
UNIVERSIDAD DE CANTABRIA

PROGRAMA DE DOCTORADO EN CIENCIA Y TECNOLOGÍA

TESIS DOCTORAL

ENRUTAMIENTO ADAPTATIVO NO MÍNIMO
PARA REDES DE INTERCONEXIÓN EFICIENTES

PHD THESIS

NON-MINIMAL ADAPTIVE ROUTING FOR
EFFICIENT INTERCONNECTION NETWORKS

Realizada por: Mariano Benito Hoz

Dirigida por: Julio Ramón Beivide Palacio

 Enrique Vallejo Gutiérrez

Escuela de Doctorado de la Universidad de Cantabria

Santander 2020

Non-minimal Adaptive Routing for Efficient
Interconnection Networks

Mariano Benito Hoz

supervised by
Dr. Ramón Beivide and Dr. Enrique Vallejo

Doctor of Philosophy
Department of Computer Science and Electronics

University of Cantabria
September 2020

Non-minimal Adaptive Routing for Efficient
Interconnection Networks

byMariano Benito Hoz
is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

COLOPHON

This document is typeset using Donald E. Knuth’s TEX typesetting system, through LuaTex1

engine by Taco Hoekwater et al. implemented in Christian Schenk’s MiKTeX,2 and Benito
van der Zander’s TeXstudio3 editor. Its template is developed over KOMA-Script srcbook4

document class maintained by Markus Kohm. The bibliography is organized with Oliver
Kopp’s JabRef5 and processed by BibLaTeX6 using Biber7 as its backend, which are mainly
maintained by Philip Kime and François Charette respectively. The typeface used for reg-
ular text is 12pt Robert Slimbach’s Minion Pro.8 Sans-serif text is written in Slimbach and
Carol Twombly’s Myriad Pro.9 Jim Lyles’s Vera Mono10 and Claudio Beccari’s 𝐴𝑠𝑎𝑛𝑎 𝑀𝑎𝑡ℎ11

fonts are used for monospaced and 𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 text respectively. Most of the graphics are
generated using gnuplot.12

1http://www.luatex.org
2https://miktex.org
3https://www.texstudio.org
4https://www.ctan.org/pkg/koma-script
5https://www.jabref.org
6https://www.ctan.org/pkg/biblatex
7https://www.ctan.org/pkg/biber
8https://fonts.adobe.com/fonts/minion
9https://fonts.adobe.com/fonts/myriad

10https://www.dafont.com/es/bitstream-vera-mono.font
11https://www.ctan.org/tex-archive/fonts/Asana-Math
12http://www.gnuplot.info

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.luatex.org
https://miktex.org
https://www.texstudio.org
https://www.ctan.org/pkg/koma-script
https://www.jabref.org
https://www.ctan.org/pkg/biblatex
https://www.ctan.org/pkg/biber
https://fonts.adobe.com/fonts/minion
https://fonts.adobe.com/fonts/myriad
https://www.dafont.com/es/bitstream-vera-mono.font
https://www.ctan.org/tex-archive/fonts/Asana-Math
http://www.gnuplot.info

RESUMEN

La humanidad tiene un continuo deseo de evolucionar. Aplicado a la ingeniería de compu-
tadores, este ha resultado en la construcción de sistemas computacionales cada vez más rá-
pidos y con más rendimiento. Durante las últimas décadas y acorde a la ley de Moore [162],
estos sistemas han duplicado su rendimiento cada dos años. Inicialmente produciendo pro-
cesadores tan rápidos como era posible y más recientemente, incrementando el número de
cores13 en losmicroprocesadores [112]. Sin embargo, los requisitos de cómputo de las aplica-
ciones que cimientan los avances científicos, industriales o sociales exceden en gran medida
las capacidades de una única estación de cómputo. Por lo tanto, para dar respuesta a estos
requerimientos se agrega la potencia de múltiples nodos de cómputo, dando lugar a lo que
habitualmente se conoce como sistemas de computación paralelos [12].

Cualquier sistema que emplea múltiples nodos de cómputo para ejecutar una aplicación
debe ser diseñado para permitir una comunicación eficiente entre todos ellos. De otra ma-
nera, las ventajas del procesamiento paralelo desaparecerían. Por lo tanto, una red de inter-
conexión que permita a los diferentes nodos de cómputo compartir información es obliga-
toria y una pieza clave de los sistemas paralelos. En definitiva, la red de interconexión es el
subsistema crítico que convierte un sistema de computación de altas prestaciones en un «su-
percomputador». Debido a ello y a la constante evolución de estos sistemas, la importancia
de las redes de interconexión está en constante crecimiento. Asimismo, estas juegan un rol
crucial determinando el rendimiento y el coste total del sistema [59, 54].

El concepto de red de interconexión es definido por Dally y col. [54, p. 2] como «un sis-
tema programable que transporta información entre terminales».14 Es un sistema compuesto
por diferentes elementos, principalmente por un conjunto de puntos de intercambio de in-
formación llamados enrutadores (routers) que están interconectadosmediante una colección
de cables. Desde un punto de vista clásico, es programable porque hace las acciones necesa-
rias en sus diferentes elementos para entregar la información transportada desde su origen
hasta su destino. La comunicación entre los diferentes nodos de cómputo en una red de in-
terconexión es realizada mediante el intercambio de mensajes. Estos son enviados por los
enrutadores a través de los múltiples enlaces de red que conectan los diferentes enrutadores
entre si. Los mensajes pueden ser divididos en paquetes. Si bien una red de interconexión
puede ser usada tanto en el ámbito del sistema como del chip, esta tesis se centra en su aplica-
ción a nivel de sistema, en el cual la red de interconexión permite el intercambio demensajes
entre los diferentes nodos de cómputo que componen un sistema de computación paralelo.
Este y otros aspectos introductorios son tratados en el capítulo 1 de manera más exhaustiva.
A continuación se presentan las cuatro características principales que definen una red de
interconexión:
13La Informática es una ciencia reciente y debido a ello, existe un conjunto de términos en inglés que se usan

sin traducir en textos en español por no tener estos una traducción clara. Estos son escritos en cursiva.
14Texto original: a programmable system that transports data between terminals.

i

◼ Topología: determina el patrón de conexión entre los diferentes enrutadores de la red
que define exactamente cómo estos son interconectados mediante cables. La topolo-
gía es un aspecto crucial de la red de interconexión porque establece sus límites de
rendimiento determinando su diámetro y su bisección, así como su diversidad de ca-
minos. El diámetro de una red es el mayor número de saltos entre dos enrutadores
usando caminos mínimos. La bisección de la red es el menor conjunto de enlaces que
divide la red en dos partes iguales. La diversidad de caminos determina el número
de caminos mínimos existentes entre la mayoría de parejas de nodos de cómputo. El
trabajo de doctorado mostrado en esta tesis basa su investigación principalmente en
la topología Dragonfly [108], concretamente en su variante conocida como canónica
y con un patrón de conexionado de los cables globales denominado palmtree [38].

◼ Enrutamiento: determina qué camino recorre un mensaje entre su nodo de cómputo
origen y destino. El algoritmo de enrutamiento determina la fracción de rendimiento
que es obtenida del límite impuesto por la topología y balancea la carga de la red bajo
patrones de tráfico adversos. Esto último se puede realizar aplicando directamente el
algoritmo de balanceo de carga propuesto por Valiant (VLB, [187, 186]), el cual con-
siste en enviar cada paquete a un nodo aleatorio de la red (𝑅𝑅𝑂𝑂𝑇) y después enviar
dicho paquete desde ese nodo a su verdadero destino. Si además se desea enviar el
tráfico por rutas mínimas cuando sea posible, se debe contemplar el uso de algorit-
mos de enrutamiento adaptativos que seleccionan entre rutas mínimas o no mínimas
basándose en el estado de la red. En una red Dragonfly, estos algoritmos están prin-
cipalmente representados por UGAL [172] y Piggyback (PB, [96]). UGAL utiliza la
información de congestión en los puertos asociados a las rutas mínima y no mínima
para decidir cuál emplear, lo que implica que necesita que la congestión se propague
hasta el enrutador origen para detectarla. Cuando la congestión es remota, lo cual
ocurre típicamente en la Dragonfly, PB aporta sobre UGAL información compartida
entre diversos enrutadores.

◼ Control de flujo: reserva los diferentes recursos de la red a los paquetes que la están
atravesando y puede detectar y prevenir situaciones de deadlock [180] y livelock [59].
Este aspecto adquiere relevancia cuando la utilización de los recursos es elevada. Los
mecanismos de control de flujo emplean cierta información para notificar a otros en-
rutadores su capacidad para recibir mensajes. Esta información puede indicar la dis-
ponibilidad como los mensajes de pausa en Ethernet o la cantidad de espacio libre
como los créditos de Infiniband. Habitualmente, estos mecanismos se aplican salto a
salto pero también hay técnicas similares para manejar la congestión punto a punto
como lasnotificaciones explícitas de congestión (Explicit CongestionNotification, ECN).

◼ Arquitectura del enrutador: define la organización del enrutador incluyendo el switch
fabric, los buffers y la lógica de control asociada a estos elementos. La arquitectura
del enrutador está muy relacionada con el enrutamiento y el control de flujo que va

ii

a ser implementado en la red. Los enrutadores pueden exponer ciertos contadores a
disposición de los administradores de red y de su propia arquitectura. Los enrutadores
pueden ser particionados de manera lógica en tres planos o capas: el plano de datos
que realiza la transferencia de un paquete desde una interfaz a otra del enrutador, el
plano de control que determina cómo deben ser transferidos los paquetes y el plano
de gestión que permite la configuración y monitorización del enrutador.

Cada uno de los aspectos mencionados anteriormente determinan como la red de interco-
nexión es implementada y establecen un límite a su rendimiento y coste. El rendimiento de
una red de interconexión es cuantificado principalmente mediante dos métricas: el ancho de
banda (throughput) y la latencia (latency). El ancho de banda indica la tasa de transferencia
de datos mantenida que se puede conseguir en la red y la latencia el tiempo transcurrido
en trasferir un mensaje desde su origen a su destino. Una cota clave del rendimiento es el
punto de saturación, en el cual el ancho de banda llega a su pico máximo por lo que ya no
puede soportar más aunque se incremente la carga ofrecida a la red. Asimismo, otro factor
estudiado cuando se analiza una red de interconexión es la equidad (fairness) asignando los
recursos a los diferentes nodos de cómputo.

La evolución de la tecnología ha propiciado la convergencia entre los sistemas de super-
computación (High-PerformanceComputing, HPC) y los sistemas de centros de datos empre-
sariales (Data Center, DC). Los sistemas para HPC son desarrollados acorde a los requisitos
de las aplicaciones de alta computación, las cuales habitualmente son intensivas en comu-
nicación y sensibles a la latencia de red. Los sistemas para DC empresariales habitualmente
se orientan a proveer servicios a través de internet, como páginas web o correo electróni-
co, y estos no son muy sensibles a la latencia, dado que operan en las escalas de tiempo de
las personas que los utilizan. Sin embargo, las aplicaciones de back-end que proveen estos
servicios pueden requerir una comunicación intensiva y baja latencia. Esta tesis se centra
en sistemas HPC, aunque sus contribuciones pueden ser aplicadas a las redes de grandes
DCs. Tradicionalmente, la tecnología Ethernet «commodity» ha sido empleada en entornos
domésticos y DC empresariales. Sin embargo, la tecnología Ethernet está adquiriendo una
relevancia considerable en los sistemasHPC. En la última lista Top500 [179], que registra los
500 supercomputadores más veloces del momento, dicha tecnología representa una porción
ligeramente superior a la mitad de los sistemas.

Recordando el concepto de programabilidad y siguiendo la tendencia marcada por el de-
sarrollo de la computación en la nube, se introdujo el concepto de las redes definidas por
software (Software-Defined Networking, SDN). Esta propuesta aspira a hacer las redes ágiles
y flexibles, lo que permite que sean inteligentes y estén controladas de manera centralizada
usando aplicaciones. SDN sugiere el uso de un controlador centralizado que directamente
controle los múltiples dispositivos de enrutamiento presentes en la red. Además, el concepto
ha continuado evolucionando y su siguiente paso ha sido permitir la definición del compor-
tamiento de los dispositivos de red mediante un lenguaje de configuración independiente
del dispositivomientras quemantiene centralizado el control de losmismos. Estos dispositi-

iii

vos de red son conocidos como dispositivos PISA (Protocol Independent Switch Architecture)
y permiten que el plano de datos sea programado. El capítulo 2 analiza en profundidad los
aspectos mencionados anteriormente y otros temas fundamentales de las redes de interco-
nexión que son relevantes para esta tesis.

Como se ha visto, el primer aspecto a especificar para definir una red de interconexión
es su topología, la cual está muy influenciada por las restricciones de colocación de los di-
ferentes elementos del sistema. Las redes escalables de bajo diámetro que son eficientes en
potencia y coste, como la Dragonfly, están basadas en topologías que tratan de acercarse al
límite de Moore15 [82, 135]. Estas redes sacrifican la diversidad de caminos para obtener la
máxima escalabilidad, lo que favorece que sus enlaces se congestionen en el momento que el
tráfico deja de ser benigno. Por lo tanto, una vez definida la topología y por ende los límites
de rendimiento de la red, se debe diseñar un algoritmo de enrutamiento que se acerque lo
máximo posible a estos límites y, debido a la ausencia de diversidad de caminos mínimos,
dicho enrutamiento debe explotar los caminos no mínimos cuando el patrón de tráfico es
adverso. Típicamente, estos algoritmos de enrutamiento se implementan demanera adapta-
tiva mediante la comparación de los créditos disponibles en los diferentes puertos de salida.
Los caminos no mínimos habitualmente son construidos de acuerdo a la propuesta de Va-
liant que implica rutas no mínimas que doblan la longitud de las rutas mínimas y por lo
tanto, doblan la latencia media soportada por los paquetes.

El trabajo de doctorado expuesto en esta tesis tiene como objetivo el diseño de algoritmos
de enrutamiento adaptativo nomínimo para redes de interconexión eficientes. Este objetivo
es abordado dividiéndolo en dos subobjetivos ortogonales. El primero es motivado por el
proyecto Mont-Blanc [157], cuyo objetivo es realizar un sistema HPC basado en sistemas
en chip (Systems on a Chip, SoCs) de ARM diseñados inicialmente para dispositivos móvi-
les. Estos SoCs habitualmente tienen una interfaz de red Ethernet y, debido a la ausencia de
créditos en dicha tecnología, surge el propósito de diseñar un enrutamiento sobre esta tec-
nología capaz de seleccionar entre rutas mínimas y no mínimas sin basarse en créditos. El
segundo subobjetivo es motivado por la existencia de múltiples caminos no mínimos entre
los enrutadores en las topologías de bajo diámetro [54] como la Flattened Butterfly [110] o
la Dragonfly [108] y la posibilidad de adaptar el enrutamiento a las condiciones de la red [54,
110, 108]. Entonces, surge la meta de adaptar el número de saltos en las rutas no mínimas a
las condiciones de la red, en vez de utilizar directamente rutas acordes al algoritmo de ba-
lanceo de carga de Valiant. Durante el periodo formativo del doctorado han sido exploradas
diversas ideas con la finalidad de conseguir los objetivos mencionados anteriormente. Al-
gunas de ellas, expuestas en esta tesis, han dado lugar a diferentes propuestas que han sido
publicadas en foros relevantes para el área [23, 24, 21, 25, 22]. Otras publicaciones relacio-
nadas han sido desarrolladas durante el mismo periodo [157, 67].

15El límite de Moore indica el máximo número de nodos que un grafo puede albergar dado el grado de un
nodo y el diámetro del grafo.

iv

Las propuestas presentadas en esta tesis se comparan con otras actuales mediante las tres
métricas introducidas previamente: ancho de banda, latencia y equidad. Estas métricas se
obtienen mediante simulación dado que son introducidas en un nivel inicial de su desarro-
llo. Para evaluarlas se emplea principalmente el simulador de red FOGSim [73] puesto que
ofrece la precisión necesaria para evaluarlas y sus requisitos computacionales, así como el
tiempo requerido para los experimentos, son asumibles. Para evaluar las propuestas se di-
señan diferentes experimentos que consisten en someter a la red simulada a una serie de
cargas para evaluar el rendimiento que ofrece el algoritmo de enrutamiento estudiado. Los
experimentos son llevados a cabo mediante cargas sintéticas que exponen a la red evaluada
a diferentes escenarios. Estas cargas representan estados estacionarios con diferentes patro-
nes de tráfico aislados o mezclados y cargas transitorias que varían el patrón de tráfico en
diferentes momentos del tiempo, lo cual sirve para evaluar la respuesta de las propuestas a
dichos cambios. Los experimentos se realizan una batería de veces y se promedia el resulta-
do de los mismos. El capítulo 3 amplía esta información y ofrece todos los detalles acerca de
la metodología empleada durante el desarrollo de esta tesis.

El capítulo 4 introduce una implementación realista y competitiva de una red Ethernet
escalable y sin pérdidas para entornos HPC, que fue publicada en [23], y para la que se han
considerado topologías de bajo diámetro enfocadas a reducir el gasto energético. La arqui-
tectura propuesta se basa en: un direccionamiento jerárquico, técnicas de compactado de
las tablas de enrutamiento, un mecanismo dinámico para mantener las direcciones jerár-
quicas de los nodos y unas reglas de enrutamiento condicionales que son instanciadas en
los enrutadores de manera proactiva. La implementación de los mecanismos mencionados
es realista y requiere cambiosmínimos sobre un dispositivo que soporte SDN, lo que permite
desplegar redes de baja potencia y bajo diámetro para sistemas HPC basados en tecnología
Ethernet.

La mayoría de los enrutamientos adaptativos propuestos para redes de bajo diámetro se
basan en indicadores locales de congestión, como los créditos, para decidir cómo enrutar
los paquetes. Sin embargo, este capítulo, debido a la ausencia de créditos en Ethernet, pro-
pone dos enrutamientos adaptativos: MAR-bP publicado en [23] y QCN-Switch en [24, 25].
Respectivamente, estos se adaptan al estado de la red basándose en los mensajes de pausa
de Ethernet o mensajes ECN.

La arquitectura de red introducida obtiene un ahorro energético de hasta un 54% sobre
una red Ethernet sin las modificaciones propuestas. El rendimiento de MAR-bP presen-
ta ciertas limitaciones que han sido superadas por QCN-Switch. El rendimiento de QCN-
Switch en estado estacionario es comparable al de otros enrutamientos sofisticados propues-
tos para HPC, como PB. Considerando tráficos transitorios, QCN-Switch no se adapta tan
rápido como los enrutamientos basados en créditos, no obstante, responde en menos de un
milisegundo, lo que habitualmente es suficiente para la mayoría de las aplicaciones. Un aná-
lisis de sensibilidad a los parámetros analiza las elecciones asumidas durante el diseño de
QCN-Switch.

v

El algoritmo de Valiant usado para balancear la carga entre los diferentes enlaces de la red
obtiene un buen rendimiento sobre patrones de tráfico adversos en redes de bajo diámetro
como la Dragonfly. Sin embargo, este dobla la longitud de la ruta no mínima e incrementa
la latencia base. El capítulo 5, que dio lugar a las publicaciones [21, 22], introduce dos me-
joras sobre VLB: 1) RVLB: un mecanismo VLB restringido que selecciona el nodo 𝑅𝑅𝑂𝑂𝑇
en la misma partición en la que se encuentran el enrutador origen y destino para mejorar el
rendimiento en tráficos con localidad, y 2) RVLB-Recomp: unmecanismo de recómputo que
incrementa la inyección a la red seleccionando nodos 𝑅𝑅𝑂𝑂𝑇 alternativos cuando el puerto
seleccionado en el ciclo de enrutamiento previo está bloqueado.

Basándose en esos dos mecanismos, el capítulo 5 también introduce el enrutamiento
ACOR: Adaptive Congestion-Oblivious Routing. El objetivo de ACOR es mejorar la latencia
del caso común reduciendo el número de saltos en la ruta no mínima, mientras que soporta
patrones de tráfico patológicos con rutas no mínimas más largas. ACOR aplica RVLB no
solo a tráficos con cierta localidad sino a todo el tráfico y extiende la idea del recómputo
para adaptar el enrutamiento a las condiciones de la red. Esto se realiza cambiando la ruta
no mínima según una secuencia de políticas ordenadas por la longitud de la ruta que gene-
ran. ACOR previene la variabilidad en los resultados mediante un mecanismo de histéresis
con una implementación relativamente simple.

De la misma forma que VLB, ACOR no envía tráfico de manera mínima, por lo que su
rendimiento en tráficos benignos no es óptimo. Por esta razón, ACOR es emparejado con
un enrutamiento que selecciona entre rutas mínimas y las rutas no mínimas propuestas
que propone para cada paquete inyectado. La combinación de PB16 y ACOR da lugar a PB-
ACOR, el cual selecciona la ruta no mínima más corta posible solamente cuando la ruta mí-
nima se encuentra congestionada. Este mecanismo mantiene los beneficios de ACOR para
tráficos adversos y es competitivo en tráficos benignos.

Los resultados de la evaluación presentada en el capítulo 5 muestran que todas las va-
riantes de ACOR evitan cualquier limitación del rendimiento derivada de usar rutas con
una longitud inadecuada. Además proporciona equidad en la asignación del ancho de ban-
da entre los diferentes terminales y reduce la latencia base hasta en un 28% comparado con
una modificación de VLB que tiene aplicadas las dos mejoras propuestas (RVLB y RVLB-
Recomp). Además, en tráficos benignos PB-ACOR obtiene un buen ancho de banda y su
latencia es óptima y en tráficos adversos obtiene un ancho de banda competitivo y una re-
ducción en latencia significativa comparado con el enrutamiento PB.

Siguiendo la tendencia de ACOR, el capítulo 6 propone el algoritmo de enrutamiento
LIAN: Latency-Improved Adaptive Non-minimal routing for Dragonfly Networks, el cual ha
sido enviado recientemente a una revista y se encuentra en proceso de revisión. Basándose
en las condiciones de la red, LIAN minimiza el número de saltos en las rutas no mínimas

16Se ha usado el enrutamiento PB porque ACOR no puede ser implementado directamente sobre la arquitec-
tura de red introducida en el capítulo 4 debido a restricciones tecnológicas. Sin embargo, la combinación
de QCN-Switch y ACOR podría plantearse sobre dispositivos de red PISA.

vi

siempre que esto no suponga un detrimento del rendimiento. Para inferir el patrón de tráfico
presente en la red y determinar las condiciones de la red, LIAN emplea unos contadores
extendidos que representan la carga ofrecida. Estos contadores propuestos son comparables
a los que ya ofrecen los enrutadores para entornos HPC [49, 131]. Los contadores global
propuestos representan la carga ofrecida a cada grupo y basándose en estos, los contadores
intermediate-local son derivados mediante un simple cálculo combinando algunos de los
primeros. La ecuación que controla cómo deben combinarse los contadores para extraer
información de ellos es consecuencia de la simetría ofrecida por la disposición de los cables
globales en la topologia empleada.

Los contadores empleados son usados para inferir la congestión en los grupos intermedios
y analizar la demanda de los puertos globales. Basado en ello, LIAN es capaz de determinar
la longitud de la ruta no mínima que deben seguir los paquetes. Esta decisión se realiza pa-
quete a paquete y dinámicamente seminimiza la longitud de los caminos nomínimos. LIAN
supera la necesidad de ACOR de analizar la congestión en el enrutador fuente porque está
basado en inferir la carga del tráfico en vez de en el bloqueo de los puertos del enrutador. Por
lo tanto, LIAN no necesita hacer uso de PB y compartir información. Para seleccionar entre
rutasmínimas y nomínimas, LIANmodula los parámetros del algoritmoUGAL subyacente
basándose en los contadores globales.

