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A B S T R A C T

Environmental responsibility and the sustainable development of mineral resources are a topic of critical im-
portance to the mining industry and at the same time relate to operational and rehabilitation costs to be con-
sidered in technical studies. Open pit mining operations impact their local environment in terms of their
modification of the landscape and local ecosystems. Many of these impacts are the result of the transportation of
large volumes of materials mined and shifted from and to different locations. External stockpiles and waste
dumps occupy considerable space as well as involve substantial transportation costs to move materials from open
pits to stockpiles and then move them back to the pit for rehabilitation after the end of exploitation. Depending
on the shape of the deposit and the intended design of the pit, a desirable option may be to place it directly in the
free spaces within the pit, instead of storing all waste and tailings materials in stockpiles and/or waste/tailings
dumps. This paper presents a new mathematical formulation integrating to life-of-mine planning and the
maximization of net present value, with the related waste and tailings disposal kept within the mined-out parts
of a pit, using a stochastic integer program that manages geological uncertainty including metal grades, material
types and related chemical compositions. In addition to the traditional variables related to the materials being
extracted from the ground in the form of mining blocks, strips of ground following the dip of a pit are considered
within the pit as decision variables, and the optimization process aims to optimally define both the sequence of
extraction of mining blocks and the reservation of strips needed to store waste materials. An application at an
iron ore mine demonstrates the feasibility, applied aspects and advantages of the proposed method.

1. Introduction

Life-of-mine (LOM) planning is a core element of production fore-
casting, financial valuation and environmentally responsible develop-
ment of open pit mining projects and operations. The optimization of
the ore and waste extraction sequence and generation of related per-
formance forecasting are undertaken based on operational research
methods with the objective of maximizing discounted cash flows over
the LOM while accounting for operational constraints and considera-
tions (Whittle, 1999; Hustrulid and Kuchta, 2006; Ramazan and
Dimitrakopoulos, 2004; Newman et al., 2010; Dimitrakopoulos, 2018).
Among the core LOM planning considerations, waste management is a
particularly important concern. Waste dumps and stockpiles represent
significant volumes of material that substantially impact the local en-
vironment, while the available space for waste storage is often limited.
As a result, material is first moved to a stockpile and then moved back
to the open pit during the rehabilitation phase, leading to considerable
costs and efforts. An alternative approach is to store waste and tailings

