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Abstract 

The human T cell receptor (TCR) a/8 locus has been mapped and sequenced. This 

region occupies roughly one megabase (Mb) of DNA or equivalent to one three thousandth 

of the entire human genome, the longest continuous piece of human DNA yet sequenced. 

The sequence has provided new insights into the complex organization, structure and 

evolution of two intermingled multigene families (a and 8), and will hopefully in the future 

help answer interesting questions concerning the complex expression patterns of TCR a 

and 8 chains and about possible associations between specific polymorphisms in the TCR 

a/8 locus and susceptibility to autoimmune diseases. Comparison to cDNA data has 

provided information about expression of each of the TCR elements and about the striking 

diversification in the third hypervariable or junctional region. The sequence has contributed 

a glimpse of closely associated genomic DNA, in that the sequences surrounding the TCR 

locus, include the defender against death gene as well as five olfactory receptor genes. The 

sequence also harbors many other stretches of DNA, highly similar to previously identified 

genes, although in most cases, these have been found to be nonfunctional due to one or a 

few mutations. Comparison of 130 kilobases (kb) in the 3' region of the human sequence 

with its murine counterpart, suggests this region is highly conserved. The same 3' region 

has also been found to be limited in the concentration of genome wide repeats compared to 

the remainder of the locus. Furthermore, it contains a substantially reduced frequency of 

DNA variations compared to the rest of the locus. Apart from DNA variations in 

noncoding sequence, polymorphisms have also been identified in the coding regions of the 

TCR variable (V) gene segments, where, if they lead to amino acid changes, may alter the 

function of the TCR. 

During the physical clone mapping and sequencing, new strategies were tested 

using primarily bacterial artificial chromosome (BAC) clones. These clones proved to be 

much more reliable and stable than clones currently employed in the human genome project 
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(e.g., cosmids and yeast artificial chromosomes, YACs). BAC inserts can be sequenced 

completely by the high redundancy shotgun approach. Their insert size, stability, and 

capacity to be easily sequenced suggests that BAC clones are excellent mapping and 

sequencing reagents. The ends of BAC clone inserts can be sequenced directly. This has 

led to the proposal of a new strategy for obtaining the entire DNA sequence of the human 

genome without physical mapping. 
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Introduction 

The major goals for the human genome project are to create detailed genetic and 

physical maps for the three billion basepairs (bps) of human DNA, and ultimately to 

determine the complete DNA sequence. This project is one of the largest ever undertaken 

in biology and involves many laboratories from all over the world. The results from this 

project will have an enormous impact in biology and medicine in the coming years. Every 

gene and regulatory element will be sequenced. Many sequences responsible for 

chromosomal structure and function will be identified. Genes predisposing to genetic 

diseases can be located and identified. This will lead to diagnostic tools and eventually 

cures or prevention of the disease. Evolution within a species as well as across species can 

be followed, since along with the human genome, the genomes from five model organisms 

will also be sequenced: E.coli, yeast, nematode, Drosophila, and mouse. This will also 

facilitate the identification of functions for many human genes, since they will have 

homologues in one or more of the model organisms, where experiments are easier and 

faster to perform. 

One of the interesting challenges in biology is the analysis of complex systems. 

Examples include: interactions between cells in the nervous system; the well coordinated 

expression of a single kind amongst hundreds of olfactory receptors to choose from in each 

cell of the olfactory system, or the complicated processes occurring during an immune 

response. To learn more about these complex systems, one can study each involved 

component separately, which will give very detailed information about that component. 

However, to understand the coordination of the whole complex, one has to look at how the 

system functions. 

This thesis focuses on a subsystem of the human immune system: the TCR a/8 

locus. This multigene family plays a major role in the immune response. Analysis of the 

DNA sequence of this region will provide insights into the organization, structure and 
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evolution of this gene locus, as well as information on the details of the TCR elements that 

will facilitate understanding complex issues like regulation of their expression patterns. 

Knowledge of its sequence will provide powerful tools to explore how it as a system 

responds to various signals such as immunity, tolerization, and development. 

Furthermore, the entire sequence of this locus will provide information about specific 

chromosomal structures found in genomic DNA, and give an idea about the nature of 

noncoding DNA. 

The T cell receptor 

T cell receptor gene structure and organization: 

T cells play a major role in the immune defense, where they are involved in the 

destruction of foreign invaders like bacteria or viruses. T cells recognize fragments from 

these foreign substances via their T cell receptors. The mechanism involved is outlined in 

Figure 1. The TCR recognizes small peptides from antigen. These peptides are presented 

to the T cell by receptors encoded by the major histocompatibility complex (MHC) on 

antigen presenting cells. Thus the TCR recognizes not only the peptide, but the MHC 

molecule as well (Davis and Bjorkman, 1988). Each individual T cell generally expresses 

only one kind of TCR. Considering the large number of different peptides that could be 

presented, and the necessary specificity of each TCR, millions of different TCRs are 

required. There are two types of heterodimeric TCRs, ap and yo. Each of the four TCR 

subunits is divided into two domains, the outer variable (V) domain with the antigen/MHC 

recognition site and the constant (C) domain, which attaches the receptor to the cell 

membrane and transfers the signal from the V domain to the interior of the cell (Figure 1 ). 

The V domain is encoded for by two or more distinct gerrnline gene segments: V, (diversity 

(D)), and joining (J) elements (Marrack and Kappler, 1990). Each V gene segment 

includes a promoter, a smaller first exon, which encodes the majority of the signal 

sequence, an intron, a second exon encoding the majority of the V domain, and finally 
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recombinational signals (Figure 2). For the a and y V domain, one of many V gene 

segments rearranges during T cell development in the thymus to one of many J gene 

segments (Figure 2). The~ and o genes employ a third gene segment, the D element, thus 

joining V to D to J. These rearranged gene segments are contiguous and encode the V 

gene. The C domains are encoded by the C genes. RNA splicing joins the V and C genes 

to generate TCR mRNA. 

Hence a multiplicity of V, (D), and J gene segments can be joined in a 

combinatorial fashion to generate considerable diversity. An even higher level of diversity 

is generated in this rearrangement. During the joining of the different gene segments, 

nucleotides are deleted from the ends of the gene segments, and other random nucleotides 

(N) are inserted (Lieber, 1992). This can generate tremendous diversity in the junctional 

region, which is thought to be the structure making contact to the antigenic peptide. 

Further TCR diversity is generated by the combinatorial joining of a and ~ chains ( or y and 

o chains). One more way the TCR repertoire is expanded is through allelic variations of 

gene segments leading to amino acid changes in the TCR. 

The ~ and y loci are encoded by two distinct gene families. The o region, however, 

is inserted between the Va and Ja gene segments (Figure 2). The Va and Vo gene 

segments are found interspersed with one another. The majority of these rearrange to Ja 

gene segments forming TCR a chains, whereas three of them primarily rearrange to Do 

gene segments generating TCR o chains. Some of the V gene segments have been found in 

connection with both Ca and Co. This phenomenon generates several interesting 

questions. 

a~ or yo T cell receptor lineages: 

One of the major questions in T cell development, is the choice between a~ and yo 

commitment and how this choice is regulated. The immature T cell from the bone marrow 

enters the thymus where it goes through a complicated developmental process, before it 
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either dies, as it happens to the majority of the T cells, or matures and leaves the thymus for 

the periphery (reviewed by Rothenberg, 1992). Amongst the many processes in T cell 

development, are the rearrangement and expression of the different TCR gene segments. 

On a timescale, TCR~, 8, and y rearrangements take place in a more immature T cell 

compared to the TCRa rearrangement (Pearse et al., 1989 and Held et al., 1990). Whereas 

productive y and ~ rearrangement seems to block further rearrangement at their own loci, 

allelic exclusion (Borgulya et al., 1992), they do not block rearrangement at any of the 

other loci. In a~ T cells, the 8 locus has in the majority of cases been deleted from both 

chromosomes due to Va-Ja joining, effectively eliminating the genes for the yo lineage. 

Several, not mutually exclusive, hypotheses have been set forward to explain the 

choice between the two lineages. One hypothesis suggests that lineage commitment takes 

place prior to the rearrangement processes. It has been suggested that the T cells rearrange 

their genes either in the a or the 8 loci, but not in both (Winoto and Baltimore, 1989). This 

could be a function of specific transcriptional regulation, and relies on the notion that 

transcriptional activity at a specific gene segment will render this V gene segment 

susceptible to rearrangement by the recombinase activity (Yancopoulos and Alt, 1985, and 

Schlissel and Baltimore, 1989). Several enhancers and silencers have been found that in 

combination with specific transcription factors or relying on specific promoters for the 

different classes of V gene segments could lead to transcription and thus possible 

rearrangement of a specific class of V gene segments (Winoto and Baltimore, 1989, and 

Lauzurica and Krangel, 1994a,b). De Villartay et al., 1988, suggest that specific elements 

(Oree and \j/Ja) located on opposite sides of the 8 region could effectively delete the 8 

region if activated, thus ensuring the a~ linel;lge. 

However, whereas these mechanisms may be functional, they do not exclude 8 

rearrangement from occurring even if the T cell was precommitted to the a~ lineage 

(Thompson et al., 1990). Many of the TCRa~ bearing cells have previously undergone 

rearrangement at the 8 locus as suggested by studies of extrachromosomal excision 
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products of the b locus (Takeshita et al ., 1989) or studies involving transgenic mice 

expressing a~ genes (Nakajima et al. , 1995). It is also possible, that rearrangement may 

occur at either loci in a single cell, and that the rearrangement process determines the 

lineage outcome. One explanation suggests, that if the TCR y and 8 gene segments, which 

rearrange earlier than the a gene segments, rearranged to form a functional TCR, this 

would signal the cell to commit to the y8 lineage, and prevent rearrangement at the a locus. 

As discussed below, this still does not explain, why the Vb gene segments that are found 

interspersed with the Va gene segments would be able to rearrange earlier than the Va 

gene segments, and why they would rearrange to Db and not to J a gene segments. 

Intermingled Va and Vb gene segments in human: 

In mouse, most of the Vb gene segments have been found isolated at the 3' end of 

the V gene segments (Wang et al., 1994) (Figure 3). It is thus possible that enhancers 

acting over limited distances would be involved in regulatory expression and/or 

rearrangement of these V gene segments. However, the same does not hold true in human, 

where at least one V gene segment (Vbl) found almost exclusively associated with 8 

chains, has been located far from the b region in the midst of many Va gene segments 

(Satyanarayana et al., 1988, Hata, et al., 1989, and Ibberson et al., 1995). Two other 

human Vb gene segments have been found exclusively in 8 chains, Vb2 and V83. Vb2 is 

found just 5' to the Db's, at a position equivalent to V81 of the mouse. The specific 

location and specific function of human Vb2 (see below) are similar to the ones of mouse 

Vbl, and it is therefore of interest, that they show very little sequence homology (Clark et 

al., 1995). The human Vb3 element is found at the 3' side of the Cb gene in an inverted 

orientation. The mouse Vb5 element is in a similar location, and these two gene segments 

are clearly orthologs. Besides these three Vb gene segments approximately five other V 

gene segments have been found to rearrange to both a and b elements (Takihara et al., 

1989, and Migone et al, 1995). The accurate locations of these five Va8 gene segments 
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have not been determined, but they appear interspersed within the Va gene segments. 

What are the factors that determine whether a V gene segment rearranges to the Db or Ja 

elements?. 

Most of the V to C association studies described above have been done using 

cDNAs from T cells from either the thymus or the periphery. One could argue, that the 

studies involving circulating T cells, would not necessarily reflect all of the possible 

rearrangement patterns, both because of the selection process they have experienced in the 

thymus and because of possible antigen driven clonal expansion. Most of the T cells die in 

the thymus either because they possess TCRs that will not recognize their own MHC 

molecules and therefore would be of no value, or because they recognize their own MHC 

possibly with some endogenous antigenic peptide so strongly, that if not destroyed in the 

thymus they could cause autoimmune disease. Only T cells with an intermediate affinity 

for self MHC/peptide complexes will be positively selected and leave the thymus. If all the 

V gene segments had an equal chance for recombining to either Db or Ja, but no positive 

selection occurred for the majority of the V elements in combination with the Cb element, 

one could explain why so few V gene segments were found in association with the b 

elements in cDNA from circulating T cells. However, one should still observe them in the 

thymus, since here, the majority of T cells with recombined gene elements have not yet 

been through the selective processes. Thus thymus derived T cells should better reflect the 

rearrangement potentials. However, it does not appear to be selection that is responsible 

for the fact, that only very few V gene segments are found associated with the Db element. 

What has been observed in the cDNA studies does in fact appear to reflect the 

rearrangement of these V gene segments as shown by Migone et al., 1995. They looked at 

eighty yb T cells, characterizing their rearranged V gene segments on both their productive 

and non-productive alleles, arguing that rearrangements on the non-productive allele should 

not have been subjected to selection or pairing with the y chain. The same small set of V 

gene segments was found on either allele, indicating that other mechanisms are involved in 
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the preferential usage of only a restricted set of V gene segments in 8 rearrangements. 

Hence perhaps differences in promoter structures of these V gene segments in combination 

with specific transcriptional factors and enhancers and/or silencers would promote 

preferential rearrangement of certain V gene segments to form o chains. Alternatively, 

differences in the recombinational signals in either the V gene segments or in the Do versus 

Ja gene segments could restrict the possible recombination partners. Both of these 

possibilities have been investigated here by obtaining the sequence for both promoters and 

recombinational signals for all V gene segments. 

Waves of yo T cells during fetal development: 

Another scientific challenge emerges from the differential expression patterns of the 

Vo gene segments during fetal development of the thymus. In the mouse, combinations of 

different Vy gene segments with one particular Vo gene segment (mVol), are expressed at 

different stages during fetal development. The earliest expression of TCR can be detected 

at day 14 and is a combination of mVY3 with mVol, whereas a day or two later the most 

dominant TCR is mVy4 with mVol, etc. (reviewed in Allison and Havran, 1991). These 

particular populations seem to disappear from the thymus later in life, where more diverse 

usage of the different Vy and Vo gene segments is found. Interestingly, these same early T 

cells seem to home to different tissues depending on their expressed Vy gene segment. 

They exhibit almost no junctional diversity correlating with the low expression of terminal 

deoxynucleotidyl transferase (TdT), and initially the mVol gene segment is found to 

rearrange to only one specific Do gene segment, whereas adult TCRo chains are found to 

routinely utilize two or even three Do gene segments. Almost the same phenomenon has 

been found in the developing thymus of human (Krangel et al., 1990, van der Stoep et al., 

1990, and Mc Vay et al., 1991). In human fetal thymus the earliest detected Vo gene 

segment to be expressed on T cells is Vo2. Later in life, the Vo2 gene segment is rarely 

expressed, and Vol and to a less extent Vo3 become the predominant V gene segments 
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expressed in o chains in the thymus. Occasionally, one of the few Vao gene segments is 

expressed. Furthermore, the Vo2 element rearranges to one particular Do gene segment 

with little diversity generated in the junctional region. In contrast, the Vol and Vo3 chains 

generally include two or all three of the Do gene segments, and extensive nucleotide 

nibbling and N nucleotide insertion occur. Figure 3 shows a comparison of the 3' end of 

the mouse and human TCR wo loci, indicating the mVol and hVo2 as well as mVo5 and 

hVo3 occupy similar positions 3' to the other V genes. The fact that mVol and hVo2 are 

isolated from the other V gene segments could account for their unique expression patterns. 

A comparison of the DNA sequence in these regions from both mouse and human might 

reveal conserved (presumably regulatory) regions that could play a role in the selection of 

these particular V gene segments for early expression in the fetal thymus. 

Location dependent recombination of Va gene segments with Ja gene 

segments: 

It has been shown in mice, that several successive recombination steps can take 

place involving Va gene segments to Ja gene segments, and that these occur in a 

nonrandom fashion (Takeshita et al., 1989, Roth et al., 1991, Thompson et al., 1991 , and 

Petrie et al., 1993). The tendency of these multiple rearrangements is more pronounced in 

the adult than the fetal stage. The Va gene segments found proximal to the o region were 

found to rearrange more frequently to the most upstream Ja gene segments, whereas the 

more 5' Va gene segments were found to recombine with Ja elements further 3'. 

Examination of the deleted DNA in these later rearranging steps suggested that the locus 

had rearranged earlier, and that a subsequent rearrangement had taken place. This could be 

due to a nonproductive rearrangement leading to a V gene incapable of producing a 

functional chain. It is possible that expression of a functional a chain is necessary for 

providing a signal to stop rearrangement. If this is the case, a non functional rearrangement 

would not provide this signal. Presumably further rearrangements could take place to 
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attempt to make a functional receptor. However, some successfully rearranged Va-Jex 

gene segments producing a functional ex chain expressed on the cell surface, failed to 

prevent further rearrangement at this locus. It was therefore suggested that DNA 

rearrangement does not cease until positive selection has occurred. This view is consistent 

with high RAG expression in immature T cells which is downregulated after positive 

selection has taken place (Petrie et al., 1993). Accordingly, this phenomenon would 

provide the T cell with several chances for positive selection. 

It has been difficult to study this mechanism in human, because the relative 

locations of the Vex gene segments are known only for a few of the V gene segments. 

However, with the detailed map and the final sequence, described in this thesis, one should 

be in a position to investigate this problem. Apart from the location of the Vex and Jex gene 

segments other factors need to be considered (e.g., distinct types of DNA rearrangement 

signals). 

Evolution of the TCR cx/8 locus: 

TCR genes are found in many different species, including fish and birds (Rast et 

al., 1995). By comparing the organization of TCR loci across different species one can get 

insights into the evolution of these complex gene families . As an example, the organization 

of the chicken TCR~ region appears to consist of perhaps ten V gene segments, each with 

associated J and C elements (Kai Wang, personal communication). They locus in mouse 

contains several VJC clusters (Vernooij et al., 1993). It is possible that an ancestral TCR 

unit was composed of a single V, a single J, and a single C gene segment, and over time 

evolved via duplications either of the whole unit itself or of only the V and J gene 

segments. Whether the D gene segment was present in this proposed original TCR unit is 

unknown. It could have been deleted from the duplications/ translocations forming ex and 

y loci, or alternatively inserted to generate more extensive diversity in the ~ and 8 loci. 
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Approximately 100 kb of the mouse and human TCR a/o loci have previously been 

sequenced (Koop et al., 1992, and Koop et al, 1994). This region extends from the Co to 

the Ca region encompassing all the Ja gene segments. Comparison between the two 

species revealed an extraordinarily high sequence similarity (70%) between the two species 

over the entire 100 kb. The coding region comprise only five percent of this sequence. 

The species comparison identified several previously unknown Ja elements in both species 

that had not been identified by cDNA analysis. Furthermore, sequences with high 

similarity are likely to have important biological functions, and thus comparison of 

sequences between species, can reveal new genes, regulatory elements, or sequences 

related to chromosomal structures or functions. 

The sequence of the entire mouse TCR a/o locus will soon be available, and the 

comparison of the human sequence described in this thesis with its mouse counterpart 

should illuminate several interesting issues. A few selected regions of the mouse a/o 

region have been sequenced already, and are here compared to the human sequence. One 

of the interesting questions is how much further upstream does the extreme sequence 

conservation extend and what function does it serve? 

Besides research into the organization and evolution across species, evolution 

within the species itself can be investigated. Duplications, gene conversions etc., can 

readily be detected once the entire sequence is known. The 45 known TCRa/o gene 

segments have been divided into 35 subfamilies based on 75% or more sequence similarity 

of the members (Arden et al., 1995). The existence ofmultimembered subfamilies 

suggests that gene duplication has occurred. The entire sequence, including all V gene 

segments, pseudogenes and relics of V gene segments, is necessary to analyze this 

evolutionary history in depth. 

Polymorphisms in TCR elements: 
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MHC molecules are among the most polymorphic structures known (Klein et al. , 

1983). A polymorphism is a DNA variation that exist in more than one percent of the 

population. Virtually every unrelated individual has MHC alleles distinct from all others. 

This diversity of MHC alleles probably arises from selection for the ability of the human 

population to bind and present many different kinds of peptide antigens, so as to ensure 

that there are always a few in the human population who can respond to new infectious 

agents. Even if MHC molecules bind peptide with little specificity, the few MHC genes in 

any one individual, will not be able to bind all peptides. TCR genes need not be as 

polymorphic as their MHC counterparts, because each individual can generate an 

enormously diverse TCR repertoire. Several studies have investigated the extent of 

polymorphisms in or around either the V or C elements, particularly for the TCR ~ locus 

(Robinson et al., 1987, Grier et al., 1990, Posnett, 1990, Rowen et al. 1996). However, 

most of the earlier studies where based on restriction fragment length polymorphisms, and 

thus did not indicate whether the variations were found in the gene segments themselves 

nor did they characterize the nature of these polymorphisms. In the last couple of years, 

studies focusing on polymorphisms in the V gene segments have indicated a high level of V 

polymorphisms (Comelis et al., 1993, Moss et al., 1993, Reyburn et al., 1993, and 

Charmley et al., 1994 ). In these studies not all of the polymorphisms could be detected, 

even if they were present in the DNA analyzed, and furthermore only randomly selected V 

gene segments were investigated. To determine the level of variations found in the V gene 

segments of the CJJ8 locus, I analyzed the majority of the V CJJ◊ gene segments by direct 

sequence analysis. 

These polymorphisms can be used in the study of possible associations of specific 

TCR gene segments and susceptibility to autoimmune diseases. Autoimmune diseases are 

believed to be a result of an individual's immune system attacking one's self. 

Susceptibility to certain autoimmune diseases has been correlated with specific MHC alleles 

(Oksenberg et al., 1988, Todd et al., 1988, and Sinha et al., 1990), whereas autoimmune 
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disease correlations to TCR elements have been controversial (Hashimoto et al., 1992, 

Hillert and Olerup, 1992, and Steinman et al., 1992). In a mouse model of multiple 

sclerosis, it was shown that disease induction was correlated with specific MHC alleles as 

appears to be the case in human. It was furthermore found that transferring T cells from 

sick donors into healthy mice of the same MHC type would transfer the disease, thus 

indicating that T cells can initiate the disease (Hood et al., 1989). T cells in the diseased 

mice were found to utilize only a few types of TCRs with limited V gene segment usage. 

Antibodies against these specific TCRs could either reverse the disease in the sick mice or 

prevent the induction of disease in susceptible mice (Zaller et al., 1990). 

Attempts to determine whether associations exist between certain TCR 

polymorphisms and susceptibility to autoimmune diseases in humans have been hampered 

by the fact that very few genetic markers are available in the V gene segments regions. 

Moreover, in the human TCR ~ locus there appear to be multiple hotspots of 

recombination, isolating the V element population into small clusters or islands (Seboun et 

al., 1993). Hence a multiplicity of genetic markers are necessary, one for each island, if 

one is to rigorously look for V polymorphism associations with disease susceptibility. We 

want to identify a series of genetic markers across the TCR a/o locus. 

Multiple new markers generated across the TCR a/o region should help in these 

association studies. With the entire sequence of this region, twenty or more useful 

microsatellites evenly spanning the entire locus can be identified and tested for 

polymorphisms. Hopefully each of these will lie in linkage disequilibrium to the adjacent 

genetic markers on either side. 

Getting the DNA sequence for 1.07 Mb 

Mapping: 

Traditionally in the human genome project the first step in large scale sequencing is 

to create a low resolution physical map with large inserts of human DNA, typically yeast 
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artificial chromosome (YAC) clones (Chumakov et al., 1995, and Doggett et al., 1995). 

These are generally mapped in relation to one another by sequence tagged site (STS) 

content mapping. STS mapping identifies a unique sequence that is amplifiable by the 

polymerase chain reaction (PCR) using two specific primers. Y AC clones, however, have 

many defects, which complicate the mapping process (Green et al., 1991). First, they are 

often chimeric, that is during the cloning process two or more pieces of DNA from two 

different chromosomal locations are co-ligated before integration into the Y AC vector. This 

artifact generates confusion in mapping, especially in regions with low coverage of Y AC 

clones. In these cases, where for example only one or two YA Cs extend across a region, 

the faithfulness of genomic representation must be carefully checked by other methods for 

each Y AC. Many Y ACs rearrange during growth, and contain deletions which can be hard 

to detect, unless the coverage of YAC clones is high. Depending on the Y AC library, the 

chimera rate varies, but in typical libraries it is approximately 40-50%. Another 

inconvenience is that YAC DNA cannot easily be separated from host (yeast) DNA. 

I initiated this project attempting to use YAC clones to map the TCR region. 

However, a bacterial artificial chromosome (BAC) clone library was being constructed 

employing a new cloning vector containing large insert DNA (Shizuya et al., 1992). The 

initial studies concerning the stability of the BAC clones were promising. So I decided to 

map the TCR a/o locus using the new BAC clone library. The clone insert sizes averaged 

140 kb, which is smaller than YA Cs ( 100-1000 kb), but considerable larger than cosmids 

(35-40 kb), Table 1. I had several concerns about BAC clones. Would the distribution of 

BACs be random along the chromosomes? Would they be stable and faithfully represent 

the genomic DNA, and not be chimeric? If they were ideal for mapping purposes, they had 

other advantages compared to YACs. Large amounts of DNA can be prepared free of host 

(E.coli) chromosomal DNA. Furthermore, they might serve as good reagents for the 

sequencing step in this project. 
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Sequencing: 

In the genome project, the most commonly used sequencing substrate has been the 

cosmid. Cosmids are sequenced by one of several methods. In random or shotgun 

sequencing, the cosmid is randomly cleaved into smaller fragments of 1-2 kb. These 

fragments are then inserted into an M13 or pUC-vector, and DNA prepared from 800-1000 

of these clones is sequenced. These sequences are then assembled computationally into 

one or more sequence strings (contigs). This approach generates a redundancy of around 6-

8 fold, that is, any stretch of DNA have been sequenced on average in 6-8 individual 

sequences. This usually generates one or a few contigs with gaps to close with more 

directed methods. This method is the most widely used today, because of its simplicity and 

high accuracy in the final consensus sequence (because of the high redundancy). 

To obtain a high resolution or sequence ready cosmid map from the mapped Y ACs, 

however, is no small effort. The Y AC clones can be used in one of two ways: they can be 

subcloned into cosmids, and cosmids specific for human DNA selected from the majority 

of yeast DNA containing cosmids. Alternatively, Y AC clones can be used to group 

cosmids made from total genomic DNA or from specific chromosomes into smaller 

regions. This can be done by determining the cosmids content of STSs, which have 

previously been mapped to specific Y AC clones. Once these cosmids are obtained, they 

need to be mapped relative to one another, and a set of cosmids spanning the Y AC insert 

with minimal overlap is chosen for sequencing. 