Los resultados de la evaluacion de LIAN exponen que los contadores extendidos correc-
tamente infieren el patrón de tráfico en todos los posibles rangos de carga, proporcionando
un enrutamiento adecuado bajo tráficos benignos y adversos. LIAN obtiene un rendimiento
igual o mejor que otros enrutamientos seleccionando rutas no mínimas con el número de
saltos ideal para no incurrir en congestión y sin dar más saltos de los necesarios. Esto consi-
gue una reducción en latencia de hasta un 30.0% sobre algoritmos de enrutamiento actuales
propuestos para sistemas HPC. Además, el rendimiento que obtiene es muy cercano al lími-
te teórico que presenta la topología para cada patrón de tráfico analizado, lo que convierte a
LIAN en un enrutamientomuy competitivo. Tampoco se han apreciado signos de unfairness
y el rendimiento que obtiene es estable pasado el punto de saturación. Además, el tiempo de
reacción de LIAN a cambios de tráfico es cuasi-inmediato, tanto para cambios entre diferen-
tes patrones de tráfico como para cambios entre diferentes valores de carga sobre el mismo
patrón. En conclusión y hasta donde se conoce, LIAN es el primer enrutamiento adaptativo
en el enrutador origen que combina las propiedades deseables de: 1) basarse sólamente en
información local al enrutador, 2) emplear la ruta no mínima más corta dentro de lo que
permiten las condiciones de la red, y 3) proporcionar un rendimiento estable.

El trabajo de doctorado reflejado en esta tesis surge con el objetivo de diseñar un enru-
tamiento adaptativo no mínimo para redes de interconexión eficientes. El cual se divide en
dos subobjetivos ortogonales: 1) diseñar un enrutamiento capaz de seleccionar entre rutas
mínimas y no mínimas sin emplear créditos, y 2) diseñar un enrutamiento capaz de adaptar
el número de saltos en las rutas nomínimas a las condiciones de la red en vez de usar directa-
mente rutas nomínimas según VLB. En base a lo expuesto anteriormente, se puede concluir

vii

que los dos subobjetivos han sido satisfechos porque el capítulo 4 cubre el primer subobjeti-
vo proporcionando el algoritmo de enrutamiento QCN-Switch, el cual decide si enviar cada
paquete por una ruta mínima o no mínima basándose en mensajes ECN capturados de la
red y los capítulos 5 y 6 proporcionan dos algoritmos de enrutamiento diferentes para opti-
mizar el número de saltos en las rutas no mínimas. Estos además realizan la selección entre
rutas mínimas y no mínimas basándose en PB o UGAL y en créditos. Por esta razón, una
combinación entre LIAN y QCN-Switch es emplazado directamente como trabajo futuro.

El resultado de esta tesis de doctorado es un conjunto de propuestas que permiten im-
plementar un enrutamiento adaptativo no mínimo para redes de interconexión eficientes
y que contribuyen a esto desde dos puntos de vista ortogonales. Por un lado, la propuesta
QCN-Switch implementada sobre la arquitectura presentada permite desplegar redes de in-
terconexión escalables para entornos HPC sobre dispositivos de red Ethernet empleando un
routing adaptativo con un rendimiento que rivaliza frente a otras propuestas de enrutamien-
to diseñadas específicamente para HPC. Por otro lado, ACOR permite hacer ingeniería de
tráfico sin tener en cuenta la topología y adaptar la latencia de los paquetes a las condiciones
actuales de la red. Adicionalmente, LIAN mejora la propuesta previa y minimiza la longitud
de las rutas no mínimas en una topología Dragonfly con despliegue Palmtree.

Esta tesis ha desarrollado ambos sub-objetivos marcados y con ello resuelto el objetivo
general. Para ello se han hecho diversas contribuciones, sin embargo, cada propuesta abre la
puerta a nuevos retos, los cuales pueden ser agrupados como nuevas líneas de investigación.
Algunas de ellas pueden ser construidas sobre el trabajomostrado en esta tesis y son listadas
a continuación:

◼ Implementar y desarrollar LIAN junto con la propuesta QCN-Switch sobre dispositivos
de red compatibles: Implementar LIAN sobre QCN-Switch usando dispositivos PISA
para proporcionar una red escalable basada en la topología Dragonfly y construida
sobre dispositivos de red Ethernet, prestando atención al ahorro energético y optimi-
zando la latencia media sufrida por los paquetes.

◼ Identificar y manejar por separado la congestión en los terminales y la congestión en la
red: En el caso de que un terminal de la red no pueda aceptar más tráfico, explotar la
diversidad de caminos mediante enrutamientos adaptativos no mínimos incrementa
la presión en la red de interconexión y puede reducir el rendimiento en vez de incre-
mentarlo. La capacidadde detectar estas situaciones combinada con algúnmecanismo
de restricción de la inyección puede prevenir la propagación de la congestión a toda
la red y la degradación del rendimiento.

◼ Colaboración entre los terminales y los dispositivos de red: Trasladar parte de las deci-
siones de enrutamiento a los nodos de cómputo, teniendo en cuenta que estos pueden
obtener información del estado de la redmediante los enrutadores. Además, se puede
aprovechar la capacidad de computación de los terminales para tomar mejores deci-

viii

siones de enrutamiento y liberar de parte de estas tareas a los dispositivos de red, con
lo que se podría mejorar la eficiencia interna de los mismos.

◼ Trasladar RVLB a otras topologías: Identificar la localidad en una red Dragonfly o
Flattened Butterfly es trivial, ya que ambas definen un concepto en el que basarla,
como es respectivamente el grupo o la dimensión. Sin embargo, cómo aplicar RVLB
a otras topologías sin sufrir congestión bajo cualquier patrón de tráfico no es trivial.

◼ Trasladar los contadores de LIAN dependientes de la topología a otras topologías: La
simetría rotacional explotada en el capítulo 6 depende de la topología Dragonfly y del
conexionado global Palmtree para optimizar el enrutamientomediante los contadores
Intermediate-local y no es implementable directamente en otras topologías o en otras
disposiciones de los cables globales en una red Dragonfly. Sin embargo, este estudio
puede ser interesante.

◼ Implementar y desarrollar ACOR sobre dispositivos PISA: La aparición de dispositivos
de red en los que se puede programar el camino de datos podría permitir la implemen-
tación del mecanismo de re-cómputo de rutas y con esto, el enrutamiento ACOR pro-
puesto podría ser implementado. La selección de la ruta no mínima que hace ACOR
puede ser combinada con PB o UGAL, los cuales están basados en créditos, o sobre
la arquitectura propuesta para entornos HPC, la cual basa esta decisión en mensajes
de congestión explícitos como los implementados por Ethernet 802.1Qau.

◼ Emplear los contadores introducidos en LIAN también para decidir si encaminar cada
paquete siguiendo una ruta mínima o no mínima: Los contadores de tráfico emplea-
dos para modular UGAL y determinar la longitud de la ruta no mínima podrían ser
usados para determinar directamente si enrutar los paquetes por una ruta mínima o
no mínima y con ello prescindir de UGAL y de los créditos.

◼ Extender LIAN para determinar la longitud de la ruta no mínima completa: LIAN op-
timiza la primera parte de la ruta no mínima basándose en las condiciones de la red
detectadas pero no analiza la segunda parte que se forma mediante una ruta mínima
entre el nodo intermedio 𝑅𝑅𝑂𝑂𝑇 y el destino real del paquete. La selección del nodo
intermedio puede ser restringida para determinar completamente la longitud de la
ruta desde el enrutador origen.

ix

AGRADECIMIENTOS - ACKNOWLEDGMENTS

Esta tesis doctoral representa el trabajo de seis años y ahora que tocan a su fin, se me antojan
como un largo rally. Para los profanos en el tema, en un rally se disputan una serie de tramos
cronometrados. Entre una consecución de tramos y la siguiente, se reagrupa a los equipos
que continúan participando y se realiza una asistencia en la que se arregla cualquier desper-
fecto. Los tramos discurren por carreteras cerradas al tráfico y de las que, habitualmente,
merece la pena disfrutar, tanto de la conducción como de los paisajes. Muchos han sido los
contemplados desde mi baquet, algunos tan bellos que hasta consiguieron distraerme de mi
labor de «canta notas», muchas las personas que he ido conociendo en cada reagrupamiento
y muchos los momentos vividos junto a ellas, algunos tan inolvidables que no quería dejar
pasar este refuelling sin hacerles llegarmi gratitud. Abusando de la terminología, ahora estoy
acercándome al parque cerrado de fin de rally pero no por ello he olvidado el momento en
el que me inscribí, ni lo vivido durante esta etapa tan especial para mí. Es por ello, que me
gustaría empezar por dar las gracias a mis directores de tesis, el Dr. Ramón Beivide y el Dr.
Enrique Vallejo.

Mon y Enrique, Enrique y Mon, ambos habéis ido conmigo en el coche y me habéis apor-
tado todo vuestro apoyo y dedicación para que concluyese este trabajo con la mayor sa-
tisfacción posible. Es por esto, que querría agradeceros todo vuestro esfuerzo y confianza
depositada en mí. En particular, Mon, muchas gracias por abrirme la puerta del grupo (en
múltiples ocasiones), por orientarme y por compartir innumerables momentos en los que
discutir ideas y charlar abiertamente de lo que en ese momento tuviésemos entre manos, ya
fuese profesional o personal. Enrique, muchas gracias por haber trabajado constantemente
a mi lado, por tu cercanía, profesionalidad y rigurosidad, así como por haberme permiti-
do llegar hasta aquí. Mis gracias más sinceras a ambos por haberme acompañado por los
tramos disfrutados durante estos seis años.

Me gustaría dar las gracias a todos los miembros del grupo de Arquitectura y Tecnología
de Computadores. Empezando por los séniors, muchas gracias por ser como «la organi-
zación», ya que sin vosotros no habría rally. Todo vuestro trabajo y dedicación es lo que
nos permite a los juniors estar investigando a vuestro lado y especialmente a J. Luis, me
gustaría agradecerte la confianza mostrada en mí desde que estaba a las puertas de acabar
la ingeniería y también por haberme dado la salida en tramos que al final no disputé, es
por esto último que también querría pedirte disculpas. Continuando con los júniors, me
gustaría agradeceros que habéis estado siempre disponibles para aportar vuestra ayuda y
especialmente a Iván, muchas gracias por las interminables horas compartiendo despacho
y conversaciones variopintas en las cuales tan pronto nos tocaba un tramo de tierra como
uno de asfalto. Raúl, gracias por unirte a nosotros cuando aparecías por el despacho como
si siempre estuvieses allí. Pablo, gracias por haberme abierto los ojos a los entresijos de ese
hijo putativo que tenemos a medias llamado FOGSim.

Querría dar las gracias a «mi familia», que al contrario de la definición estándar, esta
es para mí un órgano vivo que evoluciona a lo largo de los años y no se ciñe a personas

xi

emparentadas sino que abarca a las personas que aunque parece que van y vienen, siempre
permanecen a nuestro lado. Vuestro apoyo incondicional siempre que ha sido necesario, a
veces en la cercanía y a veces en la lejanía, es lo que me ha impulsado tramo a tramo y me
ha permitido terminar este rally.

Me gustaría dar las gracias a Roberto. Me dirigiste en mi anterior rally y me permitiste
comenzar esta carrera de fondo. Muchas gracias por haberme puesto tan fácil la decisión
de «abandonar el barco» y a la vez por haber seguido a mi lado pendiente de mi progreso.
Igualmente y siguiéndome más de cerca, gracias a mis compañeros de «Benito & Coria’s
food» por haber aguantado la explicación del tramo en el que me encontraba en cada una
de nuestras comidas.

I would like to thank all the colleagues of Recore Systems B.V. You guys were part of one
of the special stages of this rally and thank you for accompanying me during my stay in The
Netherlands. Specially, thank you so much, Sharan and Michiel for your cheerful long days of
work, specially the after-hours. Your devotion for the work was an inspiration to accomplish
my internship project and key for my incorporation to Recore.

Por último y no por ello menos importante, me gustaría expresar mi agradecimiento más
sincero a mi abuela y a mi pareja. Güeli, muchas gracias por haber desencadenado mi ins-
cripción al doctorado y por haberme guiado hasta aquí aun sin estar presente, sé que estarías
muy orgullosa de este momento. Ahora que estoy llegando al parque cerrado de este y como
en casi todos los rallys en los que participo, no puede faltar una foto en el pódiumcon Sandra.
Muchas gracias, cariño, por tantas razones que me permitirían reescribir todas y cada una
de las páginas de esta disertación, aunque especialmente, por haber estado en todas las asis-
tencias de este rally y por haber sido mi apoyo en innumerables momentos. Y quiero decirte
también que justamente eso, inolvidables momentos, son los que nos quedan por vivir, por
lo que el próximo rally es nuestra vida juntos.

I would like to thank the anonymous reviewers of the papers which support this PhD thesis,
for their valuable comments and suggestions to improve the quality of themand so, for indirectly
improving the quality of part of the work presented in this dissertation.

This work has been supported by the Spanish Ministry of Education, Culture and Sports
under grant FPU14/02253, the Spanish Ministry of Economy, Industry and Competitiveness
under contracts TIN2010-21291-C02-02, TIN2013-46957-C2-2-P, and TIN2016-76635-C2-
2-R (AEI/FEDER, UE), the Spanish Research Agency under contract PID2019-105660RB-
C22/AEI/10.13039/501100011033, the European Union under agreements FP7-ICT-2011-
7-288777 (Mont-Blanc 1) and FP7-ICT-2013-10-610402 (Mont-Blanc 2), the University of
Cantabria under project PAR.30.P072.64004, and by the European HiPEAC Network of Ex-
cellence through an internship grant supported by the European Union’s Horizon 2020 research
and innovation program under grant agreement No. H2020-ICT-2015-687689.

Thank you very much to you all!

xii

To my beloved Sandra.

ABSTRACT

Interconnection network is a key concept of any parallel computing system. Since two or
more components of a digital system are connected, an interconnection network which al-
lows these components to share data is required. The first aspect to define an interconnec-
tion network is its topology, which is tied to system packaging constraints. Typically, power
and cost-efficient scalable networks with low diameter rely on topologies that approach the
Moore bound in which, in order to get the maximum size, there is no minimal path diver-
sity. Once the topology is defined, the performance bounds of the network are determined
consequently, so a suitable routing algorithm should be designed to accomplish as much
as possible of those limits and, due to the lack of minimal path diversity, it must exploit
non-minimal paths when the traffic pattern is adversarial. These routing algorithms usually
select between minimal and non-minimal paths based on the network conditions, where
the non-minimal paths are built according to Valiant load-balancing algorithm. This im-
plies that these paths double the length of minimal ones and then the latency supported by
packets increases. Regarding the technology, from its introduction in HPC systems in the
early 2000s, Ethernet has been used in a significant fraction of the systems. Moreover, Eth-
ernet’s large economy of scale, the advent of simple white-box switches, the possibility of
lossless implementations, and the ubiquity of Ethernet NICs suggest that it will remain as a
cost-effective alternative for HPC interconnection networks.

This work pursues the design of non-minimal adaptive routing algorithms for efficient
interconnection networks, dividing it in two sub-objectives. The first is a routing capable of
selecting between minimal and non-minimal paths without relying on flow-control credits,
which are not available in commodity Ethernet technology. The second is a routing capable
of employing variable length non-minimal paths depending on the network conditions to
improve average latency.

This dissertation introduces a realistic and competitive implementation of a scalable loss-
less Ethernet network for HPC environments considering low-diameter and low-power
topologies. This allows for up to 54% power savings. Furthermore, it proposes a routing
upon the cited architecture, hereon QCN-Switch, which selects between minimal and non-
minimal paths per packet based on explicit congestion notifications instead of credits. Once
the miss-routing decision is implemented, it introduces two mechanisms regarding the se-
lection of the intermediate switch to develop a source adaptive routing algorithm capable
of adapting the number of hops in the non-minimal paths. This routing, hereon ACOR, is
topology-agnostic and improves average latency in all cases up to 28%. Finally, a topology-
dependent routing, hereon LIAN, is introduced to optimize the number of hops in the non-
minimal paths based on the network live conditions. Evaluations show that LIAN obtains
almost-optimal latency and outperforms state-of-the-art adaptive routing algorithms, re-
ducing latency by up to 30.0% and providing stable throughput and fairness.

xv

Contents

Abstract . xv
List of figures . xxi
List of tables .xxvii

CHAPTER 1 INTRODUCTION 1
1.1 Interconnection networks . 3
1.2 Objectives . 8
1.3 Major dissertation contributions . 8
1.4 Outline . 9

CHAPTER 2 BACKGROUND 11
2.1 Router . 13
2.2 System level topology . 19

2.2.1 Dragonfly . 22
2.3 Routing . 27

2.3.1 Minimal (MIN) . 28
2.3.2 Valiant Load-Balancing (VLB) . 29
2.3.3 Universal Globally Adaptive Load-balancing (UGAL) 31
2.3.4 Piggyback (PB) . 33

2.4 Flow control . 34
2.4.1 Quantized Congestion Notification (QCN) 36

2.5 Deadlock and livelock . 38
2.6 Software-Defined Networking (SDN) . 40

CHAPTER 3 METHODOLOGY 45
3.1 Metrics . 47

3.1.1 Throughput . 47
3.1.2 Latency . 48
3.1.3 Fairness . 49

3.2 Simulation . 50
3.2.1 FOGSim interconnection network simulator 51
3.2.2 Synthetic workloads . 52

3.2.2.1 Steady-state traffic patterns . 53

xvii

3.2.2.1.1 Random Uniform (UN) . 53
3.2.2.1.2 Adversarial shift (ADV+i) . 53
3.2.2.1.3 Adversarial Local (ADVL) . 55
3.2.2.1.4 Adversarial Consecutive (ADVC) 55
3.2.2.1.5 Mixed (MIX) . 56

3.2.2.2 Transient traffic pattern . 56
3.2.3 Simulator configuration . 57

CHAPTER 4 HPC NETWORKINGOVER COMMODITY ETHERNET
TECHNOLOGY 59

4.1 Motivation . 61
4.2 Interconnection requirements: HPC vs. DC 62
4.3 Scalability mechanisms in Ethernet networks 64

4.3.1 Scalability analysis of hierarchical addressing 65
4.3.2 Scalability analysis with TCAM rules compaction 68

4.4 MAC address rewriting . 71
4.5 MAR-bP: Multipath Adaptive Routing based on Pauses 72

4.5.1 Proactive conditional flow rules . 72
4.5.2 Conditional flow rules for minimal routing 73
4.5.3 Conditional flow rules for non-minimal routing 74
4.5.4 Discussion . 74

4.6 QCN-Switch: adaptive routing based on ECNmessages 76
4.6.1 Forwarding tables with probabilities . 76
4.6.2 Base AIMD probability management . 78
4.6.3 Feedback comparison probability management 79
4.6.4 Source processing mechanism for input sensing 80

4.7 Evaluation . 81
4.7.1 Methodology . 82

4.7.1.1 Power consumption . 82
4.7.1.2 Simulator configuration . 82

4.7.2 TCAM compaction and topology power comparison 84
4.7.3 MAR-bP performance results . 85
4.7.4 QCN-Switch performance results . 87

4.7.4.1 Performance under steady loads . 87
4.7.4.1.1 QCN-Switch sampling at input buffers. 87
4.7.4.1.2 QCN-Switch sampling at output buffers. 89

4.7.4.2 Performance under transient loads 91
4.7.4.3 Sensitivity analysis . 93

4.7.4.3.1 Number of notifications: CPC and %CNMs. 93

xviii

4.7.4.3.2 Reduction limiting factor Lf. 96
4.7.4.3.3 Probability Increase PI. 98
4.7.4.3.4 Feedback comparison thresholds Th1 and Th2. 99
4.7.4.3.5 Network size. 100

4.8 Conclusions . 101

CHAPTER 5 NON-MINIMAL ADAPTIVE ROUTINGWITH LATENCY
IMPROVEMENTS 103

5.1 Motivation . 105
5.2 RVLB: Restricted Valiant Load-Balancing 105
5.3 VLB-Recomp: Valiant Load-Balancing Recomputation 107
5.4 ACOR: Adaptive Congestion-Oblivious Routing 108

5.4.1 Motivation and overview . 108
5.4.2 ACOR design . 109

5.4.2.1 Selection of a VLB phase A policies sequence 110
5.4.2.2 ACOR level management . 111

5.4.3 PB-ACOR: adaptive Piggyback with ACOR 112
5.5 Evaluation . 112

5.5.1 Simulator configuration . 112
5.5.2 RVLB performance results . 113
5.5.3 VLB-Recomp performance results . 114
5.5.4 ACOR performance results . 116

5.5.4.1 Performance under steady loads . 116
5.5.4.2 Performance under transient loads 120
5.5.4.3 Sensitivity analysis . 121

5.5.4.3.1 Hysteresis interval: HI. 121
5.5.4.3.2 ACOR level management thresholds: IT1, IT2, DT1 and DT2. 122
5.5.4.3.3 Network size. 123

5.5.5 PB-ACOR performance results . 124
5.5.5.1 Performance under steady loads . 125
5.5.5.2 Performance under transient loads 125

5.6 Conclusion . 127

CHAPTER 6 LATENCY-OPTIMIZED NON-MINIMAL ADAPTIVE ROUTING
FOR DRAGONFLY NETWORKS 129

6.1 Analysis and motivation . 131
6.1.1 Traffic counters measure carried traffic 131
6.1.2 Impact of Valiant phase A path length 132

6.1.2.1 Impact of the first local hop in Valiant phase A path 133
6.1.2.2 Impact of the second local hop in Valiant phase A path 134

xix

6.2 LIAN: Latency-Improved Adaptive Non-minimal routing for Dragonfly
networks . 136

6.2.1 LIAN overview . 136
6.2.2 Traffic estimation using extended counters 137
6.2.3 Non-minimal paths in LIAN . 138

6.2.3.1 Global counters and first local hop 138
6.2.3.2 Intermediate-local counters and second local hop 139

6.3 Evaluation . 140
6.3.1 Simulator configuration . 141
6.3.2 Extended global and intermediate-local counters 143

6.3.2.1 Extended global counters in LIAN 143
6.3.2.2 Intermediate-local counters in LIAN 144

6.3.3 LIAN performance results . 146
6.3.3.1 LIAN compared to oblivious routings 146
6.3.3.2 LIAN compared to other source adaptive routings 149
6.3.3.3 Throughput fairness and the use of the l1 hop 151
6.3.3.4 Performance under transient loads 151

6.4 Conclusions . 154

CHAPTER 7 RELATEDWORK 155
7.1 Adaptive routing without credits . 157
7.2 Adapting the length of non-minimal paths 160

CHAPTER 8 CONCLUSIONS AND FUTUREWORK 163
8.1 Conclusions . 165
8.2 Future directions . 168
8.3 Publications . 170

BIBLIOGRAPHY 173

xx

List of Figures

1-1 Conceptual representation of bus and crossbar interconnection networks
interchanging a message. 3

1-2 A multi-stage folded-Clos interconnection network. 5
1-3 Conceptual representation of throughput and latency performance metrics. 6
1-4 Breakdown of supercomputer interconnect family from the last three

decades of June Top500 lists. 7

2-1 Planes and components of a virtual-channel router with input and output
buffering. 14

2-2 Scheme of input, output and combined input-output queuing strategies for
a bufferless crossbar switching fabric. 15

