating oil furnace. The heating load 

for the home is calculated and a parasitic load is applied for electric subsystems 

and applied in the form of a power fraction (PF). 𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑖𝑖𝑒𝑒 = 1.0, PF = 0.05. 

𝐸𝐸𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐶𝐶𝑃𝑃 × 𝑄𝑄𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒,𝑒𝑒𝑔𝑔𝐻𝐻𝑔𝑔 × 0.25

𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑔𝑔𝑖𝑖𝑒𝑒
 (3) 

(3) Air-source heat pump (ASHP) with an auxiliary (AUX) heating system. In this 

case, the heating system transitions between the ASHP and AUX systems based 



on the outdoor temperature. The usage fraction for the ASHP (FASHP) and AUX 

(FAUX) are expressed using the following heuristic relationships: 

For 𝑇𝑇𝑔𝑔𝑔𝑔𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 > -5 °C 
     𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = 0 

𝑃𝑃𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴 = 1.0 

For -12 °C ≤ 𝑇𝑇𝑔𝑔𝑔𝑔𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ≤ -5 °C  

      𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = 0.1429 × 𝑇𝑇𝑂𝑂𝑔𝑔𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 1.7143 

     𝑃𝑃𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴 = 1 − 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴  

For 𝑇𝑇𝑔𝑔𝑔𝑔𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 < -12 °C 

     𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = 1.0 

𝑃𝑃𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴 = 0 

The COP for the ASHP is determined as a function of outdoor air-temperature, as 

depicted in Equation (4). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴 = 0.0585 × 𝑇𝑇𝑂𝑂𝑔𝑔𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 3.115 (4) 

The overall heating system electricity usage for a heat pump system with auxiliary 

heating for a given time step is expressed using Equation (5).  

𝐸𝐸𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐶𝐶𝑃𝑃 × 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑄𝑄𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒,𝑒𝑒𝑔𝑔𝐻𝐻𝑔𝑔 × ∆𝑡𝑡

𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
+
𝑃𝑃𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴 × 𝑄𝑄𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒,𝑒𝑒𝑔𝑔𝐻𝐻𝑔𝑔 × ∆𝑡𝑡

𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴
 (5) 

Description for symbols used in Equations (2) through (5): 

• ∆𝑡𝑡 is the time step in the simulation (0.25 h). 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 is the COP of the auxiliary heating system. 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴 is the COP of the air-source heat pump for the given time step. 
• 𝐸𝐸𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the amount of electricity required to heat the home for the given 

time step (kWh). 
• 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 is the usage fraction for an auxiliary (AUX) heating system. 
• 𝑃𝑃𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴 is the usage fraction of an air-source heat pump (ASHP). 
• 𝐶𝐶𝑃𝑃 is the power fraction for non-electric equipment. 
• 𝑄𝑄𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒,𝑒𝑒𝑔𝑔𝐻𝐻𝑔𝑔 is the heating load calculated by the building model (kW). 
• 𝑇𝑇𝑔𝑔𝑔𝑔𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the outdoor dry bulb temperature (°C). 



Cooling systems 

The electricity use for cooling a home is determined based on the presence of a cooling 

system. If no cooling system is present, the cooling electricity is zero. If an air-

conditioner or a reversible heat pump exists, the cooling electricity use is modelled 

using Equation (6). 

𝐸𝐸𝐶𝐶𝑔𝑔𝑔𝑔𝑒𝑒,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑄𝑄𝐶𝐶𝑔𝑔𝑔𝑔𝑒𝑒,𝑒𝑒𝑔𝑔𝐻𝐻𝑔𝑔 × ∆𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴

 (6) 

where 𝐸𝐸𝐶𝐶𝑔𝑔𝑔𝑔𝑒𝑒,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the amount of electricity required for cooling for the given time step 

(kWh), ∆𝑡𝑡 is the duration of a time step (0.25 h), and 𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐻𝐻𝐴𝐴 is the coefficient of 

performance calculated as a function of outdoor temperature, as expressed in Equation 

(4). 

Lighting internal gains 

Lighting is modelled as an internal heat gain corresponding to a heat source expressed 

in watts (W). Lighting heat gains to the surrounding environment are considered 57% 

radiative and 43% convective (ASHRAE 2013). 

Equipment internal gains 

Equipment internal gains are applied as an internal heat source expressed in watts (W). 

Heat gains to the surrounding environment are considered 30% radiative and 70% 

convective (ASHRAE 2013). Note that some equipment, such as swimming pool and 

spa pumps and heaters, are not typically installed within the home. While these devices 

are included in the total electricity consumption, they are not included as internal gains 

within the house. 



Domestic hot water 

Domestic hot water electricity use is determined using a hot water tank simulation using 

the TRNSYS software (Klein et al. 2017). The water heater model consists of a vertical 

cylindrical insulated tank that is equipped with master-slave heating elements, 

controlled with aquastats and with a volume equal to 266 L. Standby losses are 

determined by assuming a constant ambient air temperature and constant thermal 

resistance of the tank. Electricity use is calculated based on the activation of the heating 

elements due to temperature changes in the hot water tank subsequent to hot water 

draws. 

Air infiltration 

The Sherman-Grimsrud infiltration model is used to represent air infiltration, which 

determines the air changes per hour (ACH) as a function of the indoor and outdoor 

temperatures, the leakage area of the building envelope, the wind speed given the height 

of the building, and the pressure differences due to stack effect (Sherman and Grimsrud 

1980). 

Building parameters 

A residential single-family building can be described using a variety of deterministic 

and probabilistic parameters. The number of virtual buildings required in the data set 

depends on the parameters being varied and the discretization of each for classification 

purposes. In other words, each characteristic is divided into discrete “bins” that are 

subsequently used for classification model development. Parameters are generally 

divided into 2 to 5 bins to ease the classification model development (Neale et al. 2019). 