The work in going from YACs to cosmids is labor intensive, and many cosmids, 

up to 40%, contain different defects as mentioned above for the Y AC clones (Lee Rowen, 

personal communication). To test whether BAC clones could be used in sequencing, I first 

subcloned one of the bigger BACs into cosmids to use in a low redundancy sequencing 

project (Roach et al., 1995). However, it would be a big improvement, if one could avoid 

this subcloning step. Subcloning Y ACs or BA Cs into cosrnids and then mapping the 
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cosmids constitute an enormous bottleneck in sequencing efforts. So I tested the 

possibility of sequencing BACs directly using the random shotgun approach. 

In the process of mapping and sequencing BAC clones, I also developed a method 

for obtaining the sequence information from the ends of the BAC inserts by direct 

sequencing on total BAC DNA. This and many other advantages of BAC clones has lead 

to a new proposal for sequencing the entire human genome (Venter et al., 1996). It 

circumvents the majority of the mapping, and is essentially based on simple, automatable 

sequencing procedures alone. 

The next five chapters 

Chapter 2: Here I describe in detail the mapping of the TCR alo locus using Y AC, 

BAC, Pl-based artificial chromosome (PAC), and cosmid clones. All the known Valo 

gene segments are located onto these clones, and most of them have been ordered relative 

to each other. The region has also been characterized with respect to rare restriction 

enzyme sites. 

Chapter 3: The DNA sequence of the TCR alo region is investigated in this chapter. 

All V gene segments, including pseudogenes, have been characterized with respect to their 

structure (promoter, exon-introns, recombinational signals, amino acid sequences) and 

compared against the large repertoire of a.Jo cDNAs. The sequence has been examined for 

homologies with previously identified genes, proteins or ESTs, open reading frames, 

genome wide repeats, microsatellite-sequences, etc. Two shorter regions have been 

compared to their mouse counterparts. 

Chapter 4: Sequence variations were identified in the TCR al◊ V gene segments. A 

direct sequencing method is outlined. The rate of variations and whether the variations 

would lead to amino acid changes is considered. 



16 

Chapter 5: This chapter summarizes all the excellent features of the BAC clones as 

mapping and sequencing reagents. It introduces a new simple approach based on BAC 

clones to obtain the DNA sequence of the entire human genome. 

Chapter 6: A procedure to obtain sequence information from ends of BAC or PAC 

inserts is described. This procedure has simplified many of the steps involved in mapping. 

It should be mentioned that different nomenclatures have been used for the V gene 

segments. Chapter 2 and 4 use the old nomenclature (Arden et al., 1995), whereas Chapter 

3 introduces a new nomenclature based on the 5' to 3' order of the V gene segments. A 

conversion table is found in Chapter 3. 
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Table 1. Insert sizes of clones most commonly used in the human genome project. 

Clone Insert size 

YAC 100-1000 kb 

BAC 50-300 kb 

PAC 50-300 kb 

P-1 80-90 kb 

Cosmid 35-40 kb 

Plasmid <15 kb 

M13 <4kb 
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Figure 1. Schematic of antigen recognition by the T cell receptor. 

Antigen is processed to small peptides inside the antigen presenting 

cell. These peptides are presented on the surface by MHC molecules. 

This dual structure is recognized by the V domains of the 

heterodimeric TCR. A signal is send to the interior of the T cell 

through the C domain, which anchors the TCR to the cell. 
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ABSTRACT 

A physical map of the human w'S T cell receptor locus, spanning ~one megabase 

(Mb), has been constructed from yeast artificial chromosome (Y AC), bacterial artificial 

chromosome (BAC), Pl-derived artificial chromosome (PAC), and cosmid inserts. Fifty

one variable (V) gene segments have been mapped with respect to one another and with 

respect to several rare cutting restriction enzymes by hybridization and PCR analyses. The 

3' region including the Oree rearrangement element, the diversity (D), joining (J), and 

constant (C) elements have been organized. BACs appear to be excellent mapping 

reagents. 

INTRODUCTION 

T cells play a major role in the immune response against bacterial or viral infections. 

The T cell's specificity is determined by its T cell receptor (TCR), which recognizes 

antigenic peptide embeded in major histocompatibility complex (Ml-IC) class I or class TI 

molecules on the surface of antigen presenting cells (Davis and Bjorkman, 1988). 

Mammals have two types of heterodimeric T cell receptors, al~ and y/'S (Marrack and 

Kappler, 1990). The TCR polypeptides are encoded by distinct gene families, al'S, ~ and 

y. The a and o polypeptides are divided into a variable (antigen recognition) and constant 

( attached to the cell surface) regions. The Va region is encoded by a multiplicity of Va and 

Jex gene segments--one each of which undergoes DNA rearrangement and joining during T 

cell differentiation to generate a Va gene (Lieber, 1992). Likewise, the V'S region is 

encoded by V'S, D'S, and J'S gene segments that also rearrange during development to create 

a V'S gene. The Ca and C'S regions are encoded by distinct Ca and C'S genes. The a and 'S 

nuclear RNA transcripts are spliced, joining the V and C genes, to form the mature mRNA. 

The V gene segments can be divided into discrete subfamilies whose members share 75% 

or more homology. Thirty-five subfamilies have been identified in the human w'S locus 
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each with one to five members (Arden et al., 1995). Some V gene segments appear to be 

associated only with the Co gene (Vol, Vo2, and Vo3), whereas five or six others may join 

with either C gene (the remainder appear only to join with the Ca gene). An element that 

joins to Ja gene segments at the DNA level and deletes all of the intervening DNA is 

designated 8rec (De Villartay et al., 1988 and Hockett et al., 1988). Its physiological role, 

if any, is uncertain. 

Several types of studies have contributed to our current understanding of the human 

alo T cell locus. (i) About 250 a or o cDNA sequences have been determined. These data 

suggest that there are about 45 different Va or Vo gene segments, although they provide no 

positional information. (ii) Some chromosomal DNA clones have been sequenced. For 

example, the 97 kilobases (kb) of DNA encompassing the 3' end of the locus has been 

sequenced (Koop et al., 1994a) and reveals the following order of gene segments: 5' Jo

Jo-Co-Vo3-(Ja)61-Ca 3'. (iii) The relative order of V gene segments can be determined in 

homogeneous T cell lines or tumors by deletional analyses. Most T cells must rearrange 

both the maternal and paternal chromosomes to get a functional Va or Vo gene. 

Accordingly, in any individual T cell line or tumor, the 3' most rearranged V gene separates 

all other V genes into two classes: those that are 3' to the rearranged V gene are deleted in 

both chromosomes; and those that are 5' to the rearranged V gene are present on one or 

both chromosomal copies. If multiple T cells are analyzed, a deletional map of the analyzed 

gene segment order can be determined. Several deletional maps of differing resolution 

have been determined for the human alo locus (Wilson et al., 1988 and Ibberson et al., 

1995). (iv) Cleavage by rare cutting restriction enzymes produce long DNA fragments that 

can be separated by pulsed field gel electrophoresis (PFGE) and analyzed with different V 

probes by Southern blot analyses (Griesser et al., 1988, Satyanarayana et al., 1988, 

Hockett et al., 1988, and Ibberson et al., 1995). These studies suggest that the human alo 

T cell receptor locus is approximately one Mb, and the relative order of some of the V gene 

segments can be identified. However, determination of the detailed organization of this 
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region is limited by the number of T cells analyzed and/or the number of V gene probes 

used in these studies. 

As a prelude to the sequence analysis of the human al8 T cell receptor locus, we 

have developed a detailed physical map of the al8 locus employing YAC, BAC, PAC, and 

cosmid clones. In addition, we have developed a highly detailed map of the order of the V 

gene segments. 

MATERIALS AND METHODS 

DNA Sources 

YAC clones were obtained from the St. Louis' human genomic DNA Y AC library. 

This library was constructed from a lymphoblastoid cell line, CGM-1 (Brownstein et al., 

1989). BAC clones were obtained from a human BAC library at California Institute of 

Technology. This library was developed from a normal human male fibroblast cell line, 

(ATCC: CRL 1905: CCD-978Sk) (Shizuya et al., 1992). This cell line was also used in 

PFGE analysis of human genomic DNA. The PAC library at Genome Systems, Inc. was 

constructed from a normal human male fibroblast cell line, HSF7 (Ioannou et al., 1994). 

Screenine of Genomic YAC, BAC, and PAC Libraries 

Human TCRalo specific Y AC clones were obtained from St. Louis by PCR screening 

using primer pairs specific for a few Va and the C8 gene segments (Table 1 ). 

To obtain specific BA Cs we used PCR amplified V alo gene segments as probes. 

These were labeled with P-32 using a random labeling approach (T7 QuickPrime, 

Pharmacia, or Multiprime DNA Labeling System, Amersham) and hybridized overnight at 

65°C to the BAC library membranes in SET (0.6 M NaCl, 0.02 M EDTA, 0.2 M Tris-HCl 

[pH 8.0], 2% SDS, and 0.1 % pyrophosphate). The membranes were washed 10 minutes 

in 1 x SSC + 0.1 % SDS, followed by 2-3 washes in 0.1 x SSC + 0.1 % SDS at 65°C for 
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10-20 minutes each. Positive clones were identified after exposure at -70°C to Kodak X-

AR film with intensifying screen overnight or longer. Specific PCR-probes were also 

made for the ends of different clones, and the PCR product labeled and used as above. 

Whole cosmids and BACs were also used as probes in hybridization to the BAC library. 

Cosmid and BAC DNAs were digested with Notl to separate the vector from the inserts, 

and run on a PFGE (see below). The inserts were cut out of the gel and the DNA extracted 

from the agarose using beads (Sephaglas BandPrep, Pharmacia or Qiaex, Qiagen). When 

using P-32 labeled cosmids or BACs as probes, cold vector DNA, human Cot-1 or total 

placental DNA, and total E.coli DNA were used to suppress hybridization of repeat 

sequences and contaminating vector and E.coli DNA. 

The PAC library was screened as described above for the BAC library using 

specific V gene segments or PCR products generated from ends of BA Cs. 

DNA Preparation 

Total human genomic DNA from the same cell line used to make the BAC library 

was prepared in low melting point (LMP) agarose. Cells were washed twice in phosphate 

buffered saline (PBS) and resuspended to 108 cells/ml in PBS. The cells were then 

warmed to 37°C before they were mixed with an equal volume of melted 1 % LMP-agarose 

and poured into molds. The solidified plugs were incubated overnight at 50°C in a solution 

of 0.5 M EDTA [pH 9.0], 1 % Sarcosyl, and Proteinase K (0.5 mg/ml). This step was 

repeated once for one more overnight incubation. The plugs were then rinsed and stored in 

0.5 MEDTA. 

YAC DNA was prepared in LMP agarose. Yeast cells were lysed for 30 minutes at 

37°C in SCE ( 1 M sorbitol, 0.1 M trisodium citrate [pH 7 .0], and 50 mM EDTA [pH 8.0]) 

and Yeast Lytic Enzyme. The cell lysates were then mixed with an equal volume of 1 % 

LMP-agarose in 125 mM EDTA [pH 8.0] at 37°C. The cell suspension was poured into 

molds and allowed to solidify. The DNA plugs were placed in a buffer (0.5 M EDTA [pH 
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9.0] , 10 mM Tris-HCl [pH 8.0], and 50 mM DTT) at 37°C overnight, followed by 

washing in 0.5 M EDTA and 10 rnM Tris-HCl. The plugs were then incubated at 50°C 

overnight in (0.5 M EDTA [pH 9.0], 10 mM Tris-HCl [pH 8.0], 1 % Sarcosyl, and 

Proteinase K, 1 mg/ml). Finally, the blocks were treated with 100 µg/ml RNase A in TE 

(10 mM Tris-HCl, 1 mM EDTA), before storing at 4°C in 0.5 M EDTA, 10 mM Tris-HCL 

BAC, PAC and cosmid DNA was prepared using standard alkaline lysis procedures 

(Sambrook et al., 1989). Minipreparations were made either by hand without organic 

extractions or by an automated minipreparation machine, Autogen 740, Integrated 

Separation Systems. 

Construction of Cosmid Libraries from YACs 

Before partial digestion with SauillA (New England Biolabs), ten 1 mm slices of 

YAC DNA in LMP agarose were dialyzed in double distilled (dd) H20 overnight. The 

plugs were melted and SauIIIA buffer added to lx according to manufacturers instructions. 

The tubes were equilibrated to 37°C before addition of 1 Unit ~-agarase I (New England 

Biolabs) and varying amounts of SauIIIA (0.01 - 0.1 Units/ 200 µl reaction). Incubation 

was continued for 30 minutes after which the reactions were terminated by addition of 

EDT A to a final concentration of 50 rnM. The DNA was pooled and loaded onto a gradient 

of 10 - 50 % sucrose in TE+ 1 M NaCL The gradients were spun in an ultracentrifuge for 

20 hours at 25.000 rpm. Half ml fractions were collected and tested on a 0.3 % agarose 

gel for size. The 40-50 kb fractions were precipitated, and resuspended in 20 µl of TE. 

The size selected DNA were used in ligation to the BamHI digested, dephosphorylated 

cosmid vector, pWE15A (Lai et al, 1991). The ligation mix was packaged and transformed 

into DH5aMCR cells (Gibco, BRL) using Stratagenes Gigapack II Gold Packaging 

Extract. The cells were spread on nylon membranes on agar plates containing ampicillin, 

and the colonies grown overnight, before replicas were taken. The replicas were used to 

make membranes for library screening. Cosmid clones with human insert were initially 
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identified by hybridization to a P-32 labeled Alu probe, and later by probes made from V 

gene segments or cosmid ends. 

Southern Blots and Hybridizations 

DNA was digested with various restriction enzymes according to the suggestions of 

the manufacturer. The DNA was run in a 0.8% agarose gel, and transferred to nylon 

membranes by capillary action using 0.4 N NaOH. The membranes were rinsed twice in 2 

X SSC before use. PFGE gels were irradiated at 254 nm ultraviolet light for 45 seconds in 

the presence of ethidium bromide before blotting. The blots were prehybridized in 

hybridization solution (50% formarnide, 5 X SSC, 0.02 M sodium phosphate [pH 6.7], 

100 µg/rnl denatured salmon sperm DNA, 1 % SDS, 0.5% nonfat dry milk, and 10% 

dextran sulfate) at least half an hour prior to hybridization. As above, probes were labeled 

and hybridized at 65°C overnight followed by washing, although the washing conditions 

would vary in their concentration of SSC from 0.1 X SSC to 2 X SSC, dependent on the 

desired stringency. 

End Sequencing of YAC, BAC, and Cosmid inserts 

Sequence from the ends of YAC and BAC inserts were obtained using the 

vectorette or bubble technique as described in Riley et al., 1990, or by sequencing Alu

vector PCR products (Nelson et al., 1991). Cosmid, and later BAC ends were obtained by 

direct sequencing, either radioactive or fluorescent analyses (Boysen et al., 1996a). 

Pulsed Field Gel Electrophoresis 

Large DNA molecules were separated in 1 % agarose in 0.5 X TBE at 14°C using a 

variety of devices for PFGE, either homemade or from Biorad. Voltage applied was 6 

V/cm, switch times and total time depended on the sizes separated (Birren and Lai, 1993). 
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RESULTS 

YAC Map 

Specific PCR assays for the Va9, Val2, Val3, and C8 elements (Table 1) were 

used to screen the St. Louis YAC library. Nine YAC clones were obtained, ranging in size 

from 180 kb to 350 kb as determined by PFGE and hybridization using pUC19 DNA as 

probe ( data not shown). One of the Y AC clones contained two YA Cs. Southern blot 

analyses of Y AC DNAs digested with several different restriction enzymes (EcoRI, 

BamHI, Hindlll, and Pstl) and probed with V a/8 gene segments were used together with 

specific PCR assays to determine the V gene segments present in each Y AC clone. Five of 

the Y AC clones were chimeric based on their paucity of V gene segments in conjunction 

with their total length. The ends of the remaining three Y AC clones were sequenced. 

Specific PCR assays were generated and used to amplify a human chromosome 

specific/hamster hybrid panel to ensure that the ends of the Y ACs both were on 

chromosome 14. These three YAC clones appear to faithfully represent the genomic DNA. 

Two of these, YAC234Dl lGl and YAC116B220D9, make a contig of about 400 kb 

covering more than half of the V gene segments (Figure 1). The third clone, 

Y AC 190A232G 1, which was obtained using the primers specific for the C8 gene, covers 

the most 3' V gene segments through to the C8 gene (Figure 1). 

Cosmid Map 

To identify more precisely the location of the V gene segments and to provide 

substrates for DNA sequencing, the three faithful YAC clones were partially digested with 

SauIIIA and subcloned into cosmid vectors. Human specific cosmid clones were identified 

by screening the YAC-cosmid libraries with an Alu specific probe under conditions of low 

stringency. Cosmid contig maps of each Y AC clone were constructed based on restriction 

enzyme analyses and V gene segment hybridization (Figure 1). Cosmid clones were 

digested with several different restriction enzymes and the sizes of the resulting fragments 
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compared. Southern blots were made from the same gels and used in hybridization with an 

Alu-repeat specific probe, or probes specific for V gene segments (e.g., Figure 2). Initial 

cosrnid overlaps were determined from restriction enzyme analyses and V probe 

hybridizations. Further contig building was done using STSs for V gene segments (Figure 

3). Finally, end-sequences were obtained from the cosrnids at the ends of contigs, and 

used either to make new STSs or as probes to check for overlap between contigs. This 

approach resulted in cosmid contigs spanning all three Y ACs (Figure 1). 

BA C and PAC Clone Map of the a/8 locus 

The human BAC library at Caltech was initially screened when it included 2.5-fold 

coverage of the human genome. It was screened with three V probes missing from the 

YAC clones (Va7.1, Va16, and Va24). Five BAC clones were identified (the 5' most 

clones in Figure 1 with numbers less than 600). Subsequently, the BAC library was 

screened with cosrnids spaced every 50 kb from the cosrnid map described above. Several 

additional clones were obtained ( clone numbers under 600). When the Caltech BAC 

library reached a 3.7-fold coverage, it was screened a last time using some of the BAC 

clones obtained previously for the 5' and 3' ends under conditions where the hybridization 

of repeat sequences was suppressed with human placental or Cot-1 DNA. The BAC clones 

were analyzed by restriction enzyme (Hindlll, EcoRI, and BamHI or Pstl) mapping 

(Figure 4), hybridization against individual V probes or whole BAC DNA probes (Figure 

5), and STS content mapping. End sequences from BAC clones were obtained using either 

the vectorette technique (Riley et al., 1990), the Alu-vector technique (Nelson et al, 1991), 

or in some cases by sequencing the BAC DNA directly with chain terminators (Boysen et 

al., 1996a). All of the known V gene segments could be mapped to these BAC clones. 

One gap remained at the 5' end of the locus between the BAC135 and the BACIO clones 

(Figure 1 ). A PAC library was screened with probes of Va gene segments located close to 

the gap and probes generated from the ends of these BA Cs. Several positive PAC clones 
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were obtained, one of which (PAC 161) closed the gap. We also obtained PAC230 to 

cover the region around a very unstable cosmid (cosmid 9.8 in Figure 1). 

Pulsed Field Gel Map of the a/8 locus 

Human genomic DNA as well as YAC, BAC, and PAC DNAs were digested with 

the rare cutting enzymes Notl, Sall, Sfil, and BssHII. The resulting fragments were 

separated by PFGE. The sizes of the BAC and PAC fragments were determined by 

comparison with standards on ethidium bromide stained gels. The BAC and PAC insert 

lengths ranged from 85 to 240 kb, as determined after excision from the vector by Notl. 

Fragment sizes from human genomic and YAC DNAs had to be determined after the 

generation of Southern blots and hybridization with appropriate probes (Figure 6). The 

rare restriction enzyme sites shown in Figure 1 are identified from the BAC and Y AC data 

Predictions from these data for the fragment sizes for human genomic DNA did not always 

match the actual length obtained directly from human genomic blots. This is probably due 

to methylation of CpG dinucleotides because some of the longer genomic fragments could 

be accounted for by addition of two or more of the fragment sizes determined by BAC and 

YACDNAs. 

Approximate sizes of the rare restriction site fragments are given in Figure 1. As 

shown, all of the V gene segments can be found on one of four contiguous Sfil fragments 

of 500 kb, 190 kb, 180, and 175 kb, 5' to 3'. The enzyme BssHII gave inconclusive 

results for the four 5' most BAC clones where it seems to cut several times. For that 

reason, it has not been included in Figure 1. However, one BssHII site was 

unambiguously determined to be right next to the Sfi 1-3 site, although the orientation of 

these sites has not been determined since the fragment sizes are too similar. 
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Location of Human Va/8 Gene Sei:ments 

Most of the V gene segments could be uniquely located relative to one another by 

inspection of their hybridization patterns (Figure 2) or via V-specific PCR analysis of the 

different BAC, PAC, and cosmid clones (Figure 3). In Figure 1 where the V subfamily 

members have been uniquely identified by specific PCR analysis or DNA sequencing, the 

subfamily number is given (e.g., 14.1, 14.2, etc.). When the subfamily sites but not 

specific numbers are identified (e.g., hybridization with one Val member and washing 

under low stringency conditions), the subfamily number is followed by a letter (e.g., la, 

lb, le, etc.) starting from the 3' end. Only three V8 gene segments (V81-V83) are given 

on the map. The other known V8 gene segments (VM, V85, V86, V87, and V88) have 

also been identified as Va gene segments (Va6, Va21, Va17, Va28, and Va14.1, 

respectively), and are indicated with stars in Figure 1. Thus, most V gene segments 

capable of rearranging to D8 gene segments are scattered among the Va gene segments and 

are concentrated toward the 3' end of the V gene segment cluster (Figure 1). The V82 and 

V83 gene segments lie 3' to all other V gene segments and 3' to the C8 gene, respectively. 

The deletional element, 8rec, lies between the Sall-4 site and the V82 gene segment (Figure 

1). 

Where detailed cosmid maps are available, almost all of the V gene segments could 

be ordered relative to each other. The few V gene segments that could not be ordered are 

aligned in vertical arrays. In regions with BAC and PAC clone coverage alone, the ordering 

of the gene segments relies on overlapping BAC and/or PAC clones. 

To locate the V gene segments with respect to the rare restriction enzyme sites, the 

V gene segments were used as probes in hybridizations with the PFGE blots. These 

analyses suggest Va9 is just 5' to the SfiI-2 site; Va3 and Va12 lie between the SfiI-2 and 

Sall-3 sites , and Va30 lies just 3' to the Sall-3 site (Figures 1 and 6). The Va14.2, 

Va14.1, Va27, Va31, and Va19 gene segments were all found 5' to the Sfil-4 and Sall-4 
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sites, whereas the V82 element was found 3' to these two restriction enzyme sites, and thus 

is the 3' most V gene segment upstream of the D8, J8 and C8 elements. 

DISCUSSION 

Complete physical map of a/8 locus. 

The BAC, cosmid, and PAC clones appear to provide a complete physical map of 

the ol8 locus. All known V gene segments have been placed on the map, either by 

hybridization or PCR analyses, as have the 8rec, C8, and Ca elements. The clones in this 

map overlap completely from 5' to 3'. Size estimates from the restriction maps employing 

rare cutting enzymes (Notl, Sall, and Sfil) and a summing of the clone insert sizes suggest 

that the a/8 locus is approximately 1 Mb in length. 

BAC clones appear to be excellent mapping reagents. 

The 17 BAC clones selected from 2.4- to 3.7-fold human library appear to span the 

1 Mb locus, but for a single gap (covered by a PAC clone). Detailed restriction map 

analyses and end sequencing suggest that BAC clones are rarely chimeric or rearranged 

(e.g., incur deletions) (Boysen et al., 1996b). Furthermore, it appears that BAC clones 

can be sequenced directly by shotgun analyses (C. Boysen, unpublished). 

All known V gene segments have been mapped across the cx/8 locus. 

The majority of the 51 V gene segments have been ordered with respect to one 

another, except for 16 V elements that are assigned to five bins with two to six members in 

each of these bins. The total of 51 V gene segments detected by hybridization corresponds 

well to the reported numbers of 45 cDNAs (Arden et al., 1995). Since not all of the V gene 

segments identified by hybridization have been sequenced, we can not be certain of precise 

correspondences. Additional V gene segments, particularly pseudogenes may emerge as 



41 

the locus is sequenced. For example, the human p T cell receptor locus, spanning ~ 700 kb, 

has 65 V gene segments, 19 of which are pseudogenes (Rowen et al., 1996). The V gene 

segments are distributed more or less evenly across the locus except at the 3' end where the 

V82 gene segment lies 100 kb 3' to the Va19 gene segment (Figure 1). The ~750 kb 

region between the Va19 and Va7.1 gene segments contains on average, a V gene 

segment every 15 kb. This is somewhat less densely packed than the human p (Rowen et 

al., 1996) or the murine a.Jo (Wang et al., 1994) T cell receptor loci. For example, the 

mouse a.Jo locus contains 86 V gene segments over approximately 900 kb ( 1 per ~ 10 kb) 

(Wang et al., 1994). This increased V density arises from the duplication (45 to 80 kb 

homology units) of more densely packed V gene segment regions. The low resolution 

physical map of the human a.Jo locus suggests, that smaller regions at the 5' end including 

the Val, Va2, and Va8 subfamilies may have arisen as a result of duplication. 

Seven of the 35 V subfamilies are multi-membered (Val, Va2, Va4, Va7, Va8, 

Va14, and Va22). For three of the two-membered subfamilies, Va4, Va7, and Val 4, 

their two members have been uniquely identified, and so have two of the three members of 

Va8 (Figure 1). The Va22 and Va8 subfamilies show two and three members, 

respectively, by Southern blot analysis. However, only one Va22 and two Va8 members 

have been identified by cDNA sequence analysis. The additional member in each case 

could be a pseudogene, as sequence analysis has not been done. Likewise, for the Va2 

and Val subfamilies, we have identified by Southern blot analysis four and eight 

members, respectively, while only three different Va2 and five Val cDNAs were reported 

earlier (Arden et al., 1995). Complete sequencing of this region will indicate if the extra V 

gene segments we detect by hybridization are functional. 