directly into the mined-out areas of the open pit during its operation,
which reduces the usage and size of external stockpiles as well as waste
transportation and related costs. However, disposing material inside the
pit during mining operations can have severe consequences on pro-
duction, as an in-pit areas of storage may automatically sterilize po-
tential underlying ore. As a result, it is critical to simultaneously opti-
mize the extraction sequence of materials represented by mining blocks
and the in-pit waste disposal to optimally define the mining production
policy. The literature on this topic is limited, and some related work is
found in Zuckerberg et al. (2007), who present an extended version of
BHP's mine planning software Blazor, named Blasor-InPitDumping
(BlasorIPD). Their concept is the following: a period of extraction is
assigned to aggregates of mining blocks (or AGGs), and different pro-
cessing decisions are assigned to subdivisions. Then, the percentage of
an AGG going to waste can either go to an external stockpile or to a
zone inside the pit. If it goes to the pit, it is associated with a “refill
AGG”, which is an aggregate larger than an AGG, but that also respects
precedence constraints. BlasorIPD produces a schedule that reduces the
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external stockpile by taking advantage of the free space in the open pit.
However, the sparse disposition of waste material within the pit that
can result from the optimization may be problematic from an opera-
tional point of view. In addition, aggregating mining blocks can mis-
represent mining selectivity and provide misleading forecast results.
Furthermore, this approach, like traditional mine planning methods,
relies on a deterministic optimization in which all parameters used in
the related mathematical model are considered known with certainty.
In mine planning, geological information describing the pertinent
properties of materials being mined is critical and at the same time
largely uncertain, introducing substantial risks in mine plans, produc-
tion forecasts and assessments. The adverse effects of uncertainty as-
sociated with the geological attributes of interest of mineral deposits
(meal grades, material types, geometallurgical and other rock proper-
ties, deleterious materials and so on) have been repeatedly documented
in the past (Ravenscroft, 1992; Dowd, 1994; Vallée, 2000;
Dimitrakopoulos et al., 2002; Godoy, 2002; Dimitrakopoulos, 2011;
others). The problem originates from the sparse drill hole data on which
the mined orebody model is based. Deterministic optimization
methods, such as the conventional ones frequently employed in LOM
planning, use as input an orebody model generated from the available
drilling data using estimation techniques and base the optimization
process on this average-type (estimated) single representation of the
mineral deposit at hand. Estimated orebody models of a deposit are
smooth representations of reality and underrepresent both global pro-
portions of materials and their local variability (eg. Dimitrakopoulos
et al., 2002; Godoy, 2002), leading to poorly informed mine plans and
production schedules. In terms of waste management, a smoothed re-
presentation of the grade distribution of a deposit tends to minimize the
waste tonnage forecasts and results in unexpected additional material
sent to the waste dump. To avoid this and address inevitable un-
certainty, a set of stochastic simulated realizations of the mineral de-
posit may be used. These simulated models of the mineral deposit are
equally probable representations of the actual orebody, given the
available data, and reproduce the variability of the deposit's grade
(Goovaerts, 1997; Journel and Kyriakidis, 2004). Instead of basing the
optimization on a single representation of the ore body, a stochastic
optimizer uses this set of simulated scenarios of the orebody to obtain a
life-of-mine production schedule that maximizes net present value
while minimizing risk in meeting production forecasts. Ramazan and
Dimitrakopoulos (2005, 2013) propose a two-stage Stochastic Integer
Programming (SIP) model with fixed recourses, which successfully
optimizes the open pit mine scheduling under geological uncertainty.
Several applications of such models with diverse solution approaches
can be found in the literature. Most of these studies focus on heuristic
methods to solve this complex problem: the aggregation of blocks
technics (Menabde et al., 2007; Ramazan, 2007; Boland et al., 2009; Del
Castillo and Dimitrakopoulos, 2016), the sliding time window method
(Dimitrakopoulos and Ramazan, 2008; Cullenbine et al., 2011) and the
topological sorting algorithm (Chicoisne et al., 2012). Metaheuristic
methods have also been developed to tackle larger scale problems and
full mining complexes, which account for the whole mineral value
chain with multiple mines and processing streams. For example,
Montiel and Dimitrakopoulos (2015), Montiel et al. (2016) and
Goodfellow and Dimitrakopoulos (2016, 2017) use variations of simu-
lated annealing and manage to optimize the mineral value chain. The
notion of mining complexes is promising in terms of waste and tailings
management, since the opportunities given by the diverse processing
streams and the modelling of stockpiles can allow a better representa-
tion of the material exchanges between the different components of a
mine.

The topic of in-pit waste disposal was also addressed in Zuckerberg
et al. (2007); however, the present study considers a stochastic fra-
mework and additional operational considerations. The proposed
method is tested in an iron ore mining project that aims to limit the
space required for the external stockpiles for the waste and tailings

material by refilling the pit during exploitation. The motivation for
applying in-pit waste disposal originates from different factors, in-
cluding limiting environmental impacts, accounting for constraints in
available space surrounding the pit, and reducing the cost of waste
transport and rehabilitation. In the deposit illustrated in this study, the
shape of the deposit (low dip layers and long strike length) is used as an
advantage, allowing for the material to be stored in bands or strips
oriented toward the dip; the corresponding storage zone remains con-
tinuous and grows from one period to another. This orientation assures
that the storage location remains contained without occupying space
around the open pit, with the condition that the ore below an individual
zone must also have been extracted prior to using it for storage. In
general, all of the required constraints must be jointly addressed,
starting with those associated with the extraction sequence of mining
blocks, such as block accessibility, production capacity and blending
constraints. The novelty of the proposed approach explicitly considers
in-pit storage considerations and simultaneously accounts for geolo-
gical uncertainty within the stochastic optimization framework, a topic
particularly relevant in terms of waste production forecasts and man-
agement.

In the following sections, the description of the proposed SIP model,
referred to as the open pit mine planning stochastic integer program
with in-pit tailings disposal (OMPSIP-ITD), is presented. Subsequently,
a case study at an iron ore deposit located in Labrador, Canada, details
the applied aspects and contributions of the proposed model. The re-
sults are presented in terms of the material disposal inside the pit and
the quality of production forecasts, including discounted cash flows and
production targets along with their quantified risk in terms of meeting
forecasts due to geological uncertainty. Finally, conclusions and in-
sights for future research are presented.