In brief, if the goal is to correctly predict the category for a given building parameter, 

the likelihood of a correct prediction increases with fewer categories. The exactitude of 



the prediction is up to the classification modeler and the desired accuracy of the 

developed model. 

A general description of the building parameters is provided in Table 2. The 

impact of the parameter on the building energy model is presented. The information 

available for each building stock will vary, though some examples of potential data 

sources are provided for each building parameter. Examples of categories for each 

characteristic are also provided in Table 2.  

Table 2: Model inputs and potential data sources. 

Property Impact on model Potential data sources Categories/bins1 

Location Distribution of building types, 
climate determines heating/cooling 
degree days 

National census data, national energy 
use databases 

Number of locations 
depends on region 
studied. User choice.  

(7)* 

Building type Determines building geometry National census data, building energy 
surveys, municipal tax evaluation data 

Single-detached, semi-
detached, row are the 
usual categories. Semi-
detached and row can be 
combined. 

(2-3) 

Shape Determines building geometry Building surveys, national studies, 
engineering knowledge of construction 
practices 

Aspect ratios, e.g. 0.8, 
1.0, 1.3. User choice.  

(3-5) 

Rotation Determines building geometry, 
solar gains 

Engineering knowledge, map data 90° rotation increments. 

(4) 

# Floors Determines building geometry Building surveys, national studies, 
engineering knowledge of construction 
practices 

One or two floors. 

(2) 

Wall 
construction 

Determines building envelope 
thermal performance 

Building surveys, national studies, 
engineering knowledge of construction 
practices 

Wall thermal resistance 
levels. 

(4-5) 

Roof 
construction 

Determines building envelope 
thermal performance 

Building surveys, national studies, 
engineering knowledge of construction 
practices 

Roof thermal resistance 
levels. 

(4-6) 

Foundation 
construction 

Determines building envelope 
thermal performance 

Building surveys, national studies, 
engineering knowledge of construction 
practices 

Foundation thermal 
resistance levels. 

(4) 

Infiltration Impacts heating and cooling 
demand 

Building surveys, national energy code 
levels, measurement campaigns 

Rates of infiltration 

(3-5) 

Window type Determines building envelope 
thermal performance 

Building surveys, national studies, 
engineering knowledge of construction 
practices 

Multiple variations of 
each type are possible, 
but are categorized by 
number of glazings 
(Single, double, triple.). 

(3) 



Property Impact on model Potential data sources Categories/bins1 

Window-to-
wall ratio  

Determines building envelope 
thermal performance and building 
geometry 

Building surveys, national studies, 
engineering knowledge of construction 
practices 

Surface area ratio 
window:wall, e.g. 0.1, 
0.2, etc. 

(3) 

Basement Determines building geometry Building surveys, national studies, 
engineering knowledge of construction 
practices 

Yes/no/crawl space.  

(1-3) 

Heating, 
ventilation and 
air 
conditioning 

Determines heating, cooling and 
ventilation electricity use based on 
energy demand and fresh air needs 

Building surveys, national studies, 
national energy use databases, 
equipment distributors. 

Electric baseboards, 
central air, heat recovery 
ventilator, air 
conditioning.  

(2-3) each for cooling, 
heating, ventilation. 

Setpoints Determines heating and cooling 
demand 

National studies, national energy use 
databases 

Thermostat setpoints for 
heating and cooling, e.g. 
heating: 21°C, cooling: 
25 °C. 

(1-3) 

Appliances Determines appliance electricity use National studies, national energy use 
databases 

Number and type of 
appliances 

(N/A)2 

Lighting Determines lighting electricity use National studies, national energy use 
databases 

Type of lighting, density. 

(N/A)2 

Occupants Impacts internal loads of the home National census data, national studies  Number of occupants 

(5+) 

Occupancy Impacts internal loads of the home Occupancy studies Occupant schedule and 
activity schedule. 

(N/A)2 

DHW 
consumption 

Determines domestic hot water 
electricity use 

National studies, research  Volume of hot water 

(N/A)2 

Pool/spa 
installations 

Determines electricity use due to a 
pool and/or spa installation 

Equipment distributors, national studies, 
building surveys, building permits 

Yes/no 

(2) each for pool and spa 

1 Values in parentheses represent the authors’ recommended number of categories. Values with (  )* 
depend on the chosen building stock. 
2 As described in the present paper, internal loads are calculated stochastically using an independent tool 
and provided as an input to the building energy model.  

A segmentation and characterization process of the Québec building stock was 

performed in order to fill out the categories described in Table 2. Data sources included 

Canadian census data (StatCan 2011; StatCan 2016), the Canadian Survey of Household 

Energy Use (NRCan 2011), and the Energuide Housing Database (NRCan 2018). 

Similar information may not be available for all regions, in which case engineering 

knowledge can be sufficient to define an appropriate distribution for each parameter. 

Based on the available information, parameters were divided into four categories: 

1) Occupancy-driven internal loads; 



2) Uniform probability distributions, which describe a set of parameter 

categories with equal probability; 

3) Probability mass functions, which describe a set of unequal probabilities for 

a number of different categories for a given parameter. 

4) Fixed parameters, which were input to the model as constant values for all 

building simulations. 

Occupancy-driven internal loads 

The number of occupants in a home can be established using a variety of data sources, 

which are discussed in subsequent sections of the paper. Of the building parameters 

described in Table 2 there are a number that are dependent on the occupancy of a home, 

i.e. the number of occupants that are at home and active in the house at any given time. 