The detailed locations of V gene segments reported here are, for the most part, in 

agreement with a recently published map of this region. Ibberson et al., 1995, described 

the rough organization of subfamilies 1-24 based on PFGE analysis and deletional 

mapping. Most of the single member families are positioned identically, although it is more 
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difficult to compare the multi-member families, in part because of the lower resolution of 

their map. The sizes of the SfiI fragments are approximately the same, and these are also in 

agreement with earlier PFGE studies of this region (Hockett et al., 1988, Satyanarayana et 

al., 1988, and Hata et al., 1989). Not all of the V gene segments have been located to the 

same fragments, nor are they in the same order. For example, the Va4 members have been 

localized to different Sfil fragments in the two studies. In addition, the ValO and Va3 

members are located in different positions with respect to the other V gene segments. 

Detailed DNA sequence analyses now underway will resolve these discrepancies. 

A comparison of the mouse and human a/o loci reveals a striking similarity 

at the 3' ends of these families. 

The 3' alo regions in both human and mouse are remarkably similar from the Ca 

gene through to the Vo2 element, a region spanning approximately 130 kb of DNA. In the 

~ 100 kb of DNA sequenced in both species encompassing the region from the Co to the Ca 

genes, a striking 71 % homology is seen even if the coding regions only occupy 5% of the 

sequence. Each of the 61 J a gene segments has an orthologue in the opposite species in 

the same 5' to 3' order (Koop and Hood, 1994). This DNA sequence similarity seems to 

extend 5' through the o region (Rowen and Boysen, unpublished). In the human ~ T cell 

receptor locus, the 70 kb region between the 3' most V gene segment and the D~l gene 

segment contains five tandernly arrayed trypsinogen genes (Rowen et al., 1996). It will be 

interesting to determine whether the 100 kb counterpart region in the human alo locus 

(e.g., between Va19 and Vo2) also contains non-T cell receptor genes. 

The a and o gene elements are intermingled. 

Eight different V elements have been found associated with the Co gene in various 

cDNA clones (Migone et al., 1995). Five of these V gene segments can also be associated 

with the Ca gene. The Vol, Vo2, and Vo3 gene segments are always associated with the 
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C8 gene. The V81 element is approximately 350 kb 5' to the C8 gene and five V elements 

associated with both the Ca. and C8 genes are scattered across much of the V element 

region (Figure 1). The V82 and V83 gene segments are the 3' most V elements, separated 

from the others by more than 100 kb. 

Hence, most V elements associate only with the Ca. gene; five associate with both 

Ca. and C8; and three associate only with the C8 gene. There are two general explanations 

for these selective associations. (i) Any V element may rearrange to either C gene; antigen 

driven selection may permit only the associations described above to be clonally expanded 

at the functional T cell level. (ii) The DNA rearrangement sequences lying to the 3' side of 

the V gene segments may limit the rearrangement process to the associations described 

above. 

It is worth stressing again that the 3' region from the V82 element to the Ca. gene is 

highly conserved across the human and mouse evolutionary lines (Koop and Hood, 1994). 

In contrast, most of the mouse V8-specific elements are located at the 3' end of the V gene 

segment cluster (Wang et al., 1994). It is interesting that 8rec typically rearranges to a 

pseudo J element just downstream from V83. Accordingly, this rearrangement ensures that 

the V82, V83, all D8, all J8 and the C8 elements are deleted--thus permitting that 

chromosome to only express successfully rearranged Va. genes ( de Villartay et al., 1988). 

SUMMARY 

A detailed physical map of the human a./8 locus extending over more than 1 Mb has 

permitted the identification and localization of all known V gene segments. These studies 

suggest that BAC clones are excellent physical mapping reagents. The complete DNA 

sequence analysis of the a./8 locus is now underway. 
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Table 1. Oligonucleotide sequences and annealing temperatures for specific amplification 

of TCR elements. Most oligonucleotide pairs were used for both specific PCR assays as 

well as to generate probes for use in hybridization. 

Gene segment 

TCRDV101S1 
TCRDV102S1 
TCRDV103S1 
TCRDC 
DREC 

TCRAVlSl 
TCRAV2S1 
TCRAV2S2* 
TCRAV3S1 
TCRAV4S1 
TCRAV4S2* 
TCRAV5S1 
TCRAV6S1 
TCRAV7S1 
TCRAV7S2* 
TCRAV8S1 
TCRAV8S2* 
TCRAV9S1 
TCRAVl0SI 
TCRAVllSl 
TCRAV12S1 
TCRAV13S1 
TCRAV14S1 
TCRAV14S2* 
TCRAV15S1 
TCRAV16S1 
TCRAV17S1 * 
TCRAV18S1 
TCRAV19S1 
TCRAV20S1 
TCRAV21S1 
TCRAV22S1 
TCRAV23S1* 
TCRAV24S1 * 
TCRAV25S1 
TCRAV26S1 
TCRAV27S1 
TCRAV28S1 
TCRAV29S1 
TCRAV30S1 
TCRAV31S1 
TCRAV32S1 
TCRAC 

5' primer 

AAGGTIACTCAAGCCCAGTC 
TIGGTGCCTGGACACCAAAC 
CAGAGTTCCCCGGACCAGAC 
AGCCTCATACCAAACCATCCG 
TAAGATCCTCAAGGGTCGAG 

3' primer Annealing temp 

CTGTAAGGCTGAAA TGGTTAAG 60°C 
GATGGTGCAAGTATCTIAAGTA 60°C 
CCTIACTGGAGAGA TCACCA 60°C 
CACTICAAAGTCAGTGGAGTGCAC 60°C 
TGTGCTGGCATCAGAGTGTG 60°C 

TCATACCAGTGCTGGGGA GGCACAGAAGTACTCAGCT 58°C 
TGAAA TCCTIGAGAGTITIACTA GAGAAACATACTGGCTGG 60°C 
GGCATCTCTGTAGAAACATA GTCTCTGATGAACAAGGAGAT 60°C 
CTGGGAGTGTCTITGGTGATI AAGGAACTGCTTITCITGGAAG 60°C 
TGAAGTTGGTGACAAGCATIACT AGGfACTGGACTTICTGr 60°C 
GGCTGGTGGCAAGAGTAACIG GCGTAGCGTGGGGCAGGA 60°C 
GGAGACGAATGGAGTCATCC GGCTGTGATATGAAACAAACTC 58°C 
GTCACTTICTAGCCTGCTGA CAGITGTGAAGCGGAGATGACA 60°C 
GGGGAGCTITCCTICTCTA TG ATCTGGAGCTCCIGTAGAAGG 60°C 
GTGGGGAGTTITCCTICTI TTCATCTGGAGCTCCTICAA 58°C 
ACATCCATTCGAGCTGTATITATAT TGTGATCTGCAGGGAGAAA TOT 60°C 
ATICGAGCTITATTIATGTACTTGT AATITGCAGAGAGAGATGTITCA 60°C 
ATGAAGCCCACCCTCATCT TGAGTCTICCTCTIGAGCAA 58°C 
GTCCIGAAATICTCCGTGTCCA AGTGATGTGGAGAGAACTGTC 60°C 
ATGGCTITGCAGAGCACTCTGG CTGGAGGATGAGCAGCGATG 60°C 
GCCAGCCIGTIGAGGGCAG TACTGCTGAGTCCACGACT 60°C 
GGACCTCTGCTGGGGCTC TGTGGTCTGGGAAGAGGAA 60°C 
TICCIGTGGGCACTTGTGA CACAGAAATACA TCGCGGCA 60°C 
GCTGTGGGCAGTCGTGG GCACAGAAA TACA TCGCAGTG 60°C 
GAGGATGTGGAGCAGAGTI CAGTCTGGGTGTCTGCAA TG 60°C 
GCCTCTGCACCCATCTCGA CAAAGCGGAGTCGCTCACAA 58°C 
TAGTTCTGTGGCTICAACTATG AGTCTCCAGGCTGGGAATCCA 60°C 
GAA TCCTTIGGCAGCCCCATIA AAATAGCTGTAACCCTCCTIGG 60°C 
AGATCCGGCAATITITGrTGGCT GGGAGCTGTGCTITTCCTGTA 60°C 
GGCAAGTGGCGAGAGTGATC AGTGTCGCTCAGGGAAACCCG 60°C 
GTGGAAGGACATGAATAAAGCAC TCCAGGCTGGGAGGGCACA 60°C 
AGGCTIAGTATCTCTGATACTC ACACCGCTGAGTCTGACACT 59°C 
GTCTAAGTGACAGAAGGAATG AATGTATAAAGTACTACGTCCIGA 60°C 
GCATCTGACGACCTICTTGGT ATGTAGGAGGCTGAATCGCTGAG 60°C 
ATGCTCCTIGAACATTIATIA GTAGATGCCTACATCACTAGG 60°C 
GAGACTGTICTGCAAGTACTCCTA AGGTAGATGCCTGCATGGCTGG 60°C 
ATGAAGAAGCTACTAGCAATG GTAGGTGGCAGAGAGGTCATG 60°C 
ATGATGAAGTGTCCACAGGCT GGTAGACGGCCGAGTCTCCGG 60°C 
ATGGAGACTCTCCTGAAAGTGC AAGTAGGTICCIGAGTAACIG 60°C 
AGAAGTGGCGCCTCTGAG CACAGAGATAAGTGGCTGAG 60°C 
TAACAGTGATGCCCTCTG CTGAGTCTGATGCCTGGACIG 60°C 
AACTTCGA TGCACCTCTITCC GCTTCTICACTICTCCACTC 60°C 
CTIGAAGCTGGGAGTGG CTAAGAGAGCCGTACTGG 60°C 

*) Oligonucleotides were only used in specific PCR assays. 
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FIGURE LEGENDS 

Figure 1. Map of the human TCR a/8 locus. The TCR elements were located on the 

map via hybridization to Southern blots of restricted Y AC, BAC and cosmid DNAs, or via 

specific PCR assays of YAC, BAC, PAC and cosmid DNAs (See Table 1). V gene 

segments in larger subfamilies which were only identified by hybridization have a letter 

affixed to their subfamily name. V gene segments without unique location have been 

written in a column with other V gene segments binned to that region. Rare restriction 

enzyme sites have been determined for Notl, Sall, and Sfil. V gene segments which have 

been found in cDNAs of 8 chains are indicated by *. 

Figure 2. Hybridization of V gene segment probe to cosmids. DNAs from cosmids 

developed from Y AC234 were digested with EcoRl and the fragments separated in a 0.8 % 

agarose gel. Southern blots were made and hybridized to a Va23 probe. A band were 

identified around 4.0 kb in several cosmids, indicating the location of this V gene segment. 

Figure 3. STS content mapping of cosmids. Specific primers for Va4.2 (Table 1) were 

used in amplification of DNA prepared from cosmids derived from YAC234. M: 123 bp 

marker. G: Genomic DNA. 

Figure 4. Restriction mapping of BAC DNAs. DNA prepared from BA Cs were digested 

with HindIII and run on 0.8 % agarose gel. HindIII cuts the insert out, leaving a vector 

band of 6.8 kb for clones with numbers below 420, and 7 .5 kb for clones with numbers 

above. M: 1 kb ladder. 

Figure 5. BAC to BAC hybridization. BAC363 DNA was used as a probe in 

hybridization to a Southern blot of EcoRl digested BAC DNAs. 

Figure 6. V gene segments ordered with respect to rare restriction enzymes. YAC DNAs 

were digested with Notl, Sall, Sfil, and BssHII, and run on PFGE. Southern blots were 

made and used in hybridization to specific V gene segment probes. Y AC 116 included three 

controls ( +) to check for degradation of DNA under different conditions without enzyme. 

Indicated sizes are estimated by comparison to the original ethidium bromide stained 

agarose gel that included DNA size markers (lambda ladder and yeast chromosomes). 
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ABSTRACT 

The sequence of the human a/ 8 T cell receptor locus, 1.07 megabases 

(Mb), has been determined. Fifty-seven variable gene elements, 48 of which 

appear functional, have been identified. Five olfactory receptor genes are 

intercalated with the 5' end of this locus and the highly conserved anti

apoptosis gene, defender against death (DAD), lies at the 3' end of this locus. 

More than 250 a/ 8 cDNA sequences have been compared against their 

chromosomal counterparts and the striking observation is that no 

pseudogenes are expressed, whereas most functional genes are. This suggests 

efficient degradation of pseudogene mRNAs. The a/8 locus is divided into 

three chromosomal domains by GC nucleotide content and the presence or 

absence of genome-wide Ll repetitive elements. The 3' domain correlates 

perfectly with a highly conserved 130 kb sequence (71 %) across the human 

and mouse evolutionary lines. 
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INTRODUCTION 

The human a/o T cell receptor (TCR) locus is a complex multigene 

family spanning ~1 Mb on human chromosome 14. It encodes two distinct 

TCR polypeptides, a and o, each contributing to one of the two types of 

heterodimeric T cell receptors--a/ ~ and y / 8. The y / o TCR is expressed early in 

T cell development and still has a somewhat uncertain function. The a and ~ 

families encode the classical TCR responsible for most T cell responses. The a 

and o polypeptides are divided into variable (V) (antigen recognition) and 

constant (C) (fixation to the T cell membrane) regions. The V regions are 

encoded by a multiplicity of gene segments, Va and joining Oa) for a and Vo, 

diversity (Do), and Jo for o, one each of which rearranges and joins together 

during T cell development to form Va and Vo genes, respectively (reviewed 

in Davis and Bjorkman, 1988). The DNA rearrangement process is mediated 

by short DNA signals of two types--hexamer/23 nucleotide spacer/nanomer 

joining to a hexamer/12 nucleotide spacer/nanomer--lying adjacent to the 

gene segments to be joined (Lieber, 1992). After transcription, the Va and Vo 

genes are joined to their respective C genes by RNA splicing to generate a or o 

mRNAs. The rearrangement mechanism permits TCRs to be expressed in a 

quantized manner, with generally only one type of TCR per T cell. Hence, the 

recognition functions of the T cell are also quantized. The V gene segments 

have been divided into 35 subfamilies whose members exhibit 75% or more 

similarity at the DNA level and, accordingly, can be identified by DNA 

hybridization. Diversity is generated in the Vo and Va genes by three distinct 

mechanisms: (1) combinatorial joining of the gene segments; (2) diversity at 

the gene segment junctions created by exonuclease removal of bases from the 

ends of the gene segments; and (3) the addition of non-chromosomal 
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encoded nucleotides by the enzyme terminal deoxynucleotidyl transferase 

(TdT) to the ends of the gene segments prior to joining. 

Three V element features are of special interest. (i) Some V gene 

segments appear to associate primarily with the Co gene (Vol, Vo2, and Vo3). 

Five others associate with both Co and Ca genes. The remainder of the V 

gene segments appear to associate only with Ca genes. The key question is 

whether these associations are mechanistically determined (e.g. three classes 

of DNA rearrangement signals) or determined by selection (e.g. antigen

driven or special developmental signals). (ii) The Vo genes are expressed in 

successive developmental waves, Vo2 first followed by Vol and Vo3 (van der 

Stoep et al., 1990, Krangel et al., 1990, and McVay et al., 1991). (iii) The Vo 

genes are expressed in distinct tissues dependent on the developmental stage 

(Morita et al., 1994). Vol expressing T cells are predominant in the adult 

thymus, whereas yo T cells in adult blood predominantly express Vo2 

(Kabelitz, 1992, and Haas et al., 1993). An analysis of the regulatory elements 

of these genes may provide some insights into these features . 

The gene products of the human a/o locus have been studied by three 

general approaches. First, the sequence analyses of more than 250 a/ o cDNAs 

suggests that there are perhaps 45 V gene segments, although alleles, closely 

related gene duplications and sequencing errors cannot be readily 

distinguished. These fall into 35 V subfamilies (Arden et al., 1995). Second, 

physical mapping studies employing V gene segment hybridization, analysis 

of large DNA fragments produced by restriction digest with infrequent cutting 

enzymes and separated by pulsed field gel electrophoresis (Griesser et al., 1988, 

Satyanarayana et al., 1988, Hata et al., 1989, Ibberson et al., 1995), as well as 

hybridizations to deleted chromosome 14s in individual T cells (created 

because both maternal and paternal chromosome 14s generally undergo 
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rearrangement during T cell development)(Ibberson et al., 1995). Various 

sequence and mapping studies on smaller chromosomal fragments of this 

locus have also been carried out (Isobe et al., 1988, and Loh et al., 1988). These 

studies also suggested there were approximately 40-50 V gene segments and 

crude localization was possible. Finally, 97 kb of sequence at the 3' end of the 

human a/ o locus, spanning the Co to Ca regions, has been sequenced (Koop et 

al., 1994). These studies collectively suggest that with respect to its TCR 

elements the a/o locus is organized as follows: (Vl ... V45), Dol-3, Jol-4, Co, 

Vo3, Jal-61, Ca. 

The complete sequence of the human a/ o locus has been determined, 

spanning 1.07 Mb of DNA. Forty-eight apparently functional and nine 

pseudo V gene segments have been identified. A most striking observation is 

that none of the pseudogenes are represented as cDNAs, whereas virtually all 

of the functional V elements are encoded as cDNAs--implying an efficient 

mechanism for degrading pseudogene mRNAs. Five olfactory receptor genes 

are intercalated among the 5' most V gene segments, whereas an anti

apoptosis gene, defender against death (DAD), appears 15 kb 3' to the Ca gene. 

These associations could have interesting biological implications. This locus 

is sharply divided into three domains by GC content and by the presence of 

high or low levels of the Ll genome-wide repeat element. One of these 

domains corresponds to a highly conserved 3' sequence region previously 

noted (Koop et al., 1994, Koop and Hood, 1994). The 3' ~ 130 kb of the mouse 

and human a/ o TCR families appears as highly conserved as are most coding 

regions ( ~ 71 % ) in spite of the fact that coding sequence comprises 

approximately 5% of this region. A comparison with the completely 

sequenced human TCR~ locus (Rowen et al., 1996) shows both striking 

similarities and differences. Knowledge of the complete human a/ o TCR 
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locus permits the initiation of powerful new systems approaches to how this 

locus functions in immunity. 

RESULTS AND DISCUSSION 

Mapping and Sequencing the a/8 locus 

Yeast, bacterial, and Pl-derived artificial chromosome (YAC, BAC, and 

PAC) clones were obtained across the a/ 8 locus from appropriate clone 

libraries using various V and C elements as probes. Three YACs, spanning 

the 3' end of the V portion of the locus, were subcloned into cosmids and 

these were mapped. Seventeen BAC clones were obtained spanning the 

entire locus, but for a single gap that was covered by a PAC clone. A second 

PAC clone was also isolated covering an unstable cosmid clone region. Eight 

cosmid, five BAC, and two PAC clones were sequenced using the random or 

shotgun strategy (C. Boysen, in preparation). Our estimated error rate is 

1/5,000 base pairs. These studies suggest that BAC clones, in contrast to their 

YAC and cosmid counterparts, are highly stable and generally faithfully 

represent chromosomal DNA. Furthermore, BAC inserts can be readily 

sequenced by the random method. Hence, BAC clones appear to represent 

excellent mapping and sequencing reagents (Boysen et al, 1996a). 

T Cell Receptor Elements 

A schematic diagram of the a/ 8 locus is given in Figure 1. Fifty-seven 

V elements have been identified and nine of these appear to be pseudogenes 

by various criteria (Table 1). Twenty-five relics, highly mutated V elements, 

have also been identified. This locus also contains 3 Do, 4 Jo, and 61 Jo. gene 
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segments, as well as the C8 and Ca genes. The sequence, spanning 1.07 Mb, 

extends 126 kb 5' to the Val.1 element and 15 kb 3' to the Ca gene. All of the 

V elements apart from V83 lie 5' to the D8 elements. The V83 gene segment 

lies 3' to the C8 gene and is in opposite transcriptional orientation to all other 

TCR elements in the locus. The rearranging 8rec element (de Villartay et al., 

1998) lie to the 3' end of the V gene segments except for V82, which is found 

just upstream of the first Do element. No other genes are found in the region 

lying between 850 and 950 kb. In contrast, the human~ TCR locus has five 

trypsinogen genes in the V~ to D~ gap (Rowen et al., 1996). The TCR coding 

regions constitute 3-4% of the locus extending from the Val to the Ca 

elements. Since all of the V elements have been identified, we propose a new 

nomenclature numbering the V gene segments with consecutive increasing 

numbers from 5' to 3' with members of each subfamily given successively 

higher decimal designations (e.g., member Val3.l is 5' to member Val3.2). A 

translation from the old to new designations is given in Table 2. The new 

designations will be used throughout this paper. 

Non TCR Elements 

Five olfactory receptor genes lie intercalated among the 5' Val.l and 

Val.2 gene segments (Figure 1). These are denoted olf 1-5, in 5' to 3' 

orientation. Olfactory genes 1, 3, and 4 appear functional, whereas 2 and 5 are 

pseudogenes. This family is divided into two subfamilies--olf 1, 2, and 3 are 

most closely related to a rat olfactory receptor, and olf 4 and 5 are most closely 

related to a chicken olfactory receptor (Figure 2). Members of these 

subfamilies differ 7-33% and 45% of their amino acid sequence, respectively, 

and they differ from the members in the other family by approximately 60%. 

Olfactory receptor genes are encoded by many small multigene families 
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scattered across the mammalian genome (Chess et al., 1992 and Ben-Arie et 

al., 1994), although it is interesting to note that several have also been 

identified in a second immune receptor locus, the class I region of the major 

histocompatibility locus (Fan et al., 1995). The invasion of the a/8 locus by 

olfactory receptor genes raises questions as to whether these genes may have 

any functional or regulatory relationship to the TCR elements. 

About 15 kb 3' to the Ca gene lies the DAD gene, an anti-apoptosis 

gene. The location of this gene is conserved from chickens to mammals, 

evolutionary lines that diverged over 350 million years ago. The DAD gene is 

expressed in many different tissues, including the thymus. It is intriguing to 

speculate that DAD may play a role in avoiding the apoptotic pathway for 

thymocytes that have successfully rearranged their a TCR genes. The a genes 

rearrange later in T cell development than the ~ genes and are, accordingly, 

the final point of decision in determining whether a T cell has functional 

TCRs. 

Table 3 lists other genes and pseudogenes that are present in this locus, 

especially at the 5' end. Only one of these, the zinc finger gene, appears to be 

functional. Several of the others contain at least one intron and, hence, 

represent defective chromosomal and not processed mRNA genes. It will be 

interesting to determine how highly conserved in evolutionary time these 

gene locations are and whether in other species some of these genes may be 

functional. The presence of multiple intercalated chromosomal genes within 

the a/ 8 locus raises the possibility that these genes have been copied and 

integrated from other chromosomal locations. 

The intriguing question underlying the long term association of the 

DAD, and possibly the olfactory and a/8 genes, is whether the association is 
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trivial and inadvertent, or whether genes that remain associated over long 

periods of evolutionary time share functional and/ or regulatory constraints. 

Features of the V Gene Segments 

All of the V gene segments contain a 5' promoter region, exon 1 

encoding the major part of the signal peptide, an intron ranging in size from 

90 to 459 base pairs, exon 2 encoding the V segment and a DNA 

rearrangement sequence immediately 3' to exon 2 (Figure 3). The amino acid 

sequences, including the leader peptide, of the 48 presumably functional V 

elements are given in Figure 4. Several features are particularly noteworthy. 

(i) There is a conserved 20-mer, possibly a transcription factor binding site, in 

the promoter region (Gary Stormo, personal communication). This 20 

nucleotide sequence is found approximately 200 bp upstream of the initiation 

codon in most of the functional Va gene segments and in three of the five 

Va8 gene segments, whereas it has not been found in the three Vo elements 

(Figure 3). (ii) The sizes of the introns correlate nicely with the evolutionary 

relatedness of the V elements, e.g., the Va26.1 and the Va26.2 elements have 

the same intron length (Figure 3). (iii) Three apparently functional new V 

gene segments have been identified (Va7, Va9, and Va18). (iv) The V82 and 

V83 elements have heptamer/nanomer DNA rearrangement signals that are 

different from one another and those of their Va and Va'& counterparts 

(Figure 3). Of course, the same may be said of many of the Va DNA 

rearrangement signals. Conversely, Vol, some Va'& and Va rearrangement 

signals are quite similar to one another (apart from the spacer regions). 

Accordingly, it appears unlikely that these subtle differences could contribute 

to the Co-specific associations or the differential patterns of developmental 

expression of these three Vo genes. (v) The a/8 locus contains 41 Va or Va'& 
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subfamilies and 3 Vo subfamilies. Seven families are multi-numbered, 

ranging in size from two to seven members. 

cDNA Comparisons to alo Chromosomal Coding Regions 

About 250 a/ o cDNAs from Genbank have been compared against their 

germline counterparts. Several observations are striking. (i) No 

pseudogenes are expressed as cDNAs, yet almost all apparently functional V 

elements are. This implies efficient mechanisms for degrading mRNAs that 

have premature stop codons, as has been described for yeast and nematode 

(Leeds et al., 1992, and Pulak and Anderson, 1993). Three V elements appear 

to be functional, but are not expressed as mRNAs (Va7, Va9, and Val8). In 

the TCR~ region (Rowen et al., 1996), two V gene segments that appear 

functional but are not found as cDNAs, were found to incorporate amino 

acids which would hinder the three-dimensional structure of the TCR (ii) 

Different Va and Vo genes appear to be expressed at different levels (Figure 1). 

The data in Genbank are somewhat skewed because many Va sequences are 

derived from particular immune responses employing one or a few Va 

elements. Several studies (Robinson, 1992, and Moss et al., 1993) examining 

the Va T cell receptor usages in peripheral T cells from individual humans 

suggest striking differences in expression (e.g., Va12s, Val3s, and Va21 are 

highly expressed and Va3 and Va24 are poorly expressed). There are no 

obvious Va expression patterns correlated with chromosomal positions 

within the a/o gene family. (iii) The 4 Jo and 61 Ja gene segments also exhibit 

differing patterns of expression--some high and others low. None of the 

three pseudo Ja gene segments as determined by in frame stop codons (Koop 

et al., 1994) was found utilized in the cDNAs, again suggesting effective 

mRNA degradation for preterminating transcripts. (iv) There are two 

mechanisms for generating junctional diversity (e.g., diversity at the Va and 
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Jo: or V8, D8 and J8 boundaries), apart from the combinatorial joining of 

different gene segments: (1) the addition of N nucleotides to the junctional 

regions by the enzyme TdT, and (2) the removal of the ends of the cleaved 

gene segments by an exonuclease. The relative contributions of these 

mechanisms are given in Figure 5. The V8 genes have enormous potential 

for diversification with the joining of up to all three Do elements with four 

distinct N regions (Figure 5). 

Three distinct chromosomal domains. 