2-3 Virtual output queuing architecture. 16
2-4 Two packets traversing the pipeline of the modeled router. 18
2-5 Conceptual representation of mesh and bidimensional Flattened Butterfly

direct interconnection networks. 20
2-6 Block diagram of a Dragonfly topology. 23
2-7 Block diagram of a sample canonical Dragonfly network and the corre-

sponding complete network using the palmtree global link arrangement. . . 25
2-8 Scalability for different network topologies as router radix k increases. . . . 26
2-9 Two minimal routing computation examples. 29
2-10 Three Valiant load-balancing routing computations examples. 31
2-11 Basic idea behind the stop and go flow-control thresholds. 35
2-12 Example of Xoff and Xon signals sent by receiver to upstream routers. 35
2-13 Credit-based flow control example. 36
2-14 Representation of QCN buffer state variables at the congestion point. 38
2-15 Deadlock situation due to a cyclic dependency. 39
2-16 Resolution of the deadlock situation exposed in Figure 2-15. 40
2-17 Fields of an OpenFlow’s flow entry and their description. 42
2-18 Network management evolution and the relationship between OpenFlow

and P4. 43

3-1 Curves representing throughput in stable and unstable networks. 48

xxi

3-2 Typical latency curve. 48

3-3 Typical throughput fairness shape showing a fair and unfair case. 49

3-4 Throughput fairness representation using throughput curves to depict a fair
and unfair case. 50

3-5 Representation of the adversarial shift traffic pattern in a Dragonfly network. 54

3-6 Representation of the bottleneck at local link of intermediate group under
adversarial shift with offset i=h traffic pattern. 54

3-7 Representation of the adversarial local traffic pattern and the bottleneck in
the local link between source and destination routers. 55

3-8 Representation of the adversarial consecutive trafficpattern highlighting the
bottleneck in global links. 56

4-1 Visualization of CG kernel using 64 MPI processes. 63

4-2 Traditional flat and two hierarchical addressing models. 66

4-3 Different topologies being considered: folded-Clos, 2-D Flattened Butterfly
and Dragonfly. 68

4-4 Number of TCAM entries required for varying network size and topology,
using per-switch or per-group addressing. 69

4-5 Hierarchical addressing in 3-DFlattened Butterflies considering forwarding
rules compaction. 69

4-6 Number of TCAM entries after compaction. 70

4-7 Sequence of packets when two hosts boot using the dynamic MAC protocol. 72

4-8 Router’s architecture with conditional flow rules. 73

4-9 Non-minimal routing in Dragonfly and Flattened Butterfly networks using
conditional flow rules. 75

4-10 Router architecture with QCN-Switch proposal. 78

4-11 Example of probability values update when a congestion notification mes-
sage arrives under two different traffic scenarios. 80

4-12 Thresholds used in the feedback-comparison probabilitymanagement variant. 80

4-13 Network power consumption dissection. 85

4-14 Average packet latency and throughput under random uniform and adver-
sarial shift traffic patterns. 86

4-15 Average packet latency and throughput ofQCN-Switch base, feedback com-
parison probability management variant and source processing mechanism
with input-port sampling under uniform and adversarial traffic patterns. . . 88

4-16 Throughput injected in each switch of a group for the QCN-Switch base,
feedback comparison probability management variant and source process-
ing mechanism with input-port sampling under adversarial traffic pattern. . 89

xxii

4-17 Average packet latency and throughput of the QCN-Switch base and feed-
back comparison probability management variant with output-buffer sam-
pling under uniform and adversarial traffic patterns. 90

4-18 Throughput injected in each switch of a group for theQCN-Switch base and
feedback comparison probability management variant with output-buffer
sampling under adversarial traffic pattern. 91

4-19 Average packet latency and percentage of misrouted packets of Piggy-
back and the QCN-Switch with output-buffer sampling and feedback-
comparison probability management variant changing from uniform to ad-
versarial traffic patterns and vice versa. 92

4-20 Average packet latency and throughput of the QCN-Switch with output-
buffer sampling and feedback comparison, for different values of sampling
interval and percentage of CNMs sent under uniform and adversarial traffic
patterns. 94

4-21 Transient response when traffic changes from uniform to adversarial traffic
pattern, for different values of sampling interval and percentage of conges-
tion notification messages. 95

4-22 Average packet latency and throughput for different limiting factors under
uniform and adversarial traffic patterns. 96

4-23 Transient response when traffic changes from uniform to adversarial traffic
patterns for different values of the reduction limiting factor. 97

4-24 Average packet latency and throughput for different values of probability
increase under uniform and adversarial traffic patterns. 98

4-25 Average packet latency and throughput for different feedback-comparison
threshold Th2 under uniform and adversarial traffic patterns. 99

4-26 Average packet latency and throughput for different network sizes under
uniform and adversarial traffic patterns. 100

5-1 Example of minimal, Valiant load-balancing and restricted Valiant between
source anddestination routers inDragonfly andFlattenedButterfly topologies.107

5-2 Average packet latency and throughput of Valiant load-balancing and Pig-
gyback using and not using the restricted technique under adversarial local
traffic pattern. 114

5-3 Average packet latency and throughput of restricted Valiant load-balancing,
with and without recomputation, under different traffic patterns. 115

5-4 Average packet latency and throughput of ACOR-Packet under different
traffic patterns. 117

5-5 Average packet latency and throughput of ACOR-Switch under different
traffic patterns. 119

xxiii

5-6 Averaged throughput accepted for each switch of a group under adversarial
consecutive traffic pattern using ACOR-Switch. 120

5-7 Average packet latency of ACOR-Switch 3L under adversarial traffic pattern
with transient traffic loads. 121

5-8 Evolution of the ACOR level of individual routers in a group using ACOR-
Switch 3L under adversarial traffic pattern with transient traffic loads. 121

5-9 Average packet latency of ACOR-Switch 3L under adversarial traffic pattern
with transient traffic loads to evaluate three different cycle durations. 122

5-10 Latency of ACOR-Switch 3L with different increase thresholds values under
adversarial traffic patterns. 123

5-11 Latency of ACOR-Switch 3Lwith different decrease thresholds values under
adversarial traffic patterns. 124

5-12 Latency of ACOR-Switch 3L with two different network sizes under differ-
ent traffic patterns. 124

5-13 Average packet latency and throughput of PB-ACOR under different traffic
patterns. 126

5-14 Average packet latency of PB-ACOR 3L under transient traffic loads. 127

6-1 Average throughput and minimum, average and maximum value for local
injection to group one for all switches within group zero under adversarial
traffic patterns using TPR routing. 132

6-2 Accepted throughput for each switch of a group under adversarial consecu-
tive traffic pattern comparing two path lengths using Valiant load-balancing
and TPR routings. 133

6-3 Average throughput on adversarial traffic using oblivious and adaptive rout-
ings with different path lengths in phase A. 134

6-4 Bottleneck at local links of the intermediate group under adversarial traffic
pattern in a Dragonfly topology. 136

6-5 Example of LIAN decision about l1 hop. 139
6-6 Intermediate-local counters in a router for a Dragonfy network using the

palmtree global link arrangement. 140
6-7 Impact of extended counters. 144
6-8 Intermediate-local counter analysis, using non-minimal paths -g- and -gl. . 145
6-9 Average packet latency and throughput under different traffic patterns com-

paring LIAN with oblivious routings. 148
6-10 Average throughput accepted for each switch of a group under adversarial

consecutive traffic pattern comparing LIAN with oblivious routings. 149
6-11 Average packet latency and throughput comparing LIANwith other source-

adaptive routing mechanisms. 150

xxiv

6-12 Average throughput accepted for each switch of a group under adversar-
ial consecutive traffic pattern comparing LIAN with other source-adaptive
routings. 151

6-13 Average throughput accepted using LIAN for each switch of a group divided
into minimal routing and the four possible Valiant phase A path policies
under adversarial consecutive traffic pattern. 152

6-14 Average packet latency of LIAN under adversarial traffic pattern with tran-
sient traffic loads changing the offered load. 153

6-15 Average packet latency of LIAN under adversarial traffic pattern with tran-
sient traffic loads changing the traffic pattern. 153

xxv

List of Tables

2-1 List of symbols employed in the topological description of Dragonfly. 24

3-1 Simulation parameters employed in the experiments. 58

4-1 Approximate iteration time of NAS parallel benchmarks applications. 63
4-2 Number of ports dedicated to compute hosts and network scalability in dif-

ferent topologies, using k-radix routers. 67
4-3 Particular simulation parameters of Chapter 4. 83

5-1 Considered Valiant load-balancing phase A policies 109
5-2 ACOR path A policy sequences. 110
5-3 Particular simulation parameters of Chapter 5. 113

6-1 Particular simulation parameters of Chapter 6. 142

xxvii

Introduction 1
Humanity has a lot of qualities and one big and continuous desire of evolving. When
applied to computing engineering, this has led to the construction of faster and more
capable computing systems each time. During the last decades and according to
Moore’s law [162], it has been able to duplicate the performance of the systems ev-
ery two years, firstly producing microprocessors as fast as possible and more recently,
increasing the number of cores inside the microprocessors [112]. Nevertheless, the
computational requirements of Data Center (DC) high-demanding applications and
High-Performance Computing (HPC) Systems, which are the foundation for scientific,
industrial and societal advancements, far exceed the capabilities of a single computing
host. Hence, it is usually needed to aggregate the power of several terminals to confront
these computational requirements. This type of machines are denoted as parallel [12]
computing systems.

Any parallel system that employs multiple computing hosts to run an application
must be designed to allow an efficient communication between these computing nodes;
otherwise, the advantages of parallel processing may disappear due to an inefficient
communication. Hence, an interconnection network that allows the joined computing
systems to share data is mandatory and a key part of those parallel systems. In other
words, the interconnection network is the critical subsystem of an HPC system that
makes it a “supercomputer”.

This chapter extends the previous paragraphs introducing and remaking the impor-

tance of interconnection networks in Section 1.1. Section 1.2 presents the objective

of the PhD work concluded with this dissertation, and exposes how it is approached.

The major contributions of this work are described in Section 1.3. Finally, this intro-

ductory chapter is concluded in Section 1.4, which presents how the remainder of this

dissertation is structured.

Chapter contents

1.1 Interconnection networks . 3

1.2 Objectives . 8

1.3 Major dissertation contributions . 8

1.4 Outline . 9

1

1.1 Interconnection networks

1.1 Interconnection networks

The interconnection network is a key concept of any parallel computing system and it can
be defined as “a programmable system that transports data between terminals,” according to
Dally et al. [54, p. 2]. Since two or more components of a digital system are connected,
an interconnection network, which allows these components to share data at the form of
messages, is required. It is a system made up of different parts, mainly by a set of switching
elements interconnected by a collection of cables. As a classical view, the network is pro-
grammable1 in the sense that its makes the necessary actions on its different elements to
deliver the transported messages from their sources to their destinations. Figure 1-1 illus-
trates the functional view of two interconnection networks with four terminals connected
to the network through bidirectional network links and a message 𝑚 exchanged between
terminals zero and three. To simplify the network diagrams and since all links are bidirec-
tional, the interconnection links in the diagrams are hereon represented with a simple line,
i.e., without arrows.

0 1 2 3

m

(a) Bus

2

31

0
m

(b) Crossbar

Figure 1-1: Conceptual representation of (a) bus and (b) crossbar interconnection networks inter-
changing amessagem between terminals 0 and 3. All interconnection links are bidirectional.

Interconnection networks are omnipresent nowadays, and they are used in almost all digital
systems that have two or more components to be connected. They are widely used in com-
puter systems at multiple points, from on-chip networks up to interconnecting computing
hosts at system level. HPC architectures are seeing a large growth in size and complexity in
an attempt to achieve the performance levels required by exascale computing [183]. As the
number and complexity of components in a system continues to increase, the impact of the
interconnection network on the overall system performance and cost also increases. Nowa-
days, the performance of most systems in this field is limited by their communication, not
by their logic or memory. In a multiprocessor computer system, as processor and memory
performance continues increasing according to Moore’s law, the performance of the inter-
connection network plays an important role to determine the overall performance of the
system, as well as its cost [59, 54].

Communication between the different terminals (also called computing nodes, compute
hosts or endpoints) in an interconnection network is performed by sending messages. These

1This concept is revisited later to modernize the definition of the adjective programmable.

3

1 Introduction

are sent by the switching nodes of the network or routers through network links or channels.
Messages may be broken into one or more packets, which is the smallest unit of information
that contains routing and sequencing information, for its transmission. In turn, a packet
contains one or more flow control units or flits, where a flit is the smallest unit on which
flow control is performed. Data information is transferred over physical links in physical
transfer units or phits. Commonly, the exchange of information between a source and a
destination pair is denoted as a flow.

An interconnection network can be used mainly at two levels; system-level and on-chip.
At the former, interconnection networks allow the exchange of messages between the mul-
tiple computing hosts which compound a parallel computing system and at the latter, they
interconnect the several elements which compound the chip, for example, multiple cores
and memories in a multiprocessor.

A bus network, like the presented in Figure 1-1(a), is a very simple interconnection net-
work and it is not capable of transferring more than one piece of information at a given time
between any two terminals due to the sharing of the cable connecting all of them. More-
over, as that network does not scale and as the number of terminals increases, the obtained
bandwidth between them is drastically reduced. On the other hand, using a crossbar, like
the network represented in Figure 1-1(b), in which all the terminals are connected to each
other in a point-to-point way, all the terminals can send messages at the same time, as long
as they do not choose the same destination. However, the crossbar complexity is quadratic
with respect to the number of terminals connected to it.

To balance both aspects, performance and technology limitations, a multi-stage network
is often employed as the number of terminals increases. In these networks, the terminals
are connected to switching points (usually called routers), which are in turn, connected to
other routers within the network. These networks employ routers with a technologically
feasible crossbar size. However, they do not provide a point-to-point connection between
the terminals and then, the messages exchanged between them has to travel through one
or more routers. An example of one possible implementation of a multi-stage network is
presented in Figure 1-2.

As it can be inferred, each interconnection network offers different advantages and draw-
backs, so computer engineers must work within technology constraints to meet the perfor-
mance requirements of a system to implement the following four common aspects in the
design of any interconnection network.

◼ Topology: it is the connection pattern between the switching points of the network,
which describes precisely how these network nodes are interconnected by cables. Fur-
thermore, the topology and how a computing system is packaged are closely related;
typical packaging schemes are hierarchical. Topology is a critical feature of any in-
terconnection network since that sets its performance bounds, by determining its di-
ameter and network bisection, and its path diversity. The diameter of the network is

4

1.1 Interconnection networks

6 7 8 9 10 110 1 2 3 4 5 12 13 14 15

0.0 1.0 2.0 3.0

0.1 1.1 2.1 3.1 4.1 5.1 6.1 7.1

7.26.25.24.23.22.21.20.2

Figure 1-2: A multi-stage folded-Clos [47] interconnection network indexing the routers by their
position in the X and Y axis as X.Y, starting from top left corner.

the largest hop count between any two routers when using minimal paths. Network
bisection is the smallest set of channels that divide the network into two equal parts.
Path diversity determines the number of possible minimal paths between most pairs
of terminals. The network topology increases its impact over the performance of the
applications that are distributed over the system as long as the link bandwidth in-
creases and the router latency decreases.

◼ Routing : it determines which of these possible paths, either minimal or non-minimal,
a message actually takes from the source to its destination. The routing algorithm de-
termines how much of the performance bounds offered by the topology is achieved
and balances load on the network under adversarial traffic patterns. The latter is
mainly done by adaptive routing algorithms which select between minimal and non-
minimal routes based on the network status.

◼ Flow control: it allocates the different resources of the network (mainly buffers tied to
router ports) to packets while those are traversing the network. This aspect becomes
more critical as the utilization of resources increases and can also prevent the deadlock
and livelock pathologies in the network. Flow control mechanisms employ certain
information to notify the upstream router that the receiver is not able to receive more
messages. This information can indicate the availability like pauses or the amount of
free space in the downstream router buffer like credits. Usually, these mechanisms are
applied hop-by-hop but there are similar mechanisms to manage the congestion at
end-to-end level like explicit congestion notifications.

5

1 Introduction

◼ Router architecture: it defines the router organization, such as the switch fabric and
buffers, and the control logic associated to these components. This is very tied to the
routing and the flow control which will be implemented in the interconnection net-
work. Routersmay include certain indicators as counters available to both the network
administrator and to themselves for being applied, for example to routing algorithms.

Each of the aforementioned aspects, which are analyzed in depth in Chapter 2, determines
how the interconnection network is implemented and establishes a bound on its perfor-
mance and its cost. The performance of an interconnection network is measured mainly by
two quantities: the throughput, which indicates the sustained data transfer rate that is effec-
tively achieved, and the latency, which measures the delay of messages between its source
and its destination. In the typical performance graphs which represent throughput and la-
tency, two zones can be delimited using the saturation point (Θ). At offered loads below
Θ, the steady-state performance is characterized by a linear increase on both metrics and
beyond that point, by a plain throughput2 and an “infinite” latency as it is depicted in Fig-
ure 1-3. Throughput equals the offered load following a straight line below saturation point.
This point Θ, is the highest value of offered load for which throughput, or accepted load,
equals to it. The latency curve starts at the zero-load latency value (Ω) and experiences an
exponential growth just before saturation.

Θ

A
cc

e
p

te
d

 t
h
ro

u
g

h
p

u
t

Offered load

(a) Throughput

Θ

ΩA
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

Offered load

(b) Latency

Figure 1-3: Conceptual representation of (a) throughput and (b) latency performance metrics as a
function of offered load.

Technology evolution has led to a convergence in HPC and DC systems.3 The former ones,
driven by HPC applications, are often communication-intensive and can be sensitive to net-
work latency. The latter ones, typically oriented to provide Internet Services such as web
search or email, are softly insensitive to latency since they operate on human timescales.

2The throughput does not always continue plain for greater loads than Θ, as it is explained in Section 3.1.1.
3A good example of this convergence regarding interconnection networks is the Cray Slingshot [166] archi-

tecture. This recent proposal adds custom protocols to achieve high-performance andmake Ethernetmore
suitable for HPC workloads while maintaining compatibility with standard Ethernet network devices, al-
lowing it to be used efficiently in both HPC and DC environments.

6

1.1 Interconnection networks

However, the back-end applications providing those services may indeed require intensive
communications and low latency characteristics. This fact, combined with the emergence of
cloud computing and data-intensive applications insinuate that modern DC requirements
look like HPC requirements. This thesis is mainly focused on HPC systems, however its
contributions can be applied to large DC interconnection networks.

Traditionally, commodity Ethernet technology has been employed in domestic and busi-
ness DC environments. However, Ethernet is taking up a significant portion in the HPC
market with slightly more than half of the systems on the current Top500 list using any im-
plementation of commodity Ethernet as shown in Figure 1-4(c). InfiniBand [153], in all of
its variants, accounts for 30% of the interconnections leaving very little room for proprietary
and custom networks. From its introduction in HPC systems in the early 2000s, Ethernet
technology has been used in a significant fraction of the systems; in the 2000s, only about
2% of the Top500 systems employed Ethernet; in 2010, it was nearly 48% and nowadays it is
about 53%. Moreover, in the current list, after InfiniBand, the third interconnection family
with a 9.8% of the systems isOmni-Path [32],4 which is not commodity but it is also Ethernet
technology.

(a) 2000 (b) 2010 (c) 2020

Figure 1-4: Breakdown of supercomputer interconnect family from the last three decades of June
Top500 lists. Ethernet technology is highlighted each represented year. Note that the colors em-
ployed in the figures do not represent the same technology in all of them.
Source: https://www.top500.org/statistics/list/©Top500.org

Regarding the programmability and following the trends motivated by the development of
cloud computing, the concept of Software-Defined Networking (SDN) appeared. SDN is a
network architecture approach which aims to make networks agile and flexible, enabling
the network to be intelligently and centrally controlled (“programmed”) using software ap-
plications. SDN suggests the use of a centralized controller that directly controls multiple
forwarding components in the network. Furthermore, this concept continues evolving and
its next step has been enabling the definition network devices’ behavior through a configu-
ration language independent of the target, while the control of operations is still centralized.
These network devices are known as protocol independent switch architecture devices, and
they claim to not incur on any power or cost penalty compared to fixed-functions network
devices and to be a domain-specific processor for networking.

4Intel has recently discontinued it and it will not continue the development of Omni-Path networks.

7

https://www.top500.org/statistics/list/

1 Introduction

1.2 Objectives

In light of the above, the first aspect to define an interconnection network for a comput-
ing system is the topology, which is tied to system packaging constraints. Typically, power
and cost-efficient scalable networks with low diameter rely on topologies that approach the
Moore bound5 [82, 135] and, in order to get the maximum size, they lack minimal path
diversity. Hence, once the topology is defined and, therefore, the performance bounds of
the network are determined, a suitable routing algorithm should be designed to accom-
plish as much as possible of those limits and due to the lack of minimal path diversity it
must exploit non-minimal paths when the traffic pattern is adversarial. These adaptive rout-
ing algorithms select between minimal and non-minimal paths depending on the network
conditions, which are typically based on comparisons of the flow-control credits of differ-
ent output ports. The non-minimal paths of such routings are usually built according to
Valiant’s proposal [187, 186] to load-balancing the network links, which implies that the
non-minimal path doubles the length of minimal path, and then increases the latency sup-
ported by packets.

The aimof this PhDwork, which reaches its highest point in this dissertation, is the design
of non-minimal adaptive routing algorithms for efficient interconnection networks. This
objective is approached by dividing it in two orthogonal sub-objectives. The fist is motivated
by the Mont-Blanc project [157], which designed and built supercomputers based on ARM
SoCs6 formobile environments. These SoCs usually have an Ethernet network interface and,
due to the lack of flow-control credits in Ethernet, the goal is to design a routing capable of
selecting between minimal or non-minimal paths without relying on credits. The second is
motivated by the existence of multiple non-minimal paths between routers in low-diameter
topologies [54], such as Flattened Butterfly [110] or Dragonfly [108], and the possibility of
adapting the routing to network conditions [54, 110, 108]. Hence, the goal is to adapt the
number of hops in the non-minimal paths to the traffic conditions instead of blindly using
paths according to Valiant load-balancing algorithm.

1.3 Major dissertation contributions

Themost remarkable contributions of this thesis to the study of non-minimal adaptive rout-
ings for efficient interconnection networks are listed next. Each of them is presented in depth
in different chapters of this document.

◼ In HPC networking over commodity Ethernet technology, a realistic and competitive
implementation of a scalable lossless commodity Ethernet network for exascale-level

5The Moore bound indicates the maximum number of nodes that a graph can have for a given node degree
and diameter.

6System on a Chip (SoC).

8

1.4 Outline

HPC environments is introduced, considering low-diameter and low-power topolo-
gies. It is also proposed a hierarchical routing based on location-dependent MAC
addresses, TCAM rules compaction and conditional OpenFlow rules, which exploit
the explicit congestion notifications that travel through the network to decide be-
tween using minimal and non-minimal paths to forward each packet. This avoids
the dependence of flow-control credits, which are not available in commodity Eth-
ernet technology, to balance the network load. This contribution was sided with the
idea of Mont-Blanc project [157], which implied the use of commodity Ethernet for
HPC.

◼ In non-minimal adaptive routing with latency improvements, two mechanisms to im-
prove the non-minimal path of an adaptive routing are proposed to reduce the aver-
age latency and increase throughput. It is also proposed a routing which leverages the
aforementioned mechanisms to reduce path length for local and global traffic. This
routing relies on a sequence of policies ordered by path length and on a hysteresis
mechanism to improve the performance and avoid variability. This routing can be
combined with other non-minimal routing mechanisms, such as Piggyback. In this
case, the proposed mechanism decides the path length of the non-minimal route and
the base mechanism selects between minimal or non-minimal for each packet.

◼ In latency-optimized non-minimal adaptive routing for Dragonfly networks, a
topology-dependent optimized routing for Dragonfly networks is presented. The
proposed routing algorithm determines a path for the packets at injection, which
introduces the minimum amount of additional hops while avoids network conges-
tion based on the network conditions and on the inferred traffic pattern. It extends
the traffic counters already present in modern routers to adapt non-minimal path
lengths to the traffic pattern, and modulates the UGAL selection of paths based on
live network conditions to bias its decision to minimal or non-minimal route for each
packet.