Lighting, appliances and domestic hot water are primary examples of these loads.  

To ensure a variety of stochastic occupancy behaviour that is directly tied to the 

internal loads of a home, the CREST thermal model (McKenna and Thomson 2016) is 

used to produce distinct internal load profiles for use in the Generator module. The 

CREST model is intended to produce daily profiles at 1-minute intervals, but was 

adapted to produce annual occupancy activity schedules with corresponding lighting, 

appliance and domestic hot water usage data at 15-minute intervals. The CREST model 

distinguishes between weekend and weekday behaviour but is limited to a maximum of 

5 occupants. The presence of appliances (i.e. number of televisions and electronic 

devices), their usage (amount of time the device is operated based on occupancy), the 

number of occupants present at home, and their activity level are generated 

stochastically by the model based on real time-of-use probability tables. This ensures a 

wide variety of stochastic occupancy behaviour. 



An example of a typical occupancy schedule with the corresponding domestic 

hot water usage is provided in Figure 3 for two full days. Occupancy (number of people 

in the house) and activity (number of people active in the house) are depicted for a 3-

person household. Occupants are typically present during the night but not active, and 

absent during the day but active, though this varies from day to day. It should be noted 

that only occupants present in the house can influence the internal loads, and the activity 

level for an occupant not present is for descriptive purposes only. Domestic hot water 

draws occur when occupants are both present and active. Similar trends occur for 

lighting and appliance loads, though they are not depicted in Figure 3. Many appliances 

have constant or periodic electricity draws that are independent of occupancy, such as 

refrigerators. These are also represented in the CREST tool.  

 

Figure 3. Example of an occupant activity schedule over a two-day period for a 3-occupant home. 

To generate a variety of occupant behaviours, 15 stochastic occupancy schedules 

for 1 to 5 occupants are generated, for a total of 75 occupancy profiles. The stochastic 

internal load profiles are provided with the VSM data set for context. If time-of-use data 

is available for the studied building stock, then more specific internal load profiles 

could be generated by updating the CREST probability tables or by implementing the 

internal loads in a different manner. Since the schedule and number of occupants are 
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treated as separate inputs, it is possible to generate houses with similar physical 

characteristics but different occupancy. 

In addition to the loads above, swimming pools and portable electric spas 

represent a non-negligible electric energy usage in the province of Québec. Swimming 

pools utilize between 4300 kWh and 7500 kWh annually depending on whether they are 

above- or below-ground, and whether they are heated (Hydro-Québec 2019a). The 

fraction of houses with swimming pools varies depending on the type of dwelling. Pools 

are considered operational from June 1st to October 31st. Portable electric spas were 

found to use between 4500 kWh and 5500 kWh annually, depending on the frequency 

of use (Hydro-Québec 2019b). Spas are considered operational all year long. 

Uniform probability distributions 

A parameter described by a uniform probability distribution (UPD) has equal 

probability for all outcomes, as described in Equation (7). 

𝐶𝐶𝐴𝐴𝐴𝐴𝑈𝑈(𝐴𝐴) =
1
𝑘𝑘

 (7) 

where PUPD(A) is the probability for a building parameter A with a uniform probability 

distribution and k is the number of categories for that parameter. 

UPD are typically applied in cases where no prior probability data could be 

found for the studied building stock. For example, data was not available for the Québec 

residential building stock to characterize the frequency at which each rotation value 

occurs, therefore equal probability was assigned to rotation values equal to 0°, 90°, 180° 

and 270°. While it is preferable to apply a probability mass function where data allows, 

a UPD will nevertheless cover the range of possible values for a parameter allowing for 

correct classification. The disadvantage of using uniform probability distributions 

without correlation to other parameters is that occasionally there may be combinations 



that do not exist in the building stock or that are overrepresented, using computational 

resources for the classification process for no real benefit. A list of UPD parameters and 

their corresponding number of categories and probabilities are presented in Table 3. 

Table 3. Building parameters with uniform probability distributions 

Parameter Categories Category description Uniform 
probability  
PUPD 

Notes 

Rotation 4 Angle of rotation of 
the building with 
respect to true north. 
0°, 90°, 180°, 270° 

0.250 GIS1 data could help 
characterize this parameter. 

Shape 5 Ratio of width to 
length for a house. 
0.8, 0.9, 1.0, 1.1, 1.2 

0.200 Semi-detached houses can have 
asymmetrical configurations 
and it is therefore important to 
represent both aspect ratio and 
building rotation. GIS1 data 
could help characterize this 
parameter. 

Window-to-
wall ratio 

3 Ratio of window 
surface area to 
aboveground vertical 
building envelope 
area.  
0.1, 0.15, 0.2 

0.333 Applied to all vertical building 
envelope surfaces that are 
above ground level that are not 
directly adjacent to another 
home, i.e. shared surfaces for 
semi-detached or row houses. 

Occupancy 
profile 

15 Stochastically 
generated occupancy 
profiles. 
1 to 15. 

0.067 Individually generated 
occupancy profiles. 15 profiles 
were generated for each 
occupant category, i.e. 15 
profiles for 1 occupant, 15 
profiles for 2 occupants, etc. 

Adjacent 
building 
surfaces for 
semi-detached 
homes 

4 Determines which 
external building 
surface is adjacent to a 
neighbouring home. 
“None”, “Both”, 
“East” or “West”. 

0.250 Assuming that the front 
entrance of the building is 
facing south by default, the 
“east” and “west” terminology 
is adapted to describe which 
surface borders with a 
neighbour and therefore is not 
exposed to outdoor conditions. 

1 Geographic information systems 

Probability mass functions 

Probability mass functions (PMF) were established for a number of building parameters 

where statistical data was obtained. In many cases, sufficient data was available to 

establish dependence between one or more parameters, which is illustrated in Figure 4. 