The o:/ o locus is divided into three distinct domains: The 5' 150 kb is 

rich in Alu repeats, and poor in LINE elements. This corresponds to a higher 

GC level found in this region (Figure 6). Across the V gene segments from 

150 to 890 kb, is the sequence rich in LINE elements, and poor in Alu and GC 

content. At the 3' end, the GC content is back up at 45%, whereas almost no 

repeats are found. Virtually, no LINE elements are found, and the Alu 

elements present seem to go back to before the divergence of mouse and man. 

What is striking about the last two domains is that they also correlate with 

highly conserved (3') and significantly less conserved (5') domains evident 

when the o:/ 8 loci of human and mouse are compared (Figure 6). The ~ 130 kb 

of the 3' domain compared exhibits an average of 71 % similarity, even 

though only ~4% of this segment represents coding regions. 

Several groups have described long-range GC¾ mosaic structures 

related to chromosomal bands. The long-range regions constant in GC¾ are 

called isochores (Bernardi, 1993). Giemsa-dark G bands are composed mainly 

of AT-rich sequences and T bands (a subgroup of the Giemsa-pale R bands) 

mainly of GC-rich sequences. Ordinary R bands are intermediate. Several 

have suggested that gene diversity, codon usage, CpG island diversity, DNA 
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replication timing, repeat sequence diversity, chromosomal condensation, 

and even recombination and mutation rates are related to long-range GC% 

structures (lkemura, 1985, Holmquist, 1987, Korenberg and Rykowski, 1988, 

and Wolfe 1989). We have shown this to be true of several of these features. 

The GC content, CpG islands, mutation rate (see below), and genome wide 

repeats appear to correlate either with the domains or their boundaries. The 

TCR a/8 region has been located to chromosome 14qll.2, which represents an 

R-band. This is in agreement with the two isochores observed here. Several 

other of these features can now be examined. We should note that a sequence 

highly homologous (90% over 600 base pairs) to the pseudoautosomal 

boundary at the short arms of human sex chromosomes, a P AB: XY-like 

sequence, was detected at 580.5 kb -- 300 kb from the boundary described 

above. 

Homology units. 

A comparison of the entire sequence against itself, revealed large blocks 

of recently duplicated regions at the 5' end of the V gene segments (Figure 7). 

A 50 kb region including seven V gene segments is highly similar (60-100%) 

to an adjacent 50 kb region. Twenty kb of one of these regions has further 

been duplicated once. The major differences in the homology units are due 

to insertions of genome wide repeats, especially seen in the duplicated 20 kb 

sequence. These homology units explain the existence of the majority of the 

members in different subfamilies, Va8, Val2, and Val3. Some of the gene 

segments have over time become pseudo-genes or relics. The homology 

units found here, suggest that the V gene segment repertoire evolves initially 

through duplication of long stretches of DNA, involving several V gene 

segments, and that these V gene segments later diversify. Similar long range 
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duplications have been observed in the murine TCR a/8 locus (Wang et al., 

1994). Whereas, one can align the human and mouse V gene segments for 

the most 3' V gene segments, and a few V gene segments at the very 5' end, 

the middle region in both mouse and human contains different long 

duplicated regions, indicating that these duplications have occurred after the 

divergence of the two species. 

Polymorphisms. 

The YAC, BAC, and PAC clones were all constructed from differing 

human DNAs and, accordingly, six different chromosome 14 haplotypes were 

represented in these libraries. Sequence analysis of two overlapping clones 

from the same library would have a 50% chance of comparing the same 

haplotypes, thus giving an indication of the error rate, and a 50% chance of 

comparing different haplotypes, thus providing an estimate of the rates of 

variations among these haplotypes. Comparing overlapping clones from 

different libraries would provide an estimate, once again, of the rate of 

variations. The overlapping regions and their types of variation are given in 

Table 3. The overall single base polymorphism rate is 170 variations in 172 kb 

or about 1 polymorphism per kb. However, the rate varies with position, and 

it should be noted that the mutation rate at the 3' end is extremely low in the 

chromosomal domain highly conserved between human and mouse. The 

implication is that this conserved domain may have a very low rate of 

polymorphism. 

Simple sequence repeats (microsatellites) are scattered more or less 

evenly across the locus (Figure 1). Ninety microsatellites, mostly di and tetra 

nucleotides, were found that contained more than eight repeated units. We 
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have chosen eight of these repeats scattered evenly across the locus for 

analysis against the CEPH families . 

The developmentally controlled expression of Vo genes. 

The Vo gene segments in both mouse and human are expressed in a 

highly ordered fashion during fetal development and before any a. gene 

rearrangement takes place (Allison and Havran, 1991 and Krangel et al., 1990). 

We analyzed the promoter and recombinational signals of all the V gene 

segments (Figure 3). A conserved 20-mer (CCA/TCAAGRGGGCRRTGTTTC) 

was found approximately 200 bp upstream of the start codon in the majority 

of the promoters of the Va. gene segments, whereas it was not present in the 

promoters of the three Vo gene segments. The consensus was found in three 

of the five V gene segments, which had been found to rearrange to generate 

either a. or o chains. However, seven of the forty Va. gene segments did not 

contain it either. No known DNA binding proteins have been found which 

could recognize this or part of this sequence. 

The heptamers in the recombinational signals for Vo2 and Vo3, were 

found to differ from the consensus sequence. However, so do some of the 

heptamers in the recombinational signals of the Va. gene segments. Vol 

contains a perfect recombinational signal, and thus other mechanisms must 

be responsible for its preferred rearrangement to the o region. It should be 

noted, that Vol as the only V gene segment contains a T nucleotide as the last 

base before the heptamer (Figure 3). Preferential expression of Vo2 could be 

explained by its location. Vo2 and Vo3 both fall within the highly conserved 

3' domain in a comparison between human and mouse (Figure 6). Vo2 seems 

to possess the same specific expression pattern as does Vol in mouse. 

However, in the dot matrix analysis of the two regions, m Vol was not aligned 
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with h Vo2, in fact m Vol was not located to the sequenced region in mouse. 

The human Vo2 element aligned to some unknown mouse sequence with 

high similarity especially in the promoter region. The Vo3 in human is the 

orthologue of Vo5 in mouse, both located in an inverted orientation at the 3' 

end of the Co-region. Vol has similarity to two mouse genes, both of which 

have been found expressed with either a or 8. Likewise, are some of the 

human V gene segments with similarity to mouse Vo gene segments found 

to be either ao or a gene segments. The fact that Vo2 is present within the 

third domain as defined by GC content (Figure 6) may effectively determine 

its rearrangement and expression pattern. Different chromosomal domains 

differ in many different aspects, such as chromatin structure, early versus late 

replication, transcription levels, genome-wide repeats, etc. It is possible that 

recombination of Vo2 is facilitated by its location in this chromosomal 

domain. 

Comparison of the human a/8 and ~ loci. 

The number of V gene segments in the TCR a/ 8 locus are similar to the 

number found in the ~ locus. The ~ locus contains 65 V gene segments, 46 of 

which apparently are functional whereas the other 19 are pseudo genes 

(Rowen et al., 1996). It further contains 22 relics. However, whereas the Va/8 

gene segments constitute 44 subfamilies, the ~ locus includes only 30 

subfamilies. On average each of the~ families contains more members than 

the a/ 8 subfamilies. This is mainly due to a series of more recent duplication 

events. The region spanned by V~ gene segments is also shorter, resulting in 

one V gene segment every 8 kb, whereas the average is one V gene segment 

every 13 kb for the TCR a/8 locus. The recombinational signals found in each 

case have very similar consensus sequences, which are also found around the 
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D, the J, and the immunoglobulin gene segments. Approximately two thirds 

of the V~ promoters contain a conserved 14-mer, with a proposed CREB site. 

Few a promoters seem to contain a CREB element, but instead a 20-mer 

conserved region has been identified. Whether this 20 nucleotide long 

sequence is present in the promoters of the V~ gene segments is under 

investigation. 

Like the TCR a/8 locus, the~ region contains other multi-member 

families. Two groups of trypsinogen genes were found (Rowen et al., 1996). 

One was located 5' to the V gene segments similar to the olfactory receptors 

found in TCR a/ 8, whereas the other group was found at the 5' end between 

the V gene segments and the D~ gene segments. This region in the TCR a/ 8 

locus appears void of any genes, except for V82 located just 5' of the D8 

elements. Larger genomic regions outside the V gene segments have not 

been sequenced in the ~ region yet, so it is not known whether as many non

TCR related pseudogenes as seen in the a/ 8 region are present. 

System Analysis 

The challenge of biology as we move into the 21st century is to analyze 

complex systems and networks and understand their so-called emergent 

properties. Emergent properties for the immune system are, for example, 

tolerance and immunity, for both of these features arise from the complex 

network of lymphocytes, antigen presenting cells, etc. Tolerance or 

immunity, systems properties, can never be understood by studying 

individual molecules and/ or cells in isolation. Two challenges arise for the 

analysis of complex systems and networks. (1) How does one divide 

extremely complex systems (e.g., humans have perhaps 1012 lymphocytes) 

into analyzable subsystems whose emergent properties still reflect those of the 
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whole system? (2) Are there bottlenecks in the system that play a key role in 

integrating information and, thus, serve as key sites for deciphering or 

manipulating biological complexity. The T helper lymphocyte is such a 

bottleneck point in the immune system, for it plays an early role in 

generating both immunity and tolerance. The T helper cell may be 

manipulated by virtue of its particular unique cell surface addresses, the T cell 

receptors, and they, accordingly, represent an analyzable subsystem: This 

analysis of the human a/ o T cell receptor family has given us the tools to 

effectively interrogate the subsystem. For example, unique PCR primers can 

be placed outside each functional V element to analyze the nature of their 

polymorphisms in the human population and determine whether any of 

these correlate with immune-related diseases such as multiple sclerosis or 

allergies. Second, a unique PCR primer can be placed in the coding region or 

each V gene segment to be used in conjunction with a single Co or Ca primer 

to interrogate the Va or Vo repertoire during T cell development, the 

induction of immunity or tolerance, or at autoimmune disease sites. In each 

case, all of the functional V element coding and flanking sequences must be 

known before unique primers can be designed for each element. The 

important point is that the entire subsystem (the a/o V, D, and J elements) can 

be analyzed in response to a systems property. For example, we have carried 

out preliminary analyses for the expression of the 61 Ja gene segments in 

mouse and human (Hood et al., 1993). We have also used this approach to 

examine 30 Va elements in 10 different individuals for their polymorphisms 

(Boysen et al., 1996b). In a similar vein, the distribution of simple sequence 

repeats across the human a/o locus allows us to identify polymorphisms at 

any site in the family that may predispose to immune-related diseases. 
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SUMMARY 

The sequence of the complete human a/o T cell receptor locus has been 

determined. There are 115 functional T cell elements (V, D, J, and C). 

Fascinating genes, the olfactory receptor genes and the DAD genes, are 

associated with the 5' and 3' regions of the family, respectively. The locus is 

divided into three chromosomal domains by GC content, LINEl and other 

genome-wide repeat content, and sequence conservation across species. 

Complete knowledge of this locus provides powerful tools (individual V or J 

element PCR, microsatellites) for interrogating the response of the entire 

family to the emergent properties of the immune system--development, 

immunity, and tolerance. 

ACKNOWLEDGMENT 

We would like to thank Lee Rowen for many interesting discussions 

and help in the analysis. We would also like to thank Todd Smith, Phil 

Green, and Gary Stormo for providing help with different computer 

programs. We highly appreciate the work of the technicians making the 

sequencing of this locus possible. Finally, we thank Tawny Biddulph for 

typing this manuscript. This work was supported by a grant from the 

Department of Energy (DOE). 



75 

REFERENCES 

Allison, J. P., and Havran, W. L.: The immunobiology of T cells with 

invariant y8 antigen receptors. Annu Rev Immunol 9: 679-705, 1991. 

Arden, B., Clark, S. P., Kabelitz, D., and Mak, T. W.: Human T-cell receptor 

variable gene segments families. Immunogenetics 42: 455-500, 1995. 

Ben-Arie, N., Lancet, D., Taylor, C., Khen, M., Walker, N., Ledbetter, D.H., 

Carrozzo, R., Patel, K., Sheer, D., Lehrach, H., and North, M.A.: Olfactory 

receptor gene cluster on human chromosome 17: possible duplication of an 

ancestral receptor repertoire. Hum. Mol. Genet. 3: 229-235, 1994. 

Bernardi, G.: The isochore organization of the human genome and its 

evolutionary history - a review. Gene 135: 57-66, 1993. 

Boysen, C., Simon, M. I., and Hood, L.: The use of bacterial artificial 

chromosomes (BACs) as mapping and sequencing reagents. Submitted, 1996a. 

Boysen, C., Carlson, C., Hood, E., Hood, L., and Nickerson, D.A.: Identifying 

DNA polymorphisms in human TCRA/D variable genes by direct sequencing 

of PCR products. Immunogenetics (in press), 1996b. 

Chess, A., Buck, L., Dowling, M.M., Axel, R., and Ngai, J.: Molecular biology 

of smell: Expression of the multigene family putative odorant receptors. Cold 

Spring Harbor Symp. Quant. Biol. L VLL: 505-516, 1992. 



76 
Davis, M. M., and Bjorkman, P. J.: T-cell antigen receptor genes and T-cell 

recognition. Nature 334: 395-402, 1988. 

De Villartay, J.P, Hockett, R.D., Copran, D., Korsmeyer, S.J., and Cohen, D.I.: 

Deletion of the human T-cell receptor 8-gene by a site-specifc recombination. 

Nature 335: 170-174, 1988. 

Fan, W.F., Liu, Y.C., Parimoo, S., Weisman, S.M.: Olfactory receptor-like 

genes are located in the human major histocompatibility complex. Genomics 

27: 119-123, 1995. 

Griesser, H., Champagne E., Tkachuk D., Takihara, Y., Lalande, M., Baillie, E., 

Minden, M., and Mak, T.W.: The human T cell receptor a-8 locus: a physical 

map of the variable, joining and constant region genes. Eur J Immunol 18: 

641-644, 1988. 

Haas, W.: Gamma/delta cells. Annu. Rev. Immunol. 11: 637-85, 1993. 

Hata, S., Clabby, M., Devlin, P., Spits, H., De Vries, J.E., and Krangel, M. S.: 

Diversity and organization of human T cell receptor 8 variable gene 

segments. J. Exp. Med. 169: 41-57, 1989. 

Hollemann, T., Schuh, R., Pieler, T., and Stick, R.: Xenopus Xsal-1, a 

vertebrate homolog of the region specific homeotic gene spalt of Drosophila. 

Mech. Develop. 55: 19-32, 1996. 



77 

Holmquist, G.P.: Role of replication time in control of tissue specific gene 

expression. Am. J. Hum. Genet. 40: 151-173, 1987. 

Hood, L., Koop, B. F., Rowen, L., and Wang, K.: Human and mouse T cell 

receptor loci: The importance of comparative large scale DNA sequence 

analyses. Cold Spring Harbor Symp. Quant. Biol. LVIII: 339-348, 1993 .. 

Ibberson, M. R., Copier, J.P., and So, A. K.: Genomic organization of the 

human T-cell receptor variable a (TCRAV) cluster. Genomics 28: 131-139, 

1995. 

Ikemura, T.: Codon usage and tRNA content in unicellular and multicellular 

organisms. Mol. Biol. Evol. 2: 13-34, 1985. 

Isobe, M., Russo, G., Haluska, F.G., and Croce, C.M.: Cloning of the gene 

encoding the d subunit of the human T-cell receptor reveals its physical 

organization within the a-subunit locus and its involvement in 

chromosome translocations in T-cell malignancy. Proc. Natl. Acad. Sci. USA 

85:3933-3937, 1988. 

Kabelitz, D.: Function and specificity of human y/8-positive T cells. Crit. Rev. 

Immunol. 11: 281-303, 1992. 

Koop,B. F., Wilson, R.K., Wang, K., Vernooij, B., Zaller, D., Kuo, C.L., Seto, D., 

Toda, M., and Hood, L.: Organization, structure and function of 95 kb of DNA 

spanning the murine T-cell receptor Ca/C8 region. Genomics 13: 1209-1230, 

1992. 



78 

Koop, B. F., Rowen, L., Wang, K., Kuo, C. L., Seto, D., Lenstra, J. A., Howard, 

S., Shan, W., Deshpande, P., and Hood, L.: The human T-cell receptor 

TCRAC/TCRDC (Ca/Co) region: Organization, sequence, and evolution of 

97.6 kb of DNA. Genomics 19: 478-493, 1994. 

Koop, B. F., and Hood, L.: Striking sequence similarity over almost 100 

kilobases of human and mouse T-cell receptor DNA. Nature Genetics 7, 48-

53, 1994. 

Korenberg, J .R., and Rykowski, M.C.: Human genome organization: Alu, 

Lines, and the molecular structure of metaphase chromosome bands. Cell 53: 

391-400, 1988. 

Krangel, M.S., Yssel., H ., Brocklehurst, C., and Spits, H.: A distinct wave of 

human T cell receptor 'YI o lymphocytes in the early fetal thymus: Evidence for 

controlled gene rearrangement and cytokine production. J. Exp. Med. 172: 

847-859, 1990. 

Kuhnlein, R.P., Frommer, G., Friedrich, M., Gonzalez-Gaitan, M., Weber, A., 
-

Wagner-Bernholz, J.F., Gehring W.J., Jackle, H., and Schuh, R.: Spalt encodes 

an evolutionarily conserved zinc finger protein of novel structure which 

provides homeotic gene function in the head and tail region of the 

Drosophila embryo. EMBO 13: 168-179, 1994. 

Leeds, P., Wood, J.M., Lee, B.S., and Culbertson, M.R.: Gene-products that 

promote messenger-RNA turnover in Saccharomyces-cerevisiae. Mol. Cell. 

Biol. 12: 2165-2177, 1992. 



79 

Lieber, M. R.: The mechanism of V(D)J recombination: A balance of diversity, 

specificity, and stability. Cell 70: 873-876, 1992. 

Loh, E.Y., Cwirla, S., Serafini, A.T., Phillips, J.H., and Lamier, L.L.: Human T

cell-receptor 8 chain: Genomic organization, diversity, and expression in 

populations of cells. Proc. Natl. Acad. Sci. USA 85: 9714-9718, 1988. 

McVay, L., Carding, S.R., Bottomly, K., and Hayday, A.C.: Regulated 

expression and structure of T cell receptor y / 8 transcripts in human thymic 

ontogeny. EMBO 10: 83-91, 1991. 

Morita, C.T., Parker, C.M., Brenner, M.B., and Band, H.: TCR usage and 

functional capabilities of human y8 T cells at birth. J. Immunol. 153: 3979-

3988, 1994. 

Moss, P.A. H., Rosenberg, W. M. C., Zintzaras, E., and Bell, J. I.: 

Characterization of the human T cell receptor a-chain repertoire and 

demonstration of a genetic influence on Va usage. Eur. J. Immunol 23: 1153-

1159, 1993. 

Nomura, N., Nagase, T., Miyajima, N., Sazuka, T., Tanaka, A., Sato, S., Seki, 

N., Kawarabayasi, Y., Ishikawa, K., and Tabata, S.: Prediction of the coding 

sequences of unidentified human genes. II. The coding sequences of 40 new 

genes (KIAAoo41-KIAA0080) deduced by analysis of cDNA clones from 

human cell line KG-1. DNA Res. 1: 223-229, 1994. 



80 

Pulak, R., and Anderson, P.: Messenger-RNA surveillance by the 

Caenorhabditis-Elegans SMG genes. Genes & Developrn. 7: 1885-1897, 1993. 

Qian, Y.W., Wang, Y.C., Hollingsworth, R.E. Jr., Jones, D., Ling, N., and Lee, 

E.Y.: A retinoblastorna-binding protein related to a negative regulator of Ras 

in yeast. Nature 364: 648-652, 1993. 

Robinson, M.A.: Usage of human T-cell receptor V-beta, J-beta, C-beta and V

alpha gene segments is not proportional to gene number. Hurn. Irnmunol. 

35: 60-67, 1992. 

Rowen, L., Koop, B.F., and Hood, L.: The complete 685 kilobase DNA 

sequence of the human beta T cell receptor locus. Science (in press), 1996. 

Satyanarayana, K., Hata, S., Devlin, P., Roncarolo, M. G., De Vries, J.E., Spits, 

H., Strominger, J. L., and Krangel, M. S.: Genomic organization of the human 

T-cell antigen-receptor a/o locus. Proc Natl Acad Sci USA 85: 8166-8170, 1988. 

Seto, D., Koop, B.F., Deshpande, P., Howard, S., Seto, J., Wilk, E., Wang, K., 

and Hood, L.: Organization, sequence, and function of 34.5 kb of genomic 

DNA encompassing several murine T-cell receptor a/o variable gene 

segments. Genomic 20: 258-266, 1994. 

Tanaka, T., Shibasaki, F., Ishikawa, M., Hirano, N., Sakai, R., Nishida, H., 

Takenawa, T., and Hirai, H.: Molecular cloning of bovine actin-like protein, 

actin2. Biochem. Biophys. Res. Commun. 187: 1022-1028, 1992. 



81 

van der Stoep, N., de Krijger, R., Bruining, J., Koning, F., and van der Elsen, 

P.: Analysis of early fetal T-cell receptor 8 chains in humans. 

Immunogenetics 32:331-336, 1990. 

Wang. K., Klotz, J. L., Kiser, G. Bristol, G., Hays, E., Lai, E., Gese, E., 

Kronenberg, M., and Hood, L.: Organization of the V gene segments in 

mouse T-cell antigen receptor a/8 locus. Genomics 20, 419-428, 1994. 

Wolfe, K.H., Sharp, P.M., and Li, W.-H.: Mutation rates among regions of the 

mammalian genome. Nature 337: 283-285, 1989. 



82 

Table 1. Characteristics of pseudo V gene segments in the TCR a/ 8 locus. 

We define a nucleotide sequence as a pseudo V gene segment, when after 

splicing of putative exons the resulting amino acid sequence can be aligned 

with other V gene segments. In some cases where frameshifts have occurred 

it might be necessary to translate in different reading frames to make the 

alignment. If more than two frameshifts had to be made for alignment, we 

call the sequence a relic. 

V gene segment 

Vall.1 

Va8.5 

Va15.1 

Va8.7 

Va28.l 

Va31.1 

Va32.l 

Va33.1 

Va37.1 

Defects 

No start codon, bad heptamer 

96 % similar to Va8.3, but contains a 

MERl lA/B insertion in exon2. 

1 frameshift, 1 stop 

Bad heptamer 

1 frameshift 

2 frameshifts 

2 frameshifts, 1 stop, Cys missing 

2 frameshifts, 1 stop, Tyr missing 

1 frameshift 
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Table 2. Translation from the new nomenclature used in this report 

to the old nomenclature previously reported (Arden et al., 1995). 

New Old New Old 
nomenclat. nomenclat. nomenclat. nomenclat. 
AV1S1 AV7S1 AV19S1 AV12S1 
AV1S2 AV7S2 AV20S1 AV30S1 
AV2S1 AV11S1 AV21S1 AV23S1 
AV3S1 AV16S1 AV22S1 AV13S1 
AV4S1 AV20S1 ADV23S1 ADV17S1 
AV5S1 AV15S1 AV24S1 AV18S1 
AV6S1 AV5S1 AV25S1 AV32S1 
AV7S1 New AV26S1 AV4S2 
AV8S1 AV1S1 AV26S2 AV4S1 
AV8S2 AV1S5 AV27S1 AV10S1 
AV8S3 AV1S4 AV28S1 New,pseudo 
AV8S4 AV1S2 ADV29S1 ADV21S1 
AV8S5 New,pseudo AV30S1 AV29S1 
AV8S6 AV1S3 AV31S1 New,pseudo 
AV8S7 New,pseudo AV32S1 New,pseudo 
AV9S1 New AV33S1 New,pseudo 
AV9S2 AV22S1 AV34S1 AV26S1 
AV10S1 AV24S1 AV35S1 AV25S1 
AVllSl New,pseudo ADV36S1 ADV28S1 
AV12S1 AV2S3 AV37S1 New,pseudo 
AV12S2 AV2S1 AV38S1 AV14S2 
AV12S3 AV2S2 ADV38S2 ADV14S1 
AV13S1 AV8S1 AV39S1 AV27S1 
AV13S2 AV8S2 AV40S1 AV31S1 
ADV14S1 ADV6S1 AV41S1 AV19S1 
AV15S1 New,pseudo DV101S1 DV101S1 
AV16S1 AV9S1 DV102S1 DV102S1 
AV17S1 AV3S1 DV103S1 DV103S1 
AV18S1 New 
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Table 3. Non-TCR genes found in or around the TCR a/ 8 region. 

Gene Location 

Zinc finger protein 30 kb 

Retinoblastoma binding 69 kb 
protein (pseudo) 

Olfactory receptors 

Actin2 (pseudo) 90 kb 

Ubiquitin-conjugating 118 kb 
enzyme, E2. Drosophila 
bendless gene product 
(pseudo) 

Open reading frame 154 kb 
(pseudo) 

Properties 

Single open reading frame encoding 
1,003 amino acids. Probably 
functional. In comparison with Sal 
(Kuhnlein et al., 1994) andXgall 
(Hollemann et al., 1996) small up and 
downstream exon should be found. 
Contains one aminoterminal CC/HC 
zinc finger, three double CC/HH zinc 
fingers connected by H/C links, and 
one single CC/HH zinc finger in 
connection with the middle double 
zinc finger. ESTs match the 3' end of 
the gene. CpG island upstream. 

Almost 100% identical to mRNA 
RbAp48 (Qian et al., 1993). Contains 1 
intron. Two frame shifts leading to 
stop codons. 

Please see Figure 1 and text. 

Highly similar to bovine mRNA for 
actin2 (Tanaka et al., 1992). Contains 2 
introns. Three frame shifts and one 
stop codon. 

Almost 100% identical to human 
epidermoid carcinoma mRNA for 
Drosphila bendless gene product 
(Genbank accession no.: D83004) . 
Contains a single C nucleotide 
deletion leading to a stop codon. 

Highly similar to human mRNA for 
ORF (Nomura et al., 1994). Contains 
one intron. Two frame shifts. 

continued 



Table 3, continued 

Gene 

Cosmid-like sequence 

Ribosomal protein 
(pseudo) 

DNA-binding proteins 
(pseudo) 
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Location Properties 

187 kb Highly similar to several regions in 
cosmid L191Fl (Genbank accession no.: 
Z68756). Contains several CpG islands. 
No apparent coding region. Possible 
unidentified repeat. 

255 kb Almost a 100% identical to human 
mRNA for ribosomal protein 
(Genbank accession no.: D23660). 
Two frame shifts and two stop codons. 