1.4 Outline

For the remainder of this dissertation, immediately following this introduction, Chapter 2
provides some background on interconnection networks. Chapter 3 presents the aspects
of the employed methodology, common to the whole dissertation. Chapters 4, 5 and 6
explore the threemain contributions of this workwhich have been presented on the previous
section. The first one delves into an implementation of a commodity Ethernet network for
HPCenvironmentswith a novel routingwhich leverages the explicit congestion notifications
presented in the network to decide betweenminimal and non-minimal path for each packet.
The other two chapters present different mechanisms, one agnostic and other dependent of

9

1 Introduction

the topology, to adapt the number of hops that each packetmust follow based on the network
status. Chapter 7 presents the most notable related work to the proposals presented in this
dissertation and analyzes its similarities and differences. Finally, some conclusions, future
lines of work and the list of publications written during the PhD are presented in Chapter 8.

10

Background 2
This chapter aims to provide a better understanding about different and fundamental

aspects of interconnection networks that are relevant to this PhD dissertation. Sec-

tion 2.1 starts with the necessary details about router architecture, followed by an in-

troduction, in Section 2.2, to system level topologies and particularly to the Dragonfly

topology. The next relevant topic, explained in Section 2.3, is the routing. Then, Sec-

tion 2.4 introduces the flow control and deadlock and livelock issues are introduced

in Section 2.5. Finally, the software-defined networking concept is explained in Sec-

tion 2.6.

Chapter contents

2.1 Router . 13

2.2 System level topology . 19

2.2.1 Dragonfly . 22

2.3 Routing . 27

2.3.1 Minimal (MIN) . 28

2.3.2 Valiant Load-Balancing (VLB) . 29

2.3.3 Universal Globally Adaptive Load-balancing (UGAL) 31

2.3.4 Piggyback (PB) . 33

2.4 Flow control . 34

2.4.1 Quantized Congestion Notification (QCN) 36

2.5 Deadlock and livelock . 38

2.6 Software-Defined Networking (SDN) 40

11

2.1 Router

2.1 Router

Routers1 as switching nodes are the building blocks of the interconnection networks. Three
are the fundamental tasks of the routers: 1) to determine the best path for a packet through
the network to its destination; 2) to actually forward packets received on its inputs through
the appropriate output; and 3) to temporarily store received packets in its buffers to absorb
traffic bursts and temporary congestion before forwarding them.

The size of a router, measured as its number of ports, is denoted as router radix (𝑘) or
router degree. Historically, large-scale interconnection networks were built based on low-
radix routers [51, 5], however, advances in signaling technology and the exponential in-
crease of the pin bandwidth have enabled bigger routers. Indeed, Kim et al. [107] indicate
that it is more cost-effective to partition this increment of the pin bandwidth building high-
radix routers with thin channels than building low-radix routers with fat channels. One of
the first systems that has used a high-radix router, concretely with 64 ports in each YARC
router [164], was the Cray BlackWidow [3].

Routers can be logically partitioned basically in three planes or layers: the data plane,
which refers to all processes that forward packets from one interface to another; the control
plane, which refers to all functions that determine how packets should be forwarded; and
the management plane, which refers to all methods that can be used to configure the control
plane and to monitor the network device. Each of the router planes, in turn, is divided into
different elements. The data plane or also called data-path is composed bymemory elements
as buffers at the input and/or output ports and a switching fabric, on the other hand, the con-
trol plane basically consists of combinational logic circuits grouped as different functional
units like routing computation, virtual channel allocation and switch allocation. The man-
agement plane is omitted because its functionalities are not related to this dissertation. A
block diagram exhibiting the aforementioned parts of a router is shown in Figure 2-1. It
is composed by a series of buffers at the input and output ports, a switching fabric and the
functional units within the control plane.

The switching fabric is the key component of the router’s architecture and is composed by
an𝑁 ×𝑀 crossbar and its respective scheduler. Commonly, symmetric𝑁 ×𝑁 crossbars are
employed. The crossbar implements in a non-blocking way all permutations of connections
among its 𝑁 input and 𝑁 output ports at switching points, denoted as crosspoints. Each of
them can be turned on or off by the scheduler taking into account that only one of the 𝑁
inputs can be spatially connected to at most one of the 𝑁 outputs at each time step. A basic
crossbar is a 2 × 2 bufferless switch and takes this name because it could be in cross state,
connecting input 1 to output 2 and input 2 to output 1, or in bar state, connecting input 1 to
output 1 and input 2 to output 2 [168]. This basic concept has been extended to switches im-
plementing any input to output permutation with multiple inputs and outputs. Designing

1Equally denoted as switches during this dissertation.

13

2 Background

Input1

VC1

VCv

VC1

VCv

...

...

...

...

...

...

VC1

VCv

...

...

Inputk

VC1

VCv

VC1

VCv

...

VC1

VCv

... ...

. . .

Outputk

Output1. . .
Virtual-Channel

allocation
Switch

allocation

Routing
computation

Routing
computation

Control plane

Data plane

Management plane

Management Services Monitoring Services

Figure 2-1: Planes and components of a virtual-channel router with input and output buffering.

a switching fabric for a router based on a bufferless monolithic crossbar is simple but ex-
pensive in terms of scheduling complexity, although it was an implementation option used
formerly [128, 41, 191] and also recently [32, 57]. On the other hand, fully-buffered cross-
bar designs, which add a buffer to all crosspoints, or partially-buffered crossbar switching
fabrics, which maintain a few separate buffers per output, have been considered an imple-
mentation option to improve the throughput over bufferless crossbars [140, 160, 2, 133]. A
more sophisticated design, usually employed to build large switching matrices, is a multi-
staged fabric compounded ofmultiple smaller crossbar switches [42, 164]. This work hereon
takes a bufferless monolithic crossbar implementation option as the reference crossbar.

For bufferless crossbar switches, there is no buffer at the crosspoints. However, buffers
may be placed at the input side, output side or both, categorized respectively as Input-
Queued (IQ) switches [102], Output-Queued (OQ) switches [102], and Combined Input-
Output Queued (CIOQ) switches [155]. Figure 2-2 portraits a scheme of each of the above-
mentioned different queuing strategies. The buffers associated with each channel are typi-
cally Firs-In, First-Out (FIFO) queues where the oldest packet, or the head of the queue is
the first leaving the buffer. Traditionally, the most frequent buffering strategy has been the
output-queued and is attractive because it may achieve 100% throughput. However, since
there are no queues at the inputs, the crossbar should take a packet from each input port in
each clock cycle, being also possible that more than one packet should be delivered through
the same output port. Indeed, for a crossbar with 𝑁 inputs, there could be up to 𝑁 pack-
ets destined to the same output port simultaneously. Hence, to be capable of receiving all

14

2.1 Router

the packets at one time slot, the internal interconnection and memory need a bandwidth of
𝑁 packets per time slot, where a time slot is defined as the time between packet arrivals at
input ports. This requirement is denoted as the internal speed-up of the switch [43]. This
concept is analyzed latter in this section. Due to the increment of the routers’ radix and the
required port bandwidth, this output buffering strategy is not practical because of their very
high memory bandwidth requirement. On the other hand, the internal interconnection and
memory bandwidth is not a problemwith the input queuing strategy because they need only
run as fast as the line rate. This is very appealing for high-radix routers or routers with high
bandwidth ports [128, 149].

. . .

(a) IQ

. . .

(b) OQ

. . .

. . .

(c) CIOQ

Figure 2-2: Scheme of (a) input, (b) output and (c) combined input-output queuing strategies for a
bufferless crossbar switching fabric.

However, this queuing strategy can suffer fromHead-of-Line (HoL , [102, 182]) blocking and
the result presented by Karol et al. [102], which limits the throughput due to HoL blocking
to 58.6% if each input maintains a single FIFO, nearly invalidates input queuing strategy.
This limitation was under uniform traffic but it is even worse under periodic traffic pat-
terns [121]. To solve the HoL blocking problem, an increase in the internal speed-up of
the router has been proposed. If the switching fabric has a speed-up between 1 (IQ) and 𝑁
(OQ), for example 2, which doubles the line rate, packets need to be buffered at the inputs
before switching as well as at the outputs after switching. This is known as CIOQ queuing
strategy. Prabhakar et al. [155] postulate that a CIOQ switchwith a speed-up of 4 can behave
identically to a FIFO OQ switch. Note that this queuing strategy provides the best through-
put. Moreover, Anderson et al. [14] show that the impact of HoL blocking problem in input
queues can be completely eliminated by replacing the FIFO queuing discipline with Virtual
Output Queuing (VOQ, [177]) architecture at the input side, hence a throughput of 100%
can be achieved without speed-up under random uniform traffic pattern. VOQ architecture
maintains at each input port a separate queue for each one of the 𝑁 output ports as shown
in Figure 2-3.

15

2 Background

. . .

OutputN

Output1. . .
Input1

Virtual
queue1...

...

Virtual
queueN

Input1

Virtual
queue1...

...

Virtual
queueN

InputN

Virtual
queue1... ...

Virtual
queueN

InputN

Virtual
queue1... ...

Virtual
queueN

Figure 2-3: Virtual output queuing architecture.

The Virtual Channel (VC) concept, firstly introduced by Baubold et al. [17], consists in a
logical division of the physical link into different partitions or virtual channels. Each of
them has an independent buffer and flow control from the rest of VCs that share the physi-
cal link. The VCs allow a decoupling between the allocation of buffers and the channels by
providing several buffers for each network link at the cost of additional control logic. This
decoupling allows active packets to overtake blocked packets which can alleviate the HoL
blocking problem and increase the network throughput. Furthermore, VCs can be used to
prevent deadlock as it will be presented in Section 2.5 and to provide multiple levels of qual-
ity of service by separating different classes of traffic into different VCs. As it can be seen
in Figure 2-1, which portraits the reference router architecture employed in this work, the
buffers of virtual channels are connected to the same input network link through a demul-
tiplexer and to switch by a multiplexer.

Another very constrictive aspect of the router architecture is the type of flow control em-
ployed. Flow control is a mechanism used to determine how the resources of a network are
allocated to the packets which are traversing it. Its main goal is to use resources efficiently to
achieve the best possible network performance. Flow control can be divided into bufferless
or buffered [54]. Section 2.4 explores in depth flow-control mechanisms and their possible
implementations.

The primary task of the router is the routing itself, which is the process of determining
the path for a packet trough the network from its source to its destination. This task is done
by the Routing Computation (RC) logical unit within the control plane of the router. Sec-
tion 2.3 goes in depth into the different routing mechanisms. However, the relevant aspect
of routing concerning router architecture is the implementation of the routing computation,
typically known as routing mechanics [54]. This can be implemented using either algorith-
mic or a table-based structure. The algorithmic way employs a fixed logic circuits for deter-

16

2.1 Router

mining the output port based on the current router and the destination information. The
outcome of this implementation option can be very simple but also a very inflexible routing
algorithm. Indeed, this option is usually restricted to simple routing algorithms and regu-
lar topologies. On the other hand, a very adaptable implementation is the table-based one,
which implements a lookup table for obtaining the appropriate output port for the pack-
ets based on the destination information. This table is supported by a Content-Addressable
Memory (CAM, [113]) or by a Ternary-CAM (TCAM, [188]) when longest-prefix matching
is required, such as in IP routing.

CAM memories allow simultaneous comparison between all indexes and the key. The
main advantage of this type of memories is that the search time is bounded by one sin-
gle memory access, hence, a high lookup throughput is guaranteed. Binary CAMs support
storage and searching of data where each bit has two possible states: zero or one (0 or 1),
whereas ternary CAMs allow each bit of data to be either a zero, a one, or a wildcard (0,
1 or 𝑋). Hence, binary CAMs perform exact-match bit-by-bit searches while the 𝑋 input,
which is often referred to as a “don’t care” state, enables TCAMs to perform broader searches
based on pattern matching. Then, binary CAMs allow only fixed-length comparisons and
are not directly capable of doing varying-length lookups. To cope with the longest-prefix
matching requirement, TCAMs can be used directly [125] or in a hybrid scheme combining
binary and ternary CAMs [176]. TCAM memories store a separate mask for each index,
and during a lookup, both the key and the indexes are masked before its comparison. Both
CAM and TCAM are commercially available and can be used in a discrete form or embed-
ded with the rest of the system in a single device. However, both of them are much more
costly than conventional memory like RAM, and they also consume a great deal of power,
so they dissipate a lot of heat.

The Virtual channel Allocation (VA) and Switch Allocation (SA) logical units perform a
matching between a group of router resources and a group of requesters, basically matching
input buffers to the output ports requested so that one flit from each input port and one flit
destined to each output port, at most, are selected. There are multiple allocation algorithms
although this work only considers separable allocators [54, 19, 18], which perform allocation
by decomposing allocation into two successive stages of arbitration, one across the inputs
and another across the outputs. This arbitration can be performed in either order, in an
input-first or output-first separable allocator. In the former, an arbitration first selects a sin-
gle request at each input port and later, the outputs of these input arbiters are input to a set
of output arbiters to select a single request for each output port. In the latter, the output ar-
bitration is performed first and then the input arbitration. The result of separable allocators
ensures at most one grant asserted for each input and for each output. However, an optimal
matching is not guaranteed because it can leave an input and an output which could have
been trivially connected, both idle. Nevertheless, this type of allocators can be implemented
easily and perform a fast matching, specially on high-radix routers. Remembering the Fig-

17

2 Background

ure 2-1, note that in each input port there is one buffer per every virtual channel. The VA
unit or input arbitration selects one of the VCs for each input port of the crossbar and places
a request for the corresponding output port, and then, SA unit or output arbitrationmatches
each output port to an input that has requested it. Each arbiter employs an arbitration pol-
icy to set the order in which the requests should be attended. These policies should ensure a
fair attendance to avoid starvation at certain inputs. One of the most used policies is Round
Robin (RR). The router modeled in this work employs an input-first separable allocator us-
ing RR in each arbiter, updating the priority list of ports only when that arbiter generates a
winning grant as it is done by iSLIP [127].

Most routers split their functionality into multiple basic pipelined steps, which could be
performed concurrently for different packets, to optimize the clock cycle and increase the
performance of the network device. Following the model introduced by Dally et al. [54] for
a typical virtual-channel router, the pipeline of the router consists on four steps. These can
be separated into per-packet and per-flit steps, where a flit is a unit on which the packets are
broken, whichwill be analyzedmore in depth in Section 2.4. The former ones are the routing
computation at which output port is selected based on the information stored in the packet’s
header; and the virtual channel allocation at which the packet arbitration is performed. The
latter ones are the switch allocation, at which output arbitration matches each output port to
an input that has requested it; and the Switch Traversal (ST) at which flits that have won the
access to the crossbar are transferred from their input buffers to output buffers, where flits
will be waiting up until the corresponding channel is ready for going through it. Figure 2-4
portraits the pipeline of these four steps for two packets during nine cycles of the router.

1 2 3 4 5 6 7 8 9

Head flit RC VA SA ST

Body flit SA ST

Tail flit SA ST

Head flit RC VA SA ST

Body flit SA ST

Tail flit SA ST

 Cycle

Data

Packet

1

Packet

2

Figure 2-4: Two packets traversing the pipeline of themodeled router.

With the goals of increasing the router performance and improving the sub-optimal perfor-
mance of resource allocation, the crossbar can have a certain speed-up, especially with small
flit sizes and low latency requirements [54]. The crossbar speed-up can be provided at the
input, at the output or be an internal speed-up. Input speed-up option is provided in space,
that is, the crossbar has 𝑠 several input ports for each of 𝑘 router’s input port, resulting in
a crossbar with 𝑠 ⋅ 𝑘 input ports. In the same way, output speed-up imply that the crossbar

18

2.2 System level topology

has 𝑠 several output ports for each of 𝑘 router’s output ports. On the other hand, internal
speed-up is provided in time, that is, the crossbar has higher bandwidth or frequency than
router’s input and output ports. This increment in the frequency of the crossbar also impacts
on the logic control units. The router modeled in this work employs an internal speed-up
where the four pipelined stages work at a higher frequency than the network links.

2.2 System level topology

An interconnection network is composed by a set of routers connected to other routers and
to computing hosts by network links in a particular pattern. This pattern is known as the
network topology, which describes precisely how the switching points of the network are in-
terconnected and determines the path diversity. The path diversity is the number of disjoint
paths or routes between each source and destination pair of terminals within the network.
This feature allows the topologies to tolerate faulty channels without the isolation of com-
puting hosts and a better load balance across network links. No topology is optimal since its
design involves different trade-offs, such in terms of performance, cost, wiring complexity,
and resilience. As introduced previously, an interconnection network can be usedmainly at
two levels; system-level and on-chip. Several topologies can be used in both domains, how-
ever, this work is focused in system level networks and so, when a topology is employed,
always is from a point of view of an interconnection network which connects computing
nodes with another ones.

The selected topology for an interconnection networkmostly determines its performance
and cost [54] and its choice is mainly driven by three factors: the required performance, tech-
nology and system packaging. Ideally, the topology selected for a system should ensure the
performance requirements of the applications with the minimum possible cost. Bounds of
the main performance metrics, throughput and latency, can be deduced analyzing the net-
work topology by graph theory. To do that, the routers are identified with the vertices of a
graph and its edges are identifiedwith the communication links of the network. The technol-
ogy of a topology refers to the basis of the router assembly (i.e., power, pin density, radix, etc)
and the signaling technology, such as electrical or optical links. The system packaging de-
cides the distribution of the computation resources per unit of area in the Data Center (DC)
and it also determines the signaling speed due to the distance over which the communi-
cation is reliable. A good match that fit in the system packing into the network topology
simplifies the system wiring and gives a cost-effective solution.

Topologies can be broken down into two large groups: direct and indirect [171, 54]. In
direct topologies there are no transit routers that are switching nodes without any attached
compute host.2 Traditionally, in a direct topology there was the same number of computing
nodes as routers, and each of the former is connected to one of the latter. In this previ-

2In contrast, a router with terminals directly attached to it is denoted as access.

19

2 Background

ous scenario, commonly, the router and the terminal formed a block and the packets were
forwarded directly between these blocks. Nowadays, the direct topology concept allows a
concentration factor which states the number of terminals that are connected to a single
router. Hence, an updated definition for direct topology includes topologies on which every
router within the network is connected at least to one or more terminals as well as to other
switches. This work will hereon uses this updated definitionwith regard to direct topologies.
On the other hand, in an indirect topology there are transit routers, then, some switching
nodes are connected only to the neighboring switches. Figure 2-5 portraits an example of
two direct topologies where the switch nodes are shown as squares and the terminals as cir-
cles. An example of an indirect topology can be found in Figure 1-2. Select between a direct
or an indirect topology determines some packaging and cabling requirements as well as fault
resilience and impacts on the network cost.

0

0.00.0 1.01.0 2.02.0

0.10.1 1.11.1 2.12.1

0.20.2 1.21.2 2.22.2

1 2

3 4 5

6 7 8

(a) Mesh

0.00.0 1.01.0 2.02.0

0.10.1 1.11.1 2.12.1

0.20.2 1.21.2 2.22.2

10 2 43 5 76 8

99 1212 1515

1818 2121 2424

(b) 2-D Flattened Butterfly

Figure 2-5: Conceptual representation of (a)mesh and (b) bidimensional Flattened Butterfly direct
interconnection networks. The concentration factors are 1 and 3 respectively. The routers are in-
dexed by their position in the X and Y axis as X.Y, starting from top left corner.

An important characteristic of a topology is its diameter, which is the maximum distance,
measured as the number of communication links that a packet must traverse between any
source and destination routers when using minimal paths.3 This characteristic of the topol-
ogy bounds the maximum or worst-case zero-load4 latency of the network. Note that the
network diameter is independent of traffic pattern and is dependent solely of the topology.

3The network diameter can also be measured as the number of router traversals along the longest minimal
path within the network. This work does not employ this definition for the diameter characteristic.

4The zero-load or base latency represents the average latency suffered by a packet in absence of other network
traffic. Hence, the packet does not contend for network resources with other packets.

20

2.2 System level topology

The most popular topologies for DCs are folded-Clos networks [47], which are also known
as Fat-trees [120]. They are hierarchical multi-level and indirect networks and are known
to perform well for all kinds of traffic patterns. However, they are relatively costly due to
the amount of routers and network links that they require and it becomes prohibitively ex-
pensive for large deployments. Torus, which is also a popular topology for HPC systems,
directly interconnect a terminal to a number of its neighbors in a k-dimensional lattice [54].
Its main advantage is its cost and it adapts very well to problems that requires a neighbor
communication pattern. However, Tori topologies provide low network throughput for ad-
versary traffic patterns and its implementation is not easy with some system packaging con-
straints and cable length limitations due to signaling speed. Besta et al. [28] introduce the
SlimFly topology to provide a trade-off between the cost and the throughput. It is a direct
topology that approximate the Moore bound, in fact, it reaches approximately the 88% of it
for a diameter of 2. HyperX topology [9] is a regular, multi-dimensional topology and it is
a generalization of the hypercube topology [30]. To balance the network and achieve full
global bandwidth, the number of routers on each dimension must be equal and equal to the
number of terminals connected to each router. However, this is not a requisite and some
configurations may be not balanced. A HyperX with the same number of routers in each
dimension is also known as Flattened Butterfly topology (FB, [110]), which is a Hamming
graph [139]. Dragonfly direct topology [108] is a hierarchical networkwith two levels: intra-
group and inter-group. An arbitrary topology may be selected for each level. It is described
in depth in the further section. TheMegafly topology [64] (also known asDragonfly+ [170])
is a Dragonfly in which the intra-group topology is a two-level Fat-tree while the inter-group
is a completely-connected topology. The topology in each group is also known as a bipartite
connected graphwhich is a graphwith two subgroups where all nodes within each subgroup
are connected to all nodes in the another but there is no connection within a subgroup. This
combination of topologies allows higher scalability than Dragonfly based on completely-
connected topology on both levels while reduces the cost compared to a Fat-tree.

Regarding the parameter used to indicate the router’s size, network topologies can be con-
structed with low-radix or high-radix routers. Technology trends motivated the use of low-
radix topologies, such as the k-ary n-cubes [51, 5], in the 1990s and 2000s by several High-
Performance Computing (HPC) systems such as the 3-D torus of the Cray T3E [165], the
SGI Origin 2000 hypercube [118], the 2-D torus of the Alpha 21364 [138], the 3-D torus
of the Cray XT3 [36] and the IBM Blue Gene/P [85]. In low-radix topologies, the routers
are often only connected to neighboring routers which benefit to applications with near-
neighbor communication patterns. However, the technology improvements, such as the in-
creasing pin bandwidth or the advent of economical optical signaling [108], have motivated
the migration towards high-radix topologies, such as the folded-Clos, Dragonfly, Dragon-
fly+ and HyperX or Flattened Butterfly networks. For example, the Cray BlackWidow [3],
Summit [184] and Sierra [119] systems employ a Fat-tree network [175], the Dragonfly and

21

2 Background

Dragonfly+ topologies are used in Trinity [122], which is an implementation of Cray XC
architecture [60] using Aries interconnection network [13] and Niagara [154] systems re-
spectively, andDomke et al. [58] have deployed the firstmachine based onHyperX topology.

High-radix topologies exploit the technology evolution by reducing the network diam-
eter and hence, obtaining a lower latency and cost than previous proposals. Moreover,
some recently proposed topologies exploit the evolution of the technology to improve cost-
effectiveness. For example, Flattened Butterfly topology, reduces the cost of the network by
approximately 50% from a folded-Clos topology by removing intermediate stages (routers
and channels) and creating a direct network [110]. However, it is ultimately limited by the
physical constraints of a router radix; and the cost of scaling to large node count increases
the number of dimensions, which implies an increment in costs and latency. To cope with
these limitations, a set of routers can be used together to create a virtual high-radix router.
The Dragonfly topology [108], analyzed in depth below, leverages this concept to create a
more scalable and power efficient topology.