The building location was selected first and subsequent parameters were chosen as a 

function of the location.  



 

Figure 4. Building parameter dependency network. R: thermal resistance of the building envelope, DHW: domestic 
hot water, HVAC: heating, ventilation and air conditioning. 

 

Bayes’ theorem, described in Equation (8), is applied for each of the connections 

in the network in Figure 4, which allows for the determination of the conditional 

probability of a parameter given prior evidence.   

𝐶𝐶(𝐴𝐴|𝐵𝐵) =
𝐶𝐶(𝐵𝐵|𝐴𝐴)𝐶𝐶(𝐴𝐴)

𝐶𝐶(𝐵𝐵)
 (8) 

where A and B are dependent parameters, P(A|B) is the conditional probability of A 

given B occurring, P(A) is the prior probability distribution of A, P(B) is the prior 

probability distribution of B, and P(B|A) is the prior conditional probability of B given A 

occurring. P(B|A) is typically based on prior knowledge, i.e. based on data obtained in 
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the literature. Prior probability distributions such as P(A) can be established based on 

evidence found in the literature and expressed using Equation (9). 

𝐶𝐶(𝐴𝐴) =
𝑛𝑛𝐴𝐴𝑖𝑖
𝑛𝑛

 (9) 

where nAi is the number of cases for class i of parameter A and n is the number of 

samples. 

As an example of Bayes’ Theorem applied to building parameters, the 

conditional probability distribution for P(Roof R|Wall R), which is read as the 

probability of a building having a certain value of roof thermal resistance given a value 

of wall thermal resistance, is illustrated in Table 4. The shaded values represent the 

maximum probability of roof thermal resistance for a given category of wall thermal 

resistance, i.e. the most likely possibility. Note that “R” denotes thermal resistance. 

Table 4. Conditional probability distributions for roof thermal insulation based on wall insulation levels. Shaded 
values represent maximums. 

Roof R 
[m2·K·W-1] 

Wall R [m2·K·W-1]  P(Roof R) 
1 2 3 5  

1 0.146 0.041 0.008 0.008  0.043 
2 0.319 0.250 0.069 0.068  0.204 
3 0.207 0.214 0.109 0.096  0.181 
4 0.138 0.194 0.193 0.134  0.186 
5 0.095 0.142 0.295 0.190  0.179 
8 0.095 0.159 0.326 0.504  0.208 

 

The conditional probability values in Table 4 illustrate the dependent nature of 

the roof insulation based on the level of the wall thermal resistance. For example, based 

on prior evidence, the probability of a building having a 2.0 m2·K·W-1 roof insulation 

for a house with 2.0 m2·K·W-1wall thermal insulation is 0.250. The higher the insulation 

in the walls, the more probable it is to have higher levels of roof insulation. A non-

negligible portion of the building stock has unconventional configurations, which is 

important to represent correctly in the model. For example, approximately 9.5% of 



homes with very low wall thermal resistance (1.0 m2·K·W-1) have very high roof 

thermal resistance (8.0 m2·K·W-1). This is plausible due to the ease that attic insulation 

can be retrofitted to higher values of thermal insulation. The opposite is not true 

however, where homes with high values of wall thermal resistance and low values of 

roof thermal resistance are rare (< 1%). If the model simply applied the roof insulation 

prior probability distribution P(Roof R), shown in Table 4 in the right-hand column, the 

virtual buildings produced would not correctly represent the actual state of the building 

stock. This is consistent with the strategy of developing a virtual residential model that 

is as close to a building stock model as possible, to produce realistic buildings and 

improve the classification model development process. 

The probability distributions for a number of building parameters are presented 

in Table 5. Each distribution is described in terms of the number of categories, any 

dependencies based on other characteristics, a histogram depicting the probability mass 

function, some notes related to that specific category, and any applicable references for 

the data source. 

 



Table 5. Probability distributions for the stochastic parameters generated for each virtual building 

Parameter Categories Dependencies Probability distribution Notes Reference 
Location 1: Rimouski, Québec (L1) 

2: Saguenay, Québec (L2) 
3: Québec, Québec (L3) 
4: Sherbrookei, Québec (L4) 
5: Trois-Rivièresi, Québec (L5) 
6: Montréal, Québec (L6) 
7: Gatineau, Québec (L7) 

N/A 

 

i Also includes 
several surrounding 
cities. 

Distribution of total 
number of SFH in 
the province of 
Québec (StatCan 
2016; NRCan  
2011). 

Building 
type 

1: Single-detached home (DET) 
2: Row house (ROW) 
3: Semi-detached home (SDH) 
4: Other single-attachedi (OSA) 

Location 

 

i Other single-
attached are 
residential single-
family homes 
adjacent to non-
residential 
buildings, sharing 
one or more walls. 

Prevalence of each 
building type by 
region (StatCan 
2016; NRCan 
2011). 

Number of 
floors 

1: 1 storey 
2: 2 storeys 

Building type 

 

Probability 
distributions for 
ROW, SDH and 
OSA are based on 
the same data, i.e. 
non-single-detached 
homes. 

Energuide Housing 
Database (NRCan  
2018). 
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Parameter Categories Dependencies Probability distribution Notes Reference 
Occupants 1: 1 occupant 

2: 2 occupants 
3: 3 occupants 
4: 4 occupants 
5: 5 occupantsi 

Building type 

 

i Includes homes 
with more than 5 
occupants 

Statistics Canada 
household data 
(StatCan 2011; 
StatCan 2016). 
Energuide Housing 
Database (NRCan  
2018). 