392 + 465 kb Similar to DNA-binding proteins 
(CROC-lA and lB) (Genbank accession 
no.: U39360 and U39361). Frame shifts 
and stop codons. 

Defender against death (DAD) Please see Figure 1 and text. 
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Table 4. Sequence variations in regions of overlapping clones. 

Same (s) or 
different (d) Overlapping 

clones haplotypes kb 

BAC129-PAC161 d 52 

P AC161-BAC956 d 37 

BAC956-P AC230 d 32 

P AC230-Cosmidl d 32 

BAC480-BAC378 d 2 

BAC378-BAC810 s 20 

BAC810-Cosmid9 d 16 

Cosmid9-CosmidX d 17 

Single 
base sub-
stitutions Indels Microsatellites (n>8) 

76 8 14 

37 6 4 

39 2 1 

6 0 2 

6 1 1 

0 0 0 

0 0 0 

6 0 1 
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FIGURE LEGENDS 

Figure 1. A schematic diagram of the TCR a/ 8 locus. a) The upper panel 

indicates the location of each TCR element, black bars (the 61 Ja elements are 

drawn as a big open box at the 3' end of the locus). Presumed functional V 

gene segments are indicated by long bars, pseudo V gene segments by two 

thirds the height, and relics by one third the height. The nomenclature used 

is explained in the text, and a conversion to earlier nomenclature is given in 

Table 2. The DAD gene, five olfactory receptor genes (Olfl-O1£5), and a gene 

encoding a zinc finger protein are included in this map, whereas other 

presumably non-fuctional genes have been omitted (Table 3). The arrows 

indicate the transcriptional orientation for each element. b) Number of 

cDNAs for each V gene segment found in Genbank release 94, April 96. The 

bars represent from 1-14 cDNAs, except for two cases, ADV14S1 and 

A V17S1 with 35 and 42 cDNAs, respectively. These two are overrepresented 

in Genbank due to a thyroiditis study where these two gene segments are 

dominant. c) Distribution of genome wide repeats. d) Microsatellite repeats. 

Ninety microsatellites with eight or more repeated units are shown. e) 

Sequenced clones. The 3' cluster of cosmid clones has been sequenced in a 

previous study (Koop et al., 1994). The other cosmids, BA Cs and PA Cs have 

been sequenced by the high redundancy shotgun approach. They might 

constitute as many as 6 different haplotypes. 

Figure 2. Alignment of the amino acid sequences for five olfactory receptors 

present in the TCR a/ 8 locus with their rat (Genbank accession no.: U50949) 

and chicken (X94744) counterparts. The seven transmembrane domains are 
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indicated by boxes. Highly conserved cysteine residues, supposedly involved 

in disulfide bridges in the extra cellular loops are indicated with a dot. Olf2 

has an internal stopcodon at position 85, whereas Olf5 contains a frame shift 

at codon 209. 

Figure 3. Alignment of promoter, splice sites and recombinational signals for 

48 presumably functional V gene segments. The V gene segments have been 

divided into three groups. Those expressed in TCR 8 chains, those expressed 

in either a or 8 chains, and those only found in a chains. A conserved 20-

mer has been identified approximately 200 bp upstream of the start codon in 

the majority of the Va gene segments, and in some of the Va8 gene 

segments, whereas it has not been found in the V8 elements. 

Figure 4. Alignment of the translated amino acid sequence of the 48 

presumably functional V gene segments. 

Figure 5. Nucleotide nibling and additions in the junctional regions of the 

TCR a/ 8 genes. The genomic sequence of the V gene segments was compared 

. t?- 246 cDNAs. In the analysis of exonuclease activity and N nucleotide 

addition, nucleotides found in the genomic sequence was counted as such, 

rather than N nucleotides. In aligning the 8 gene segments with their cDNA 

counterparts, the D8 gene segments are included if three or more nucleotides 

matched. Otherwise, the nucleotides are indicated as belonging to the N

regions. 

Figure 6. Distribution of LINEl and Alu repeats and GC content in the TCR 

a/ 8 and two human-mouse comparisons. Based on GC content and the 
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genome-wide repeats, the locus is divided in three domains: 150 kb 5' with 

high GC content and high Alu concentration, but very few LINEl elements; 

740 kb (150-890 kb) with low GC content and Alu concentration, whereas 

LINEl elements are rich in this region; The last 175 kb has a high GC content, 

but contains a very low amount of all kinds of genome wide repeats. 

Comparison to mouse sequences (Seto et al., 1994) located in the middle 

domain (680-720 kb) indicates no conservation outside the V gene segments, 

whereas comparison to 130 kb at the 3' end of mouse (Koop et al., 1992 and 

Lee Rowen, personal communication) indicates a striking degree of similarity 

(71%), even if the coding regions only occupy about four percent of this 

region. 

Figure 7. Homology units in the TCR a/ o locus. The entire sequence was 

compared against itself, to identify larger regions of similarity. a) Dotplot of 

duplicated region of 50 and 20 kb blocks around 333-485 kb. b) The sequences 

involved in the duplications were aligned to one another, indicating the V 

gene segments involved in the duplication and the insertion of genome wide 

repeats. 
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Figure 2. 
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Appendix. Alignment of the translated open reading frame found 5' to the TCR locus with 

the zinc finger protein XS al 1 from Xenopus. A small exon 1 and exon 3 were not found, 

since there is very little homology outside the zinc finger structures. 

Xen t1EGDUERLLETAHTHTGEEQTPPt1HASA I TAGELLPASTKAAAERPDDCDSGHESRSGSEET •. HUCEKCCAEFFKUTOFLDIIKKTCTKHPLUL I U 
TCR ...................... ... . ........ xSLGIPHPTAPPTLSLLUFSPGDRSEEDHPQUCRKCCAQFTOPTEFLAIIQHACSTDPPUtl.U 

CC/HC zinc finger 

Xen HDDUAAPUPEEUPEPSPRSSPSHHRESETAEEHIQUEHHDTCDIKDTEKEEEPt1EUEITEEKHYPSQEASDPATPLPQIPEPSSt1THYHt1PHTHUT 
TCR I I .. ... GGQEHPHHSSASSEPRPEGHHHPQUtlDTEHSHPPOSGSSUPTDPTUGPERRGEESPGHFLUAATGTAAGGGGGLILASPKL .. ..... . 

Xen LETLQSTKUAUAQFSQHAQCUGGTHUATRATRtl I t1 tlHAQPLRPPLHPTUPSQHAPIPRSHQLQGFA 
TCR ... GATPLPPESTPAPPPPPPPPPPPGUGSGHL I PL I LEELRULQQAQ I HQt1Qt1TEQ I CAQUL LGSLG .. . ........ QTUGAPRSPS_ELPGT 

Xen AHSTLQLTSUUPPTLSGPATSGLPPSFEHPQHMSQPPSGASTPHIPCPUSSUPTESTISLSTHSKRSSAAPSSLSHSTSHPTHPQSSSTPPSLGHG 
TCR ..... GTASSTKPLLPLFS . ... . .. ..... . ... . ...... . .... PIKPUQTSKTLASSSSSSSSSSGAETPKQAFFHLYHPLGSQHPFSRGGU 

Xen HILHSSSSLPSPLLPQS ..... SSHSUIFPHPLASIAA . TAHALDPLSRLtlKHAKGKPPH .•.. USUFETKTTSDOPFFKHKCRFCRKUFGSDSRL 
TCR GRSHKPTPAPSPALPGSTDQLIASPHLAFPSTTGLLAAQCLGAARGLEATASPGLLKPKHGSGELSYGEUMGPLEKPGGAHKCAFCAKUFGSDSAL 

Xen QIHLASHTGEAPFKCHICGHAFSTKGHLKUHFQRHKEKYPHIQt1HPYPUP~LDHGPTSSGIPYGt1SLPPEK.PUTTULDSKPULPTUPTTIGLQL 
TCR QI HLRSHTGERPYKCHUCGliRFTTRGHLKUIIFHRHREKYPHUQtlHPHPUPEHLDYU I TSSGLPYGtlSUPPEKAEEEAATPGGGUERKPLUASTTAL 

Double CC/HH zinc finger with H/C link 

Xen PPTIPGtlPGUHSYSDSPSITPSHRSPQRPSPRSSECHSLSPHIHHSELCIQASSESPQPEQTRTUTPKQEPIUQPSSSTRUGEQPUHUQISSPUTT 
TCR SRTESLTLLSTSAGTRTRPGLPAFHKFULtlKAUEPKHKADEHTPPGSEGSAISGURESSTATRMQLSK •.. LUTSLPSUALLTHHFKSTGSFPFPY 

Xen PUPTUTOSSUSTSHSHSULPPMSDQFKAKFPFGGLLESMQ SETSKLQQLUEHI ...•••••.•.............. KKMTOPHQCUICHRULS 
TCR ULEPLGASP .... . ....... .. . .. ............. . SETSKLQQLUEKI QGAUAUTSAASGAPTTSAPAPSSSASSGPHQCUICLRULS 

Xen CHSRLKMHYRTHTGERPFKCKUCGRAFTTKGHLKTHFGUHRSKPPLRUQHSCP I CQKKFTHRUULQQH I Rt1Ht1GGQ I PH .. TPLPEGFQHAKDSEL 
TCR CPRALRLHYGQIIGGERPFKCKUCGRAFSTRGHLRAHFUGHKASPAARAQHSCPICQKKFTHAUTLQQHURMHLGGQIPHGGTALPEG.GGRAQEHG 

Double CC/HH zinc finger with H/C link CC/HH zinc finger 

Xen SYDDKHLETt1SHYDDOFDDHSLEDDLDLKDTASDSSKPLIPYSGSSPASSPTUISSIAALEHQt1Kt11DSUt1TAQQFIGLKHIEHGSGEIDHLSHDS 
TCR SEQSTUSGAGSFPQQQSQQPSPEEELSEEEEEEDEEEEEDUTOEDSLA ••••.••• GRGSESGGEKAISU ••...... RGDSEEASGAEEEUGTUA 

Xen SSAUGDLESQSAGSPAMSESSSSMQULSPAHSHSESIASKSPUISSQEEPPUIQLKTEKPDSPIPTPEHOGULOLTSTHPGRPIIKEEAPYSLLFL 
TCR AAATAGKEt10SHEKTTQQSSLPPPPPPDSLOQPQPt1EQGSSGULGGKEE .• •• GGKPERSSSPASALTPEG . • EATSUTLUEELSLQEAt1RKEPGE 

Xen SRERGKFKSTUCH I CGKPFACKSALE I IWRSHTKERP. FI CTUCKAGCSTMGHLKQII. LL THKLKELPSQLFEPHFTLGPSQTTTSLUTSTAPUM I 
TCR SSSR •••.. KACEUCGQAFPSQAALEEHQKTHPKEGPLFTCUFCRQGFLERATLKKIIMLLAHHQUQPFAPHGPQHIAALSLUPGCSPSITSTGLSP 

Double CC/HH zinc finger with H/C link 

Xen Kt1EUHGHTKPISLGEGPHLPAGIQUL .. AAPQTAt1SPGITPt1LAPPPRRTPKQHHCHSCGKTFSSASALQIHERTHTGEKPFGCTICGRAFTTKGH 
TCR FPRKODPTI Px Double CC/HH zinc finger with H/C link 

LKUllt1GTHt1UHHAPARRGRRLSUEHPt1ALLGGOALKFSEt1FQKOLAARAt1HUOPGFUHQYAAAITHGLAt1KHHEISUIQHGGIPQLPUSLGGSAIP Xen 

Xen PLGH I SSGtlORTRTGSSPP I I HLOKUGSES I UllRPFTRF I EEHKE I GI H 
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Abstract 

The T cell receptor (TCR) is a highly variable molecule composed of two 

polypeptide chains that recognize antigenic peptides in the context of major 

histocompatibility complex (MHC) molecules. In this study, we describe a sequence-based 

search for gerrnline polymorphisms in the variable (V) gene segments of the human TCR 

AID locus. Thirty different V gene segments were amplified from six to eight unrelated 

individuals and sequenced from low melting point agarose. Twenty seven polymorphisms 

were identified in 15 V gene segments. These polymorphisms are mainly single nucleotide 

substitutions, but an insertion/deletion polymorphism and a single dinucleotide repeat with 

variable length were also seen. Of the 15 sequence variations found in the coding regions, 

six are silent and nine encode amino acid changes. All of the amino acid changes are found 

at non-conserved residues, frequently in the hypervariable regions, where they may 

influence MHC and/or peptide recognition. Therefore, it is possible that gerrnline 

variations in TCR genes could influence an individual's immune response, and may also 

contribute susceptibility to diseases such as autoimmunity. 
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Introduction 

T cells recognize foreign peptides presented by class I or class II major 

histocompatibility molecules (MHC) through a heterodimeric receptor composed of alpha 

and beta chains, or gamma and delta chains. At the protein level, these chains are 

composed of an antigen recognition or variable (V) domain, and a constant (C) domain, 

encoded by three discrete gene families: TCRA/D, TCRB, and TCRG (Marrack and 

Kappler 1990). 

T cell receptor (TCR) diversity is generated by a variety of mechanisms: 1) the 

multiplicity of discrete germline gene segments encoding the V and joining (J) regions for 

alpha and gamma chains, and V, diversity (D), and J regions for beta and gamma chains; 2) 

the combinatorial joining of these gene segments during T cell development; 3) the non

germline (N) addition of nucleotides between the boundaries of the joined gene segments 

during T cell development (Lieber 1992); 4) the combinatorial association that occurs 

between the alpha and beta chains, or gamma and delta chains when forming TCRs; and 5) 

the presence of germline polymorphisms in the gene segments encoding the variable 

domains. 

Structurally, T cell receptors are believed to fold like their antibody counterparts. 

The V domains each have three hypervariable regions, presumably folding to constitute the 

walls of the peptide and MHC binding sites. Therefore, germline polymorphisms in these 

regions could alter potential specificities. Because the structure of the V gene segment is so 

complex, V region polymorphisms may cause many different types of changes. Each V 

gene segment contains a promoter region, two exons (a leader and V exon), an intron, and 

at the 3' end of the last exon a hexamer-spacer-nanomer sequence that mediates DNA 

rearrangements. Thus, V gene polymorphisms may affect transcription levels (promoter), 

translation levels (regulatory), compartmentalization (leader), affinity for peptides or MHC 

molecules, or interactions with the beta chain (variable), RNA stability, the frequency of 

DNA rearrangements, or the probability of successful RNA splicing Cintron). Examples of 
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some of these effects have been reported for germline polymorphisms in TCRB genes 

(Gahm et al. 1991, Charmley et al. 1993, Posnett et al. 1994, Vissinga et al. 1994). In 

constrast, the analysis of germline polymorphisms in TCRA/D genes has been less 

extensive. 

The analysis of germline polymorphisms in V gene segments is interesting for two 

reasons. First, coding polymorphisms may alter certain potential T cell receptor repertoire 

interactions with MHC and/or peptide antigens. Second, V gene polymorphisms may 

predispose to autoimmune diseases such as multiple sclerosis or rheumatoid arthritis (Sinha 

et al. 1990). MHC polymorphisms have clearly been implicated in predisposing to certain 

autoimmune diseases (Banga et al. 1989, Martin et al. 1992). Studies associating T cell 

receptor polymorphisms and autoimmune diseases have been far more equivocal (Hillert 

and Olerup 1992 and Steinman et al. 1992). However, in many cases, these studies have 

used only one or few markers, taken mainly from the C region (Oksenberg et al. 1988, 

Hillert et al. 1992, Funkhouser et al. 1992, Hashimoto et al. 1992, and Lynch et al. 1992). 

Due to the size of the major loci encoding the TCRA/D and TCRB chains and rate of 

recombination over time (Robinson and Kindt, 1987), the linkage disequilibrium between 

markers is generally poor, and it is difficult to draw conclusions based on negative results 

from using a few random markers (Oksenberg et al. 1988, Hillert et al. 1992, Funkhouser 

et al. 1992, Hashimoto et al. 1992, and Lynch et al. 1992). Therefore, new polymorphic 

markers particularly in TCRAID genes, would aid these analyses, and would generate a 

greater understanding of the type and nature of germline polymorphisms in the TCR. 

Material and Methods 

PCR. Human genomic DNA from 8 unrelated individuals was used in the 

identification of DNA polymorphisms in germline TCR sequences. Specific V gene 

segments (primers given in Table 1) were amplified in 100 ul containing 10 to 100 ng of 

DNA, 0.3 µM of each primer, 40 µM of each of the four deoxynucleotides (dATP, dCTP, 
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dGTP, and dTTP), and 25 U/ml Tag DNA polymerase in a buffer composed of 10 rnM 

Tris-HCl pH 8.3, 50 rnM KCl, 1.5 rnM MgCl2, 0.001 % gelatin. The reactions were 

overlaid with oil and heated to 94°C for 1 min before 35-40 cycles of denaturation at 94°C 

for 30 sec, annealing for 45 sec, and extension at 72°C for 90 sec followed by a final 

extension step at 72°C for 5 min. The annealing temperature depended on the primer pair 

(see Table 1). 

DNA sequencing. 100 µl amplification product was ethanol precipitated, 

resuspended in 10 µl dH2O and electrophoresed through a 1 % low melting point (LMP) 

agarose, and the band was excised from the gel. The gel plugs were used without further 

purification by melting the plug immediately prior to adding it as the DNA template for 

DNA sequencing using the dideoxynucleotide chain termination method as detailed by 

Kretz et al. (1989). The primers used in the amplification reaction also served as primers 

for the sequencing reactions. Sequencing reactions were performed in 96-well microtiter 

plates using either different waterbaths, or more conveniently a 96-well programmable 

thermocycler (MJ Research). Ten µl of melted agarose plug were added to 5 µl of primer 

(1.5 µM) and overlaid with oil. The samples were heated to 94°C for 5 min followed by 

annealing at 37°C for 2-5 min. The temperature was kept at 37°C during the remainder of 

the reaction. Eight and a half µl sequencing reaction mixture (50 rnM Tris-HCl, pH 7.5, 

12.5 rnM MgCh, 25 rnM dithiothreitol, 0.13 µM of each of the three deoxynucleoside 

triphosphates, dCTP, dGTP, and dTTP, 10 µCi a-35S-dATP (>1000 Ci/rnrnol), and 0.25 

U/µl Sequenase Version 2.0 (United States Biochemical)) were added and the reactions 

incubated for 5 min. During this incubation, 2 µl of each of the four termination mixes 

were added to separate microtiter wells on the same plate that contained 80 µM of each 

dATP, dCTP, dGTP, and dTTP, 50 rnM NaCl, and 8 µM of their respective dideoxy

nucleotide. Four µl of the reaction mixture were transferred to each of the termination 

mixes, the samples overlaid with oil, and incubated for 5 min, before the reactions were 

stopped with 5 µl of stop solution (formamide, 10 rnM EDTA, xylene cyanol FF, and 
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bromophenol blue). The sequencing products were heated to 94°C, and 2 µl of each 

loaded onto a 6% polyacrylamide gel which was electrophoresed for 2-5 hours at 90 Watts, 

transferred to Whatman filter paper, dried, and exposed overnight to Kodak X-OMAT AR 

film. 

Results 

Identification of DNA polymorphisms in TCRAID V gene segments. 

From cDNA analysis, the TCRA/D locus is known to contain about 50 V gene 

segments which are classified into different V gene families based on sequence homology 

(members of individual V gene families have greater than 75% sequence similarity with one 

another). To search for germline sequence polymorphisms in TCRA/D genes, specific 

PCR assays were developed for at least one member from most of the gene families (see 

Table 1). The reported DV4Sl, DV5Sl, DV6Sl, DV7Sl, and DV8Sl genes are the same 

as AV6Sl, AV21Sl, AV17Sl, AV28Sl, and AV14Sl, respectively, and have not been 

listed with the other TCRD genes (DVJ0JSJ-DV103Sl). A few V gene segments were 

excluded from our analysis since they had been examined extensively at the sequence level 

(Wright et al. 1991, and Charmley et al. 1994a). 

In developing PCR assays, the forward primer was chosen in the leader sequence 

when sequence information was available from this area (exon 1), while the reverse primer 

was chosen from sequences at the 3' end of exon 2 to maximize the number of base pairs 

screened for sequence polymorphisms. In some cases, especially within the A VJ and A V2 

multigene subfamilies, specific primer pairs were difficult to obtain and those V gene 

segments were not routinely included in this analysis. 

Screening for germline DNA polymorphisms by sequencing PCR products 

obtained from 6 to 8 individuals was simplified by loading the gel with all the A reactions 

from each individual next to each other, all the C reactions next to each other, and so on. 

This loading scheme made it easy and fast to scan for sequence polymorphisms in V gene 
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segments as shown in Figure 1. All PCR products were sequenced from both ends. 

Using this approach, the majority of sequence between the primers could be scanned for 

common polymorphisms. It was immediately clear whether an individual was 

heterozygous or homozygous for each allelic variant (Figure 1). 

Of 30 V gene segments scanned by this method, 15 were found to contain one or 

more polymorphisms. A total of 27 DNA sequence polymorphisms were detected 

altogether (Table 2). In approximately 6500 nucleotides of coding region, 15 

polymorphisms were found (Table 3), approximately one variation every 430 bps, when 

sequences from several individuals were scanned. The same frequency of DNA 

polymorphisms was found in the intronic sequences, where 12 polymorphisms were found 

in the 5200 bps studied. Nucleotide diversity, i.e. the number of differences per 

nucleotide site for all pair-wise combination of two random chromosomes among the 

individuals scanned (6 to 8 individuals, Table 2), for TCRAJD genes was calculated to be 

approximately one variation every 1,250 bp (0.08%, Table 3) and again, was similar for 

intron and exon based sequences. 

Nature of the DNA polymorphisms and amino acid changes in the TCRAID V gene 

segments 

The majority of germline polymorphisms were single base substitutions as indicated 

in Table 2, although a few insertion/deletion variations were identified. Among the latter 

group was a polymorphic short tandem repeat (STR) in the intron of A V22Sl. Three 

different allelic forms of this STR, (CT)?, (CT)i 1, and (CT)i2, were found among the 16 

chromosomes (8 individuals) analyzed. Additionally, we have found that sequences which 

were previously thought to be two different V gene segments were actually allelic variants 

of the same gene segment (A V2Sl/S3 and A V2S4/S5). 

Of the 15 single nucleotide substitution polymorphisms found in the coding region, 

nine would lead to amino acid changes in the TCR (Table 2). The distribution of these 

across the V domain is indicated in Figure 2. Conservative substitutions such as those in 
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DV102S1 (Val-Ile, Ile-Met) andAV29S1 (Glu-Asp) were detected, as well as more 

dramatic substitutions like the glutamic acid to glutamine in AV6S1 (acidic to polar), the 

polar to non-polar changes in AV2S1/S3 (Val-Gly, Ser-Phe), AV4S2 (Thr-Pro), and 

AV6S1 (Gln-Pro), and a basic arginine to an uncharged, polar glycine in AV29S1. 

Furthermore, a number of these amino acid substitutions ( 4 of 9) were found to be located 

in hypervariable regions (Figure 2). 

Discussion 

The identification of DNA sequence variations plays a central role in the analysis of 

the relationship between genome structure and function. This is particularly true in regard 

to genes such as those encoding the MHC proteins which exhibit significant diversity in 

human populations. Recently, similar analyses have been undertaken with other immune 

genes such as the TCR. However, the diversity of these does not appear as extensive as 

the MHC locus (Marsh and Bodmer 1993, Zemmour and Parham 1993). In general, 

human DNA polymorphisms are estimated to occur on average once in every 500 to 1,500 

bp (Cooper et al. 1985, Li and Sadler, 1991). In human TCRAID genes, we found one 

polymorphic site on average every 433 bp in both exons and intrans when 12-16 

chromosomes are being compared (Table 3). The overall nucleotide diversity in TCRA/D 

genes was found to be 8.0 x 10-4 (0.08 % ), or one variation in every 1250 bp. This 

diversity is similar to that previously reported by Li and Sadler (1991) who compared 

sequences from 49 different genes representing approximately 75,000 unique bp of human 

DNA sequence. It is also similar to the levels of germline polymorphism reported 

previously in TCRB genes using direct sequence analysis (Posnett 1990, Comelis et al. 

1993, Charmley et al. 1994b, Wei et al. 1995, Charmley and Concannon 1995). 

A number of approaches have been applied to finding DNA polymorphisms in TCR 

V genes. These include methods that: i) compare the cleavage patterns in DNA sequences 

following treatment with a restriction enzyme (Robinson and Kindt 1987, Grier et al. 



106 

1990, and Zhang and LeFranc 1993, Oksenberg et al. 1988), ii) determine whether there 

are differences in the melting temperatures of specific TCR sequences (Nickerson et al. 

1992, Charmley et al. 1994a), or iii) detect changes in the sequence conformation 

following denaturation and renaturation under conditions to promote the annealing of single 

strands (Cornelis et al. 1993, and Ibberson et al. 1995). In many cases, the sequence basis 

of these RFLP, melting, or conformational variants has been subsequently determined. Ten 

TCRA V gene segments have previously been shown to contain 20 polymorphisms using a 

combination of these strategies to identify polymorphisms (Wright et al. 1991, Charmley et 

al. 1994a, Moss et al. 1993, Reyburn et al. 1993, Cornelis et al. 1993, Ibberson et al. 

1995). However, when compared side by side with other approaches, we found DNA 

sequencing to be the most rapid and direct approach for identifying new DNA 

polymorphisms. Furthermore, the speed, automation, and accuracy of DNA sequencing is 

rapidly improving particularly in regard to the identification of human DNA variations 

(Kwok et al. 1994). 

The identification of DNA polymorphisms by direct sequencing offers several other 

advantages. First, it is the most sensitive scanning approaches available and can identify all 

the variations present in the sequences using a single set of assay conditions (Nickerson et 

al. 1992, and Kwok et al. 1994). This is difficult to achieve with other approaches and 

often requires the development of special PCR primers (Sheffield et al. 1989), or numerous 

gel runs under varying conditions to achieve maximum sensitivity which in the end may not 

approach 100% (Leren et al. 1993). In this study, 27 polymorphisms were identified by 

direct sequence analysis of 30 V genes. The majority of these were not previously detected 

(19 of 27 polymorphisms) when other approaches were applied to these gene segments 

(Charmley et al. 1994a, Cornelis et al. 1993, Ibberson et al. 1995). In addition to its 

sensitivity, direct sequence analysis can also provide new sequence information, i.e. when 

cDNA sequences are used to develop PCR primers, new sequences from intervening 
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introns can be obtained. In fact, more than 4500 bps of previously unknown intronic 

sequence was uncovered during this analysis of the TCRND genes. 