2.2.1 Dragonfly

Kim et al. [108] first introduced the Dragonfly topology focused on scalability and cost-
efficiency. It is designed from the premise that intra-group topology can be interconnected
using cheap electrical wires, while optical cables are used for longer inter-group connections.
The Dragonfly extends the savings of FB and it reduces the overall cost of the network by
approximately 10% over FB for networks up to 4K terminals and by approximately 20% for
larger networks [108]. It is a direct low-diameter topology deployed hierarchically in two
levels which adapt to a suitable system packaging. Figure 2-6 shows a block diagram of a
network with 72 compute hosts using this topology.

The first level comprises sets (or groups) of routers interconnected following certain intra-
group topology by local communication links, each of them can be treated as a virtual high-
radix router. These groups are connected by global communication links according to an
inter-group topology. Arbitrary networks can be used in both topological levels. For the
intra-group topology, Cray has implemented in the Cascade (XC) systems [60, 13] a rectan-
gular 2-D HyperX topology in which the routers within a group are arranged in logical rows
and columns and connected in an all-to-all fashion between the routers belonging to each
row or column. On the other hand, IBM in the PERCS system [15] and recently Cray in its
Shasta exascale supercomputer system platform using the Slingshot network [166] have im-
plemented the intra-group topology using a complete graph,5 in which each router among a
group is connected to every other router by a direct network link. For the inter-group topol-
ogy, all aforementioned systems employ a complete graph (direct all-to-all) interconnection
topology between groups. Additionally, the connection between each pair of groups can be

5Slingshot network design allows to arrange the switches arbitrarily but its default topology is a Dragonfly
with an all-to-all interconnection pattern in both topological levels [166].

22

2.2 System level topology

R0R0

0 10 1 2 32 3 4 54 5 6 76 7

Intra-group IN

Group 0
(virtual

high-radix
router)

G1
10 11 12 13 14 1598

G1
10 11 12 13 14 1598

G2
18 19 20 21 22 231716

G2
18 19 20 21 22 231716

G7
58 59 60 61 62 635756

G7
58 59 60 61 62 635756

G8
66 67 68 69 70 716564

G8
66 67 68 69 70 716564

Inter-group
Interconnection Network

0 1 2 3 4 5 6 7

...

R2 R3R1

Figure 2-6: Block diagramof aDragonfly topology (h=2, p=2, a=4) remarking the concept of virtual
high-radix router, introduced by this topology, and its two hierarchical levels.

done by one or multiple global links, latter possibility is denoted as global trunking. A Drag-
onfly network using complete graphs in both topological levels is denoted by Camarero et
al. [38] as a canonical Dragonfly. Like in the base version of the Dragonfly and in the most
recent systems which use this topology, a completely-connected graph is used in this work
for interconnecting routers within each group and between groups. Hence, hereon any ref-
erence to a Dragonfly network will regard to a canonical Dragonfly unless otherwise noted
in a particular context.

This topology can be described through three parameters: the number of compute hosts
connected to each router 𝑝, the number of routers per group 𝑎, and the quantity of global or
inter-group links per router ℎ. Hence, the number of ports per router or router radix must
be, at least, equal to 𝑘 = 𝑝+𝑎−1+ℎ. Each group has 𝑎⋅𝑝 links to compute hosts and 𝑎⋅ℎ global
links to other groups, acting as a virtual router with radix 𝑘′ = 𝑎 ⋅ (𝑝 + ℎ). The Dragonfly
network parameters 𝑝, 𝑎 and ℎ can have any value. However, to ensure a balanced use of
the communication links under a load-balanced traffic, these parameters must follow the
relation 𝑎 = 2𝑝 = 2ℎ. This equals the number of global links departing from a group to the
number of compute hosts or injectors, and presents the same proportion between global and
local links as the hops required byminimal paths. Even if maintaining a balanced Dragonfly
topology is not a necessary requirement, this work always assumes it because any level of
imbalance results in a wasted capacity on some links.

23

2 Background

With a single link between pairs of groups and so, without global trunking, it is generated
a Dragonfly network with 𝐺 = 1 + 𝑎 ⋅ ℎ = 2ℎ2 + 1 groups achieving its maximum-size
𝑁𝑀𝐴𝑋 = 𝑎 ⋅ 𝑝 ⋅ 𝐺 = 2ℎ ⋅ (2ℎ2 + 1) = 2ℎ3 + 2ℎ terminals. For example, an ℎ = 6 Dragonfly
has 𝑝 = 6 compute hosts per router, 𝑎 = 12 routers per group and 𝐺 = 73 groups, for an
overall 𝑁 = 𝑁𝑀𝐴𝑋 = 5, 256 compute hosts. This maximum size implies that there is no
minimal path diversity, that is, only one minimal path connects any pair of given compute
hosts. And based on that, it is simple to observe that the diameter of a Dragonfly network
is three (one hop in each group plus one hop in the global interconnect), corresponding to
the longest minimal path between two switching nodes, which occurs when these routers
belong to different groups and none of them is directly connected to the global link between
the groups.

Table 2-1 summarizes the symbols used in this work regarding the Dragonfly topology.
The groups are denoted as 𝐺0, 𝐺1, … , 𝐺2ℎ2 and are typically depicted in a circle following a
counterclockwise order. The routers in the groups are denoted as 𝑅0, 𝑅1, … , 𝑅𝑎−1 and are
typically depicted within the group from left to right. The local link leaving from router 𝑅𝑖
to router 𝑅𝑖+𝑗 modulo 𝑎 is denoted as 𝑙𝑗 (𝑗 ∈ {−ℎ, −(ℎ−1), … , −1}∪{+1,… , +(ℎ−1), +ℎ}). Note
that 𝑙+ℎ and 𝑙−ℎ both denote the same local link, and that local link 𝑙+𝑖 is denoted as 𝑙−𝑖 in the
opposite direction.

Table 2-1: List of symbols employed in the topological description of Dragonfly.

SymbolDescription

𝑝 Number of compute nodes per router

𝑎 Number of routers per group

ℎ Number of inter-group (global) network links per router

𝑘 Router radix (its number of ports)

𝑘′ Virtual router radix

𝐺 Number of groups in the network

𝑁 Number of compute hosts in the network

𝑁𝑀𝐴𝑋 Maximum number of terminals in the network

Kim et al. [108] compare the cost of electrical wires and active optical cables as a function
of distance, and conclude that beyond ten meters the optical signaling is more economical.
TheDragonfly topology exploits this relation between cost and distance employing electrical
wires within a group and optical ones for links between groups. These global links can be ar-
ranged following multiple approaches [38, 80, 20] and research on Dragonfly systems often
does not specify which arrangement is employed, in fact that property was not explicitly in-

24

2.2 System level topology

dicated when Dragonfly was first proposed. However, the global link arrangement implicitly
shown in the figures of that work is denoted as consecutive [38] or absolute [80, 20] arrange-
ment. It connects the egress global links of a group, in consecutive order, to each other
group in a sequential manner starting from group zero, except when the link would connect
a group to itself. This arrangement results in a connection through the fist global link egress-
ing each source group and group zero. A similar arrangement, which can be inferred from
the figures in [72] and denoted a posteriori as palmtree [38] or relative [80, 20], connects
each router 𝑅𝑗 in group𝐺𝑖 to the ℎ routers 𝑅𝑎−1−𝑗 in groups 𝑖+ℎ ⋅ 𝑗+1, 𝑖+ℎ ⋅ 𝑗+2,⋯ , 𝑖+ℎ ⋅ 𝑗+ℎ
modulo 𝐺 using ℎ consecutive global links per router. Hence, the first router of a group is
connected to the ℎ precedent groups and the latest one to the ℎ following groups. This last
arrangement is like the previous one if the routers position within the group are reversed
and with each group taking the role of group zero. Hence, each group presents the same
global connectivity pattern.6 Figure 2-7 depicts a block diagram, including the notation for
local communication links, and a complete diagram of a canonical Dragonfly network with
(𝑁 = 𝑁𝑀𝐴𝑋 = 72) employing the palmtree global link arrangement. This work hereon takes
palmtree as the reference global link arrangement.

Local link (lj) Global link (gj)

G1
10 11 12 13 14 1598

G1
10 11 12 13 14 1598

G2
18 19 20 21 22 231716

G2
18 19 20 21 22 231716

G8
66 67 68 69 70 716564

G8
66 67 68 69 70 716564

g-1

...

0 10 1

01

2 32 3

2 3

4 54 5

4 5

6 76 7

6 7

R0R0R0 R3R2R1

l+1
l+2

l-1

G0

g+1g+2

(a) Block diagram denoting local and global links.

G0

R0 R1 R2 R3

(b) Complete network.

Figure 2-7: Representation of a sample canonical Dragonfly network (h=2, p=2, a=4) depicting (a)
a block diagram and (b) the complete network using the palmtree global link arrangement. Note
that local and global links egressing from R1 and G0, respectively, are highlighted in blue.

Figure 2-8 presents the largest system that can be constructed using 𝑘-radix routers for dif-
ferent balanced network topologies. The number next to each topology name represents its
network diameter. The Dragonfly topology, in any of its variants, can support the highest
number of compute hosts compare to other topologies with the same diameter. For exam-
ple, based on routers with 𝑘 = 64 ports, a Flattened Butterfly with three dimensions scales
to 65,536 compute hosts whereas a canonical Dragonfly reach up to 262,656 terminals with

6This rotational symmetry is specially leveraged by this work in Chapter 6.

25

2 Background

a network diameter of three hops. A three-level folded-Clos and four-dimension Flattened
Butterfly reach up to 65,536 and 371,293 compute hosts, respectively. The latest case is more
scalable than a canonical Dragonfly at the cost of increasing the diameter. A 5-D Flattened
Butterfly scales up to 1,771,561 terminals. However, a comparable Dragonfly with a diame-
ter of five, like the proposed in the Cray Cascade systems, reaches up to 16,781,312 compute
hosts.

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

16 24 36 48 64 96 128

N
u
m

b
e
r

o
f

co
m

p
u
te

r
h
o
st

s
(N

)

Number of ports per router (k)

2-D Flattened Butterfly (2)

3-D Flattened Butterfly (3)
Canonical Dragonfly (3)

4-D Flattened Butterfly (4)

3-Level Fat-tree (4)

5-D Flattened Butterfly (5)
Dragonfly with 2-D FB as group (5)

Figure2-8: Scalability fordifferentnetwork topologies,measuredas thenumberof computehosts,
as router radix k increases. Note that the number next to each topology name represents its net-
work diameter and the ordinate axis uses a logarithmic scale.

The constant network link speed evolution has reduced the reach of copper cables and in-
creased its price. Then, if the physical constraints of router radix are overcome and the cost
of active optical cables is reduced further to be slightly higher than the cost of electrical wires
or new link-level technologies allow the use of low-cost passive optical cables, a more flat-
tened topology such as Flattened Butterfly can result in amore cost-efficient topology than a
hierarchical one such as the Dragonfly. McDonald et al. [126] reproduce the model of costs
introduced in [108] to compare it with confidential quotes gathered from multiple vendors
for passive optical cables and conclude that the HyperX cost is always lower or equal to a
Dragonfly topology.

The current trend towards massive-scale HPC data centers has driven the introduction of
low-diameter, highly scalable network topologies such as Dragonfly. This kind of networks
sacrifice minimal-length path diversity, common in traditional topologies such as folded-
Clos, for larger number of nodes and lower average distance. Consequently, minimal paths
are congestion-prone under adversarial traffic patterns and the use of non-minimal routes,
which are typically controlled by an adaptive non-minimal routing algorithm, is mandatory
in order to fully exploit the benefits of this topology compared to other high-radix topologies
such as Fat-tree. The next section delves into the background on this topic.

26

2.3 Routing

2.3 Routing

Once routers and the communication links are ready, the next logical step is to determine
how a packet should travel through them. Then, routing determines the path followed by a
packet through the network from its source to its destination. As mentioned in Section 2.2,
the topology determines the performance bounds of a network, even if routing is one of the
key factors which determines how much of this ideal performance is achieved [54]. Fur-
thermore, routing is responsible for exploiting all the features of topologies, such as the path
diversity, and desirably balancing load across network links even in the presence of adver-
sarial traffic patterns.

The RC unit of a router gives an output port for packets executing a specific routing algo-
rithm, which should pursue different objectives sometimes confronted. A routing algorithm
should exploit the path diversity of the topology, which can include both minimal and non-
minimal paths, while keeping the path length as short as possible. The latter is pursued to
use the minimal amount of network resources for delivering each packet and balancing the
load across network links to achieve a high throughput under both, benign and adversarial
traffic patterns. Moreover it should do all of this being complexity-effective to minimize its
impact on packet latency, that is, it must be able to be implemented efficiently.

Routing algorithms can be classified according to different features [54, 78].

◼ Based on the hop count, they can be divided into minimal and non-minimal. The
first ones select paths with a minimal number of links to be traversed between source
and destination. Depending on the topology and its minimal path diversity, there
can be only one or multiple minimal paths. The latter ones select paths between the
source and destination of a packet that traversemore channels than theminimal paths
between those source and destination points.

◼ According to its adaptivity, they can be classified into oblivious7 and adaptive depend-
ing, respectively, on whether they ignore or use the state of the network for making
routing decisions. The latter ones can be further divided into congestion-oblivious and
congestion-aware based on whether they take or not the output link demand into ac-
count during the routing computation. Congestion-aware can be further divided into
local and regional/global based on the source of the congestion information employed,
which can be purely local or collected from other points in the network. Moreover,
these other points can belong to a region, e.g., a group of Dragonfly topology, or be
global, which implies that the information is shared to all the network by the source
of the information.

◼ Based on the stage where the routing decision is taken, they can be divided into source
7Traditional deterministic routing algorithms, which always give the same network path for each pair of

source and destination compute hosts, can also be classified as oblivious [54].

27

2 Background

and in-transit (also denoted as per-hop, incremental or progressive) routing. The first
ones determine the path at the source router8 so, this computation is performed once
per packet. The latter ones re-evaluate the routing algorithm at every hop through
the followed path to determine the next productive hop for each packet to reach its
destination. Hence, the routing computation is done multiple times for each packet
by in-transit routing algorithms. This incremental adaptability allows a better sense
of congestion because it can be encountered during the traversal of the network and
it might not be observed at the source router during the injection of packets. This
type of routing must set certain restrictions in the amount of adaptivity to ensure the
forward progress of packets. However, the flexibility obtained by this type of routings
is at the cost of a higher routing algorithm complexity. This work does not focus on
this type of routing algorithms because it aims to maintain the routing complexity
limited.

The following sections explore in depth a set of routing algorithms representative of each
aforementioned categories, except in-transit, explaining its details for the Dragonfly topol-
ogy.

2.3.1 Minimal (MIN)

The Minimal routing algorithm (MIN) selects the shortest path for a packet between its
source and destination. It is minimum, so it keeps the path length as short as possible. In
a Dragonfly network there is no minimal path diversity, so it can be implemented only as
oblivious. And regarding the last classification option, it can be computed at source or hop-
by-hop, although it is usually implemented at the source router.

In a general case, a MIN computation in a Dragonfly network from a source computing
host 𝑆 connected to a router𝑅𝑆 belonging to group𝐺𝑆 to a destination terminal𝐷 connected
to a switching node 𝑅𝐷 belonging to group 𝐺𝐷 results in a single one possible path which
consists of up to three hops through network links: a local hop in𝐺𝑆, amandatory global hop
to the𝐺𝐷, and a final local hop to the𝑅𝐷. This route is usually represented in the longest way
as lgl, or l1g1l29 for referring to each hop individually. Shorter pathsmay occur, depending on
the relative location of the source and destination routers. Let’s split two different situations,
intra-group and inter-group routing. In the first one, only the first local hop can be employed
and solely if𝑅𝑆 and𝑅𝐷 are different. In inter-group routing, the global hop (g) is mandatory
and the first local hop (l1) is employed when 𝑅𝑆 is non-adjacent to 𝐺𝐷, so that local hop is
employed to reach another router 𝑅𝑃 in 𝐺𝑆 which is connected through a global link to 𝐺𝐷.
The last local hop (l2) is employed when the global link taken is not connected to 𝑅𝐷 and

8Please do not confuse with another terminology where source routing implies that the source computing
node of the packet prepends the complete route on each packet header. [33]

9Note that these subscripts do not have sign (+, −) rather than the notation used to indicate the Dragonfly
local network links.

28

2.3 Routing

in this case, this global link reaches to router 𝑅𝐶 in 𝐺𝐷 and that local hop is employed to
traverse from 𝑅𝐶 to 𝑅𝐷. An example of different MIN routing computations are presented
in Figure 2-9.

R0R0

S1 1S1 1 2 D12 D1 S2 5S2 5

Groups: GS1 & GD1 & GS2

R1R1 R2R2 R3R3

6 76 7

R4R4

0 10 1 2 32 3 4 54 5

R5R5 R6R6 R7R7

6 D26 D2

l1A l1B

g1

l2

S1 to D1: R0 – l1A – R1

S2 to D2: R2 – l1B – R3 – g1 – R4 – l2 – R7

Group: GD2

g Inter-group linksg Inter-group links
l Intra-group linksl Intra-group links

Figure 2-9: TwoMIN routing computation examples. For example, in path from S2 to D2 the RP and
RC are the routers R3 and R4, respectively.

MIN provides maximum throughput and minimum latency under uniformly distributed
traffic loads, but under adversarial loads it saturates some network links resulting in a very
poor performance. To alleviate this congestion concern, a non-minimal routing is desirable.

2.3.2 Valiant Load-Balancing (VLB)

Valiant load-balancing routing algorithm (VLB), also denoted as Valiant randomized rout-
ing algorithm and typically known as Valiant routing, is an oblivious non-minimal routing
algorithm computed only at source, which was proposed by Valiant et al. [187]. VLB uses
randomization and non-minimal routing to exploit the path diversity of the topology and
achieve a load-balanced workload over the network. The original randomization-based
Valiant algorithm [187, 186]) obtains 𝑂(log𝑁) packet delivery time for any permutation
of traffic in a hypercube network of 𝑁 processors. It is a two-phase algorithm with an in-
termediate router (𝑅𝑅𝑂𝑂𝑇, [60, 64]) selected randomly among the routers in the network
during routing computation. In the first phase (denoted as phase A), minimal routing is
used to send each packet to the intermediate router. Once the packet reaches the interme-
diate switch, in the second phase (denoted as phase B) the packet is sent minimally from
𝑅𝑅𝑂𝑂𝑇 to the actual destination. The original implementation of phase A in [187] follows a
dimension-order process where the (only) link in each dimension of the hypercube in each
current router is traversed or not with the same random probability. This is equivalent to
selecting a random intermediate destination at injection time, but requires less bookkeeping
since the intermediate node is not recorded in the packet header. Valiant routing is com-
pletely oblivious: the path for each packet is selected randomly and it does not depend on
the status of network nor the destinations of packets sent by other nodes. If the intermedi-

29

2 Background

ate router happens to be either 𝑅𝑆 or 𝑅𝐷, VLB degenerates into minimal routing as only one
phase is performed.

VLB routing can be used in the Dragonfly topology to load-balance adversarial traffic
patterns. Using the above-mentioned symbols, a VLB computation in a Dragonfly network
obtains a route with up to six hops (l1g1l2 – l3g2l4), three on each phase. Note that there are
two 𝑅𝑃 and 𝑅𝐶 routers in each complete VLB path because there is one of them in each VLB
phase of MIN routing. Again, as explained for the MIN routing, shorter paths are possible
depending on the relative location of the source, destination and intermediate routers. Ig-
noring the phase B, the VLB non-minimal path is determined by two aspects: 1) the global
links egressing from 𝐺𝑆 that can be used, restricting the groups that can be selected as the
𝐺𝑅𝑂𝑂𝑇10; 2) the routers belonging to 𝐺𝑅𝑂𝑂𝑇 that can be selected as the intermediate switch
𝑅𝑅𝑂𝑂𝑇. These two aspects can be combined to generate different VLB phase A policies that
determine the routers of the network which can be selected as intermediate router 𝑅𝑅𝑂𝑂𝑇.

Kim et al. [108] suggested that applying Valiant’s algorithm selecting the router in the
intermediate group that is adjacent to the source group, this implies that 𝑅𝑅𝑂𝑂𝑇 = 𝑅𝐶 fol-
lowing the notation introduced, suffices to balance load on both the global and local links.
Hence, VLB was first implemented by those authors in the Dragonfly selecting a random
intermediate group, instead of a router, while saving one local hop in the 𝐺𝑅𝑂𝑂𝑇. Then, this
VLB variant obtains paths with up to five hops (l1g1 – l3g2l4). This implementation of VLB in
the Dragonfly allows a performance increase under ADV+1 variant of the adversarial traffic
which is presented in Section 3.2.2.1.2. However, shortening the path in phaseA from its ref-
erence l1g1l2 introduces pathological bottlenecks under certain adversarial traffic patterns.
Garcia et al. [72] identified that the lack of the second local hop in VLB phase A introduces
pathological performance issues under the ADV+ℎ variant of the adversarial traffic. Simi-
larly, as was identified by Fuentes et al. [68], non-minimal paths which omit the first local
hop in phase A suffer under adversarial consecutive traffic pattern which is presented in Sec-
tion 3.2.2.1.4. This work will hereon include the maximum hops presented in the phase A
of the path in the abbreviation of VLB in order to propose diverse VLB path length options.
Note that missing hops will be represented by a hyphen. An example of VLBlgl, VLBlg- and
VLB-g- routing computations are presented in Figure 2-10.

The randomization used by VLB effectively balances the load on the network links under
non-uniform traffic loads. In fact, VLB provides optimal performance on adversarial traffic
patterns regarding the throughput. This performancemetric is limited onVLB to the 50% of
the maximum throughput allowed by the network [181] caused by the double utilization of
the network links. Moreover, due to the increment in the length of the path, VLB increases
the zero-load latency and it also loses the traffic locality because a packet with an intra-group
traffic pattern may be sent to a remote group by VLB.11 VLB improves the performance un-

10Note that this restriction also restricts the possible routers that can be selected as 𝑅𝑅𝑂𝑂𝑇.
11This aspect is partially mitigated in Chapter 5.

30

2.3 Routing

R0R0

S1 1S1 1 2 32 3 S2 S3S2 S3

Groups: GS1 & GS2 & GS3

R1R1 R2R2 R6R6

0 D30 D3

R7R7 R8R8

D2 D1D2 D1

l1
l4

Groups: GD1 & GD2 & GD3

g Inter-group linksg Inter-group linksl Intra-group linksl Intra-group links

R9R9

Groups: GROOT2 & GROOT3

R10R10 R11R11

l3

R3R3

Group: GROOT1

R4R4 R5R5l3

g1 g2

l1

g1 g2

l4

g1 g2

l4

l2

S1 to D1 VLBlgl -- Phase B: R0 – l1 – R1 – g1 – R3 – l2 – R4 -- l3 – R5 – g2 – R7 – l4 – R8

S2 to D2 VLBlg- -- Phase B: R2 – l1 – R1 – g1 – R9 -- l3 – R11 – g2 – R7 – l4 – R8

S3 to D3 VLB-g- -- Phase B: R2 – g1 – R10 -- g2 – R7– l4 – R6

Figure 2-10: Three different VLB routing computations examples remarking source, intermediate
and destination routers and the local and global links traversed. Note that S3 to D3 path is shorter
than usual because the minimal path on phase B omits the l3 hop. For example, in path from S1 to
D1 the RP and RC in the VLB phase A path are the routers R1 and R3, respectively; and the RROOT is
the R4. The RP and RC in theVLB phase B path are the routers R5 and R7, respectively.

der non-uniform traffic loads, although under uniform loads it obtains half the throughput
of MIN routing. To overcome this limitation, the following sections present some adaptive
routing algorithms that dynamically decide between minimal and non-minimal routing to
maximize performance.