Heated 
surface area 

1: 56-93 [75]i m2 

2: 93-139 [115] m2 
3: 139-186 [160] m2 
4: 186-232 [210] m2 
5: >232 [250] m2 

Building type, 
number of 
floors 

 

i Median value. 
 
“Other” includes 
ROW, SDH and 
OSA building 
types. “1” or “2” 
indicate either one- 
or two-stories. 
  

Energuide Housing 
Database (NRCan  
2018). 

Wall thermal 
resistancei 

1: 0.5-1.5 [1.0]ii m2KW-1 
2: 1.5-2.5 [2.0] m2KW-1 
3: 2.5- 4.5 [3.0] m2KW-1 
5: >4.5 [5.0] m2KW-1 

N/A 

 

i Total wall assembly 
thermal resistance 
ii Median value in 
brackets 

Energuide Housing 
Database (NRCan  
2018). 
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Parameter Categories Dependencies Probability distribution Notes Reference 
Roof thermal 
resistancei 

1: 0.5-1.5 [1.0]ii m2KW-1 

2: 1.5-2.5 [2.0] m2KW-1 
3: 2.5-3.5 [3.0] m2KW-1 
4: 3.5-4.5 [4.0] m2KW-1 
5: 4.5-5.5 [5.0] m2KW-1 
8: >5.5 [8.0] m2KW-1 

Wall thermal 
resistance 

 

i Total roof assembly 
thermal resistance 
ii Median value in 
brackets 

Energuide Housing 
Database (NRCan  
2018). 

Foundation 
thermal 
resistancei 

1: 0.5-1.5 [1.0]ii m2KW-1 
2: 1.5-2.5 [2.0] m2KW-1 
3: 2.5-3.5 [3.0] m2KW-1 
4: 3.5-4.5 [4.0] m2KW-1 

Wall thermal 
resistance 

 

i Total foundation 
assembly thermal 
resistance 
ii Median value in 
brackets 

Energuide Housing 
Database (NRCan  
2018). 

Equivalent 
Leakage 
Area  

1: 248 cm2 @4Pa 
2: 406 cm2 @4Pa 
3: 556 cm2 @4Pa 
4: 775 cm2 @4Pa 
5: 1426 cm2 @4Pa 

Heated surface 
area 

 

N/A Energuide Housing 
Database (NRCan  
2018). 
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Parameter Categories Dependencies Probability distribution Notes Reference 
Auxiliary 
heating 

1: Electric 
2: Non-electric 

Locationi 

 

i Other heating 
sources are more 
common in regions 
L6 and L7 of the 
study 

Energuide Housing 
Database (NRCan  
2018). 

Air 
conditioning 

1: No air conditioning 
2: Heat pumpi 

3: Window air conditioner 

 

 

i Air-source heat 
pumps only. 

Energuide Housing 
Database (NRCan  
2018). 

Heat pump 
(heating) 

1: No heat pump 

2: Heat pumpi  + Auxiliary 
Air 
conditioningii 

 

i Air-source heat 
pumps only.  
ii Homes without 
A/C or with 
window A/C rarely 
had heat pumps for 
heating.  

Energuide Housing 
Database (NRCan  
2018). 
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Parameter Categories Dependencies Probability distribution Notes Reference 
Domestic 
hot water 

1: Electric element 
2: Non-electric 

Auxiliary 
heatingi 

 

i Homes with non-
electric heating are 
more likely to have 
non-electric hot 
water heaters 

Energuide Housing 
Database (NRCan  
2018). 

Swimming 
pool 

1: Swimming pool 
2: No swimming pool 

Building type 

 

N/A Real estate database 
(Realtor.ca 2019). 
Pool energy 
calculator (Hydro-
Québec 2019a). 

Spa 1: Spa 
2: No spa 

N/A 

 

Limited 
information was 
available on spa 
distribution by 
building type. 

Spa energy 
calculator (Hydro-
Québec 2019b). 
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The probability distributions presented in Table 5 were developed using a 

number of sources, most predominantly the Energuide Housing Database (EHD) 

(NRCan 2018). The EHD consists of over 700 000 homes across Canada that have been 

audited under a home energy efficiency retrofit program. Probability distributions were 

established by considering the pre-retrofit characteristics for a subset of roughly 27 000 

homes in the Province of Québec. The EHD represented the most detailed information 

available for many of the building characteristics used in the virtual model.  

Cumulative probability distributions were developed from each distribution 

illustrated in Table 5, which are used within the model to assign properties during 

random number generation.  

Fixed parameters 

As with any building simulation, a variety of constant values were used where variable 

values were not necessary or could not effectively be defined. For example, certain 

material properties were assigned fixed values consistent with material reference 

databases, such as for the thermal conductivity of wall insulation or the density of 

concrete. The impact of using a constant value for such cases was minor compared to 

other variables in the building simulation. An experienced building simulation modeler 

would be able to select appropriate values for these types of parameters, and for the 

purpose of brevity they are not reported here.  

Window types 

Establishing the typical window types for the province of Québec requires a specific 

procedure due to the complexity of the available data. In the Energuide Housing 

Database (EHD) (NRCan 2018) the windows are described in terms of Hot2000 codes 

(NRCan 2019b), which are six hexadecimal digits corresponding to the number of 



glazings, window coating, fill type, spacer type, window type, and the frame material of 

a window. 

Each Hot2000 window code is characterized in terms of the overall U-value and 

solar heat gain coefficients (SHGC). These values are illustrated in a bubble chart to 

visualize the distribution of the window properties (Figure 5). The k-medoid clustering 

technique is then applied to the window data set to establish the most representative 

windows as a function of the number of glazings (single, double and triple). The 

number of clusters k is established iteratively to cover at least 75% of the building 

stock. Through this method, it is established that 3 single-glazed windows, 15 double-

glazed windows, and 6 triple-glazed windows represent the studied building stock. The 

exact characteristics of the windows are described in Table 6. 