Another advantage to finding polymorphisms by DNA sequence analysis is that it 

provides precise information on the nature and location of the variation. Of the coding 

region variations found in the TCRAID genes, nine would lead to amino acid changes in the 

TCR. Although the atomic structure of the human TCR has not yet been determined, it is 

thought to be very similar to that of the immunoglobulin structure based on sequence 

comparisons (Chothia et al. 1988, Davis and Bjorkman, 1988). Alignment of V sequences 

for the alpha chain indicates there are approximately 40 conserved residues of 92 amino 

acids total. None of the amino acid changes reported here were located in the conserved 

residues but polymorphisms were found in hypervariable and non-conserved sites in the 

TCR (Figure 2). Some of these polymorphisms are conservative substitutions, while 

others are less conservative substitutions like the glutamic acid to glutamine in AV6Sl 

(acidic to polar), or the three polar to non-polar changes in A V2Sl/S3 and A V6SJ. It is 

worth noting that these latter substitutions occur primarily in regions equivalent to the 

hypervariable regions in immunoglobulin (Figure 2). Residues in these regions are thought 

to be involved in binding to the MHC molecules (Davis and Bjorkman, 1988), and 

therefore, could influence thymic selection of T cells bearing these receptors. However, 

further studies will be required to determine whether these changes in fact influence the 

functional TCR repertoire in individuals. 

Finally, once the sequence of a DNA variation is known, it can be typed in human 

populations on a large-scale using high-throughput and semi-automated methods such as 

the oligonucleotide ligation assay, OLA (Nickerson et al. 1990), genetic bit analysis 

(Nikiforov et al. 1994), or by allele-specific oligonucleotide hybridization during PCR 

(Taqman-ASO, Livak et al. 1995). In fact, we have already developed semi-automated 

typing formats (PCR/OLA) for a number of these polymorphisms. In this regard, genetic 

diversity in MHC genes has been linked to a number of disease susceptibilities, including 
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several human autoimmune diseases (Sinha et al. 1988 and Todd et al. 1988). Similar 

studies examining DNA variations from the TCRAID have been contradictory (Hillert and 

Olerup 1992 and Steinman et al. 1992). Therefore, the sequence variations reported here 

may prove useful in further assessing the relationship between germline TCR 

polymorphisms and genetic susceptibility to disease in human populations. 
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Table 2. Polymorphisms identified by sequencing V genes. 

V gene Allele 1 Polymorphism Allele2 Frequency of Reference 
Allele 23 

DV102S1 GGCGTCCCT G-A GGGATCCCT 3/12 Zhang & LeFranc 1993 
Gly Val Pro Val-Ile 16 Gly Ile Pro 

DV102Sl ACAATCACT C-G ACAATGACT 4/12 
nu Ile Tor lie-Met 45 1hr Met 1hr 

AV2S1/S3 TAATGTACA G-T TAATTTACA 8/16 Charmley et al. 1994a 
lntron 

AV2S1/S3 CGAGTTTCC T-G CGAGGTICC 11/16 
Arg Val Ser Val-Gly 28 Arg Gly Ser 

AV2S1/S3 ATGTCCATA C-T ATGTTCATA 4/16 Charmley et al. 1994a 
Mct Ser Uc Scr-Phe 48 Met Phe Ile 

AV2S4/S5 GAAACATGA C-T GAAATATGA 2/16 
lntron 

AV3S1 CAAACTTTA C-T CAAATTTTA 3/12 
Intron 

AV4S2 ATAACTAAC C-T ATAATTAAC 2/16 
lntron 

AV4S2 CCCACCTCC A-C ccccccrcc 15/16 
Pro Tor Ser Tor-Pro 8 Pro Pro Ser 

AV5S1 GAGGCCCTG C-T GAGGCTCTG 3/16 
Glu Ala Leu Silent Glu Ala Leu 

AV6S1 GGTACGGGT C-T GGTATGGGT 11/16 
lntron 

AV6S1 TAAATCTTC T-C TAAACCTTC 10/16 
lntron 

AV6S1 GATCAAAGT A-C GATCCAAGT 10/16 Reyburn et al. 1993 
Asp Gin Ser Gin-Pro 29 Asp Pro Ser 

AV6S1 GGTCTATTC A-C GGTCTCTTC 1/16 Reyburn et al 1993 
Gly Leu Phe Silent Gly Leu Phe 

AV6S1 GACGAGCAA c-c GACCAGCAA 10/16 Reyburn et al 1993 
Asp Glu Gin Glu-Gln 55 Asp Gin Gin 

AV7S2 GCACCCACA C-T GCACCTACA 4/16 
Ala Pro Tor Silent Ala Pro 1hr 

AV10S1 CAGCTGCTG G-A CAACTGCTG 1/14 
Gin Leu Leu Silent Gin Leu Leu 

AV14S1 TICTCTCTC C-G TTCTGTCTC 12/16 
lntron 

AV18S1 TITITIAAAAAAA Del/Ins TTTTTTAAAAAAAA 
,. 

2/12 
lntron 

AV22Sl AAACAGArrc,n CT-repeat n=7, 11, or 12 7 /16, 2/16, 7 /16 
lntron 

AV22SI CGTAAAGAA A-G CGTAAGGAA 2/16 
Arg LysGlu Silent Arg Lys Glu 

AV23S1 TGCTCITIT C-G TGCTGTTTT 8/16 
lntron 

AV23S1 GfGACACAG A-G GTGACGCAG 8/16 
Val Tor Gin Silent Val Tor Gin 

AV27S1 ATGCCTCCT C-T ATGCTTCCT 3/16 
lntron 

AV27S1 AAATGTTCT G-A 
lntron 

AAATATTCT 2/16 

AV29S1 AAGCGTCAT C-G AAGGGrCAT 1/12 Moss et al. 1993 
Met Arg Arg Arg-Gly 57 Met Gly Arg 

AV29S1 CATGAAAAA A-C CATGACAAA 4/12 Moss et al. 1993 
Arg Glu Lys Glu-Asp59 Arg Asp Lys 

a Frequency of allele 2 among the analyzed chromosomes. 
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Figure Legends 

Figure 1. Human A V6S I PCR product sequenced with the 3' PCR primer for eight 

individuals. A transversion (G to C) in exon 2 leading to a Glu -> Gln substitution in 

amino acid 55 of the mature peptide is shown. 

Figure 2. A schematic diagram of the locations of the V gene segment polymorphisms in 

the mature alpha or delta peptide. 
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Abstract 

Bacterial artificial chromosome (BAC) clones were used to map and 

sequence the human T cell receptor a/ 8 locus. Seventeen BAC clones were 

analyzed in detail. They were found to be excellent mapping and sequencing 

reagents, exhibiting the following properties: (i) The 17 BAC clones covered 

the 1.1 megabase (Mb) region with the exception of one small gap expected 

from a 3.7 fold library. (ii) The ends of the BAC inserts were randomly 

distributed. (iii) The BAC clones faithfully represented the genomic DNA 

with the exception of a single clone. (iv) The sequence from the ends of the 

BAC inserts could be obtained directly from the BAC DNA by the chain 

terminator method. (v) The complete BAC inserts could be sequenced 

directly by the shotgun approach. These properties have led to a new 

approach to sequence the human genome. 



124 

Introduction 

As the genome project moves into its sequencing phase, effective 

integration of large-scale physical mapping and large-scale DNA sequencing 

becomes increasingly important. Currently, this process is typically carried 

out in three discrete steps. (i) A low resolution physical map is developed 

from genome-wide or chromosome-specific yeast artificial chromosomes 

(YACs) ranging in size from ~100 kilobases (kb) to 1 (Mb) (Chumakov et al., 

1995, and Doggett et al., 1995). The insert DNA is prepared by partial 

restriction enzyme digestion, thus generating somewhat random overlaps. 

Typically, 2- to 10-fold coverage has been achieved. (ii) Sequence-ready maps 

are prepared by subcloning YACs, after partial restriction digestion, into 

cosmid vectors with insert sizes typically ranging from 30-40 kb. Generally, 5-

to 10-fold coverage is sought. (iii) A minimum tiling (overlap) path of 

cosmid clones is selected for sequence analysis. Individual cosmid clones are 

then randomly sheared into ~ 1 kb fragments for subcloning into phage M13 

vectors and DNA from the Ml3 clones sequenced using M13 vector primers. 

Typically 600-900 forward sequence reads are assembled into contigs; contig 

closure and editing generally requires additional sequences from reverse 

reads, primer directed sequencing, or selected PCR amplification. This 

approach or an alternative where genome-wide or chromosome-specific 

cosmid libraries are the starting material has been employed by most large

scale DNA sequencing laboratories. 

This approach has several severe limitations. (i) YAC, and even 

cosmid inserts, are often chimeric and/ or suffer from deletions (Green et al., 

1991). The determination of clone fidelity is time consuming and small 

deletions can be difficult to identify. (ii) YAC clones (or their subclones) must 
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be purified from yeast DNA. (iii) Cosmid inserts may be shorter than 

tandemly repeated DNA arrays, thus rendering physical mapping and 

sequence closure difficult. For example, the human ~ T cell receptor locus has 

five tandemly arrayed 10 kb homology units 90-92% similar to one another 

(Rowen et al., 1996). (iv) The need to subclone DNA three times and create 

maps at two different levels adds complexity and expense to the potential 

automation of large-scale DNA sequencing. 

Bacterial artificial chromosome (BAC) inserts appear to offer an 

interesting alternative to YAC inserts for physical mapping and sequencing in 

that preliminary results indicated that they are relatively stable (Shizuya et al., 

1992) (infrequent deletions), rarely are chimeric (Julie Korenberg, personal 

communication), and can be readily separated from bacterial DNA. To test 

the advantages of BACs both as mapping and sequencing reagents, we 

generated a physical BAC map of the human a/o T cell receptor locus from a 

library with 3.7-fold coverage of the entire genome. 

The human a/ o T cell receptor locus is ideal for testing BA Cs as 

mapping and sequencing reagents. First, it is approximately 1 Mb in length 

and, thus, offers a significant mapping challenge. Second, the locus encodes 

approximately 50 variable (V) gene segments, 61 Ja gene segments, 3 Do gene 

segments, 4 Jo gene segments, and the Co and Ca genes. The 3' ~ 100 kb 

encompassing all of the coding elements from Co to Ca including all the Ja 

gene segments has been sequenced (Koop et al., 1994), thus offering a superb 

control for many of the experiments described below. Third, while the region 

encompassing the V elements has not been sequenced, the relative order of 

most of the V gene segments has been determined as a consequence of the 

deletional rearrangement process that joins the Va and Ja or Vo, Do and Jo 

elements (Ibberson et al., 1995). Fourth, the V elements fall into distinct 
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subfamilies that exhibit 75% or more sequence homology. Members of these 

subfamilies, ranging in size from 2 to 5, are located across the locus and, 

hence, probes from a few subfamilies can be used to identify BAC clones 

across the entire V element region. Finally, this region has locus-specific 

repeats (homology units) that pose challenges typical for much human DNA 

for both mapping and sequencing. 

The BAC inserts appeared to be faithful replicas of genomic DNA. Five 

BACs, ranging in size from 86 to 208 kb, were successfully sequenced directly 

by the shotgun approach. Not only do BACs appear to be excellent mapping 

and sequencing reagents, they also suggest a new approach to sequencing the 

human genome. 

Materials and methods 

DNA source. BAC clones were obtained from a human BAC library at 

California Institute of Technology. This library was developed from a normal 

human male fibroblast cell line, (ATCC: CRL 1905: CCD-978Sk) (Shizuya et al., 

1992). This cell line was also used in PFGE analysis of human genomic DNA 

BAC library screening. To obtain specific BACs we used PCR amplified T cell 

receptor variable gene segments as probes. These were labeled with P-32 

using a random labeling approach (T7 QuickPrime, Pharmacia, or Multiprime 

DNA Labeling System, Amersham) and hybridized overnight at 65°C to the 

BAC library membranes in SET (0.6 M NaCl, 0.02 M EDTA, 0.2 M Tris-HCl [pH 

8.0], 2% SDS, and 0.1 % pyrophosphate). The membranes were washed 10 

minutes in 1 x SSC + 0.1 % SDS, followed by 2-3 washes in 0.1 x SSC+ 0.1 % 
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SDS at 65°C for 10-20 minutes each. Positive clones were identified after 

exposure at -70°C to Kodak X-AR film with intensifying screen overnight or 

longer. Specific PCR-probes were also made for the ends of different clones, 

and the PCR product labeled and used as above. Whole cosmids and BACs 

were also used as probes in hybridization to the BAC library. Cosmid and 

BAC DNAs were digested with Notl to separate the vector from the inserts, 

and run on a PFGE (see below). The inserts were cut out of the gel and the 

DNA extracted from the agarose using beads (Sephaglas BandPrep, Pharmacia 

or Qiaex, Qiagen). When using P-32 labeled cosmids or BACs as probes, cold 

vector DNA, human Cot-1 or total placental DNA, and total E. coli DNA were 

used to suppress hybridization of repeat sequences and contaminating vector 

and E.coli DNA. 

DNA Preparation. Total human genomic DNA from the same cell line used 

to make the BAC library was prepared in low melting point (LMP) agarose. 

Cells were washed twice in phosphate buffered saline (PBS) and resuspended 

to 108 cells/ml in PBS. The cells were then warmed to 37°C before they were 

mixed with an equal volume of melted 1 % LMP-agarose and poured into 

molds. The solidified plugs were incubated overnight at 50°C in a solution of 

0.5 M EDTA [pH 9.0], 1 % Sarcosyl, and Proteinase K (0.5 mg/ml). This step 

was repeated once for one more overnight incubation. The plugs were then 

rinsed and stored in 0.5 M EDTA. 

BAC DNA was prepared using standard alkaline lysis procedures 

(Sambrook et al., 1989). Minipreparations were made either by hand without 

organic extractions or by an automated minipreparation machine, Autogen 

740, Integrated Separation Systems. 
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Southern Blots and Hybridizations. BAC DNA was digested with various 

restriction enzymes according to the suggestions of the manufacturer. The 

DNA was run in a 0.8% agarose gel, and transferred to nylon membranes by 

capillary action using 0.4 N NaOH. The membranes were rinsed twice in 2 X 

SSC before use. PFGE gels were irradiated at 254 nm ultraviolet light for 45 

seconds in the presence of ethidium bromide before blotting. The blots were 

prehybridized in hybridization solution (50% formamide, 5 X SSC, 0.02 M 

sodium phosphate [pH 6.7], 100 µg/ml denatured salmon sperm DNA, 1% 

SDS, 0.5% nonfat dry milk, and 10% dextran sulfate) at least half an hour 

prior to hybridization. As above, probes were labeled and hybridized at 65°C 

overnight followed by washing, although the washing conditions would vary 

in their concentration of SSC from 0.1 X SSC to 2 X SSC, dependent on the 

desired stringency. 

Pulsed Field Gel Electrophoresis. Large DNA molecules were separated in 1 % 

agarose in 0.5 X TBE at 14°C using different PFGE apparatuses, either 

homemade or from Biorad. Voltage applied was 6 V /cm, switch times and 

total time depended on the sizes separated (Birren and Lai, 1993). 

Sequencing. BAC DNA was completely sequenced by the random shotgun 

method (C. Boysen, in preparation). In short, BAC DNA was sonicated to 

generate fragments of 1-3 kb in length. The sonicated DNA was repaired with 

Mung Bean Nuclease (vendor), and run on an agarose gel. Fragments of 1-3 

kb were cut out and the DNA purified with beads as above. The purified 

DNA was subcloned into Hincll or Smal cut, dephosphorylated Ml3 vector 

(Sigma). Single stranded DNA was prepared from white plaques, and 
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sequenced using different versions of Perkin Elmer's dye primer cycle 

sequencing kits. 

End sequencing or primerwalking directly on BACs was performed as 

described by Boysen et al., 1996 using the ABI PRISM Dye Terminator Cycle 

Sequencing Ready Reaction Kit with AmpliTaq DNA polymerase, FS, Perkin

Elmer. 

Results and Discussion 

High quality BAC DNA can readily be purified. High quality DNA was 

purified from smaller cultures (1.5 ml-5 ml) by hand or by automated 

procedures, Autogen 740, Integrated Separation Systems, using standard 

alkaline lysis procedures (Sambrook et al., 1989). DNA from larger volumes 

(100-250 ml) was also prepared by alkaline lysis and a further purification step 

performed either by CsCl banding or by passing the DNA over a Sepharose 

column. The most critical step is the alkaline lysis where care should be 

taken not to shear E.coli host DNA. This DNA was readily cleaved by 

restriction enzymes, readily sequenced at either end by primer directed 

sequencing, and was suitable for random shearing and subcloning into M13 

bacteriophage vectors. 

The 1 Mb a/o human T cell receptor locus was readily covered by 17 BACs 

from a 3.7x BAC library apart from a single gap. Seventeen BAC clones were 

identified by hybridization to probes for certain V and C gene segments, 

probes from cosmids previously mapped in this region, or probes obtained 

from end sequence information from other BACs. Pulsed field gel 
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electrophoresis suggested that these clones ranged from 85 kb to 240 kb with 

an average insert size of 137 kb. This provides an average 2.3x coverage. The 

BACs were obtained from a 3.7x human BAC library with an average insert 

size of 139 kb (Kim et al., 1996). These BACs were analyzed against V gene 

segments either by hybridization to restricted BAC DNA or via V gene 

segment specific STSs (Figure 1). This resulted in three BAC contigs, two of 

which overlapped with only 2 kb and therefore the overlap was not detected 

until end sequence information from the BACs at the ends of the contigs was 

used to make STSs and probes to use against BACs from the other contigs. 

This leaves the BAC map with a single gap--consistent with what might be 

expected from a 3.7x library. The middle region of the a/'6 family was not 

exhaustively screened for BACs because we had already obtained a detailed 

cosmid map after subcloning from YAC clones. We have now covered the 

last gap with a PAC clone. 

The BAC clones exhibit striking genomic fidelity. The fidelity ( chimeras, 

deletions, rearrangements) of the BAC inserts has been checked by six 

different methods. (i) All 17 BAC clones were fingerprinted with three 

different restriction enzymes (Hind III, EcoRI, and Barn HI or Pstl) (Figure 2). 

The fingerprints of overlapping clones were compared against one another 

and against an array of cosmid clones spanning 600 kb in two contigs of the 

a/ '6 locus. Almost all fragments in overlapping regions could be matched, 

except for end fragments when cut with EcoRI, Barn HI, and Pstl, a possible 

polymorphic HindIII site in BAC628, and BAC196, which later by limited 

sequence information was determined to have undergone an internal 

deletion of 68.2 kb. The single 3' BAC 705 clone has been checked against the 

3' sequence for fidelity. BAC clones 129 and 116 show similar patterns at the 
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5' end. Data indicates that none of the 17 BACs are chimeric and that only 

BAC196 has a major rearrangement greater than 1 kb. (ii) V gene segments 

were ordered on the BACs via PCR or hybridization to Southern blots made 

with the restriction enzymes mentioned above (Figure la). Their locations, 

with a few exceptions, corresponded with that previously determined by 

deletional mapping and pulsed field gel electrophoresis (PFGE) studies using 

genomic DNA (Ibberson et al., 1995). Furthermore, in all cases where 

genomic DNA were included on the Southern blot, the hybridization bands 

in the BAC clones matched their genomic counterparts except in cases were 

the BAC insert ended close to the probe used. For example, BAC363 ends in a 

HindIII site found in the middle of a V gene segment, and thus whereas that 

V gene segment probe gave two bands for HindIII in BAC378, BAC274, and 

genomic DNA, BAC363 only showed one band corresponding to one of the 

two. Likewise, this probe differed in its EcoRI pattern from BAC363 since one 

of the EcoRI sites was missing. (iii) Sequences have been determined for both 

ends of each BAC. This information was used to generate STSs and probes for 

15 of the ends, and in all cases gave they positive results when tested on 

overlapping BACs. (iv) Appropriately placed rare cutting restriction sites 

have been identified across the locus in both genomic and BAC DNAs (Figure 

1). These data suggest the BACs faithfully reflect genomic DNA sites. (v) The 

entire a/ o locus is now sequenced using 5 BACs, 2 P ACs, and 9 cosmids 

(Figure lb). When comparing the overlap regions between sequenced BACs 

(22 kb), BACs and PACs (120 kb) or between BACs and cosmids (78 kb), we 

have found no discrepancies that can not be accounted for by polymorphisms. 

(vi) Thirty-two of the 34 end sequences from the 17 BACs matched against 

the complete sequence of the a/o locus (Figure lb), while the last two ends 

extend outside the sequenced region. The sizes of the BAC inserts 
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determined this way matched the sizes determined by PFGE except for 

BAC196, which size was determined by PFGE to be 100 kb, and the insert size 

determined by aligning the BAC ends with the final sequence suggest the 

original clone was 163.7 kb. In fact, we went back to the original library, and 

streaked the BAC196 clone again. The new BAC196 clone were analyzed by 

Notl digestion and PFGE analysis, and gave a band at 170 bp, suggesting that 

this was the original clone. We further digested it with EcoRI and Hindlll to 

compare it with the old BAC196 clone, and clearly, the old clone was a deleted 

version of the original. This suggests that there are no chimeras, major 

rearrangements, or deletions greater than 1 kb apart from the deletion in 

BAC196. 

BAC inserts can directly be sequenced at their 5' and 3' ends. We have 

successfully sequenced all 34 insert ends directly from DNA of the 17 BAC 

clones. Indeed, in total we have sequenced 34 BAC clones and 22 PAC clones 

using the T7 and SP6 primers. 110/112 sequences were successful on the first 

attempt (98% success). By comparing the end sequences with their final high 

redundancy sequenced counterparts, the average high quality read length was 

445 base pairs with an error rate of 0.36%. 

Twenty-three of 70 end sequences in the a/o T cell locus (33%) contained 

genome-wide repeats (Table 1). Fifteen of these sequences contained 100 bp or 

more of unique sequence. Only 11 % of the end sequences contained no 

unique sequences. 

BAC inserts can be effectively sequenced by the shotgun approach. We 

successfully sequenced five BACs ranging in size from 86 kb to 208 kb by the 

shotgun approach. The BACs were randomly sheared, cloned into M13 
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bacteriophage, and the M13 fragments were sequenced to an average coverage 

of 6- to 8-fold (Table 2). Closure was generally achieved either by reverse 

sequence reads from appropriate located M13 clones or by synthesizing DNA 

primers at the gap edge and using these for walking on appropriate M13 

clones or directly on the BAC DNA itself by chain terminator DNA 

sequencing. No difficulties were experienced in this sequence analysis. The 

order of the V elements in these BAC inserts is totally consistent with that 

obtained from the physical map analyses mentioned above. 

BAC inserts exhibit several features that facilitate physical mapping. BAC 

clones are single copy vectors and, accordingly, exhibit relative stability in 

clonal growth. BAC clones have several features that are attractive for 

physical mapping. (i) They faithfully represent chromosomal sequences. By 

V gene segment analysis, restriction enzyme analyses, and end sequence 

analysis, all 17 BAC clones lying across the human a./o T cell receptor locus, 

apart from BAC 196, faithfully reflect genomic sequence to the varying levels 

of discrimination analyzed. (ii) BAC inserts appear to be rarely chimeric-

indeed, none of the BACs we analyzed were chimeric. In contrast, 6 of 9 YAC 

clones obtained across this region were clearly chimeric. Moreover, Julie 

Korenberg has mapped by chromosomal in situ hybridization more than 

2,000 BAC clones; less than 4% exhibit more than one site of hybridization. 

Most of these probably represent double clones rather than chimeras. (iii) 

The BAC clones appear to delete or rearrange rarely (only 1/17 clones 

exhibited a deletion). In contrast, 38% of the 234 cosmid clones analyzed 

across the human ~ T cell receptor locus contained defects ( deletions, 

chimeras, rearrangements, failure in end sequencing, etc.) (Lee Rowen, 

personal communication). This appears high, but the important point is that 
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most cosmid clones have not been carefully checked before sequencing 

because of the time consuming nature of careful checks. (iv) The average 

BAC clone is of sufficient length to span most locus-specific clusters of 

tandem repeats. In the human ~ T cell receptor locus, we identified one 

tandem cluster of five 21 kb repeats (105 kb). Having mapping (and 

sequencing) reagents that span these similar clusters significantly facilitates 

the mapping process. (v) BAC clones seem to be randomly distributed across 

the 1 Mb TCRa/ o region. One gap of 3 kb was not covered, but this is expected 

from a library with a 3.7 fold coverage of the human genome. A critical 

question is whether the even distribution will extend across the entire 

genome. We would point out that loci with lots of homology units probably 

present one of the worst case scenarios for genomic cloning. (vi) For shotgun 

sequencing, BACs can be used directly to prepare sequence-ready maps. Thus, 

one subcloning step (YACs to cosmids) and one mapping step (cosmid 

physical map) is eliminated. This increased efficiency will greatly facilitate 

the automation necessary for large-scale sequencing projects. (vii) BAC ends 

can readily be sequenced, thus suggesting a strategy that completely eliminates 

physical mapping in the large-scale DNA sequencing procedures. (viii) An 

arrayed BAC library allows the easy placement of other landmark features on 

the BAC clones (e.g. STSs, ESTs, polymorphic satellites, etc.). This will permit 

the transfer of all of the previously identified landmarks to BACs. 

BACs are good sequencing reagents. We have been successful in the shotgun 

sequence analysis of 5 BACs ranging in size from 86-208 kb. Furthermore, the 

208 kb BAC (BAC 129) has significant genome-wide and locus-specific repeats

-yet we were able to sequence this large insert without difficulty. The shotgun 

clone coverage is quite evenly distributed, suggesting that BACs can be 
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randomly sheared. The assembly of sequence contigs as large as these BACs 

from randomly sequenced M13 inserts has been made possible by new 

methods developed for base calling, quality assessment, and assembly by Phil 

Green (personal communication). Apart from the fact that BACs can be 

sequenced by shotgun analysis, BAC clones do have several advantages for 

sequencing, in part similar to those mentioned above for mapping. (i) BAC 

clones appear to faithfully represent the genome. (ii) BAC clones rarely 

delete, rearrange, or are chimeric. (iii) The average BAC clone can readily 

traverse the largest locus-specific repeats identified to date. (iv) The BAC 

vector is only 7.5 kb in length, thus representing a significantly lower 

percentage of the insert than found in the clones currently used most 

frequently for shotgun sequencing--cosmids (4-8/30-40 kb). 

In summary, BACs are attractive sequencing reagents because of their 

genomic fidelity, size, stability, and potential for eliminating one cloning and 

one mapping step in traditional shotgun sequencing. BAC inserts also offer 

the possibility of sequencing the human genome without the need for any 

physical mapping. 