2.3.3 Universal Globally Adaptive Load-balancing (UGAL)

Universal Globally Adaptive Load-balancing routing algorithm (UGAL) was proposed by
Singh [172] to select between minimal and non-minimal routing for every packet based on
the next hop congestion information (queue lengths) in each path. If non-minimal routing
is chosen for a packet, this is routed as VLB, otherwise MIN routing is used. Under benign
traffic patterns, UGAL aims at the performance ofminimal routing whereas under adversar-
ial traffic patterns, UGAL sends most of the traffic using VLB to load-balance the use of the

31

2 Background

network links. Hence, UGAL is a non-minimal source-adaptive congestion-aware12 routing
algorithm.

To select betweenminimal andnon-minimal routingUGALuses the product of the queue
occupancy (𝑄) and the hop count (𝐻) for both routing paths. Theminimal queue occupancy
(𝑄𝑀𝐼𝑁) represents, in phits, the congestion on the output port taken by the minimal path
while minimal hop count (𝐻𝑀𝐼𝑁) is the number of hops between the source and destination
of the packet following suchminimal path. In the sameway of VLB, UGAL selects a random
intermediate router for the non-minimal path. Non-minimal queue occupancy (𝑄𝑉𝐿𝐵) rep-
resents the congestion on the output port taken by theminimal path between the source and
the intermediate router while non-minimal hop count (𝐻𝑉𝐿𝐵) is the sum of the hop count
of the just mentioned minimal path and the hop count between the intermediate router and
the actual destination of the packet. Based on that congestion information, UGAL routes a
packet minimally if the following inequality is satisfied:

𝑄𝑀𝐼𝑁 × 𝐻𝑀𝐼𝑁 ≤ 𝑄𝑉𝐿𝐵 × 𝐻𝑉𝐿𝐵.

Otherwise, the packet is routed non-minimally. Jiang et al. [96] implemented UGAL in
the Dragonfly with minor changes from its original proposal. Since the global network links
limit the network bandwidth and dominate network latency, the decision can be simplified
using only the number of global hops (1 or 2 for MIN and VLB, respectively) instead of the
hop count of minimal and non-minimal paths. Additionally, these authors added a routing
threshold constant 𝑇 which can be adjusted to bias UGAL towards MIN or VLB to balance
performance between benign and adversarial traffic patterns and to filter out transient load
imbalances on the minimal paths. Then, a packet is routed minimally if the following in-
equality is satisfied:

𝑄𝑀𝐼𝑁 ≤ 2 × 𝑄𝑉𝐿𝐵 + 𝑇.

This work recovers the original comparison aforementioned to highlight the importance of
local network links and preserves the threshold constant introduced in [96]. Hence, the
implementation of UGAL employed by this work decides to route a packet minimally if the
following inequality is fulfilled:

𝑄𝑀𝐼𝑁 × 𝐻𝑀𝐼𝑁 ≤ 𝑄𝑉𝐿𝐵 × 𝐻𝑉𝐿𝐵 + 𝑇. (2-1)

The source router is usually not connected to the global network link to be used by MIN or
VLB routing, therefore it must use the length of its local queues as a sign of their occupancy.
This approximation is enough in networks with stiff back-pressure, but results in high la-
tency in networks with soft back-pressure [96]. To cope with those situations, in which the

12Kim et al. [108] propose two implementations of UGAL forDragonfly networks: one local congestion-aware
and another regional, which are denoted as UGAL-L and UGAL-G respectively.

32

2.3 Routing

local congestion informationmay be insufficient to take a good routing decision, the conges-
tion information of the channels can be exchanged between adjacent routers. This technique
is employed by the routing algorithm presented in the next section.

2.3.4 Piggyback (PB)

Piggyback routing algorithm (PB) was proposed by Jiang et al. [96] as a complementary
method to decide whether to route a packet minimally or non-minimally. It extends UGAL
routing with a mechanism to detect saturated global links. PB routing inherits part of the
classifications of UGAL, so it is a source-adaptive and congestion-aware routing algorithm.
However, PB is classified as regional congestion-aware whereas UGAL is local congestion-
aware, where a region is defined as a group.

PB broadcasts state information of the global network links to all adjacent routers. To do
that, a link state bit vector is piggybacked13 and broadcast periodically on idle local channels.
Themost recent version of this information for every global link of each group ismaintained
by each of their routers. Hence, PB decides to route a packet minimally only if the minimal
global channel is uncongested and inequality presented in Equation 2-1 is fulfilled. Oth-
erwise, the packet is routed non-minimally. The congestion state information of a global
channel (𝐶𝐺) is represented into a single bit (𝐶𝑔𝑐) and calculated using

𝐶𝑔𝑐 = 𝑄𝑔𝑐 > 2 × �̄� + 𝑇,

where𝑄𝑔𝑐 is the queue occupancy of the global link, �̄� is the average queue occupancy of the
other global channels of the router and 𝑇 is a routing threshold to filter out transient load
imbalances on the minimal paths. If 𝐶𝑔𝑐 is true, global network link 𝑔𝑐 is congested and
should not be used to send a packet, otherwise it is considered uncongested. The original
implementation of PB in [96] uses a fixed 2× factor but this work generalizes it to be able to
use other values, resulting in the following employed equation:

𝐶𝑔𝑐 = 𝑄𝑔𝑐 > 𝐹 × �̄� + 𝑇. (2-2)

This routing algorithm is taken as the per-packet basis adaptive routing reference in this
work. Note that both PB and UGAL are focused on avoiding in-network congestion and
this work is not either focused on end-point congestion avoidance.

13Piggybacking, originally, is a technique to provide a better utilization of bandwidth sending the acknowl-
edgments in outgoing data packets. Here, it implies that the state information is attached to the header of
every packet exchanged within the group.

33

2 Background

2.4 Flow control

Flow control is the basic mechanism by which the resources of a network, such as link band-
width and buffer capacity, are managed and allocated to the packets and determines the so-
lution when packets contend for such resources. Its main goal is to use resources efficiently
to achieve the best possible network performance. The flow-control mechanism must avoid
resource conflicts, because they are in demand bymultiple uncoordinated sources, and allo-
cates those network resources efficiently to achieve a high fraction of the ideal performance
bounded by the topology and later by the routing algorithm. Flow control can be divided in
hop-by-hop or end-to-end. As already mentioned, this work is focused on analyzing the per-
formance of the network, so end-point congestion is not the focus. Hence, the end-to-end
flow control which aims to mitigate this type of congestion, mainly by injection throttling,
is not inside the scope of this work.

With respect to what can be done when a resource is requested but not currently available
for use, the flow-control mechanisms can be divided into bufferless or buffered [54]. In the
former implementation option the blocked packets can be either dropped ormisrouted, and
in the latter those packets are stored in buffers waiting for the availability of their demanded
resource. An intermediate implementation option which require a bit more complexity is
circuit switching, where only packet headers are buffered. This mechanism sends the header
of a packet reserving the required resources through the network between its source and
destination and once the path is completely reserved, the payload of the packet may be sent
over the established circuit.

Employing buffers decouples the allocation of adjacent channels in time. A buffer is a
place where the data that comes from one channel while waiting for the following one is
stored, which allows the allocation of that second channel to be delayed. By contrast, without
a buffer, the allocation of the two channels must be done during consecutive cycles, or the
packet must be dropped or misrouted through another channel. Hence, the existence of
buffers improves the flow control efficiency significantly. There are two main approaches for
buffered flow-control mechanisms based on the granularity at which they perform resource
allocation; it can be done in units of packets or at the finer granularity of flits. The breaking
of large and usually variable-length packets into smaller fixed-size flits contributes to build
the architecture of routers efficiently and to reduce the amount of storage needed in those
network devices. There are two main flow-control techniques: store-and-forward [98] and
Virtual Cut-Through (VCT, [105]). In store-and-forward, each switching node along a path
in the network waits until a packet is completely received and stored in its buffer and then
the packet is forwarded to the next node, whereas in VCT, the transmission of a packet to the
next channel starts directly when the new header flit is received. Wormhole (WH, [53, 50,
52]) flow control operates like VCT, but managing the resources in units of flits rather than
packets. WH reduces the amount of minimal buffering required on each router and due

34

2.4 Flow control

to this smaller buffer size requirement it is commonly employed in memory-constrained
architectures such as networks-on-chip, even though VCT is also employed in this type of
networks [150]. The reduction of buffer sizes is also leveraged to build less power demanding
and inexpensive devices. Due to the orientation of this thesis to system networks, where the
memory is not a big problem, this work hereon takes virtual cut-through as the reference
flow-control technique.

Buffered flow-control mechanisms must allocate the buffers, and to do that, need to track
the buffer’s status of the neighboring routers, either the buffer occupancy or the availability.
This control information should be sent by flow-control mechanisms and is usually denoted
as backpressure. Upstream routers are informed when they must stop transmitting because
the downstream buffers are full. Different strategies exist to provide such backpressure [54],
the options relevant for this work are examined in the following Paragraphs.

The Xon/Xoff or stop/go flow control [76] uses a single control status bit on the upstream
router which represents whether the upstream router (or sender) is allowed to send (on/go)
or not (off/stop) to a downstream router (or receiver). A signal is sent to sender only when
it is necessary to change the control status. This mechanism uses two buffer occupancy
thresholds (𝑇𝑜𝑓𝑓 and 𝑇𝑜𝑛) [189] to ensure that no data are dropped due to a lack of space
at the receiver buffers and to be able to receive in-flight data sent during the propagation
delay of the flow-control signal. The basic idea behind these thresholds is represented in
Figure 2-11 and Figure 2-12 portraits the operation of thismechanism between three routers
exchanging the Xon and Xoff signals.

Toff

Current
occupancy

Ton
emptyingfilling

Figure 2-11: Basic idea behind the stop and go flow-control thresholds: Ton and Toff.

FC FC FC

Figure 2-12: Example of Xoff and Xon signals sent by receiver to upstream routers.

35

2 Background

The credit-based flow-control mechanism [116, 147, 167] is more efficient but less robust
compared to previous mechanism. It is more efficient because requires the amount of space
equivalent to one round trip time on buffers to achieve losslessness while stop/go requires
the equivalent to two. On the other hand, Xon/Xoff flow control is a stateless protocol while
the typical implementation of credits, which uses relative credit updates that inform about
the availability to store additional data units, is a stateful protocol. The credits of an output
on sender represent the amount of free space in the adjacent receiver’s input buffer. In this
flow-control mechanism, the upstream router keeps a counter of available credits updated
when it sends a packet through the output or when the adjacent router removes a packet
from their input buffer. That is, when the downstream router forwards a packet and frees
space on its corresponding input buffer, it sends a credit to the upstream router, causing an
increment in the upstream’s credits counter. Figure 2-13 represent an example of these two
mentioned actions. When a new packet arrives at the output port of the downstream router,
it checks the credits counter and only sends the packet if there are enough credits on the out-
put. This quantity is different for VCT and WH: whereas the latter requires only one credit,
the first needs at least as many as the size of the packet. If previous condition is fulfilled
for the corresponding flow control employed, the packet is sent and the credits counter is
decremented. Once the counter reaches zero, downstream buffer is full and transmissions
through this output are halted until the buffer becomes available.

FC FC FC

2

0

2 2

0

3
Old New

21
Old New

Figure 2-13: Credit-based flow control example remarking the relative updates of the credit coun-
ters after sending a packet by router and after signaling from the downstream router.

The backpressure signals can be transmitted on separate wires or, in a network with bidirec-
tional links, they can be transmitted out-of-band on these channels in the opposite direction
of the data by which have been triggered. If multiple VCs are used, like in the reference ar-
chitecture of this work in Figure 2-1, the signaling must contains the VC index about it is
notifying, so the backpressure traffic is incremented a bit.

2.4.1 Quantized Congestion Notification (QCN)

In systems, in which there is no communication between the congested devices and the
source, detection of congestion in lossless networks relies on either buffer occupancy values
or increases of flow latency. Alternatively, Explicit Congestion Notifications (ECN) can be
generated by the network switches, typically triggered by the evolution of its buffers occu-

36

2.4 Flow control

pancy. Such explicit notifications can be piggybacked on the data frames of the flow that
suffers congestion, such as IP’s ECN bits [158] of InfiniBand’s FECN/BECN bits [152], or
they can be independent messages such as the Congestion Notification Messages (CNMs)
from QCN, which is described next.

Quantized Congestion Notification (QCN, [89]) implements congestion notification in
Layer-2 Ethernet DC Networks. It is mainly composed of two elements, Congestion
Points (CP, in switches) and Reaction Points (RP, rate limiters at NICs). CP samples the
arriving frames according to a sampling interval and when a congestion situation is iden-
tified in a given buffer, it generates and sends an explicit congestion notification message to
the source of the most recent frame (or flow), which is considered the culprit flow. This
standard QCN’s behavior is denoted by Neeser et al. [142] as arrival sampling. In contrast
with arrival sampling, they propose the occupancy sampling method for CPs in which the
CNM is sent to the source of a frame randomly picked from the whole buffer. When a CIOQ
switch architecture is considered, occupancy sampling can be performed according to the
two alternatives considered in Chapter 4 and described next.

◼ Congestion detection at switch output buffers: like in the original implementation of
QCN [89], the sampling is done in the output buffers of the switch. However, instead
of marking the most recent frame as the victim, this is randomly selected from the
buffer. One advantage of sampling at output buffers is that the generated CNMs can
be sent to all sources in the network regardless of their source switch.

◼ Congestion detection at switch input buffers: Neeser et al. [142] also suggest the use of
input-buffer sampling as a congestion indicator to provide better fairness and improve
the detection of offending and victim flows.

To identify a congested situation, two state variables are combined; position (𝑄𝑜𝑓𝑓) and ve-
locity (𝑄𝛿) of the sampled buffer occupancy, both variables are illustrated in Figure 2-14.
CNMs do not indicate the mere presence of congestion, but instead they carry a feedback
value (𝐹𝑏) that quantifies it. A reference length denoted as equilibrium point 𝑄𝑒𝑞 is assigned
to each buffer. 𝑄 denotes the instantaneous buffer occupancy sampled every hundred pack-
ets and𝑄𝑜𝑙𝑑 denotes the buffer length when the previous CNM was generated. Considering
𝑄𝑜𝑓𝑓 = 𝑄−𝑄𝑒𝑞,𝑄𝛿 = 𝑄−𝑄𝑜𝑙𝑑, and𝑤 a constant weight, set to two by default, 𝐹𝑏 is calculated
according to the following expression:

𝐹𝑏 = −(𝑄𝑜𝑓𝑓 + 𝑤 × 𝑄𝛿). (2-3)

Negative values indicate the presence of congestion and generate CNMs. The 𝐹𝑏 value in the
CNM is quantized to 6 bits, ranging from 0 to 63, saturating with an occupancy of 2 × 𝑄𝑒𝑞.
This value is sent to the source of the packet sampled in the switch buffer, this is, a source
NIC. RPs at NICs implement injection throttling, using a mechanism based on an additive-

37

2 Background

Qold

QeqQ Qoff

Qδ

Figure 2-14: Representation of QCN buffer state variables at the congestion point.

increase, multiplicative-decrease policy. Whennegative congestion notifications are received,
the feedback value 𝐹𝑏 is used to divide the injection rate, adjusted by a factor 𝐿𝑓. QCN does
not implement positive notifications (lack of congestion), so the additive increase policy is
applied when no notifications are received for a period corresponding to a hundred frames.

2.5 Deadlock and livelock

Since there can bemultiple packets in the network requesting different resources, whichmay
be in use, a sequence of these packets can form a cycle. This situation can happen in almost
all topologies, and they are prone to inter-lock these packets. This situation is usually known
as deadlock [180] and are caused by a set of packets that can not advance because they are
waiting on resources that are reserved by other packets in a circular chain, that is, there is a
cycle of resource dependencies. Figure 2-15 shows an example of deadlock caused by a cyclic
dependency on which packets are unable to make a left-hand turn. Deadlock is catastrophic
for the network because another packets will be blocked on the same resources acquired
by deadlocked packets and these, in turn, will block other packets until the whole network
is flooded. Deadlock can appear in the network itself and due to dependencies in higher-
level protocols [54], when there is a cyclic dependency between different packet classes that
reuse the same network links. Once a deadlock appears on a network, it can only be bro-
ken by dropping a packet from the network. Lossless networks do not drop packets, so to
prevent the network halt, networks must either use deadlock avoidance or deadlock recovery
mechanism [54]. Deadlock avoidance mechanism guarantees that a deadlock situation can
not occur, whereas deadlock recovery mechanism detects and recovers the network from
a deadlock situation. Recovery mechanisms are not considered in this work, so the next
paragraph presents the deadlock avoidance mechanism used.

Deadlock can be avoided by preventing the occurrence of cycles in the resource depen-
dence graph generated by packets on the network. This can be done in a general way by
numbering the resources and allocating them in an ascending (or descending) order. This
general rule can imply routing or flow-control restrictions. A technique to break the cycles,
which was considered unfeasible in the past due to the large amount of resources needed for

38

2.5 Deadlock and livelock

R2

R3

R1

R0

Message from R0 to R2

Message from R1 to R3

Message from R2 to R0

Message from R3 to R1

Other messages

Figure 2-15: Deadlock situation due to a cyclic dependency between packets at the head of buffers
in4 routers. Eachcolored line represents the intendedpath for thepacketwith thesamecolor. Note
that none of the packets can advance because there is not any available slot in the next buffer of
each packet, and none of the queues can drain its packets.

high-diameter networks and it was reconsidered again with the advent of low-diameter net-
works [110, 108, 28], is the use of virtual channels in a particular order [79]. This technique
consists on splitting the physical channels into multiple virtual channels, which implies the
placement of several input buffers for each network link [79, 52], as it is presented in the
reference router architecture used in this work (see Figure 2-1, p. 14). There are several
deadlock avoidance mechanisms based on the use of virtual channels. Günther [79] pro-
posed that packets are stored in a different VC at each hop through the network path. Kim
et al. [108] used a similar approach in the Dragonfly by increasing the VC index for each hop
through the network path maintaining a different order for each type of network link. This
implies that the quantity of VCs needed to avoid deadlocks is equal to themaximum amount
of indices used for either local or global sets of VCs. The latter mechanisms is considered in
this dissertation to avoid deadlocks based on VCs. This VC assignment eliminates all chan-
nel dependencies due to routing, additional VCsmay be required to avoid protocol deadlock
like in the Cascade system [60]. Figure 2-16 represents the same situation of Figure 2-15,
breaking the cyclic dependency by the use of multiple buffers as VCs.

39

2 Background

R2

R3

R1

R0

Message from R0 to R2

Message from R1 to R3

Message from R2 to R0

Message from R3 to R1

Other messages

VC0

VC1

V
C

0

V
C

1

VC0

VC1

V
C

0

V
C

1

Figure 2-16: Resolution of the deadlock situation exposed in Figure 2-15 employing virtual chan-
nels to break the cyclic dependency allowing the queues to drain its packets.

Another pathological situation is livelock, on which packets contrary to under a deadlock,
continue to move through the network and they do not reach their destinations [59]. This
problem can be caused by non-minimal routing algorithms if there is not a limit of the num-
ber of times that a packet can be misrouted. A simple mechanism to solve this situation is to
include a misroute counter, which holds the number of times a packet has been misrouted,
into the header of the packets. Once the counter reaches a threshold, the packet must be
routed minimally to its destination.

2.6 Software-Defined Networking (SDN)

To enable the network automatization and programmability, and following the same trends
which havemotivated the development of cloud computing, the concept of Software-Defined
Networking (SDN) appeared. SDN is a network architecture approach which aims to make
networks agile and flexible, giving network engineers programmatic control over their inter-
connection networks. This control is done by a central controller programmed through soft-
ware applications. Hence, regarding the different layer of routers presented in Section 2.1,

40

2.6 Software-Defined Networking (SDN)

the SDN architecture physically decouples the data and control planes of network devices to
simplify network management. Furthermore, SDN intends to control the whole forwarding
components of a network through a single control plane known as SDN controller, which
can be replicated to support fault tolerance.

Themost extended SDNstandard isOpenFlow [129], defined by theOpenNetwork Foun-
dation in 2008 based on the concepts presented by Casado et al. [39]. In that work, the three
principal concepts of OpenFlow were introduced:

◼ the central controller;

◼ a set of compatible switches14;

◼ the concept of flow.

OpenFlow originally defined how the control and data plane elements would be physically
separated and communicate with each other through the OpenFlow protocol, which defines
the interface (southbound API) between them. However, it was not defined how the business
APPs should communicate with the controller, which was denoted as northbound API. The
controller manages switches through a set of rules or flow entries organized in flow tables
inside the switches. All packets processed by an OpenFlow network device are matched
against its flow entries, which can be stored in a unique flow table or in multiple pipelined
flow tables, based on prioritization. OpenFlow assumes that the network devices are based
on one or several TCAM matchers, so the packets match with its flows by exact match, with
the possibility of using wildcards, on packet header fields.

OpenFlow’s flow entry basically consists of match fields, its priority, some statistics
and a set of actions to apply to matching packets [145]. Figure 2-17 depicts the above-
mentioned fields and the fields from packets that a first generation OpenFlow switch is able
to match [129]. Each flow entry has associated zero or more actions that dictate how the
switch handles matching packets. OpenFlow compatible network devices may not support
all action types described in the specification [145]. A basic subset of the required actions
are.

1. Forward matching packets to physical ports and to some virtual ones [145]. This is
the action equivalent to legacy routers and allows packets to be routed through the
network.

2. Encapsulate and forward matching packets to the controller. This action is triggered
by the first packet received of a new flow, so the controller can analyze it and decide
if the flow should be added to the network device.

3. Drop matching packets is done if a flow-entry does not specify any action.
14Note that an OpenFlow Switch, by definition, is any network device which manipulates traffic at levels 2, 3

or 4 of the OSI model.

41

2 Background

Match
Fields

Flow
Priority

TimeoutStatistics

Packet and byte counters updated
when packets are processed

Matching precedence of the flow entry

Action

Input
port

VLAN
id

SRC
MAC

DST
MAC

Eth
type

SRC
IP

DST
IP

IP
proto

TCP
SRC
port

TCP
DST
port

Idle: due to a lack of activity
Hard: regardless of activity

Entry is removed by two timeouts:

Idle: due to a lack of activity
Hard: regardless of activity

Entry is removed by two timeouts:

1) Forward to physical port(s)
2) Encapsulate and forward to controller

3) Drop

Basic actions for flow’s packets:

1) Forward to physical port(s)
2) Encapsulate and forward to controller

3) Drop

Basic actions for flow’s packets:

Figure 2-17: Fields of an OpenFlow’s flow entry and their description.

The controller adds flow entries in the flow tables of network devices in response to packets
based on the second action. Hence, the instantiation of flow entries in the network devices
is reactive.15

OpenFlow standard has evolved quickly and has grown increasingly. However it is limited
in its ability to support customized protocols and also, the process of implementing a new
protocol is so long. To overcome this problem, a new packet processing language, called P4,
was introduced by Bosshart et al. [34]. P4 was defined, directly, as a language to program
the data plane of network devices. It raises the level of abstraction for programming the
network and enables network engineers to specify their own packet headers and processing
logic. Hence, the controller is not yet constrained by a fixed switch design and can control
the data plane of switches. This change allows the data plane to understand and process
customized packet protocols and operates inbound packets as it has been designed by the
network engineers.

A general overview of the networking management evolution and the relationship be-
tween OpenFlow and P4 is depicted in Figure 2-18. In the legacy model, network devices
have a fixed pipeline which supports the protocols programmed in their ASICs16 by its ven-
dor. In the OpenFlow model, there is an OpenFlow controller which has a complete view of
the network and controls the switches. However, the hardware of these network devices con-
15TheOpenFlow specification has evolved and currently the controller can add, update, and delete flow entries

in network devices, both reactively and proactively. [146]
16Application-Specific Integrated Circuit (ASIC).