2. The OMPSIP-ITD mathematical model

In this section, the proposed stochastic mathematical programming
formulation for open pit mine production planning including the in-
tegration of in-pit waste disposal (OMPSIP-ITD), is detailed. The
mathematical model is a two-stage stochastic integer program with
fixed recourse (Birge and Louveaux, 2011) that simultaneously opti-
mizes the extraction sequence and destination policy (Ramazan and
Dimitrakopoulos, 2005, 2013; Spleit and Dimitrakopoulos, 2017;
Rimélé et al., 2017) and the in-pit storage, which introduces several
new notations, variables and constraints. In particular, at each period, a
top and a bottom strip are considered to delimitate the storage zone in
the pit. All the strips in-between are reserved for storage. Several hy-
potheses are made and described in the model.

2.1. Notation

The diverse sets, indices, parameters and variables used in the fol-
lowing OMPSIP-ITD formulation are described below.

2.1.1. Sets

B = = …i N{ 1, , }Set of blocks in the ore body;
P = = …p P{ 1, , } Set of considered periods for the schedule;
D = {0, 1} Set of destinations available for the blocks
= 0(waste dump) =d 1(mill);
S = = …s S{ 1, , }Set of scenarios (equiprobable ore body stochastic
simulations);
C C C= ∪1 2 Set of blocks’ characteristics, C = = …c C{ 1, , }1 1 1 linear
characteristics (tonnages, trucks hours…), C = = …c C{ 1, , }2 2 2 non-
linear characteristics (grades);

BG A( , )Oriented graph representing the precedence relationships
between blocks. On Fig. 1, ∈b e A( , ) , which means that block B∈b is a
predecessor of block B∈e ;
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B= ∈ ∈+ b i b AΓ { ( , ) }i Set of direct successors of block i. On Fig. 1,
=+ d e fΓ { , , }b ;

B= ∈ ∈− a a i AΓ { ( , ) }i Set of direct predecessors of block i. On Fig. 1,
=− a b cΓ { , , }e ;

−Γi
TotSet of the all cone of predecessors of block i. On Fig. 1,

= ∪ ∪ ∪− − − −a b cΓ { , , } Γ Γ Γe
Tot

a
Tot

b
Tot

c
Tot;

K = = …k K{ 1, , } Set of strips considered for storage, =k 0 being
the southeast strip, =k K the northeast one;
BkSet of blocks which belong to strip k;

2.1.2. Parameters

vi d s, , Economic value of block i in scenario s if it is sent to destination
d;

This economic value depends on several parameters:

= ⎧
⎨⎩

− − =
− − − =

v
E t TH TH d

R P conc E t TH TH d
. . if 0

. . . if 1i d s
waste
cost

i s
cost

i d

i s conc
cost

i s ore
cost

i s
cost

i d
, ,

, ,

, , , ,

With:

Ri s, Revenue from selling the metal content of block i;
conci s, Concentrate tonnes of block i in scenario s, C∈conci s, 1;

Where:

=conc t Rec.i s i s i s, , ,

Reci s, Weight recovery of block i in scenario s, obtained from the
simulation of the Davis Tube Weight Recovery (used in the case
study);
Pconc

costProcessing cost of concentrate material per tonne;
Eore

costExtraction cost of ore material per tonne;
Ewaste

cost Extraction cost of waste material per tonne;
THi d, Truck hours needed to send block i to destination d;
THcostCost per truck hour;
ti s, Tonnes of block i in scenario s;
qc i s, ,1 Quantity of characteristic c1 of block i in scenario s;
gc i s, ,2 Grade c2 in scenario s of block i;

±targetc p, Minimum (-) and maximum (+) targets of quantity or grade
c in period p;

±penc p
dev
, Penalty cost of deviation from the targets of quantity or

grade c in period p (excess +, shortage -);
rDiscount rate taking into account the time value of money;

=
+ −dp r

1
(1 )p 1Discount factor;

πMaximum number of blocks to be stored outside of the pit;
γPercentage of ore in a strip which needs to be extracted before
storage within this strip;
NkNumber of blocks within strip k;

2.1.3. Variables
2.1.3.1. Extraction variables (first stage).

B D P= ⎧
⎨⎩

∈ ∈ ∈x i d p1if block is sent to destination by period
0otherwise

;i d p, ,

To simplify the notation, we set B D= ∀ ∈ ∀ ∈=x i d0, ,i d p, , 0 .
The expression “ P∈pby period ” means that block i was extracted

prior to or at period p, a formulation used to facilitate the branching
during the solving process (Caccetta and Hill, 2003).