 

Figure 5. Window data by U-value and SHGC with resulting k-medoid clusters for single-, double- and triple-glazed 
windows. Size of EHD data points represents number of occurrences in the data set for a given window type. 

0 1 2 3 4 5 6 7 8

U-value (W/m 2 K)

0

0.2

0.4

0.6

0.8

1

SH
G

C

EHD
Single
Double
Triple



The probability distribution for each of the 24 window types is established from 

the number of occurrences of each window type (Table 6). While there are many 

individual windows reproduced in the model, the objective for window classification is 

primarily to identify the number of glazings, as opposed to the exact model.  



Table 6. Window properties and clustering results 

 
Window Probability Cumulative 

probability 
Hot2000 
code U-value SHGC Glazing Coating Fill type Spacer Type Frame 

Single-glazed windows 
1 Single 1 0.020 0.020 100000 6.667 0.785 Single Clear 13mm air Metal Picture Aluminum 
2 Single 2 0.026 0.046 100002 5.882 0.751 Single Clear 13mm air Metal Picture Wood 
3 Single 3 0.022 0.068 100022 5.263 0.643 Single Clear 13mm air Metal Slider with sash Wood 
Double-glazed windows 
4 Double 1 0.002 0.070 200040 5.000 0.642 Double Clear 13mm air Metal Patio door Aluminum 
5 Double 2 0.014 0.084 200020 4.348 0.671 Double Clear 13mm air Metal Slider with sash Aluminum 
6 Double 3 0.006 0.090 202000 4.000 0.695 Double Clear 6 mm air Metal Picture Aluminum 
7 Double 4 0.123 0.212 200000 3.704 0.695 Double Clear 13mm air Metal Picture Aluminum 
8 Double 5 0.047 0.259 202002 3.333 0.665 Double Clear 6 mm air Metal Picture Wood 
9 Double 6 0.016 0.276 202012 3.226 0.599 Double Clear 6 mm air Metal Hinged Wood 
10 Double 7 0.394 0.670 200002 2.941 0.665 Double Clear 13mm air Metal Picture Wood 
11 Double 8 0.112 0.782 200012 2.941 0.599 Double Clear 13mm air Metal Hinged Wood 
12 Double 9 0.002 0.784 200006 2.778 0.652 Double Clear 13mm air Metal Picture Fiberglass 
13 Double 10 0.016 0.800 231002 2.439 0.621 Double Low-e .20 (hard 1) 9 mm air Metal Picture Wood 
14 Double 11 0.043 0.843 234002 2.174 0.621 Double Low-e .20 (hard 1) 9mm argon Metal Picture Wood 
15 Double 12 0.024 0.867 223214 1.852 0.505 Double Low-e .10 (soft) 13mm argon Insulating Hinged Vinyl 
16 Double 13 0.027 0.894 213214 1.754 0.396 Double Low-e .04 (soft) 13mm argon Insulating Hinged Vinyl 
17 Double 14 0.074 0.968 213204 1.613 0.438 Double Low-e .04 (soft) 13mm argon Insulating Picture Vinyl 

18 Double 15 0.002 0.969 644204 1.299 0.299 Double - 1 
heat mirror  Low-e .35 (hard 2) 9mm argon Insulating Picture Vinyl 

Triple-glazed windows 
19 Triple 1 0.002 0.971 300010 3.333 0.615 Triple Clear 13mm air Metal Hinged Aluminum 
20 Triple 2 0.007 0.978 301000 2.941 0.624 Triple Clear 9 mm air Metal Picture Aluminum 
21 Triple 3 0.006 0.984 301002 2.222 0.595 Triple Clear 9 mm air Metal Picture Wood 
22 Triple 4 0.005 0.989 300002 2.083 0.595 Triple Clear 13mm air Metal Picture Wood 
23 Triple 5 0.008 0.997 331002 1.923 0.560 Triple Low-e .20 (hard 1) 9 mm air Metal Picture Wood 
24 Triple 6 0.003 1 323204 1.282 0.507 Triple Low-e .10 (soft) 13mm argon Insulating Picture Vinyl 



Climate files 

The location of the home determines the climate file used in the building simulation. 

For the purpose of generating realistic electricity consumption values via building 

simulation, weather data files are used for the year 2016. Classification based on 

location will therefore be able to more consistently determine the location of an 

anonymous smart meter data based on the order of magnitude of the electricity load in a 

heating-dominated climate. Other climate data can be used to generate the VSM data 

sets by substituting the regional climate files for other years. 

VSM Data 

The overall procedure to produce the VSM data set is depicted in Figure 2, which shows 

that the ultimate goal is to produce electricity smart meter data with known building 

characteristics. A data set of 200 000 VSM profiles is provided with this paper, which 

consists of input data, VSM data, load profiles, and annual totals for heating, cooling, 

lighting, equipment and domestic hot water electricity.  

Input data  

A virtual smart meter profile is produced by first generating a single-family home. Each 

home is characterized by the uniform probability distributions (UPD) and probability 

mass functions (PMF) mentioned previously. Each distribution requires the generation 

of a distinct random number, which is then used to determine which value to use for a 

given parameter. A sample input set is presented in Table 7 as an example of the link 

between the random number generated for each parameter and the corresponding value 

used in the simulation. 