The human genome may be sequenced by the sequence tagged connector 

(STC) approach. This approach is outlined schematically in Figure 3. (i) A 

15-fold BAC library of randomly cloned human DNA will be prepared and 

arrayed in 384 well microtiter plates. This would require 300,000 BAC clones 

with 150 kb average insert sizes. (ii) BAC DNAs will be prepared for end 

sequence and single restriction enzyme analysis of each BAC insert. The end 

sequences, averaging 500 base pairs, will be randomly spaced every 5 kb and 

will represent ~ 10% of the genome sequence. The fingerprints will be useful 
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for determining BAC insert fidelity with respect to the genome. (iii) STS, 

polymorphic microsatellite, or EST landmarks can readily be placed on the 

BAC clones to position them with regard to already defined markers. (iv) 

DNA sequencing can begin with one seed BAC clone. After a 150 kb BAC 

insert has been sequenced, it will be connected to other 30 BAC clones 

through the sequence tagged connectors (end sequences) of BAC clones 

overlapping this region. At this point, the fingerprints of the overlapping 

clones can be compared to detect artifacts ( chimeras, deletions, 

rearrangements, etc.). Clones with minimal overlaps with the 5' and 3' ends 

of the seed BAC can be selected to efficiently extend the sequence analyses in 

either direction. After each successive minimally overlapping BAC clone is 

sequenced, the next minimally overlapping clone can be selected for 

sequencing. Obviously, seed clones can be simultaneously sequenced in 

larger sequencing centers, permitting efficient sequence analyses, for example, 

from landmarks scattered across particular chromosomes. 

This proposal has several striking advantages. (i) BACs are excellent 

mapping and sequencing reagents. This approach eliminates the need for 

physical mapping and the need to construct the intermediate cosmid library. 

Accordingly, only two procedures, DNA purification and sequence reactions, 

need to be automated for large-scale DNA sequencing. (ii) The existing EST 

and STS landmarks can easily be identified on the arrayed BAC clones. Thus, 

this positional information can readily be transferred to the STC approach. 

(iii) The random distribution of BAC ends throughout the genome can be 

facilitated by creating a library using two (or three) different restriction 

enzymes. (iv) The STC approach is ideal for sequencing interesting 

multigene families and for the identification of genes obtained by positional 
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cloning. The sequenced seed BAC readily gives access to other 5' and 3' BACs 

with minimal clone overlaps through the STCs. Thus, DNA can rapidly be 

obtained (and sequenced) across interesting regions. (v) Big and small 

laboratories alike can readily benefit from the STC strategy. Big laboratories 

can start simultaneously with many seed BACs at different locations. Small 

laboratories do not require a large mapping infrastructure to sequence 

interesting regions. (vi) Since the STCs will constitute 10% of the genome 

analyzed by single pass sequencing, many interesting features can be 

identified just by the analysis of these sequences. The STCs will also match 

many previously identified chromosomal landmarks. (vii) The STC 

approach can support an international effort to sequence the human genome 

from arrayed and accessible BAC clones. 

The STC approach has raised several concerns. (i) A good high 

resolution STS framework map already exists. This map can be used with a 

deep BAC library to create a deep BAC physical map. Thus, the STC approach 

is unnecessary. In fact, the STS map is not at a sufficiently high resolution to 

give a sequence-ready BAC map. To get to this level of resolution will require 

considerable additional work. Hence, we would argue that the STC approach 

in the long run with the advantages cited above will be more cost effective. 

(ii) One should not depend on a single clone library. New, better libraries 

could come along. It may not represent a random distribution of fragments. 

As noted above, the library could be prepared using two (or more) enzymes. 

Moreover, the end sequence analysis could easily be done within two years 

(by 20 377 ABI sequencers). These data would be immediately useful, even at 

3-5-fold coverage. Hence, the idea that one would have to wait two years to 

use the information is wrong. It could be useful within the first 3-4 months. 
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New libraries could be integrated into the old arrays. (iii) How could one be 

assured that the seed BAC does not have an artificial insert (chimera, 

deletion, or insertion). After a 1-2x sequence coverage of the BAC, STC could 

identify many of the overlapping BAC. The fingerprints of these could be 

compared to look for artifacts. On balance, the STC approach appears to have 

considerable promise. 
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Table 1. Genome-Wide Repeats in the 23 (33%) End Sequences from 

70BACEnds 

Type 

Alu 

LINE 

LTR 

# 

10 

9 

4 

Similarity (%) 

86-93 

77-92 

84-93 

Some Unique 

10/10 (>lO0bp) 

2/9 (>300 bp) 

3/4 (>250 bp) 

Repeat Only 

0 

7 

1 



BAC-clone 

Size 

Redundancy 

No. of contigs 
before walking 

142 

Table 2. Shotgun sequencing of BACs 

129 956 480 378 810 

208kb 113 kb 86kb 119 kb 143 kb 

7.2 8.4 6.0 10.8 7.0 

17 8 10 2 5 
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Figure legends 

Figure 1. Physical map of BACs across the human TCR a/o region. a) Based 

on fingerprinting patterns of BACs and on localization of TCR gene segments, 

as determined either by hybridizations to Southern blots of restricted BACs 

(e), or by PCR assays(■). b) Sequences from the ends of BAC inserts 

compared to the final assembled high redundancy shotgun sequence obtained 

across the locus from BA Cs, PA Cs and cosmids as indicated. 

Figure 2. Restriction digests of BAC DNA. BAC DNA were cut with HindIII 

and run on a 0.8% agarose gel. HindIII cuts out the vector resulting in a 

common vector band, which for the BACs numbered below 450 is 6.8 kb and 

for BACs with numbers over 450 it is 7.5 kb. 

Figure 3. Sequence Tagged Connector strategy. A 15x genomic equivalent 

BAC library is constructed, roughly 300.000 clones with an average insert size 

of 150 kb. A fingerprint is obtained and both insert ends are sequenced for all 

of these clones. This information is stored for future use. Several seed BACs 

are sequenced completely. This sequence is then compared to the end 

sequences in the database, and all overlapping BACs are then compared to 

each other via their fingerprints to determine eventual defects in the clones. 

BACs with minimal overlaps in each direction are then picked for complete 

sequencing to extend the sequence from the seed BAC, etc. 
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Figure 1. 
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Figure 3. 
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ABSTRACT 

Bacterial and Pl-derived artificial chromosomes, BACs and PACs, are being used 

increasingly in the human genome project as mapping and sequencing tools. Using 

fluorescent terminator cycle sequencing, we have developed a method to obtain the 

sequences directly from the ends of these clones. Of 112 end sequences analyzed to date, 

more than 98 % have been successfully sequenced. The average read length employing the 

standard T7 and SP6 primers is 495 bp with an error rate less than 0.36 %. This technique 

can also be used with custom-made primers. This approach is useful in the initial 

characterization of BAC and PAC clones, and in closing gaps or obtaining more sequence 

in interesting, partially sequenced regions. 

INTRODUCTION 

The human genome project to date has extensively relied on yeast artificial 

chromosome (Y AC) and cosmid clones for mapping and sequencing (Chumakov et al., 

1995; Doggett et al., 1995; Levy, 1994; and Rowen et al., 1996). These systems have 

limitations. Many YAC clones are chimeric (Green et al., 1991) and both YAC and cosmid 

clones have a tendency to delete or rearrange (Lee Rowen, personal communication). BAC 

and PAC inserts, ranging in size from 50-300 kb, appear relatively stable and infrequently 

chimeric (Shizuya et al., 1992; Ioannou et al., 1994) due, in part, to the fact that they are 

single copy plasmid vectors. BAC and PAC inserts are being increasingly used in physical 

mapping projects (Ashworth et al., 1995; Boysen et al., 1996). BAC and PAC inserts can 

be sequenced directly by the random shotgun method (C. Boysen, in preparation). This 

offers a significant time savings over cosmid sequencing approaches, where Y AC clones 

are subcloned into cosmids, or used to bin cosmids from genome-wide or chromosome

specific cosmid libraries. 
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In large sequencing projects a minimal overlap between clones is critical to avoid 

extra redundancy in sequencing. Most mapping projects determine overlaps between 

clones by STS content mapping or by restriction enzyme digests. These approaches often 

require significant overlaps to be statistically significant. Obtaining sequence information 

from the ends of the large insert clones, and in turn using this information to detect smaller 

overlaps between clones would identify minimally overlapping clones and thus make large 

scale sequencing more efficient. End-sequences have been obtained from Y ACs by either 

the vectorette system (Riley et al., 1990) or the Alu-vector technique (Nelson et al., 1991 ). 

Additional techniques have been developed to obtain the ends from P-1 clones (Liu and 

Whittier, 1995). However, all of these techniques require several steps before the actual 

sequence is obtained or have a relatively high failure rate. To facilitate the process of 

obtaining end-sequence analysis from BACs and PACs, we have modified the dye 

terminator cycle sequencing protocol from Perkin-Elmer. This process only involves two 

steps: DNA preparation of the clone and sequencing. 

MATERIALS AND METHODS 

DNA Sources. BAC clones were obtained from a Caltech human genomic BAC library 

(Shizuya et al., 1992) made using DNA from a normal male fibroblast cell line, ATCC: 

CRL 1905: CCD-978Sk. PAC clones were from the human genomic PAC library (normal 

male fibroblast cell line, HSF7) at Genome Systems, Inc. (Ioannou et al., 1994). 

DNA Preparation. Each BAC/P AC clone was streaked to obtain single colonies. One 

single colony was used to inoculate 20 ml Luria Broth containing the appropriate antibiotic 

and grown at 37°C for 18-22 hours in 50 ml plastic tubes. In some cases, larger cultures 

of 200 ml were grown. The DNA was prepared by alkaline lysis. In most cases we used 

an automated miniprep machine, the Autogen 740, Integrated Separation Systems, 
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following the manufacturers BAC protocol. Otherwise, the DNA was prepared by hand 

with no organic extractions (Sambrook et al., 1989). In some cases this procedure was 

followed by a PEG precipitation. DNA was resuspended in double distilled (dd) H2O 

(approximately 150 µl for a 20 ml prep). 

Sequencing. Twenty-two µl DNA (equivalent to DNA from a 3 ml culture, 1-2 µg) were 

used for each fluorescent terminator sequencing reaction which further contained 50 pmol 

primer and 16 µl terminator ready reaction mix (ABI PRISM Dye Terminator Cycle 

Sequencing Ready Reaction Kit with AmpliTaq DNA polymerase, FS, Perkin-Elmer). 

Oligo's were synthesized, deprotected, dried, and resuspended in ddH2O to either 25 µM 

or 50 µM. For the end sequencing standard T7 and SP6 primers were used (T7: 

T AA TACGACTCACTATAGGG and SP6: A TTT AGGTGACACT ATAG). Cycling was 

performed in the thermal cycler, GeneAmp 9600, Perkin-Elmer, following the instructions 

in Perkin-Elmer's protocol PIN 402078, with the addition of an initial denaturation step. 

The thermal cycler was heated to 96°C before inserting the tubes. These were kept at 96°C 

for four minutes, followed by 25 cycles of ten seconds at 96°C, five seconds at 50°C, and 

four minutes at 60°C. After cycling, the reaction was either precipitated directly with 

ethanol and salt or purified by passing over a CentriSep spin column (Princeton 

Separations), dried, and run on a 373 DNA Sequencer, Stretch (Applied Biosystems) using 

either 36 or 48 cm well to read plates (4.75 % or 4 % acrylamide gel, respectively). 

RESULTS 

Sequencing protocols 

In order to find the optimum conditions for sequencing directly from BAC and PAC 

DNA, we tested different DNA purification methods as well as different sequencing 

conditions. DNA purified by the minipreparation robot, Autogen 740, sequenced more 
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consistently than DNA prepared manually. Our success rate for the DNA prepared by the 

robot was 98 % (see later); our manual preparations succeeded 80 % of the time. The DNA 

prepared by the robot did in general also provide somewhat longer and cleaner reads. In 

order to improve the manually purified DNA preparations, we added a PEG precipitation 

step. This did not noticeably change the quality of the sequence, but needs to be explored 

further. 

To optimize the sequencing procedure we used DNA prepared by the Autogen 740. 

We varied the concentration of DNA, the volume of the reaction, the amount of primer, and 

the length of the denaturation step. Furthermore, we tested different primers, four at each 

vector end, but found that the standard T7 and SP6 primers (sequences are given under 

Materials and Methods) gave the best results. Therefore, these were used in the 

experiments described below. The first 14 T7 primer reactions listed in Table 1 provide a 

summary of some sequences obtained during the initial experiments. The average accurate 

read length (332 bp) of these is lower, than when the final optimized conditions were used. 

The optimal conditions are described in Materials and Methods. In general, we double the 

volume of a standard cycle sequencing terminator reaction from 20 to 40 µl, containing 16 

µl terminator sequencing premix, 50 pmoles primer, and DNA prepared from three mls of 

culture. After cycling, reactions are purified by passing over a spin column. This step 

could be omitted and an ethanol precipitation performed, but the leftover terminators 

obscure the first 40-60 bp of the sequence read, and an artifact of 12-14 T-nucleotides is 

seen around 250-300 bp, although generally the sequence is identifiable. These reaction 

conditions give a weak but clean signal (Figure 1). Using a smaller reaction volume, 

whether the same or half the amount of DNA or primers was used, decreased the success 

rate to about 75 %. One of the reasons that the same amount of DNA did not work in a 

smaller reaction volume is probably because of impurities in the DNA. In the larger 

volume, the impurities are diluted out. For half the amount of DNA, the signal was weaker 

and the signal to noise ratios compromised. Preliminary experiments suggest that half the 
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amount of DNA, primer and premix, gives good reads on the 377 DNA sequencer, 

whereas a quarter reaction provides noisy data on the 377 DNA sequencer. We tested 

different concentrations of primers (3.2, 10, 25, 50, and 100 pmoles total in either 20 or 40 

µl reactions), and found 50 pmoles to be optimal for the 40 µl reaction. Finally, we found 

that instead of starting the cycling directly as called for in the sequencing procedure, better 

results are obtained, when the reaction tubes are inserted into the already hot, 96°C, thermal 

cycler, and denatured for four minutes at this temperature, before the normal cycling 

begins. 

End Sequencing 

Using these optimized conditions, we sequenced 34 BACs and 22 PACs from both 

ends. These sequences were obtained in several different batches and no differences were 

seen in quality between batches when the same protocol was followed. BAC and PAC 

clones gave similar results. The 48 cm well to read plates on the 373 DNA sequencer gave 

significantly better reads out beyond 500 bp than the 36 cm well to read plates (Table 1 ). 

Due to plate availability, most of the sequences described here have been run using the 36 

cm well to read plates. Of the 112 end sequences, 110 (98 % ) were successfully 

sequenced, that is, they gave more than 250 bp of reliable sequence as judged by evaluating 

the chromatograms. To estimate the length and error rate, 45 end sequences falling within 

previously fully sequenced regions, were compared to their high redundancy shotgun 

analyzed counterparts (Table 1). The first fourteen of these sequenced with the T7 primer 

were from the initial optimization process and therefore have a lower read length of 332 bp 

(0.47 % error). After optimization ten and twenty-one more reactions (TI and SP6 primer, 

respectively) were compared to the equivalent sequence obtained by the highly redundant 

shotgun method, and an average read length of 470 bp high quality sequence were obtained 

for the T7 primer (0.20 % error), whereas 514 bp (0.42 % error) were the average for the 

SP6 primer. The worst case, gave 262 bp of reliable sequence (2 errors), whereas many 
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sequences extended out to more than 700 bp, although the error rate does go up towards 

the end of the read (Figure 1). Most of these errors were due to broader peaks at the end of 

the read, and better results were obtained when the reactions were run using the long 48 cm 

well to read plates (Table 1). The majority of the errors internal to the read were due to 

drop-outs of G-peaks following A-residues. This is a common observation for the 

terminator mix used here, and is not specific to the BAC or PAC sequencing reactions. 

Primer walkin~ sequence 

Applying these same conditions for sequencing directly of BACs or PACs, we 

tested primer walking with custom made primers. These primers were picked from ends of 

sequence contigs obtained from random shotgun sequencing projects in an effort to close 

the gaps. Forty-three of these were used on three different BA Cs and one PAC. Thirty-six 

(83 % ) gave good long reads as above, whereas the other seven either gave noisy data or 

no results at all. In two cases the primers were in Alu repeats, but there was no obvious 

reason why the other five failed. The average high quality read length was 525 bp with an 

error rate of 0.60 % (Table 1). Sixteen of the reactions were run using the 48 cm well to 

read plates, and the read length for these were 568 bp, whereas the other 20 using the 36 

cm well to read plates had an average read length of 492 bp (Table 1). 

DISCUSSION 

We have developed a method to sequence insert ends directly from BAC or PAC 

DNA without the intermediate PCR step, which is used in most other end sequencing 

protocols (Riley et al., 1990, Nelson et al., 1991, and, Liu and Whittier, 1995). Our direct 

approach only involves two steps, DNA preparation and sequencing, and thus is 

automatable and generally faster than the PCR based methods. Furthermore, we do not 

have to rely on specific sequences being present in the DNA close to the ends, such as a 
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specific restriction site or an Alu sequence. An additional disadvantage to an intermediate 

PCR step is that if the sequence contains simple repeat tracks, the thermostable enzyme 

tends to skip bases during the PCR amplification and, therefore, confuses subsequent 

sequence analyses. Direct sequences from the clones generally permits accurate sequence 

reads of the repeats. One disadvantage of the direct sequencing method is the requirement 

of several fold more DNA than is necessary for PCR. Preliminary experiments using the 

more sensitive 377 DNA sequencer appear to require half as much, or less, DNA. 

Useful sequences were obtained from 110 of 112 clone ends sequenced with either 

the SP6 or T7 primers. After optimization of the reaction conditions, an average read 

length of about 500 bp with 0.36 % error was obtained. This read length allows one to 

obtain unique sequence on ends that have Alu repeats (~300 base pairs). Accordingly, 

unique STSs can generally be generated from the end sequences. 

Obtaining sequence at the ends of clone inserts is crucial in many mapping projects 

to determine minimal overlap between clones that would go undetected by most restriction 

fragment analyses. As an example, we mapped a 1.1 megabase region using BAC clones 

by STS content mapping and restriction fragment analysis (Boysen et al., 1996). The 

initial analysis generated three BAC contigs. In order to determine whether these contigs 

overlapped, we sequenced the ends of the inserts from the BAC clones at the end of each 

contig. An STS primer pair was made from each sequenced end, and used in PCR assays 

of the potential overlapping clones. Alternatively, the PCR products were used in Southern 

blot analyses of the restricted BACs. Using this approach, two of the contigs overlapped. 

Later, complete sequencing of the two overlapping BAC clones showed the overlap region 

to be 2.2 kb in length. 

Obtaining sequence from the clone ends at the contig boundaries is also useful in 

extending maps. In the BAC mapping project described above, the last gap had no known 

sequences, and thus we had to use clones around the gap to close it. We produced the end 
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sequences from the two BACs extending into the gap and used them to construct PCR 

assays and probes to screen a PAC library. Several PAC clones closed the gap. 

End sequence analysis can also facilitate the choice of minimal sequence tiling 

paths. For example, once an initial BAC has been sequenced, the end sequences of all of 

the overlapping BACs will permit a minimum sequence overlap to be chosen. In the 

project mentioned above, we obtained the complete sequence of two BAC clones on either 

side of the gap. By end sequencing all the overlapping PAC clones and comparing the end 

sequences with the final complete BAC sequences, we could easily choose the smallest 

PAC clone that would close the gap without resorting to any mapping. 

BAC or PAC clones are also excellent substrates for primer directed walking. We 

have sequenced five BACs and two PACs directly by the shotgun method (C. Boysen, 

manuscript in preparation). In most cases, after the initial round of M13 insert sequencing, 

two to ten gaps remained. Most of these gaps were closed by choosing primers about 100 

base pairs from the end of the sequence on either side of the gap, and using the primers to 

walk directly on the large insert clone. One must avoid choosing primers in genome-wide 

repeats. This is easily avoided by computational analysis of the contig sequences against a 

complete data file of human repeat sequences (A. Smit, personal communication). 

Thus, BAC and PAC clones are excellent substrates for direct end sequencing and primer 

walking procedures. These simple procedures should greatly facilitate ongoing mapping 

and sequencing efforts. 
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Table 1. Average high quality read length and error rate. Of the 112 BAC and PAC 

insert ends sequenced directly with SP6 or T7 primers, forty-five of the 110 working 

sequences were compared to their counterparts in sequence determined by the highly 

redundant shotgun approach. Thirty-six of 43 custom primers successful yielded 

sequence. These were likewise compared to the final sequence. 

# of reads Average # of high Error rate 
quality bases 

T7 primera 14 332 bp 0.47 % 

T7 primer 10 470bp 0.20% 

SP6 primer 21 514 bp 0.42 % 

Various primers 36 525 bp 0.60% 
Various primers: 

48 cm well to read 16 568 bp 0.90% 

36 cm well to read 20 492 bp 0.34 % 
a) Preliminary experiments 
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FIGURE LEGEND 

Figure 1. DNA sequence trace obtained by primer walking with a custom synthesized 

oligonucleotide directly on total DNA from BAC956. The dye-terminator sequencing 

reaction was run on a 373 DNA sequencer for 18 hours using the long 48 cm well to read 

plate with 4 % acrylamide in the gel. 
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Summary 

The work described in this thesis has focused on two goals. First, the development 

of efficient strategies to use in large scale DNA mapping and sequencing. Second, using 

these tools to determine the entire DNA sequence of the human TCR alo locus and analyze 

this 1.07 Mb region, including the organization, structure, evolution and polymorphisms of 

the TCR elements, as well as an analysis of non TCR genes, genome wide repeats, and 

other chromosomal features. 

New approaches to mapping and sequencing 

When I started this project five years ago, the major sources of cloned genomic DNA were 

Y AC, cosmid, and phage libraries. Y AC and to some extent cosmid clones were used in 

most mapping projects, despite the fact, that these clone libraries contain a high percentage 

of chimeras, and that the clones easily rearrange or delete DNA (Green et al., 1991). I 

originally began my mapping efforts using Y AC clones, but quickly came to the conclusion 

that more stable, non-chimeric clones were needed to generate representative physical 

maps. For this reason I began working with the newly developed BAC clone system. 

Preliminary results suggested that the BAC clones were quite stable (Shizuya et al., 1992). 

I wanted to test the usefulness of BAC clones as a mapping resource for the human TCR 

alo locus. I had already mapped half of the locus in detail using Y AC and cosmid clones, 

and the 3' one hundred kb of the region had been sequenced by Koop et al., 1994. These 

two results were important for evaluating the fidelity of the BAC clones. I obtained a total 

of 17 BAC clones across the alo TCR region. These were characterized by restriction 

digest patterns, ability to hybridize to densely located probes across the region, and their 

STS content (Chapter 2, 5). Later they were further characterized by obtaining sequence 

information from the ends of the clone inserts (Chapter 6) , and comparing these end 

sequence data with the final sequence spanning the entire region. By doing this one could 
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determine the insert size, and compare it to the sizes obtained by PFGE. Using all of these 

characteristics plus comparison to genomic DNA, Y AC and cosmid clones, sixteen of the 

seventeen BAC clones were found to faithfully represent genomic DNA. The last BAC 

clone had undergone a deletion of 68 kb in its center. This deletion occurred in one of the 

first growth cycles after being picked from the library, since when I went back to the 

original library and picked the same clone number, I got the intact BAC clone with the 

correct size and restriction digest pattern. The fidelity of the majority of BAC clones is 

further supported by in situ hybridization studies showing less than 4 % chimera in more 

than 2000 BACs (Julie Korenberg, personal communication). The majority of the 4% of 

clones resulting in hybridization to two or more chromosomal locations probably arises 

from one of two reasons. First, it happens that during the library construction two colonies 

are transferred to the same well by mistake. Since the BAC clones tested by in situ 

hybridization were not restreaked to obtain single colonies, these "double-clones" will give 

rise to two signals. Second, some BACs contain genes highly homologous to other genes 

at different chromosomal locations and thus can result in more than one signal. This is in 

fact used for example to locate new olfactory receptor gene clusters in the genome. Hence, 

even if 4% of the BAC clones result in more than one signal using in situ hybridization, the 

number of chimeras is probably much smaller. 

Another question relating to the usefulness of BAC clones as mapping substrates, is 

whether they are randomly distributed along the chromosome. The map produced for the 

1.1 Mb TCR region suggested an even distribution of the BACs found in this region. One 

3 kb gap remained, which is expected from a library with 3.7 fold coverage. Again from 

the in situ hybridizations mentioned above, the BACs were also found to be evenly 

distributed along the chromosome. 

BAC clones have one more advantage over Y AC clones. Since BAC clones 

essentially are big plasmids, their DNA can readily be separated from the E.coli host DNA. 

YAC clones usually is copurified with the yeast chromosomes. 
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Having the map in hand, the question was now, how to go about obtaining the 

sequence. Most sequencing efforts had focused on random or shotgun sequencing of 

cosmids. One of the major bottlenecks in the genome project is going from the Y AC map 

to a high resolution cosmid map (a sequence ready map). First, cosmid clones have to be 

obtained either directly by subcloning from Y ACs or by obtaining the cosmid clones from 

genomic or chromosome-specific libraries for a larger region and then binning these against 

the Y AC map. Second, the cosmids thus obtained will have to be ordered to pick the 

minimal tiling path across the region for sequencing. To circumvent this major bottleneck, 

in this case obtaining cosmid clones from the BACs, I attempted to sequence the BAC 

clones directly by the random shotgun method. One major concern was whether the 

different computer assembly programs could handle the extra sequences required to 

assembie a BAC versus a cosmid, since on average the BAC inserts are three to four times 

as large as the cosmid inserts. However, in parallel with the sequencing efforts, new 

powerful basecalling, quality assignment, and assembly programs were developed that 

could handle large numbers of shotgun sequences (Phil Green, in preparation). A total of 

five BACs and later two PACs were successfully sequenced by the shotgun approach. 

BA Cs have an advantages over both cosmids and PA Cs in shotgun sequencing, in that 

their cloning vector constitutes a smaller percentage of the total insert DNA. 