2.1.3.2. Deviation variables (second stage).

∈± +devc p s, , Deviations from the targets in terms of characteristics
C∈c for scenario S∈s , during period P∈p (excess + , shortage -);

2.1.3.3. In-pit storage variables (first stage).

K P= ⎧
⎨⎩

∈ ∈u k p1if is the top strip at period
0otherwisek p,

K P= ⎧
⎨⎩

∈ ∈l k p1if is the bottom strip at period
0otherwisek p,

K P= ⎧
⎨⎩

∈ ∈z k p1if strip is available for storage at period
0otherwisek p,

K P∈ ∈ ∈+y k pAmount of tailings stored in strip ,periodk p,
Fig. 2 shows the top view of the strips as defined: the strips go to-

ward the dip in a West-East direction. The top and bottom strips (re-
spectively =u 1k p, and =l 1l p, ) are identified with red doted lines. All
the strips between them are available for storage ( =z 1m p, ).

2.2. General stochastic formulation of OMPSIP-ITD

This section describes the OMPSIP-ITD formulation used in the rest
of the study.

2.2.1. Objective function

D P S

C C P S

  

  
�

∑ ∑ ∑ ∑

∑ ∑ ∑

= −

− +

∈ ∈ ∈ ∈
−

∈ ∪ ∈ ∈

+ + − −

Z
S

d v x x

S
d pen dev pen dev

max 1 . . ( )

1 . ( . . )

i d p s
p i d s i d p i d p

Part

c p s
p c p

dev
c p s c p

dev
c p s

Part

, , , , , , 1

1

, , , , , ,

2

1 2

Fig. 1. Precedence relationships between blocks.

Fig. 2. Top view of the strips to store the tailings.
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2.2.2. Constraints
2.2.2.1. Reserve constraints.

B D P− ≥ ∀ ∈ ∀ ∈ ∀ ∈−x x i d p0 , ,i d p i d p, , , , 1 (1)

B P
D

∑ ≤ ∀ ∈ ∀ ∈
∈

x i p1 ,
d

i d p, ,
(2)

2.2.2.2. Precedence constraints.

B P
D D

∑ ∑≤ ∀ ∈ ∀ ∈ ∀ ∈
∈ ∈

−x x i j p, Γ ,
d

i d p
d

j d p i, , , ,
(3)

2.2.2.3. Capacities constraints.

C P S

B

∑ − −

≤ ∀ ∈ ∀ ∈ ∀ ∈
∈

−
+

+

( )q x x dev

target c p s

Upper bound . ( )

, ,
i

c i s i d p i d p c p s

c p

, , , , , , 1 , ,

, 1 1

1 1

1 (4.1)

C P S

B

∑ − +

≥ ∀ ∈ ∀ ∈ ∀ ∈
∈

−
−

−

( )q x x dev

target c p s

Lower bound . ( )

, ,
i

c i s i d p i d p c p s

c p

, , , , , , 1 , ,

, 1 1

1 1

1 (4.2)

2.2.2.4. Grade quality constraints.

C P S

B

B

∑

∑

− −

≤ − ∀ ∈ ∀ ∈ ∀ ∈
∈

−
+

+

∈
−

( )g t x x dev

target t x x c p s

Upper bound . . ( )

. ( . ( )) , ,
i

c i s i s i d p i d p c p s

c p
i

i s i d p i d p

, , , , , , , 1 , ,

, , , , , , 1 2 2

2 2

2

(5.1)

C P S

B

B

∑

∑

− +

≥ − ∀ ∈ ∀ ∈ ∀ ∈
∈

−
−

−

∈
−

( )g t x x dev

target t x x c p s

Lower bound . . ( )

. ( . ( )) , ,
i

c i s i s i d p i d p c p s

c p
i

i s i d p i d p

, , , , , , , 1 , ,

, , , , , , 1 2 2

2 2

2

(5.2)

The objective function and the constraints (1) to (5.2) correspond to
a typical formulation for a stochastic optimization of an open pit mine
planning under geological uncertainty. Brief explanations follow; for
more details the reader can refer to Dimitrakopoulos and Ramazan
(2008), Ramazan and Dimitrakopoulos (2013) or Rimélé et al. (2017).
The objective function is composed of two parts. Part1 aims to optimize
the average discounted cash flow over the set of scenarios, while Part2
penalizes the deviations from the production targets. This second part is
essential for the robustness of the schedule to the geological un-
certainty.