42

2.6 Software-Defined Networking (SDN)

tinues to be fixed. This has been overcome in the P4 model by the advent of programmable
devices. P4 programs do not specify the behavior of the control plane, however, these can be
used along with the P4Runtime to define an interface between the control and data planes.
Both options for the southbound API17 of SDN are represented in the P4 network device on
the mentioned figure.

Legacy OpenFlow P4

Fixed
data plane

Fixed
data plane

Fixed
functions

data plane

Fixed
functions

data plane

Programmable
data plane

Programmable
data plane

Control plane
(Switch O.S)

OpenFlow agent
(Switch O.S)

Control plane
(OpenFlow controller)

Southbound
API

OpenFlow
protocol

Control plane
(SDN controller

like OpenFlow)

Switch O.S

P4 runtime
generated

API

South.
API

P4
compiler

Switch O.S

OpenFlow
agent

P4
runtime

Switch O.S

OpenFlow
agent

P4
runtime

Auto-generated
API

Target
binary

APPs

Northbound
API

APPs P4
program

Network device

North.
API

Figure 2-18: Networkmanagement evolution and the relationship between OpenFlow and P4.

17Application Programming Interface (API).

43

Methodology 3
All the proposals explained in this dissertation have been evaluated using the method-
ology discussed in this chapter. The presentedmethodology is common to all the chap-
ters of this work that introduce a proposal.

The metrics used to evaluate and compare the proposals with state-of-the-art are
detailed in Section 3.1. Developing and manufacturing prototypes to evaluate new
networking proposals requires a lot of time and it is costly, so it is reserved to the final
stages of development. However, at the early stages the software network simulators are
the most useful tools, as it is explained in Section 3.2. The most affordable workload
to evaluate medium to large interconnection systems are the synthetic traffic models.

The results exposed in this dissertation have been obtained with highly specialized
tools, mainly by a network simulator detailed in Section 3.2.1. Section 3.2.2 describes
the synthetic workloads employed to feed the network during the carried out exper-
iments with the configuration details presented in Section 3.2.3 and summarized in
Table 3-1.

In addition to the information provided in this chapter, subsequent chapters may

add their own methodology section, devoted to the particular details of their experi-

ments.

Chapter contents

3.1 Metrics . 47

3.1.1 Throughput . 47

3.1.2 Latency . 48

3.1.3 Fairness . 49

3.2 Simulation . 50

3.2.1 FOGSim interconnection network simulator 51

3.2.2 Synthetic workloads . 52

3.2.2.1 Steady-state traffic patterns 53

3.2.2.2 Transient traffic pattern . 56

3.2.3 Simulator configuration . 57

45

3.1 Metrics

3.1 Metrics

Regarding the performance of applications in a computing system, the main goal is to re-
duce its total execution time. In order to achieve that, the underlying interconnection net-
work should transfer the maximum amount of information within the least time possible
and must not to bottleneck the system. To characterize the performance of interconnec-
tion networks, a steady state is typically assumed, where there is a constant flow of messages
which resembles a typical situation with multiple applications running concurrently. In this
scenario, there are two basic metrics to characterize the performance of a network: through-
put and latency [54]. Moreover, another important aspect to evaluate is the equity on the
allocation of the network resources to terminals. This aspect is shown on the fairness metric.

3.1.1 Throughput

Throughput, or accepted load, measures the sustained data transfer rate that is effectively
achieved, that is, the amount of information that is delivered over a time interval. It is mea-
sured by computing the ratio of offered load that arrives to its destination over a time inter-
val. The typical way of representing throughput is as a function of offered load sweeping this
from zero to one or from 0% to 100%. The throughput measured in a channel is normal-
ized to the channel bandwidth instead of expressing it in bits per second. So, both offered
and accepted load are expressed as a fraction of channel capacity or representing this as a
percentage.

Throughput versus offered load curves start from very low load where throughput equals
the offered load and the curve is a straight line. As offered load increases, the throughput
continues straight up to saturation point. This is the highest value of offered load for which
throughput equals to that. As offered load is increased beyond that point, the network is
not capable of deliver packets as fast as they are being created and two possible network
behaviors can appear. A stable network continues delivering the peak throughput beyond
saturation point whereas an unstable network suffers a throughput drop, typically known as
congestion, beyond that point [54]. An example of the throughput typical shape under both
situations presented above is depicted in Figure 3-1.

High throughput is an important requirement to any interconnection network, which is
vital in data intensive parallel applications because the amount of information that is shared
between their different tasks is big. Moreover, many works that evaluate the performance
of a network only show latency, because they argue that the saturation point at which the
latency raises to the infinite is the throughput obtained in that network. However, showing
only latency hides situations like an unstable network. In fact, this happens exactly with
Figure 3-2 which indicates a throughput of 48.8% and as shown in Figure 3-1(b), above
saturation point the throughput falls down up to ≈ 41%.

47

3 Methodology

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50 60 70 80 90 100

Θ

A
cc

e
p

te
d

 t
h
ro

u
g

h
p

u
t

(%
)

Offered load (%)

(a) Stable

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50 60 70 80 90 100

Θ

A
cc

e
p

te
d

 t
h
ro

u
g

h
p

u
t

(%
)

Offered load (%)

(b) Unstable

Figure 3-1: Curves representing throughput in (a) stable and (b) unstable networks.

3.1.2 Latency

Latency measures the time required for a packet to traverse the network from its source to its
destination, that is, the elapsed time between its generation at the source and its consump-
tion at the destination. This packet latency is made of injection and network latencies. The
former is defined as the time elapsed from packet generation to its injection into the net-
work. The latter is defined as the delay from the injection of a packet into the network and
its consumption at the destination terminal. For each packet, latency is measured from the
time its first bit is generated to the time its last bit is consumed and then, latency is reported
as the average over all packets. The typical way of representing latency is as a function of
offered load sweeping this from zero to saturation throughput. With non-implementable
boundless injection buffers, latency beyond that point is also infinite.

Latency versus offered load curves start at the horizontal asymptote of zero-load la-
tency (Ω), which can be obtained at very low offered load and represents a lower bound
for the network latency. As offered load increases, latency slopes upward due to contention

 0 5 10 15 20 25 30 35 40 45 50

Ω

Θ

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

Offered load (%)

Figure 3-2: Latency curve that marks a throughput of≈ 49%.

48

3.1 Metrics

with other packets over shared resources, such as buffers and channels, because packetsmust
wait to access them. As offered load approaches the saturation throughput, the latency curve
grows to infinity as it approaches to vertical asymptote of saturation point (Θ). An example
of this typical shape is represented in Figures 3-2 and 1-3(b).

Low latency is an important requirement to any interconnection network, which is vi-
tal in HPC environments, since its workloads often consist of long phases of computation
interleaved with small communication ones iteratively. Hence, a high latency value on the
communication phase postpones the following computation one.

3.1.3 Fairness

Fairness is a measure of the equity of the network for all terminals. In other words, in a fair
network each terminal should be able to obtain an equal fraction of the network resources.
It is common to analyze the throughput fairness which evaluates if an equal bandwidth is
provided to flows competing for the same resource. There are multiple ways to measure
the throughput fairness or unfairness, and this work considers a simple alternative which
measures and compares the amount of packets injected per each terminal. This comparison
allows to analyze any possible difference in the allocation of resources within the network or
indeed within the router. The typical way of representing throughput fairness is plotting the
quantity of packets injected by each terminal, or grouping them by the hosts of each router,
in a vertical bar which can range from zero up to the employed offered load, typically below
saturation point.

A throughput fairness situation is represented by a set of bars reaching approximately
the same injected load value whereas an unfairness situation is easily detected when the
injected load by a router or set of routers is significantly lower or higher than by the others.
An example of the typical shape of a plot under both described situations is represented in
Figure 3-3.

 0

 10

 20

 30

 40

 50

R0 R1 R2 R3 R4 R5 R6 R7

In
je

ct
e
d
 l
o
a
d
 (

%
)

unfair fair

Figure 3-3: Typical throughput fairness shapewith a fair case in greenandwith anunfairness prob-
lem in routers 0, 3 and 7 in orange. The offered load is 50%.

49

3 Methodology

The unfairness problem exposed in Figure 3-3 in orange can be detected additionally in a
throughput plot when the accepted load before saturation point is not equal to the offered
load, as can be seen in Figure 3-4. This can be observed by looking at the gradient of the
throughput curve in detail because is lower than the expected 45°.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

A
cc

e
p

te
d

 t
h
ro

u
g

h
p

u
t

(%
)

Offered load (%)

Unfair Fair

Figure 3-4: Throughput fairness representation using throughput curves for a fair situation in
green and showing an unfairness problem in the orange curve.

3.2 Simulation

Computer engineers need tools for the design and evaluation of new systems. Regarding the
network, developing and manufacturing prototypes requires a lot of time and it is costly, so
that is why it is usually postponed to the final stages of a system development. Even though
analytical tools that can model many aspects of a network exist, there are situations too
complex to represent with these tools. Hence, in these cases and in early stages of a system
development, software network simulators are the most useful tools. They simulate an in-
terconnection network confronting a certain network workload to extract different network
metrics.

There are different levels of detail for network simulators [54], which are summarized
next from the highest to the lowest level of detail. Interconnection networks can be simu-
lated at Register-Transfer Level (RTL) to fine-tuning the router internals but this approach is
extremely time-consuming. Cycle-accurate simulators have a precise representation of the
router internals and reduce greatly the simulation time over RTL simulations. However,
their answer time is yet big when it is required to simulate a large interconnection network.
Finally, the functional simulators simplify the router internals to reduce the computational
requirements and their simulation time. This work has employed cycle-accurate intercon-

50

3.2 Simulation

nection network simulators because they have enough accuracy for the type of experiments
developed and the computational requirements and simulation time of those are affordable.

There are different levels of precision for network workloads or the traffic pattern ap-
plied by the terminals [54]. Ideally, the experiments should be done with the most pre-
cise workload, which is derived from actual execution of applications, that is, application-
driven workloads. There are two possible application-driven workloads: execution-driven
and trace-driven workload. Whereas on the former, packets are generated by a certain ap-
plication running over simulated terminals, on the latter, the sequence of packets sent by
each terminal running that application are captured and later replayed by simulated termi-
nals. Both methods are employed in some cases. However, experiments using this kind of
workloads typically require a big amount of computational requirements and a lot of time.
Moreover, the previous techniques are not practical formedium to large simulated intercon-
nection networks. Another option is synthetic workloads, which can capture the demands
of an application to the interconnection network if they are carefully designed. On these
workloads, each terminal typically injects packets according to a Bernoulli process with vari-
able load for a certain traffic pattern considered. This dissertation employs this latter type
of network workload for its experiments, which allows to evaluate its proposals providing
enough insight about the network performance in a reasonable time using the different traf-
fic patterns presented in the next section.

An important aspect of software network simulators which impacts on its design and an-
swer time, mainly at low and medium loads, is how the simulation is conducted. Simulators
can be either time-driven or event-driven. In the former, the simulation of each actor, such as
terminals or routers, is triggered by an increment in the time cycle counter. The triggering
of an actor is done regardless of that actor has any effective outcome at the current cycle. In
the latter, the events generate other events to be performed by the same or other actor of the
network. Hence, the triggering of an actor is solely done when there is an event for it instead
of every cycle like in time-driven.

3.2.1 FOGSim interconnection network simulator

Unless otherwise stated, the results presented in this dissertation have been obtained em-
ploying the open-source FOGSim network simulator [73]. FOGSim is a phit-level, cycle-
accurate and time-driven software network simulator, which supports a range of several syn-
thetic traffic patterns and traces obtained from parallel applications in the Dimemas [117]
format. It has been employed in several works to evaluate proposals for HPC interconnec-
tion networks.

Abstractly, FOGSim simulates the network as a collection of routers and channels in a
canonical Dragonfly and wires the global network links following the palmtree global link
arrangement explained in Section 2.2.1. Several routing mechanisms are implemented in

51

3 Methodology

the simulator, including all the ones presented in Section 2.3 and all the proposals detailed
in this dissertation. A credit-based flow control is employed for buffermanagement between
adjacent routers and a dedicated network link is used to communicate credit information
to upstream routers. Deadlock is prevented using the amount of required Virtual Chan-
nels (VCs) and increasing the VC index in each hop, following the idea presented in [108].

Considering the level of detail, FOGSim simulates the network at the granularity of phits
and clock cycles. A packet, which contains routing and sequencing information, is broken
into one or more flits. Its size is expressed in phits, which is the unit at which the data is
transferred physically through the network. On each clock cycle, a network channel can
read and write respectively a single phit from its input and to its output. For modeling the
network delays, arbitrary delays can be assigned to the crossbar of the router and to the
network channels, varying by their type, local or global.

Simulated routers employ virtual cut-through switching and can be either input-queued
or Combined Input-Output Queued (CIOQ). The size for each type of buffer can be set inde-
pendently. An input-first separable allocator, according to the explanation on Section 2.1, is
employed to assign the router resources. There are different policies that can be applied to
the arbiters of the allocator but the default behavior is a RR arbitration in which the prior-
ity list of ports is updated only when the arbiter generates a winning grant. The simulator
allows to set an internal speed-up, which increases the crossbar operation speed in compari-
son to the network channels. In this case, a CIOQ router queuing organization ismandatory,
because the output buffers decouple the crossbar and channel speeds.

During network initialization, elemental network characteristics are automatically de-
rived based on the input parameters, such as network size, the amount of routers and net-
work links, and the routers’ radix. All routers are configured identically regarding the router
architecture, routing and flow control; this is based on the input parameters detailed in Sec-
tion 3.2.3. The simulated routing computation control unit has enough access to the flow-
control information to be able to implement adaptive routing algorithms based on it, such
as output port credits.

3.2.2 Synthetic workloads

A perfect routing algorithm for a particular traffic pattern, which almost achieves the per-
formance bound imposed by the topology, may have, however, a poor performance on other
traffic patterns. For example, minimal routing provides the best performance under a uni-
form spatial distribution of the packets, whereas the performance obtained with that routing
under adversarial traffic patterns is appalling. Hence, network engineers need to ensure the
performance results of an interconnection network in a wide range of traffic patterns.

This section presents the traffic patterns employed to evaluate the proposals presented
in this dissertation. It details the definition, special features and a real-world example of

52

3.2 Simulation

every presented traffic pattern. First, Section 3.2.2.1 presents steady-state traffic patterns
and secondly, the transient traffic pattern is presented in Section 3.2.2.2.

Even though the above-mentioned traffic patterns can happen in practical systems, traffic
patterns in real world interconnection networks depend on many factors such as compute
nodes allocationmade by the job scheduler [93, 197] and the logical trafficpatterns produced
by the applications [29].

3.2.2.1 Steady-state traffic patterns

Steady-state traffic patterns resemble the typical situation in a network where there is a con-
stant flow of messages. This situation occurs when there are multiple applications running
concurrently on different terminals connected to the interconnection network. The traffic
patterns detailed next are a representation of benign and adversarial traffic patterns. The
former naturally balance load in the network whereas the latter cause load imbalance in the
links of the interconnection network.

3.2.2.1.1 RandomUniform (UN) Under random Uniform traffic pattern (UN), usually de-
noted as uniform, the probability of sending a packet to each destination is equal. Hence,
the target of each packet is any randomly selected compute host among all terminals in the
interconnection network, except the source compute node.

This traffic pattern is benign for the interconnection network. In fact, it is the best traffic
pattern to confront by a Dragonfly network, since it balances the use of interconnection
network channels. This property is not only applicable to Dragonfly topology and, so, this
traffic pattern is commonly employed during the evaluation of interconnection networks to
obtain performance measurements under a best-case scenario [54].

Under UN traffic pattern, the optimal routing algorithm to apply is the minimal routing
because the load under UN is already spatially distributed, and employing the shortest path
achieves an optimal latency result.

3.2.2.1.2 Adversarial shift (ADV+i) Under Adversarial shift traffic pattern (ADV+𝑖), usu-
ally denoted as adversarial, the destination of a packet is selected randomly from all nodes
within the group located 𝑖 groups ahead of the source modulo the number of groups. The
only global link between source and destination groups, departing from a router denoted as
𝑅𝑂𝑈𝑇, becomes the bottleneck under minimal routing. In a balanced Dragonfly network, it
restricts throughput to 1

𝑎⋅𝑝 =
1
2ℎ2 phits/node/cycle using MIN routing. Figure 3-5 represent

this traffic pattern over a Dragonfly network, including the two variants of them described
next.

Manyworks that study aDragonflynetwork have employed adversarial shift trafficwith an
offset 𝑖 = 1. However, other offsets can be employed leading tomultiple variants of this traffic
pattern depending on the value assigned to 𝑖. Furthermore, the adverseness of each ADV+𝑖

53

3 Methodology

R0R0 R1 R2

Source group (Group S)

R3

ROUT

Destination group (Group S+i)

R0

RIN
R1 R2 R3

Figure 3-5: Representation of the ADV+i traffic pattern in a Dragonfly network.

traffic pattern is different fore some routings. Particularly, the variant obtained when 𝑖 = ℎ,
where ℎ is the number of global network channels per router, is very relevant. This variant is
a pathological case because it not only stresses the global network channel between source
and destination group. Indeed, when the global wiring is consecutive, all the traffic received
in an intermediate router selected by the Valiant routing algorithm should be routed by the
ℎ global links in a subsequent router, stressing the single local link between both routers.
This particular problem is highlighted in Figure 3-6 and it will be revisited throughout the
following chapters.

Intermediate group

... ...

h global
inbound links

h global
outbound links

Bottleneck
local link

(1/h)

Figure3-6:Representationof thebottleneckat local linkof intermediategroupunderADV+h traffic
pattern in a Dragonfly topology with h=6.

This ADV+𝑖 traffic pattern is adversarial for the interconnection network; in fact, it is the
worst traffic pattern to confront by a Dragonfly network. Under minimal routing, the bot-
tleneck generated enforces the need for a non-minimal routing to deal with it and obtain a
good performance. Oblivious Valiant routing, explained in Section 2.3.2, randomizes traf-
fic and avoid bottlenecks, then, it can be considered the reference to beat under this traffic
pattern. However, the additional hops of its phase A, where packets are diverted to 𝑅𝑅𝑂𝑂𝑇,
double the path length (lgl – lgl) and increase base latency.

This traffic pattern can occur in a network executing real-world applications. For exam-
ple, ADV+1 traffic pattern is present in an MPI collective communication that uses the ring
algorithm [178] when the nodes dedicated to the application are allocated adjacently. An-

54

3.2 Simulation

other case is a multidimensional stencil pattern when the allocation of nodes is sequential
and the offset in any dimension is bigger than the group size. Jain et al. [93] consider the
effect of job placement on a Dragonfly network for a 4-D stencil.

3.2.2.1.3 Adversarial Local (ADVL) Under Adversarial Local traffic pattern (ADVL), the
destination of a packet is selected randomly from all nodes in the consecutive router
within the same group, following a modulo sequence. It concentrates all minimally routed
traffic on a single network channel between the two routers, restricting throughput to
1
𝑝 phits/node/cycle using minimal routing. Figure 3-7 represents this traffic pattern over
a Dragonfly network.

... ...Bottleneck
local link

(1/p)RS RD

G0

Figure 3-7: Representation of the ADVL traffic pattern and the bottleneck in the local link between
source and destination routers.

To cope with this traffic pattern, a non-minimal routing is required. However, the same
routing which applies to ADV+𝑖 traffic pattern may not apply directly to them because it
sends messages between pairs of terminals which belong to the same group. This idea will
be developed in Chapter 5.

Like the previous traffic pattern, ADVL traffic pattern can occur in the same type of com-
munication if the number of allocated nodes is lower than before, and they are also allocated
adjacently, so the communication is local within a group. This traffic pattern has been ob-
served with stencil workloads by Kerbyson et al. [104].

3.2.2.1.4 Adversarial Consecutive (ADVC) Under Adversarial Consecutive traffic pat-
tern (ADVC), the destination of a packet is selected randomly from all nodes in ℎ des-
tination groups. Specifically, packets are sent to the ℎ consecutive groups (+1, +2, ..., +ℎ
modulo 𝐺 = 2ℎ2 + 1) after the source group, which are all connected to the same bottleneck
router within the source group. Figure 3-8 represents this traffic pattern over a Dragonfly
network.

This traffic pattern could be considered adversarial for the interconnection network,
not as much by throughput limitation, which is less than ADV+𝑖 and equal to ℎ

𝑎⋅𝑝 =
1
2ℎ phits/node/cycle using MIN routing. However, this traffic pattern represents a challenge

55

3 Methodology

in terms of throughput fairness, since the bottleneck router represented as𝑅𝑂𝑈𝑇 in Figure 3-
8 gets all its global links occupied by the traffic routed minimally from all other routers in
the group. Hence, compute nodes in the source switch 𝑅𝑂𝑈𝑇 and terminals in other routers
of the same group observe very different local traffic conditions. At the end, this problem
can lead to starvation at certain nodes if the routing algorithm does not make a proper job.

R0R0 R1 R2

Source group (Group S)

R3

ROUT

Destination group (G. S+1)

R0 R1 R2 R3

Destination group (G. S+h=2)

R0 R1 R2 R3

...h global
links

Figure 3-8: Representation of the ADVC traffic pattern highlighting the bottleneck in global links.

ADVC can occur in the ring communication example presented for ADV+1 if the consec-
utive allocation of the nodes dedicated to an application takes up to ℎ groups. In this case,
uniform traffic between the application processes becomes an ADVC traffic pattern from
the first group point of view.

3.2.2.1.5 Mixed (MIX) In addition to a static situation on which all the terminals of the
network inject the same traffic pattern, the terminals may inject different patterns at the
same time. To be able to evaluate how a network deals with a combination of traffics, the
Mixed traffic pattern (MIX) is introduced.

This traffic pattern is able to offer a given percentage of different traffic patterns for a
required injection load. For example, if the network should be loaded with a 50% of its
capacity mixing UN and ADV+1 evenly, each of the terminals in the network injects 25% of
its capacity following UN traffic and another 25% using ADV+1.

3.2.2.2 Transient traffic pattern

In addition to the steady-state loads presented above, the networks manage different traffic
patterns alternatively. To be able to evaluate the transitions between those traffic patterns,
this transient traffic pattern is introduced.

This traffic pattern is able to offer load following one specific steady-state traffic pattern
and in a discrete time, denoted as time 𝑡 = 0, change it to another. In this case, the network

56

3.2 Simulation

is warmed-up with the traffic pattern assigned to the first phase but the results begin to be
measured after the amount of cycles setted as warm-up. During the whole simulation differ-
ent metrics, such as the packet latency and the number of misrouted packets are recorded.
Moreover, the traffic pattern is able to apply the same steady-state traffic pattern with a given
offered load on each of its phases.

This traffic pattern allows to determine how quickly a routing algorithm reacts to load
changes, i.e., it measures the response time of a routing algorithm. And not only between
different traffics, it is also possible to evaluate the response to changes in the offered load.

3.2.3 Simulator configuration

Unless otherwise stated in the particular methodology sections of the following chapters,
the experiments carried out to obtain the results presented in this dissertation employ the
simulation parameters explained below and summarized in Table 3-1.

The experiments model a Dragonfly network with 𝑝 = ℎ = 6 compute hosts and global
links per switch respectively and 𝑎 = 12 routers per group. The simulated network, which is
not extrapolated from a single specific system but it is realistic and representative of current
state-of-the art HPC systems, can be built using 24-port routers and it comprises more than
5K compute hosts and almost 1K routers grouped in 73 groups.

The developed network simulator models, depending on the case, an input-queued or
combined input-output queued routers (see Figure 2-2, p. 15) using virtual cut-through
switching and operating at 1 GHz with round-robin policy for both input and output ar-
biters of the allocator. Also, the minimum number of virtual channels required have been
employed to avoid routing deadlocks, incrementing the VC index in each hop, distinguish-
ing between local and global network links [108]. For example, a VLBlgl path with six hops
(l1g1l2 – l3g2l4) requires only four VCs, as it is indicated by the biggest subindex of each type
of hop. For injection ports no one virtual channels have been considered.