 



Table 7. Sample input set based on random number generation 

Parameter Random 
number Bin # Total # 

bins 
Distribution 
type 

Corresponding 
value 

Location 0.554 6 7 PMF Montréal, Canada 
Building type 0.536 1 4 PMF Detached 
Occupancy 
profile number 0.350 061 15 UPD Profile #6 

Window # 
glazings 0.961 2 3 PMF Double-glazed 

windows 
Surface area 0.403 3 5 PMF 160 m2 
Window-to-
wall ratio 0.120 1 3 UPD 0.1 

Building 
rotation 0.162 1 4 UPD 0° rotation 

Occupants 0.117 1 5 PMF 1 occupant 
Building 
adjacency 0.561 1 4 UPD Detached - no 

adjacency 
Floors 0.131 1 2 PMF 1 floor 
Wall R2 0.441 2 4 PMF 2 m2KW-1 

Roof R 0.110 2 6 PMF 2 m2KW-1 

Foundation R 0.901 2 4 PMF 2 m2KW-1 

Infiltration 
rate 0.976 5 5 PMF 1426 cm2 

Air 
conditioning 0.594 1 3 PMF No AC 

Heat pump 0.272 1 2 PMF No heat pump 
Auxiliary 
heating type 0.809 1 2 PMF Electric 

DHW type 0.035 1 2 PMF Electric 
Aspect ratio 0.391 2 5 UPD 0.9 
Pool 0.242 1 2 PMF No pool 
Spa 0.745 1 2 PMF No Spa 

1 Requires two digits due to 15 possible bins. 
2 R: Thermal resistance. 

The resulting bin numbers from the example above correspond to a unique 

combination of input values for a particular electricity consumption data profile. The 

building characteristics can therefore be traced back for each VSM data profile, to the 

nearest bin value. In some cases the exact value used in the building simulation is also 

provided, such as for the heated surface area. In the case that a duplicate input set exists, 

the duplicate is removed in postprocessing and a new profile is generated and added to 

the data set. 



VSM profile data 

The total house electricity consumption in kilowatt-hours (kWh) is recorded at 15-

minute intervals for 365 days. This accounts for 35 040 data points per VSM profile, not 

including input data, which is stored separately. The data set with 200 000 virtual 

homes requires approximately 50 gigabytes of storage space in an uncompressed 

format. 

Load profiles 

The internal load profiles generated with the CREST tool are provided with the VSM 

data for reference. Each profile is based on the number of occupants (from 1 to 5) and a 

randomly generated profile (from 1 to 15), resulting in 75 different possible load 

profiles. Lighting, appliance and domestic hot water loads are based on the occupancy 

profiles. A user can refer to the Occupancy Profile Number and Occupants inputs to 

determine the corresponding load profile that was used in the building simulation. Data 

is organized in terms of the following characteristics: 

• Occupants in the home 

• Occupants active 

• Lighting energy use 

• Appliance energy use 

• Domestic hot water energy use 

Annual totals for heating, cooling, lighting, equipment and domestic hot water 

electricity use 

In addition to the smart meter data at 15-minute intervals, annual total electricity use for 

heating, cooling, lighting, equipment and domestic hot water is also provided. This 

allows for a greater understanding of the electricity consumption within a home without 



adding a significant amount of data to an already very large data set. Annual totals are 

provided in kilowatt-hours (kWh). 

Overview of the data 

The generated homes for the VSM profile framework are intended to cover a range of 

buildings that represent the most likely combinations of parameters. A box and whisker 

plot of the annual electricity consumption for the virtual smart meter data set is shown 

in Figure 6, which illustrates the range of values for heating, cooling, electricity, 

equipment, domestic hot water (DHW), and total electricity consumption. The box 

represents the data that lies between the 25th and 75th percentiles for the data set, i.e. the 

interquartile range (IQR). The whiskers represent values within 1.5 times the IQR. Data 

outside the whiskers are considered outliers and marked with individual data points. The 

median value is indicated by a red line within the box plot. The virtual profiles are 

compared to the average single-family home electricity consumption for the province of 

Québec (NRCan 2019). 

 

Figure 6. Box and whisker plot illustrating the variation in electricity consumption when compared with provincial 
averages 
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The virtual homes vary quite widely in terms of electricity consumption, which 

is consistent with the variety of building parameters used to produce the data set. 

Buildings with non-electric heating would have negligible heating electricity 

consumption, while large, poorly insulated homes with large families would have a 

relatively high overall electricity consumption. Cooling values tend to be 

underestimated by the model, which is likely due to the underlying assumptions used in 

the VSM framework that underestimate the number of residences equipped with air 

conditioning systems in the studied building stock. Equipment values vary widely 

depending on the presence of a pool and/or spa in the house. Overall the total electricity 

consumption is consistent with provincial averages for Québec.  



 

Figure 7. Interquartile ranges for the VSM data set and 30 houses in the province of Québec for (a) the first week of 
January, (b) the first week of July, and (c) daily energy use for a full year. 

To further illustrate the range of possible profiles in the virtual smart meter data set, the 

complete VSM data for all locations is compared to the measured electricity 

consumption of 30 houses in location #5 (see Table 5) in Figure 7. Each graph depicts 

the interquartile range (25th to 75th percentiles) for the respective data sets at each time 

step. The results in Figure 7(a) and Figure 7(b) illustrate the quarter-hourly electricity 

consumption for a week in winter and a week in summer, respectively. Daily energy use 

is compared for a full year in Figure 7(c). For all three cases, the measured smart meter 

data generally falls within the range of values produced in the virtual smart meter data 
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set. Peak energy use tends to be higher in the virtual profiles when compared with the 

measured data indicating that there are some houses in the VSM data set that are poorly 

insulated compared to the 30 houses which tend to be better built. Nonetheless, the 

results in Figure 7 indicate that the virtual smart meter data includes a range of cases 

consistent with the measured data. In the future, a larger measured data set will be used 

to compare with the VSM data.  