In the final stages of a mapping project to detect overlaps between contigs or to 

make certain one picks the minimal overlapping clones for a sequencing tiling path, 

sequence information from the insert ends of DNA clones is essential. End sequences can 

be obtained for BA Cs, PA Cs, and YA Cs by different PCR based approaches, the 

vectorette technique (Riley et al., 1990), the Alu-vector method (Nelson et al., 1991), or a 

newly developed technique using degenerate primers with vector specific primers (Liu and 

Whittier, 1995). However, these all involve multiple steps, and require specific sequences 

to be present near the insert ends. For these reasons, I developed a technique to sequence 

the ends of BAC inserts directly (Chapter 6). The ability to easily obtain end sequences 
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from BAC inserts and the complete sequence by shotgun approaches in combination with 

BAC clones' fidelity and quite even distribution over the genome, have led to a new 

strategy for sequencing the human genome (Venter et al., 1996). The strategy, called the 

sequence tagged connector (STC) approach, avoids both the low and high resolution 

physical mapping procedures now employed. In short, a 15X BAC library with an average 

insert size of 150 kb is constructed. Sequence information is obtained from both ends of 

all BAC inserts and stored in a database. One or more "seed" BACs are sequenced in their 

entirety, and the final sequence compared to the end sequences in the database. On 

average, 30 overlapping BAC clones will be identified for each sequenced BAC. BAC 

clones with minimal amount of overlap to either end of the "seed" BAC are picked for the 

next cycle of complete sequencing. Thus sequencing proceeds in each direction outward 

from the "seed" BAC clone. 

In conclusion, BAC clones are excellent mapping and sequencing reagents, 

avoiding the technically difficult and time consuming Y AC clone to cosmid clone 

conversion. Alternatively, they could be used in the STC-approach, a procedure that 

involves almost no mapping at all. 

Analysis of 1.07 Mb DNA sequence: The TCR aJ8 locus 

I analyzed the complete sequence of the human TCR a/8 region, 1.07 Mb, using 

several different computer programs, designed to find sequence similarities either within 

the sequenced region itself or against DNA, protein, EST, and DNA repeat databases. This 

resulted in identification of 57 V gene segments, forty-eight of which seem to be 

functional. I analyzed many of the V gene segments for polymorphisms. The sequence 

also revealed several regions with similarity to other non-TCR genes. Five olfactory 

receptor genes, a gene encoding a zinc finger protein, and the DAD gene were identified. 

Analysis of genome wide repeats and GC-nucleotide content across the locus revealed an 
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interesting division into three separate domains. One of these domains correlated with a 

region of highly conserved sequence between man and mouse. The existence of these 

domains might have relevance for rearrangement within the alb locus. 

TCR elements: 

Several hundred sequences, mostly from cDNA studies, have been deposited in 

Genbank for TCR alb gene segments in different species. The complete TCR alb 

sequence was screened against Genbank. I also performed a more sensitive search against 

a library made from all TCR alb elements. This analysis revealed all 45 previously known 

Val'& gene segments (Arden et al., 1995) as well as 12 other sequences with similarities to 

known V gene segments. Three of these sequences appeared to encode functional TCR 

chains, whereas the other nine were classified as pseudo-V gene segments, since they 

appear to be non-functional in that they are missing one or more of the following features: 

start codon, splice sites, or recombinational signals, or they have frameshifts and/or 

stopcodons (Table 1, Chapter 3). Pseudo gene segments have been included in the 

numbering system and map in Chapter 3, since they might have functional alleles in other 

humans. One particular interesting case, is the Va8.5 gene segment which is 96% similar 

to Va8.3 in the coding regions, indicating that one arose from the other by a recent 

duplication. However, the Va8.5 gene segment contains a 1.2 kb insertion of a repeat 

element, MERl 1, in its second exon thus disrupting the reading frame. This V gene 

segment could potentially be functional in alleles that never had the MERl 1 insertion. 

Another 25 sequences were identified with similarity to V gene segments. These were 

termed relics and will presumably never gain function again. Each V gene segment is 

composed of a promoter, a small exonl (40-55 bp) encoding most of the leader peptide, an 

intron ranging in size from 90 to 459 bp, exon2 (275-300 bp), and finally a 

recombinational signal at the 3' end of exon2. 
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The V gene segments are traditionally grouped into subfamilies based on two or 

more members sharing 75% or more nucleotide identity. By this criteria the 57 Valo gene 

segments were grouped into 44 subfamilies. The majority of these are single membered. 

The seven multimembered subfamilies contain up to seven members. The V gene segments 

(excluding Vo2 and Vo3, see later) are spread evenly over 700 kb, resulting in an average 

density of one V gene segment per thirteen kb. This is somewhat less densely populated 

than the TCR ~ locus, where one V gene segment is found every eight kb (Rowen et al. , 

1996). The two loci have approximately the same number of V gene segments (the TCR ~ 

locus contains 65 V gene segments, 19 of which are pseudo genes). However, the 

majority of the V~ gene segments have arisen by more recent duplications, and thus the V~ 

gene segments are divided into fewer subfamilies with more members compared to their 

V alo counterparts. 

To get an idea of the number of T cells expressing different V gene segments, the V 

gene segments were compared against all of the Valo cDNAs present in Genbank. This 

comparison indicated different levels in usage of V gene segments (Figure 1, Chapter 3). 

Many of the more 3' V gene segments only had few cDNAs present in Genbank. This 

however, might be due to their recent discovery and therefore earlier cDNA studies did not 

include probes for these V gene segments. Three of the potentially functional V elements 

(Va7, Va9, and Va18) were not found amongst the cDNAs. The reason for this is 

unclear, but could be due to low levels of expression, or as above that the majority of 

cDNA studies performed relied on already known sequences. It should be mentioned that 

the same phenomenon has been seen in the human TCR ~ locus (Rowen et al., 1996). 

Two apparently functional V gene segments had no cDNA counterparts. These V~ gene 

segments were shown to encode amino acids, that would impair the three-dimensional 

structure of the TCR. A few V gene segments (Vao14 and Va17) had many cDNA 

complements in Genbank, but this was due to one study analyzing two highly expressed V 

gene segments in thyroiditis. Thus comparisons to cDNAs in Genbank does not give an 
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accurate picture of the normal expression of the different V gene segments. Two studies 

have reported differential levels of V gene segment usage (e.g., Val 2, Va13 and Va21 

(Robinson, 1992, and Moss et al., 1993). The studies were performed using RNA 

obtained from peripheral blood cells from one or a few individuals. Therefore the 

differences may have arisen from similar thymic selection or clonal expansions in 

individuals. Increased usage of the Va12 and Va13 elements can be explained, since the 

two studies did not distinguish between the different subfamily members, and thus 

combined the expression frequencies of several V gene segments into one group. 

However, the Va21 element represents a single member family . Thus it is interesting to 

speculate why this gene segment is found expressed in many peripheral T cells. I could not 

find any explanation for this, based on location of this V gene segment or on its promoter 

or recombinational signal sequences, and it is possible it is due to the selection procedure 

and not increased DNA rearrangement frequencies. 

As mentioned in the introduction, one of the more interesting question in 

immunology concerns the preferential rearrangement and expression of specific V gene 

segments. How does the premature T cell decide to express an a~ or a yo TCR? Why is 

the Vo2 element expressed in the very first wave of T cells in the fetal thymus followed a 

few days later by Vol expression? Both occur before Va gene segment rearrangement. 

Why does Vol , which is found in the middle of the Va gene segments rearrange almost 

exclusively to form TCRo chains? Several studies have shown enhancer and silencer 

regions located close to the two constant regions, Co or Ca (Winoto and Baltimore, 1989, 

Lauzurica and Krangel, 1994a,b ). Each of these regions has several transcription factor 

binding sites, many of them in common. The majority of transcription factors specific for 

the binding sites in these regions are not T cell specific, let alone T cell lineage specific. 

Special combinations of transcription factors may be responsible for some of the 

differential V gene segment rearrangement. Careful examination of V gene segment 

promoters or recombinational signals has been difficult, because few have been identified. 
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I aligned all the DNA recombinational signals grouping them into three categories: those 

associated with V8, Va, or Va8 gene segments, respectively (Figure 3 in Chapter 3). No 

obvious differences were noted. V82 and V83 do have heptamers that differ from the 

consensus, but only in positions less conserved in the recombinational elements for Va 

gene segments. Similar differences have been found in the recombinational signals for 

some of the Va gene segments. V81 has a perfect heptamer-23 spacer-nonamer, and so 

does the majority of the Va8 gene segments. The V81 element is the only V gene segment 

containing a 3' T nucleotide as the very last base before the heptamer. Whether this could 

make a difference in the rearrangement pattern from Jato D8 is unknown. In this regard, I 

studied the recombinational signals on either side of the three D8 gene segments, compared 

to those of the Ja gene segments. Only D83 has two perfect recombinational signals, 

whereas D81 and D82 have recombinational signals somewhat different from the 

consensus. This may explain why these are used less frequently in the expressed 8 genes, 

especially in the fetal thymus, where V82 almost exclusively rearranges to D83. 

I also classified the promoters of Va, V8, Va8 elements in their respective groups. 

Five different programs (Prestridge and Stormo, 1993, Chen et al., 1995, Prestidge, 1995, 

Stormo and Hartzell, 1989, and Lawrence et al. , 1993) were employed to screen the 

sequences extending 1000 bp upstream from the start codon (Gary Stormo, personal 

communication). Small stretches of similarity could indicate transcription factor binding 

sites of importance in regulating rearrangement or transcription. No apparent TATA-boxes 

could be found. This has also been found to be true for the TCRy genes (Hettmann et al., 

1992). A 20 bp sequence was found more or less conserved around 200 bp upstream of 

the start codon (Figure 3 in Chapter 3) in the majority of the functional Va gene segments 

(33 out of 40), in three out of the five Va8 gene segments, and in none of the V8 gene 

segments. It was found conserved in about half of the pseudogenes. This sequence has no 

or little similarity to other known sites for DNA binding proteins. If the function of this 

sequence is to bind specific proteins, it is interesting, that the 20 bp is considerable longer 
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than most eukaryotic protein binding sites. Thus it might contain more than one binding 

site, to the same or different proteins. Whereas it might be of significance that the 20 bp 

sequence is not found in the Vo genes, it does not play an essential role in DNA 

rearrangement or transcription, because it is not found in all of the expressed of the Va 

gene segments. An earlier study has shown that a 600 bp fragment upstream of a Va gene 

segment contains T cell specific promoter activity (Luria et al., 1987). What protein(s) if 

any this sequence may bind is unknown. No transcription factors are currently known to 

recognize this sequence. In this regard it is interesting to note, that I found a presumably 

functional gene encoding a novel zinc finger protein upstream of the TCR region (see 

below). Zinc finger proteins are often transcription factors, and some of them like GATA-

3 have been shown to bind to enhancers in the TCR loci (reviewed in Leiden, 1993, Marine 

and Winoto, 1991, and Ho et al., 1991). Whether these 20 bp are found conserved in 

other TCR V gene segments is currently under investigation. A conserved CREB element 

has been observed in more than half of the V~ gene segments (Rowen et al., 1996). A few 

of the promoters for the V alo gene segments contain CREB elements, but the majority do 

not (Gary Stormo, personal communication). 

Polymorphisms in the Va/o gene segments: 

I screened most of the functional V a/o gene segments for DNA variations 

comparing 6-8 individuals (12-16 haplotypes). This project was part of a larger effort to 

find polymorphic markers evenly distributed across the TCR a/o locus to use in disease 

association studies. Thirty V gene segments were amplified by PCR from 8 different 

individuals, and the products sequenced (Chapter 4). Of these 30 V gene segments, half 

were found to contain DNA variations for a total of 27 variations. These were later shown 

to be polymorphisms by typing a hundred individuals (Deborah Nickerson, personal 

communication). The majority of the polymorphisms were single base nucleotide 

substitutions, whereas a few microsatellites were found in introns. Twelve of the sequence 
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variations were found in the introns, and fifteen in exons. The frequency of 

polymorphisms was the same in introns and exons, one in 433 bp, over the 12-16 

chromosomes studied. Based on the frequencies of each allele found in the 6-8 

individuals, the chances for identifying two different alleles when comparing two random 

sequences were calculated for each polymorphism. These values ranged from 0.12 to 0.49, 

and were utilized to calculate the overall nucleotide diversity, which is defined as the 

number of differences per nucleotide site, when comparing two random sequences. This 

was found to be 8.0 x 10-4 (0.08 % ) or a little less than one nucleotide in a thousand. This 

value is comparable to the nucleotide diversity obtained by Li and Sadler (1991), who 

compared approximately 75,000 bp from 49 genes. 

Of the 15 substitutions in the coding regions, six are silent mutations, whereas the 

other nine lead to amino acid changes. All of the silent substitutions are found at codon 

position three, whereas the functional substitutions are found at codon position one (4), 

two (3), or three (2). This is expected, since if there's no codon bias, 95% of substitutions 

in codon position 1 will lead to amino acid change, all nucleotide changes in position 2 are 

functional, whereas only 28% of nucleotide changes in position 3 leads to amino acid 

change (Nei, 1988). Thus 74% of random mutations would lead to amino acid changes. 

In theory, if no selection is involved, the percentage of synonymous variations per 

synonymous site should be the same as the percentage of non-synonymous changes per 

non-synonymous site. Not considering possible codon bias, here the number of functional 

nucleotide changes per non-synonymous site is smaller than the equivalent number for the 

synonymous sites. This indicates negative selection for amino acid substitution. 

However, the distribution of the two kinds of nucleotide changes is not random. All of the 

silent variations were found in the framework sequences, whereas many of the amino acid 

changing variations were found in or around the first and second hypervariable domains 

(Figure 2, Chapter 4). If one only considers the hypervariable regions, only functional 

sequence variations have been found, which could indicate positive selection for amino acid 
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changes in these regions. However, the data here are too few to make any conclusions in 

this regard. Furthermore, the most dramatic amino acid changes seem to fall in these 

hypervariable regions. In the framework regions, there seems to be negative selection, a 

higher proportion of silent mutations has been found here. It is particularly noteworthy, 

that none of the functional substitutions has been found at any of the 40 conserved residues 

(Chothia et al., 1988). Polymorphic sites have been reported in both human and mouse 

TCR ~ V gene segments, leading to non functional alleles (Charmley et al., 1993). Even 

deletion of larger genomic regions of DNA spanning several V gene segments has been 

found (Seboun et al., 1989). In all individuals tested, all 30 V gene segments were 

amplified, suggesting that there were no major deletions including these elements, or genes 

mutated so strongly that they were no longer recognized in the PCR assay. 

The functional mutations described here supposedly lead to functional changes in 

the TCR. This has been shown for different alleles of V gene segments in the TCR ~ 

region (Posnett, 1990). These changes can alter a/~ pairing stability, influence positive or 

negative selection in the thymus, or modify the recognition of MHC/antigen. 

The polymorphisms will be useful in studying the possible correlations between 

specific TCR alleles and susceptibility to autoimmune disease. A careful analysis should 

include markers in linkage disequilibrium with one another across the entire locus. 

Preliminary results of the polymorphisms in this study, indicate that even markers close to 

each other might not be in complete linkage disequilibrium (Deborah Nickerson, personal 

communication). Additional genetic markers should be developed. One of the tools now 

available from the entire sequence, is the ability to select microsatellites across the locus. 

Microsatellites are often highly polymorphic, and so by testing them by PCR against 

several individuals, the polymorphic candidates can be identified. 

Finally, polymorphisms can arise from sequence variations in noncoding sequence. 

The sequences from the overlapping BAC, PAC, and cosmid clones were compared. If the 

sequence was obtained from two different haplotypes (Table 4, Chapter 3), the variations 
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found could be due either to sequencing errors or DNA variations. All differences were 

checked against the original raw sequence data to determine whether they were errors or 

DNA variations. DNA variations were found quite frequently (every 750 bp) in most of 

the overlapping sequences, except for the overlaps at the 3' end of the locus. This might 

reflect the need for the 3' end to be highly conserved. It could also be a result of different 

mutation rates between the distinct chromosomal domains in which the overlaps are located 

(see below). 

Evolution of the TCR a/8 region: Homology units, repeats, and 

chromosome structure. 

The V a/8 gene segments belonging to the same subfamily have in many cases 

arisen by recent large scale duplications of the genomic DNA. Several large duplication 

events have occurred including 50 and 20 kb homology units as indicated in Figure 7 in 

Chapter 3. These regions contain the Vcx8, Val 1, Vcxl2, Vcx13, Vcx14, and Vcx15 

subfamilies, three of which (V cx8, Vex 12, and V cx13) are multimembered because of these 

duplications. The other Vex elements involved in the duplication have diverged from each 

other so they no longer are classified in the same subfamily, some of them have become 

pseudogenes or even relics over time. Smaller local duplication have also occurred 

including the Val , V cx8 , and V cx38 gene segments. In these cases, two V members of the 

same family are found next to each other (e.g., Vcx38.l and Vcx38.2 are 95% identical). In 

the case of V cx8, the small local duplication has happened before the large scale duplications 

(Figure 7, Chapter 3). For example is Vcx8.2 much more similar to Vcx8.4 in the other 

homology unit, than it is to V cx8.3 right next to it in the same homology unit. These long 

range duplications give an idea of how the TCR V gene segment repertoire has diversified 

over time through small and large duplications. 



174 

Evidence of other local duplications has been found with the five identified 

olfactory receptor genes (see below). They can be divided into two subfamilies with two 

and three members, respectively, based on their nucleotide sequence. 

Most of the larger homology units mentioned above have arisen relatively recently. 

A comparison to the mouse TCR al'i> map (Wang et al., 1994) indicates that the human 

homology units are not found in mouse. Other large scale duplications involving different 

V gene segments have been found in mouse. Although the entire sequence for mouse is 

not yet available, smaller regions have been sequenced. Koop et al., 1992, sequenced 

almost 100 kb in mouse encompassing the C'i>, V'i>3, Ja, and Ca elements. When this 

sequence was compared to the equivalent region in human a striking similarity of about 

70% was found across the entire 100 kb, even though the coding regions constitute only 

about five percent. With more sequence now available for both human and mouse, further 

similarity analysis could be carried out. I compared thirty kb upstream to the previously 

sequenced 100 kb region with the corresponding region in mouse (Lee Rowen, personal 

communication). This sequence includes the V'i>2, D'i>, and J'i> elements, and it was of 

interest how far 5' the highly conserved region extended. The sequence similarity extended 

across this 30 kb region as well (Figure 6, Chapter 3). However, it was observed that 

whereas the V'i>3 gene segment in human is the homologue of the V'i>5 element in mouse 

(both are found 3' to the C'i> gene), the human V'i>2 element was not orthologous to the 

mouse V'i> 1 element. This is surprising, since these two V gene segments both are 

expressed in the first wave of T cells in thymic development and both map to the 

approximately same location relatively to the other TCR elements in the human and mouse 

regions, respectively. It is possible that, if in fact they shared a common ancestor, one of 

the gene segments was duplicated to another location and there was no longer a need to 

preserve the original orthologue. I next compared a 35 kb region including the Va26.2 and 

Va34 gene segments to a cosmid sequence containing the mouse V'i>2, Va'i>6, and Va16 

elements (Seto et al., 1994). This region in human is found almost 200 kb upstream from 
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the conserved 130 kb region. At this point only the V genes themselves exhibited similarity 

(Figure 6, Chapter 3). 

The reason for the high sequence conservation across the 3' end is unknown, but 

the conserved domain corresponds to striking changes in percent GC content and density of 

genome wide repeats. Studies have indicated that the human genome can be divided into 

isochores based on their GC content (Bernardi, 1993). Four isochores have been defined 

in human, with GC contents of about 40 %, 45 %, 48 %, and 53 %, respectively. 

Isochores are estimated to be larger than 300 kb in length, although they are usually not as 

long as chromosomal bands. Chromosomal bands are characterized by their staining 

intensity using Giemsa and are generally several megabases. G-bands (Giemsa dark) are 

primarily composed of isochores of the GC-poor type, mostly the 40% isochore, whereas 

R bands (Giemsa pale) are composed of all four types (the majority being the 40% and the 

45% isochores). The T bands are composed of the three most GC-rich isochores. The 

character of genome wide repeats present varies with GC content, e.g., Alu elements, 

which are GC rich, are mostly found in GC rich sequence, and LINE elements (AT-rich) 

are found in the GC-poor regions. Figure 6 in Chapter 3 shows the GC content and 

distribution of LINE and Alu elements across the entire TCR a/& region. Three different 

regions were observed. The first 100 kb has about 45% GC, which drops gradually over 

the next 100 kb to about 38%. GC content is low (38%) in the 750 kb spanning the V 

elements. It then increases to 45% again over the last 180 kb. The localization of the 40% 

and 45% isochores in the TCR (J.}8 locus corresponds to its cytogenetically determined 

location on chromosome 14ql 1.2 (Barbara Trask, personal communication) being an R

band. The LINE elements are present in low levels at the 5' and 3' ends, whereas they 

make up about 22 % of the DNA sequence in the middle domain. This correlates with the 

observation that LINEs are more frequent in GC-poor regions. The Alu sequences occupy 

36% of the first 100 kb, as expected in more GC-rich regions, and gradually become rarer 

as the GC content diminishes. Alu elements occupy about 7% of the middle domain, 
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which is GC-poor. However, the Alu content never rises again even though the GC 

content does over the last 200 kb. Alu repeats are rare in this last domain. It seems that in 

this very conserved 3' end, there is even selection against genome wide repeats being 

inserted. This is further supported by an analysis of the few repeats present here. They 

seem to go back to before the divergence between mouse and man (Adrianus Smit, 

personal communication). 

Another interesting point about these GC isochores is their relationship to other 

chromosomal behaviors. Of interest here is the open chromatin structure and early 

replication of GC rich regions, as well as the occurrence of increased transcription and 

recombination. These factors have all been implied in the preferential rearrangement of 

specific V gene segments. GC-rich regions further seem to be associated with a decrease in 

mutation rate (Wolfe et al., 1988). This could account for some of the difference observed 

in the frequency of variations in the middle domain ( one variation every 750 kb) versus the 

3' domain (one variation every 4.5 kb). 

The sequence contains genes not related to the TCR: 

The TCR a/8 elements extend over 900 kb from the most 5' Val.1 gene segment 

to the Ca region. On both sides of this region are found other genes not related to the TCR 

elements. 

Although not fully sequenced yet, a gene encoding the defender against apoptotic 

cell death, DAD, has been found 15 kb 3' to the Ca region (Kai Wang, personal 

communication). This protein is highly conserved in different species (human and hamster 

100%) as found by cDNA studies (Nakashima et al., 1993) and has been mapped to 

chromosome 14ql 1-q12 in human and chromosome 14 in mouse (Apte et al., 1995) in 

correspondence to it's location here next to the TCRa/8 locus. 

At the 5' end, a family of five olfactory receptor genes were identified. These were 

found interspersed with the Val.I and Val.2 elements, and divided into two groups 
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based on their sequence similarity. Three of them, one of which is a pseudogene due to a 

single stop codon, are highly homologous to a rat olfactory gene, whereas the other two, 

one of which contains a frameshift and therefore are non-functional, are more similar to a 

chicken olfactory receptor (Figure 2, Chapter 3). The olfactory receptors, each encoded by 

a single exon, are between 310 and 314 amino acids long. Both of the two clusters have 

diverged from other human olfactory receptor genes, and thus can be classified as new 

subfamilies (Ben-Arie et al., 1993). At the protein level, the similarity between olfactory 

receptor one, two, and three is between 67 and 93%, whereas they are similar to the second 

subfamily by 37-44%. The three member subfamily is similar to a rat olfactory receptor at 

73-87%. Olfactory receptors contain seven transmembrane helices (Figure 2 in Chapter 3), 

and belong to the superfamily of G-protein coupled receptors. The amino acid differences 

in the five proteins found here, are primarily found at the N- and C-terminals, and are 

otherwise spread evenly across the transmembrane domains and the intra- and extra-cellular 

loops. In a sense, the organization of olfactory receptor genes is like one of the TCR 

families. It is likely that an original olfactory receptor gene has duplicated and translocated 

to different chromosomes so as to generate several gene clusters each containing many 

olfactory receptor genes. Like the V gene segments, many of the olfactory receptor genes 

have been shown to be pseudo-genes (Crowe et al., 1996), like two of the five found here. 

It has been suggested, that the regulation of expression is determined by both allelic 

inactivation and cis-controlling elements to ensure that each neuron expresses only one or a 

few olfactory receptors (Chess et al., 1994). 

Upstream of the olfactory receptor genes is a gene encoding a zinc finger protein. 

An open reading frame of 1003 amino acids with similarity to a special class of homeotic 

genes was identified. This class includes the Drosophila sal gene (Kuhnlein et al., 1994) 

and its Xenopus homologue, Xsal-1 (Hollemann et al., 1996). Like these to genes, the 

zinc finger gene found here encodes three double zinc fingers of the CC/HH type 

(Appendix, Chapter 3) as well as a single zinc finger connected to one of the double zinc 
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fingers. Each of the double zinc fingers is bridged by an H/C-link (Schuh et al., 1986). It 

furthermore contains a zinc finger of the CC/HC class which has also been found in 

Xenopus Xsal-1, but not in Drosophila sal. Except for the zinc finger domains little 

homology is observed between the three proteins. There are one glutamine-rich stretch 

found conserved in all three species, and another smaller region has been conserved 

between human and Xenopus. The genes in Drosophila and Xenopus include a small first 

and third exon, which I have not been able to locate in the zinc finger gene found here. 

However, several cDNAs have been identified in the EST databases with perfect matches to 

the 3' end of this region, indicating this portion to be the long untranslated region also 

found in the Xenopus and Drosophila genes. The cDNAs have been found in many 

different both fetal and adult tissues. Upstream of the gene, where a potential first exon 

may be located is a CpG-island. CpG islands are usually found with household genes. Sal 

and Xsal-1 have predominantly been found expressed in the central nervous system early in 

development, and have been suggested to function as transcriptional activators or 

suppressors. The function and expression pattern of the zinc finger gene found here is 

unknown. 

Besides these genes, several other similarities to known genes were found (Table 3, 

Chapter 3). The majority of these were found 5' to the TCR V gene segments, and are 

probably pseudogenes. Many of them contain introns, suggesting they have arisen by gene 

duplication. They are rendered non-functional by one or a few frameshifts and/or stop 

codons, but otherwise have an amino acid sequence almost identical to their functional 

counterparts. 

Several other regions identical or with similarity to ESTs or longer unknown 

sequences in Genbank, may constitute new genes or DNA repeats. Likewise, many open 

reading frames have been located with unknown, if any function. 
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In conclusion, the sequence of the human TCRa/8 locus has not only revealed the 

overall organization and structure of the TCR elements, and given us the tools to further 
' 

exploit many aspects of the immune system, but it has also revealed interesting 

chromosomal features, and given insight into the number of genes and pseudogenes in the 

DNA surrounding this locus. 
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