The set of constraints (1) assures that if a block is extracted at a
given period, it remains extracted for the later periods. Constraints (2)
allow any block to be sent to only one destination. Constraints (3) de-
fine the accessibility of the blocks; that is, for a block to be extracted, its
direct predecessors have to be extracted too, respecting the precedence
constraints for the stability. The sets of constraints (4.1) and (4.2) en-
force the scheduled production to respect the quantities targets by al-
lowing deviations ±devc p s, ,1 ,which are penalized in the objective func-
tion. Constraints (5.1) and (5.2) have a similar role for the grade
targets. Given the nonlinearity of the average grade, it is actually the
element's amount that is controlled. Other constraints of mining the
earliest period of extraction are also implemented but will be described
later in this paper. Constraints (6) to (15) aim to model the storage
inside the mined-out pit. A detailed description of these constraints is
given below.

2.2.2.5. Uniqueness of the top and bottom strips.

P
K

K

⎧
⎨⎩

∑ ≤
∑ ≤

∀ ∈∈

∈

u
l

p
1
1

k k p

k k p

,

, (6)

For each period, the storage zone is only defined by a maximum of
one top strip uk p, and a bottom one lk p, . They correspond to the red-
dotted strips on Fig. 2.

2.2.2.6. Order of the top and bottom strips.

P
K

∑ − ≥ ∀ ∈
∈

k u l p*( ) 0
k

k p k p, ,
(7)

By definition, the top strip must be further north than the bottom
strip. Eq. (7) states that for each period the top strip is further north
than the bottom strip.

2.2.2.7. Increasing dimension of the tailings storage zone.

P
K K

K K

⎧
⎨⎩

∑ ≥ ∑
∑ ≤ ∑

∀ ∈∈ ∈ −

∈ ∈ −

k u k u
k l k l

p
. .
. .

{1}k k p k k p

k k p k k p

, , 1

, , 1 (8)

From one period to another, the size of the in-pit storage zone can
increase or remain steady because, once positioned, the tailings and
waste material are not moved again to limit the re-handling costs. Eq.
(8) ensures that, between two consecutive periods, the top strip can
only be translated to the north and the bottom strip to the south.

2.2.2.8. Strips’ availability for storage.

K P∑= − + ∀ ∈ ∀ ∈
=

−

+z u l u k p( ) ,k p
j k

K

j p j p K p,

1

, 1, ,
(9)

A strip is defined as available for storage ( =z 1k p, ) only if it is lo-
cated between the top and bottom one. The set K∈ =k z{ 1}k p, defines
the in-pit zone reserved for storage. Fig. 3 gives explanations about
these constraints. The axis corresponds to the strips, from South to
North, the blue strips are the top and bottom ones and the red strip is
the one considered in Eq. (9). For a given strip k and a given period p,
constraints (9) check the strips that are further north than strip k (the
yellow ones) to look for the bottom and top strips. If only the top strip is
met, strip k is in the storage zone (case 1); if both the top and the
bottom strips are found, strip k is located further south than the storage
zone (case 2); finally, if neither the top nor the bottom strips are met,
strip k is further north (case 3). Case 4 justifies the +"j 1" in Eq. (9).
Indeed, if strip k is also the bottom strip, it must be available for storage
so only the strip above is checked for not being the bottom one.

2.2.2.9. Allowance of storage within a strip.

K P≤ ∀ ∈ ∀ ∈y N z k p. ,k p k k p, , (10)

A strip can be filled with material only if it has been defined as
available for storage.

2.2.2.10. Storage available quantity within a strip.

K P
B D

∑ ∑ ∑′
≤ ∀ ∈ ∀ ∈

′= ∈ ∈

y x k p,
p

p

k p
i d

i d p
1

, , ,
k (11)

Per strip, the maximum volume of tailings that can be stored is the
volume of ore that has been extracted within this strip. An assumption
is made concerning the volume occupied by the tailings: on average,
any extracted block results in 80% of its volume as tailings to be stored.
This is justified by the swelling of the mining blocks (typically an in-
crease of 20–30% of the volume after extraction) and the average iron
grade of 30%, which, for the blocks sent to the mill, will be extracted
and will reduce the resulting volume. Both phenomena compensate for
each other.
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2.2.2.11. Only the extracted material can be stored.

P
K B D

∑ ∑ ∑≤ − ∀ ∈
∈ ∈ ∈

−y x x p( )
k

k p
i d

i d p i d p, , , , , 1
(12)

For each period, the amount of stored material must be less than
what has been extracted during this period because tailings or waste are
moved just once.