Discussion 

The Virtual Smart Meter data set is provided in a format with sufficient accompanying 

information to be useful for a variety of purposes. By considering the input data, load 

profiles and corresponding smart meter data, researchers can utilize the data set to 

verify their own models, study electricity consumption for a variety of housing types, or 

estimate electricity consumption for a large number of houses, among other 

possibilities. In this discussion, some commentary on the general methodology for 

developing a virtual smart meter data set for another building stock is provided. Two 

example applications for the virtual smart meter data set are then provided: 1) 

developing inverse models using classification of electricity smart meter data, and 2) 

verification of load disaggregation algorithms.  

Developing and using a virtual smart meter data set 

The methodology presented in this paper can be applied towards developing a virtual 

smart meter data set for a single-family home residential building stock. Suggestions 

have been made to aid in seeking out sources of information on building and occupant 

characteristics. The segmentation and characterization processes of building stock 

modeling are necessary to develop probability distributions for the parameters used in 

the VSM building generator. These distributions can be used to develop a Bayesian 



network, such as the one illustrated in Figure 4, to produce combinations of building 

inputs that actually match the selected building stock. Less common or impossible 

combinations of building parameters should not be prioritized when producing a virtual 

smart meter data set. Alternatively, less categories can be used to characterize the 

building parameters and reduce the overall number of combinations of inputs.  

When producing virtual smart meter profiles, parallel processing is an essential 

component to reducing the overall time required to complete the virtual data set. Cloud 

computing can allow for multiple building simulations in parallel. In the case of this 

study, 20 simulations were run in parallel, with each annual simulation requiring 

approximately 15 seconds. A full data set of 200 000 profiles requires approximately 42 

hours to produce under these conditions. 

Working with large smart meter data sets can require significant computational 

resources, whether they are virtual or measured data. The main limitation is in the 

random access memory (RAM) for loading and processing a significant number of 

smart meter profiles (>100 000), which scales based on the complexity of the building 

stock and the desired accuracy. This issue can be offset by aggregating the electricity 

consumption to different time scales, such as hourly or daily data, to significantly 

reduce the required memory use. Alternatively, studying specific periods of time, such 

as a single week of data at 15-minute intervals, can reduce the memory requirements to 

manageable levels. Finally, filtering the smart meter data based on specific building 

parameters can also be a viable option. 

Classification modeling of electricity smart meter data 

As described in the literature review, few public smart meter data sets contain detailed 

information about the buildings. The data sets that exist have limited information about 

the houses or are too narrow in the quantity of buildings studied, which restricts the 



range of parameters studied. As an example, in order to evaluate the impact of the 

building envelope on the electricity meter data, detailed envelope performance data is 

required. If a classification modeler wishes to estimate the level of thermal resistance 

for a home based on the smart meter data, a smart meter data set with known envelope 

properties is required to train a classification model. The VSM data set can be used for 

this purpose.  

For an example of this method applied in practice, readers can refer to the study 

by Neale et al. (2019), where linear discriminant analysis was applied to a preliminary 

version of the VSM data set to predict a number of building parameters for real smart 

meter data. The classification process significantly increased the accuracy of predicting 

building parameters when compared to random guessing. Computational resources for 

classification are also discussed in Neale et al. (2019). 

Automated load disaggregation algorithms 

The virtual smart meter data set can be used to verify the effectiveness of automated 

electricity load disaggregation methods, which are commonly used to divide electricity 

smart meter data into heating, appliance, lighting, and other relevant loads when only 

aggregated data is available. Such methods are commonly applied to limited data sets, 

such as those described in Table 1, for which there is little variety in the appliance, 

occupancy and load profiles to test the algorithms. Deb et al. (2019) developed a load 

disaggregation algorithm for electric heating and tested it on a data set for a single home 

with 37 days of data. While the house was well-parametrized, the extent of the 

validation was limited by the scope of the data set.  

The VSM data set can be used to test load disaggregation algorithms for a 

variety of building geometry, occupant behaviour, appliance and lighting configurations 

and other factors. Researchers can apply their algorithms to the virtual smart meter data 



and compare it directly to the submetered heating, cooling, lighting, appliance and 

domestic hot water subtotals. The impact of each building parameter can be studied in 

order to improve the accuracy of the tested methods.  

Conclusion 

A virtual smart meter (VSM) data set is an effective tool for evaluating the impact that 

building parameters have on electricity consumption. The provided data set and 

methodology can serve as an example for other researchers on producing and 

structuring VSM data for other building stocks. In addition, there are many possible 

applications that require smart meter data with known building characteristics, including 

load disaggregation algorithms, classification modeling, peak load studies, technology 

evaluations and other work.  The smart meter data sets that currently exist in literature 

limit the effectiveness of studies in these fields. In addition, the use of a model-based 

smart meter data set allows the user to filter the data based on specific inputs to fit the 

desired approach. The provided VSM data set can be used by researchers to verify their 

methods and provide insight on residential electricity consumption. 

The VSM framework and data sets will be improved in a number of ways in the 

future. The authors intend to continue to develop the Bayesian network defining the 

dependencies between the building characteristics. While the VSM framework is not 

intended to be a building stock model at this stage of the work, eventually it is the hope 

of the authors to improve the framework to the point where the produced data set is as 

representative as possible of the building stock, improving upon the results in Figure 6. 

In addition, as additional information is obtained on the building stock the probability 

distributions for each parameter will be updated. Work is also ongoing to extract 

building data from smart meter data using classification modeling, which will provide 

an additional source of information on the building stock. 
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