2.2.2.12. Blocks that can still be extracted.

K B P
D

∑ − ≤ − ∀ ∈ ∀ ∈ ∀ ∈
∈

−x x z k i p( ) 1 , ,
d

i d p i d p k p k, , , , 1 ,
(13)

A block positioned in a strip that has been defined as available for
storage cannot be extracted. In other words, the remaining blocks are
inaccessible as they are covered by tailings.

2.2.2.13. Maximum amount of tailings stored outside of the pit.

B D K P

∑ ∑ ∑ ∑− ≤
∈ ∈ ∈ ∈

x y π
i d

i d P
k p

k p, , ,
(14)

A maximum amount of storage at external stockpiles located outside
the pit, i.e. π , is defined. Above this amount, the storage of tailings must
be done inside the pit.

2.2.2.14. Extracted ore condition for storage.

K P
B D

∑ ∑≤ ∀ ∈ ∀ ∈
∈ ∈

γ N z x k p. . ,k k p
i d

i d p, , ,
k (15)

In order to respect governmental rules about accessibility of ore
reserves, all the ore has to be extracted or at least a certain proportion γ
of it before storing in a strip. These constraints are illustrated in Fig. 4,

which shows a cross-section of a strip considered for storage and the
mining blocks of the mineralized layer. The green-dotted lined blocks
have been extracted (let V1 be the corresponding total volume) and the
red blocks have not (volume V2). Constraints (15) guarantee that for
each strip, the inequality ≥ +V γ V V.( )1 1 2 is respected before starting to
store tailings.

3. Case study

3.1. The deposit and application specifics

In this section, the OMPSIP-ITD model is applied to an iron ore
deposit located in Labrador, Canada, that is being considered for de-
velopment, and a feasibility study is undertaken. The deposit has a
10 km South-North dimension of only 2 km wide, which allows dif-
ferent extraction zones far away from each other from one period to
another. The deposit is well adapted to in-pit storage because of its
particular large size and flat shape of a low dip (6° East) and a 10 km
North-South orientation with an about 2 km width, which allows dif-
ferent extraction zones far away from each other from one period to
another once the bottom layer is extracted. In addition, the low dip of
the deposit's lithology facilitates both the circulation of trucks and the
stable disposal of waste and tailings. The concept applied in this case
study is to define a dip oriented toward strips that, once their ore has
been extracted, will be reserved for waste. The available volume within
a strip is the volume of extracted blocks. It should be noted that, in
order to reduce computational time and given that the reserve tonnage
is far superior to the production target, only the northeast half of the
deposit is considered in this application.

More specifically, the schedule is performed on 3177 mining blocks

Fig. 3. Strips' availability for storage graphs.

Fig. 4. Cross section of mandatory ore block extraction within a strip.
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of size 100m * 100m* 15m for 10 periods with 2 destinations and 38
strips of storage. In this case study, the space of storage outside of the
pit is limited to 500 blocks, after which all the tailings must be stored
inside the pit. Also, the percentage of extracted ore within each strip
before storage γ is set to 75%. This value was chosen to prevent the in-
pit storage from sterilizing a high proportion of ore blocks while pro-
viding enough flexibility to satisfy the production targets (a value of
100% is likely to deteriorate the blending or to send ore blocks to the
waste dump). However, depending on the specific requirements, one
could adapt this value in a different case study. A set of 10 stochastic
simulations is used as an input (Fig. 5 shows one example). The
quantity constraints are in terms of concentrate tonnes of iron per year,
while the quality constraints concern the average DTWR (Davis Tube
Weight Recovery representing the recoverable iron) average grade per
year and the average grade of silica, which constitutes the most pro-
minent impurity in the concentrate product. Geological uncertainty was
quantified by a set of 10 stochastic simulations generated by a direct
block simulation with min/max autocorrelation factors (Boucher and
Dimitrakopoulos, 2009), which determine for every mining block of the
deposit the iron grade (FeH%), DTWR (%), silica grade (Sio2%) and
density. The OMPSIP-ITD model contains 64,680 binary variables, 680
continuous ones and around 413,000 constraints, from which the in-pit
storage only (constraints 6–15) represent 1140 binary variables, 380
continuous ones and around 33,000 constraints. This model is too
complex to be solved by the solver Cplex; thus, a sliding time window
heuristic (STWH), adapted from the method used in Dimitrakopoulos
and Ramazan (2008) and Cullenbine et al. (2011), is used here instead.

Fig. 6 illustrates the STWH approach. It is an iterative method that,
at each iteration, relaxes binary variables, except for a few consecutive
periods (namely the “sliding window”). Once the resulting model is
solved, the first period of the window is fixed, the window is moved one
period further, and the process is reiterated.

In this case study, a sliding window of one period is considered, and
some of the latest periods are merged when relaxed in order to reduce

the size of the problem. For instance, on Fig. 6, iteration #1 considers
only the extraction variables of period 1 as binary and relaxes the
others, and periods 4 and 5 are merged into one period with doubled
capacity of production. In addition, the earliest periods of extraction
constraints are modified. Rather than using equations (16) (as given in
Rimélé et al., 2017), we define these constraints by the Eq. (16′), which
are qualified as updated in the earliest periods of extraction.
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where C P ∀ ∈ ∀ ′∈ ∆ ∈′
+c t, , c t1 1 ,1 are parameters used to keep the

flexibility of the stochastic formulation, which allows deviations from
the production targets. Typically, one can take ∆ ≅′ ′

+target*c t c t,
1
4 ,1 1

.
At each iteration k, the STWH method aims to determine which

blocks are extracted in period =p k. Φk refers to the set of blocks that
have been previously assigned to a period anterior to k. These defini-
tions ensure that only the remaining blocks are considered, that is, the
blocks that have not already been extracted by the end of period k. For
each of these blocks, the total quantities of its remaining predecessors
are defined. Then, these quantities are compared with the production
targets from period k. If the block is not reachable for a given period,
the corresponding variable can be set to 0. These new constraints (16′)
allow for the fixing of more variables at each iteration. With the pre-
vious version, constraints (16) mainly fixe variables associated with the
first periods.

3.2. Results

The results are presented in terms of mineability, profitability and
risk associated with geological uncertainty. First, Fig. 7 presents an
overhead view of the disposal of the tailings and waste material inside
of the pit parallel to the schedule. The schedule is represented by colors
according to the periods of extraction of the blocks (from 1 to 10).
Blocks in grey are those not extracted (−1). It is noteworthy that the
sequence of extraction is spatially continuous; that is, the blocks ex-
tracted at the same period are located close to each other. For the
tailings part, a bar diagram shows which strips are free (blue ones) and
which ones are available for storage (red ones) for all the periods (years
1–10). Within the red part of the bars (zone reserved for the tailings),
the volume (in terms of the number of blocks) available for waste
storage is provided. The storage zone respects the previously defined
constraints: a continuous zone between the top and bottom strip
(constraints (9)) and a growing storage volume capacity from one

Fig. 5. A FeH grade simulation, top view.

Fig. 6. The sliding time window heuristic (STWH) method.
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period to another (constraints (8)). Additionally, the correspondence
with the schedule shows that no blocks are extracted in a strip reserved
for storage at a given period (constraints (13)). In total, 1177 blocks
have been extracted over the 10 years: 677 blocks of tailings have been
stored inside the pit and 500 outside. Table 1 gives more details about
the strips used for storage, including during which period and for how
many blocks of tailings.

For a more explicit view of storage at an individual strip, two cross
sections of strip number 3 are presented in Fig. 8. The first graph shows
the periods of extraction of the blocks: all the blocks are extracted be-
tween periods 1 and 3. In total, 69 blocks have been extracted in this
strip and 23 remained undisturbed (i.e, exactly 75% of the blocks were
extracted as requested by constraints (15)). The second graph re-
presents an interpretation about how the storage within this strip would
occur. From the optimization, 57.8 blocks of tailings are stored in the
third strip during period 5 and 11.2 during period 6. With the as-
sumptions on the average volume generated by an extracted block (80%
justified by both the swelling of the blocks and the extracted metal), the
tailings represent an equivalent volume of respectively 46 and 9 blocks.

In order to keep the deeper blocks on the East side of the deposit ac-
cessible, the first tailings are positioned on the west side of the strip.

Fig. 9 shows the destinations of the individual blocks; most of the
blocks are considered as ore by the optimizer and sent to the mill. In
terms of quality constraints, the risk profiles are all satisfactory. Fig. 10,
Fig. 11 and Fig. 12 present (respectively) the concentrate tonnes, the
average silica grade and the average Davis Tube Weight Recovery
(grade of magnetically recoverable iron) for all the simulations, in-
cluding the simulation ensemble average and their targets. The average
concentrate production is close to the target with a low distribution,
and the silica and the DTWR are within the range of tolerance.

The gap in terms of the objective value in CPLEX between the final
binary solution and the relaxed model (relaxation of the extraction

variables, not the strips) is 1.76%. ( = =−gap 1.76%Cplex Obj Obj
Obj

relaxed STWH

relaxed ).
This result demonstrates the good performance of the sliding time
window heuristic method (with grouped periods) to solve this model
close to optimality.

For the discounted cash flow (DCF), which is equal to the objective
value of CPLEX but without the artificial penalty costs of deviation, the
risk is very well controlled, as can be seen in Fig. 13 and Fig. 14. The
results are given relative to the average of the simulations. Without the
penalty costs, one can observe that the average of the simulations has a
higher DCF than the relaxed model. After 10 years, the difference be-
tween the highest and lowest DCF over the set of simulations is equal to
1.17% of the average value ( =− 1.17%DCF DCF

DCF
max min

average
).

The final objective value has also been compared to the same model
but without considering the in-pit storage (without constraints 6–15);
this model could be solved with an exact method (no heuristic

Fig. 7. Top view of the tailings disposal per period and schedule.

Table 1
Tailings storage per strip and period.

#period 4 5 6 7 8 9 10

#strip 2 1 3 1 3 4 5 6 7 7 8 9 11

nb tailings
blocks

67 56.7 57.8 4.3 11.2 71 72 72 39 32 74 69 51

Fig. 8. Cross section of strip #3: periods of extraction and interpretation of the in-pit storage.
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involved). The result shows the interest of defining strips for storage
because the gap between the solution obtained from the OMPSIP-
Without In-pit Tailings Disposal (OMPSIP-WITD) model and the
OMPSIP-ITD model ( −− −

−
Obj Obj

Obj

OMPSIP WITDExact OMPSIP ITDSTWH

OMPSIP WITDExact ) is only of

1.77%, even though the savings of not re-handling the tailings for the
rehabilitation are not considered.

The amount of material stored inside the pit can be converted into
an equivalent dump area in order to estimate the volume saved in ex-
ternal stockpiles. Fig. 15 presents the dimensions of the corresponding
stockpile; it would represent a volume of 81 million m3, which, as-
suming a height of 100m, would require a waste storage area with a
diameter of 1224m on the ground.

4. Conclusions

The environmentally responsible development of mineral resources
is critically important to the mining industry and at the same time
important in managing operational and rehabilitation costs. Given the
importance of the topic, the present paper presents a new stochastic
mathematical formulation that allows for incorporating the disposal of
mining waste and tailings materials directly inside of the pit into the
life-of-mine planning and production optimization. The stochastic
nature of the proposed formulation manages uncertainty in terms of ore
grades, material types and their related chemical compositions, which
together are critical to both ore production and rehabilitation. The
practical aspects and contributions of the proposed method were de-
monstrated with an application at an ion ore deposit located in
Labrador, Canada, under development. The flat shape of the deposit
facilitates the proposed approach, while waste disposal is considered by
strips compliant with the deposit's dip. Operational constraints require
a single continuous and growing zone of storage from one period to
another, with the ore present in this zone having already been

Fig. 9. Top view destinations.

Fig. 10. Concentrate tonnes of iron.

Fig. 11. Average silica grade.

Fig. 12. Average DTWR grade.

Fig. 13. Cumulative DCF.

Fig. 14. DCF per period.

Fig. 15. Equivalent dump area.
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extracted. The results of the case study are shown to be very satisfac-
tory, enforcing tailings and waste storage inside the pit. Comparisons
show that providing new storage within the pit of the iron ore deposit
will save considerable costs in re-handling during the rehabilitation
phase of the project, reduce the impact on the local environment and
provide a solution to a limited external space for material storage, all at
a comparable cost to not directly integrating waste management into
the optimization. While the proposed model is suitable for low-dip se-
dimentary type deposits, a natural extension of this study could aim to
adapt the model to more complex shape deposits. Integrating the pro-
posed approach to the simultaneous stochastic optimization of mineral
value chains (Montiel et al., 2016; Goodfellow and Dimitrakopoulos,

2017) is a natural extension of the work presented herein.
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Appendix. – Some computational details

Fig. 16 illustrates the characteristics of the sliding time window solving method. On the first ordinate axis, the required computational time for
each iteration of the method is shown. In terms of processing time, the method required 6 h 32min using CPLEX v12.4 and a 2.8 GHz i7-2600S
processor and 8 GB of RAM. The second ordinate axis shows the decrease of the objective value per iteration (as compared to the first iteration); the
first period was defined as binary. The assessment of a decreasing objective value is not surprising, since the problem is more constrained at each
iteration (binary constraints) and the periods are ungrouped (especially for the first iterations).
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