The technology parameters employed in the experiments mimic an HPC switch with a
90 ns port-to-port latency. The network links bandwidth and latencies, and the packet size
are customized in the following chapters because Chapter 4 focuses on HPC networking
over Ethernet technology whereas Chapters 5 and 6 are agnostic of the network technology.
Furthermore, technology has evolved during the development of this PhD work. For exam-
ple, due to state-of-the-art networking link speeds have been used, the link speed employed
in the evaluations has increased from 40 to 200 Gpbs. The size of router buffers is selected
to cover the round-trip time to support lossless flow control. An internal router speed-up
of 2x over network links is employed.

Each point of the evaluation results has been obtained averaging a battery of ten simula-
tions on which network statistics were collected for 60,000 cycles after an identical length
network warm-up.

57

3 Methodology

Table 3-1: Simulation parameters employed in the experiments.

Parameter Value

Topology Dragonfly with ℎ = 6

System size 𝑁 = 𝑁𝑀𝐴𝑋 = 5, 256 compute hosts

Number of groups 𝐺 = 73 groups

Switches per group 𝑎 = 12 routers

Switch degree 𝑘 = 23 ports

Global link arrangement Palmtree

Switch queuing strategy Combined input-output queuing

Switching mechanism Virtual cut-through

Arbitration policy Round-robin

Switch frequency 1 GHz

Switch latency 90 ns

Internal crossbar speed-up 2×

Link speed 200 Gbps

Local link latency 15 ns (3 m)

Global link latency 150 ns (30 m)

Packet size 10 phits, 250 bytes

Injection queues size 126 KBytes

Local transit queue size 18 KBytes

Global transit queue size 45 KBytes

Output queue size 15,75 KBytes

Number of VCs in injection ports 0

Number of VCs in global ports 1 for MIN and 2 for other routings

N
et
w
or

k
co

nfi
gu

ra
tio

n

Number of VCs in local ports 2 for MIN and 4 for other routings

Global link state calculation (Eq. 2-2, p. 33) 𝐹 = 120%, 𝑇 = 5 flits

PB

UGAL threshold constant (Eq. 2-1, p. 33) 𝑇 = 0 flits

58

HPC Networking Over Commodity

Ethernet Technology 4
Exascale systems will require large networks, typically based on low-diameter and
high-radix topologies such as Dragonfly, with hundreds of thousands of endpoints.
These networks usually rely on non-minimal adaptive routing algorithms to deal with
varying traffic characteristics and avoid pathological performance.

Ethernet technology is employed in a significant fraction of the Top500 systems,
and will remain as a cost-effective alternative for High-Performance Computing (HPC)
interconnection networks. However, its current design is not scalable to exascale sys-
tems. Different solutions have been proposed for scalable Ethernet fabrics for Data
Centers (DCs), but not specifically for HPC applications.

This chapter identifies themajor differences in network requirements from both en-
vironments in Section 4.2. Based on them, it proposes the application of Ethernet to
exascale HPC systems, considering the topology, routing, forwarding table manage-
ment and address assignment, with a focus on performance and power. The proposed
solution for scalability, in Section 4.3, relies on OpenFlow switches to implement hier-
archical addressing with a mechanism to reduce the forwarding table size. To simplify
deployment, Section 4.4 introduces a protocol that performs automated address as-
signment without interfering with layer-2 service announcement protocols.

This chapter introduces two different adaptive routing mechanisms: MAR-bP and
QCN-Switch. The first one, introduced in Section 4.5, overcomes the infeasibility of us-
ing controller-based per-flow traffic engineering introducing the conditional flow rules
to allow for adaptive routing with proactively rule instantiation. Routing decisions are
taken by switches, based on Ethernet’s pause frame, without controller interaction. The
second one, introduced in Section 4.6, updates the conditional flow rules associating a
probability value to each output port. This value is updated, based on snooped ex-
plicit congestion notification messages, to reflect downstream congestion and used to
statistically divert traffic away from congested areas when the load is uneven.

Altogether, this chapter introduces a realistic and competitive implementation of a

scalable lossless Ethernet network for exascale-level HPC environments, considering

low-diameter and low-power topologies such as Flattened Butterflies or Dragonflies,

and allowing for power savings up to 54%. Evaluation results show that QCN-Switch

is a competitive design for both uniform and adversarial traffic. Furthermore, it is able

to react to changes in traffic conditions in 0.4ms or less. A sensitivity analysis identifies

the best configuration and shows its performance trade-offs.

59

4 HPC Networking Over Commodity Ethernet Technology

Chapter contents

4.1 Motivation . 61

4.2 Interconnection requirements: HPC vs. DC 62

4.3 Scalability mechanisms in Ethernet networks 64

4.3.1 Scalability analysis of hierarchical addressing 65

4.3.2 Scalability analysis with TCAM rules compaction 68

4.4 MAC address rewriting . 71

4.5 MAR-bP: Multipath Adaptive Routing based on Pauses 72

4.5.1 Proactive conditional flow rules . 72

4.5.2 Conditional flow rules for minimal routing 73

4.5.3 Conditional flow rules for non-minimal routing 74

4.5.4 Discussion . 74

4.6 QCN-Switch: adaptive routing based on ECNmessages 76

4.6.1 Forwarding tables with probabilities 76

4.6.2 Base AIMD probability management 78

4.6.3 Feedback comparison probability management 79

4.6.4 Source processing mechanism for input sensing 80

4.7 Evaluation . 81

4.7.1 Methodology . 82

4.7.1.1 Power consumption . 82

4.7.1.2 Simulator configuration . 82

4.7.2 TCAM compaction and topology power comparison 84

4.7.3 MAR-bP performance results . 85

4.7.4 QCN-Switch performance results 87

4.7.4.1 Performance under steady loads 87

4.7.4.2 Performance under transient loads 91

4.7.4.3 Sensitivity analysis . 93

4.8 Conclusions . 101

60

4.1 Motivation

4.1 Motivation

Technology evolution has led to a convergence in DC and HPC systems. In fact, similarly
to the introduction of commodity x86 processors in HPC systems in the 1990s - 2000s,
nowadays a significant part of the HPC systems rely on commodity Ethernet technology.
Introduced previously, the Figure 1-4 shows the evolution of Ethernet technology in the
Top500 [179] list for the last three decades. At the moment, it has a significant space with a
systems share close to 53% of the Top500 list.

Ethernet’s large economy of scale [40], the advent of simple white-box switches [144]
based on merchant silicon, the possibility of lossless implementations [88], and the ubiq-
uity of Ethernet NICs in SoCs1 or motherboards suggests it will remain as a cost-effective
alternative for HPC interconnection. However, commodity Ethernet interconnect design is
not directly scalable to exascale systems. The number of computing nodes required for such
systemswould be very large; with 3 TeraFLOPS nodes,2 more than 300,000 of themwould be
required, clearly exceeding the capacity of the forwarding tables of any commodity switch.
Scaling these tables would impact both switch latency and power consumption.

Although several technologies have emerged to scale Ethernet networks, such as overlay
encapsulations or Software-Defined Networking (SDN) solutions based on OpenFlow [129],
they are not necessarily suited for an HPC environment. In fact, the flexibility requirements
in a DC differ from the low-latency and high-throughput goals in HPC systems.

Topologies proposed for massive-scale data centers or exascale systems, such as Drag-
onfly [108], sacrifice minimal-length path diversity for larger number of nodes and lower
average distance. Minimal paths in these topologies are heavily congestion-prone, requir-
ing the use of non-minimal paths typically by non-minimal adaptive routings [108, 96, 74].
Most of the previous proposals rely on comparing congestion indicators between two or
more paths to select the most appropriate one. These congestion indicators are typically
derived from buffer occupancy, either directly measured from the credit count of the link-
level flow-control mechanism of its neighbor switches, or notified by the network in case of
congestion in remote areas (in some form of explicit congestion notification) in addition to
credit counters.

Some network technologies, such as lossless Ethernet, do not implement link-level flow-
control credits,3 which makes direct sensing of buffer occupancy unfeasible. Hence, this

1System of a Chip (SoC).
2There are two trends to build supercomputers: based on fat or thin nodes. An example of fat node, with a

performance of ≈ 46.8 𝑇𝐹𝐿𝑂𝑃𝑆, is the IBM Power System AC922 server model 8335-GTW [31] present
in the Summit system [184]. By contrast, an example of thin node, with a performance of ≈ 3.38 𝑇𝐹𝐿𝑂𝑃𝑆,
is developed by Fujitsu with the A64FX processor [71] for the Fugaku system [69]. These values are peak
performance for double precision.

3The first flow-control mechanism for Ethernet, the pause frame, was defined by the IEEE 802.3x stan-
dard [87]. Follow on from 802.3x, priority flow control 802.1Qbb [88] operates on individual priorities
using pause messages per each Class-of-Service (CoS).

61

4 HPC Networking Over Commodity Ethernet Technology

motivates the design of a non-minimal adaptive routing based on pauses. Moreover, even if
credit counters could be used, remote explicit congestion notification messages send infor-
mation about the status of remote areas of the network that might suffer congestion. Then,
this information can be used to simplify source-adaptive routing algorithms. Hence, these
two previous arguments together motivate the design of a non-minimal adaptive routing
algorithm based solely on Explicit Congestion Notifications (ECNs).

4.2 Interconnection requirements: HPC vs. DC

Scalable SDN solutions have been proposed for large-scale DC networks based on commod-
ity OpenFlow Ethernet switches. However, network requirements and traffic characteristics
in anHPC environment differ from those in traditional DC,making the optimal solutions in
one case not so suited to the other. In particular, the main requirements identified to differ
in HPC from traditional DCs are the following.

◼ HPC communication phases are typically shorter.

◼ Low latency is crucial for application performance, making controller-based flow in-
stantiation unfeasible.

◼ The communication stack is not necessarily TCP/IP.

◼ Topologies different from traditional folded-Clos have been proposed specifically for
large HPC systems, with a special focus on both scalability and power saving.

The next paragraphs analyze these differences and map them to implications on the under-
lying network fabric.

Communication phases are much shorter in HPC applications than in DC workloads,
especially in DC user-facing applications. This makes controller-based per-flow traffic en-
gineering (adaptive routing) unfeasible. Several traces of applications from the NAS Parallel
Benchmarks (NPB, [16]) have been analyzed, from runs with 64 MPI4 processes using 64
nodes of a cluster. Figure 4-1 shows a visualization of four iterations of the CG kernel. Blue
sections represent computation phases, orange sections represent communication ones and
yellow lines are point-to-point messages. Four iterations of the algorithm last 6.48 ms,5 re-
sulting in changes of traffic in less than 2 ms. A similar visual analysis of other benchmark
applications gives rise to the values in Table 4-1. Iterations range from 2 to 58 ms, meaning
that traffic changes are even quicker. By contrast, typical DC applications can suffer from
congestion periods lasting for several seconds [100].

Several proposed mechanisms rely on controller-based estimations of per-flow offered
load in order to adapt routing [62, 137, 63]. However, their reaction time exceeds

4Message Passing Interface (MPI).
5The timescale of the trace is indicated in the bottom of the figure in small font

62

4.2 Interconnection requirements: HPC vs. DC

Figure 4-1: Visualization of CG kernel using 64 MPI processes. Blue and orange sections represent
computation and communication phases, respectively. The yellow lines are point-to-point mes-
sages. The time frame shown comprises 6.48ms for 4 iterations.

Table 4-1: Approximate iteration time of NPB applications.

Application/kernel Iteration time

CG 1.6 ms

BT 29 ms

FT 58 ms

IS 10 ms

LU 52 ms

MG 11 ms

SP 22 ms

70 ms in the best case, due to monitoring intervals and remote controller communication.
Planck [159] captures traffic samples to react in the order of fewmilliseconds. However, it re-
quires a significant monitoring infrastructure (including sparse switch ports, collectors and
controllers) and relies on TCP sequence numbers to estimate flow rates, making it specific
for traditional DC environments. As far as it is known, no other monitoring mechanisms
achieve reaction times similar to Planck, making controller-centric traffic engineering un-
feasible in HPC environments. Therefore, reactive flow rules instantiated by the controller
are not well suited to adapt switch routing to changing HPC traffic. The latter joined with
low latency requirements [26] impose the need of proactive forwarding rules, rather than
reactive ones instantiated when a flow begins, to avoid traffic detours in the critical path. An
SDN controller should learn the network topology and set the forwarding rules in advance,

63

4 HPC Networking Over Commodity Ethernet Technology

like the subnet manager in InfiniBand [153] networks. Of course, network flooding6 due to
missing forwarding entries should be avoided.

HPC alternatives to the TCP/IP communication stack, such as Open-MX [77] and
RDMA7 over Converged Ethernet (RoCE, [92, 130]), do not employ IP addresses nor TCP
ports.8 This makes a single layer-2 domain compulsory. A traditional Ethernet design with
flat addressing in an exascale system would require Content-Addressable Memory (CAM)
forwarding tables with hundreds of thousands of MAC entries. That is impractical with
traditional switch hardware not only because of table capacity limitations, which typically
ranges from 4K to 64K entries [44, 46], but also of power and latency concerns. In fact, there
are switches which can reduce their latency by reducing their effective CAM size [46].

DC interconnection networks traditionally rely on some form of tree or folded-Clos
topology. Implementation costs and energy consumption restrictions in HPC environ-
ments suggest the use of alternative, direct topologies with lower diameter, such as Flat-
tened Butterflies or Dragonflies. Compared to folded-Clos, these topologies employ a lower
number of switches and links for a given network size, leading to a lower power consump-
tion in switches logic and link Serializer/Deserializer (SerDes), and lower installation cost.
However, contrary to Clos-like topologies, minimal paths in these topologies are heavily
congestion-prone, requiring non-minimal adaptive routing as discussed in Section 2.2.

A network design should suffice all the discussed requirements. The next section presents
an analysis of different solutions which have been considered for DC environments and
discusses their applicability to HPC, starting from the layer-2 scalability issues.

4.3 Scalability mechanisms in Ethernet networks

Traditional Ethernet employs flat routing based on the hosts MAC addresses. Switches’
CAM forwarding tables employ an entry for each endpoint in the network. Conversational
MAC address learning in traditional Ethernet switches [1] fills these tables dynamically
when network conversations start, avoiding allocating entries for destinations without com-
munication. However, this reactive mechanism implies that frames destined to unknown
entries are flooded across the whole network to make sure they reach their destination. In-
deed, a major disadvantage of a flat addressing is the required size of the switches’ MAC
address table: when it overflows, traffic to MACs in excess are flooded as if they were un-
known destinations.

Overlay mechanisms have been proposed to build large layer-2 fabrics. Transparent Inter-
connection of Lots of Links (TRILL, [151]) andCisco’s FabricPath [45] employMAC-in-MAC
encapsulations to reduce the forwarding table use. In these hierarchical implementations,

6Used in traditional Ethernet with conversational learning, 802.1D [1].
7Remote Direct Memory Access (RDMA).
8RoCEv2 changes the packet encapsulation to include IP andUDPheaders which allows to use RDMAacross

both L-2 and L-3 networks [132].

64

4.3 Scalability mechanisms in Ethernet networks

ingress switches encapsulate the original Ethernet frame in a new frame using the destina-
tion switch ID for the destination MAC field; egress switches remove the outer header to
recover the original frame. Switches in the core of these networks only need to hold CAM
entries for the network switches, not the network hosts. By contrast, access switches still
require an entry for each host involved in a conversation. This could explode to the whole
network size in the worst case. Conversational learning is also employed by default in these
proposals, what implies that unknown (or overflown) entries are flooded.9 Virtual extensible
Local Area Network (VXLAN, [124]), which is a MAC-over-UDP/IP overlay encapsulation,
also relies on conversational learning and does not reduce themaximum size of access switch
tables.

These previous approaches rely on searches on CAM tables for a match of the com-
plete MAC address. By contrast, OpenFlow switches employ Ternary-CAM (TCAM) ta-
bles allowing for partial matches and hierarchical MAC organizations. PortLand [143] and
MOOSE [163] introduce layer-2 hierarchical routing, by organizing hosts in groups sharing
a common MAC prefix and setting a single routing rule for all hosts in the same destina-
tion group. A unique pseudo-MAC (PMAC) address is assigned to each host, encoding its
location in the network. Access switches dynamically modify the MAC field of the frames
received from or sent to its own nodes (MAC to PMAC and PMAC to MAC), so the net-
work only detects PMACs and destination hosts maintain the illusion of unmodified MAC.
Additionally, these access switches divert Address Resolution Protocol (ARP) petitions to the
network controller which responds with the destination’s PMAC.

Like the latter studied proposal, the proposed scalability in this chapter relies on hierar-
chical MAC addresses, since they require a limited number of proactive forwarding rules
and do not flood traffic. This layer-2 hierarchical MAC addressing is adapted to the em-
ployed topologies, which have been proposed for larger HPC environments. The number of
flow entries depends on the definition of groups. Section 4.3.1 analyzes the rules required
for different address hierarchies and topologies, and Section 4.3.2 studies rule compaction.

4.3.1 Scalability analysis of hierarchical addressing

The size of the routers’ TCAM table determines its power consumption and could limit the
scalability of a layer-2 OpenFlow network fabric. Hence, the objective of this proposal is to
reduce the number of flow rules required tomaintain the communication between terminals
of an HPC system and this also helps to reduce its power consumption. To achieve that, a
layer-2 hierarchical addressing organization is designed, in which addresses are divided into
different blocks. An address block can be represented by a wildcard when the information
represented by this block is not relevant. This section explores the number of flow entries

9The ESADI protocol [196] implements proactive address learning in TRILL, but it still requires CAM tables
with capacity for the whole network.

65

4 HPC Networking Over Commodity Ethernet Technology

required using this hierarchical addressing. Its relation with the underlying topology and
possible reductions are considered later.

The minimum size for an address block corresponds to the set of hosts connected to the
same router because smaller partitions do not provide any reduction in the number of rules.
The identification of hosts and terminals is done similarly in TRILL and FabricPath. This
addressing model is denoted as per-switch while the traditional non-hierarchical, flat ad-
dressing model is denoted as per-host. Larger groups can be formed by addressing several
switches with a common group prefix, which is denoted as per-group, and forwarding traffic
according to such group prefix. This three-level hierarchy, which splits an address in host,
switch and group, reduces the number of flow rules because all hosts of a switch can be iden-
tified by solely one rule when the host information is not relevant. Similarly, all switches and
hosts of a group can be identified by one rule when the particular switch and host informa-
tion is not relevant. Figure 4-2 depicts these addressing models; the specific number of bits
of each field may vary according to the controller policy.

MAC address: 46 bits (plus 2 reserved bits)

Per-group addressing (3-level hierarchy):

Per-switch addressing (2-level hierarchy):

hostID (46 bits)

Flat addressing (1-level hierarchy):

hostID (8 bits)switchID (38 bits) hostID (8 bits)switchID (38 bits) hostID (8 bits)switchID (38 bits)

groupID (18 bits) switchID (20 bits) hostID (8 bits)groupID (18 bits) switchID (20 bits) hostID (8 bits)

Figure 4-2: Traditional flat and two hierarchical addressingmodels.

The number of flow rules (𝑅) required in each access switch with flat addressing model is
equal to the number of hosts. Using the following notation: 𝐺 is the number of groups
if per-group addressing model is employed and 𝐺 = 1 for a two-level hierarchy; 𝑆 is the
number of access switches per group considering one group if per-switch addressing model
is employed; and 𝐼 is the number of hosts on each access router; the number of flow rules is:

𝑅 = (𝐺 − 1) + (𝑆 − 1) + 𝐼. (4-1)

The network size will be determined by the topology and switch size. The proportion of
router ports used to connect hosts depends on the topology. Table 4-2 represents this value
for several topologies: 3-level folded-Clos, Flattened Butterflies (FBs, [110]) and Dragon-
flies (DFs, [108]). Folded-Clos are indirect topologies with transit switches to which no host
directly connects, so the overall proportion of host ports in the network is lower than in
access switches. Flattened Butterflies and Dragonflies are recent direct topologies which are
used in commercial HPC systems. Since direct topologies do not have transit switches, the

66

4.3 Scalability mechanisms in Ethernet networks

proportion of host ports in the network routers is the same that in access switches. The values
of the table roughly determine the number 𝐼 of hosts on each switch, for a given router-radix
𝑘. Following the notation introduced previously, the number of hosts (𝐻) is:

𝐻 = 𝐺 × 𝑆 × 𝐼. (4-2)

Table 4-2: Number of ports dedicated to computehosts andnetwork scalability in different topolo-
gies, using k-radix routers.

Topology Hosts per access
switch, 𝐼

Hosts per
network switch

Scalability (max
hosts,𝐻)

3-Level folded-Clos ≈ 𝑘/2 ≈ 𝑘/5 𝑘3/4

2-D Flattened Butterfly ≈ 𝑘/3 ≈ 𝑘/3 ≈ (𝑘/3)3

3-D Flattened Butterfly ≈ 𝑘/4 ≈ 𝑘/4 ≈ (𝑘/4)4

Dragonfly ≈ 𝑘/4 ≈ 𝑘/4 ≈ 4 × (𝑘/4)4

4-D Flattened Butterfly ≈ 𝑘/5 ≈ 𝑘/5 ≈ (𝑘/5)5

The number of flow entries 𝑅 required in access switches is minimized for a given network
size if per-group addressing model is used and 𝐺 ≈ 𝑆. However, the number of switches
assigned to each group might depend on the network topology; Figure 4-3 represents the
three topologies considered in this chapter. In the three-level folded-Clos in Figure 4-3(a),
nodes are organized in several podswhich are connected via core switcheswith twice asmany
pods as access switches per pod. Its natural division is one group per pod. The 2-D Flattened
Butterfly in Figure 4-3(b) has as many rows as columns, with an all-to-all connection per
row and column. Matching a row to a group leaves 𝑆 = 𝐺. With more dimensions, the
same assignment of one group per row leaves 𝐺 > 𝑆. Finally, the Dragonfly topology in
Figure 4-3(c) is naturally organized in groups, but their amount is significantly larger than
the number of switches per group.

Considering this organization, Figure 4-4 depicts the number of flow rules required to
support a given topology and size, considering flat, 2-level and 3-level hierarchical address
organizations. Flat addressing represents the traditional CAM-based implementation with
one entry per host and it is included for comparison. The scalability, which represents the
number of hosts, only depends on the switch size and topology; the number of flow rules,
in vertical axis, also depends on the use of per-switch or per-group addressing models.

The size of TCAM tables in commodity Ethernet switches usually ranges from 4K to 64K
entries [114]. As observed in the plot, using per-group hierarchical addressing and DF or
3-D FB, it is possible to reach more than the 300,000 estimated hosts for future exascale
HPC systems using a layer-2 network fabric requiring less than 4K rules.

67

4 HPC Networking Over Commodity Ethernet Technology

Group 0

A
Host A MAC:
:::: :00010100

Host B MAC:
:::: :01110111

Host C MAC:
:::: :10010100

Host D MAC:
:::: :11110111

B C D

0.10.1

0.20.2 1.21.2

1.11.1

(a) 3-level folded-Clos with k=4 ports
routers. Only one pod is shown, the
third upper level and the rest of pods
are omitted for simplicity.

G
ro

u
p

2
G

ro
u

p
0

G
ro

u
p

1

2.02.01.01.0

2.12.11.11.1

2.22.21.21.2

R0

0.00.0

0.10.1

0.20.2

(b) 2-DFlattenedButterfly highlighting one
router and their links. Each row corre-
sponds to a group.

G8

G
ro

u
p

0

G7 G2 G1G6 G5 G4 G3

R3R3R2R2R1R1R0R0

(c) Dragonfly with 9 groups, G0 - G8. Only group G0 is detailed.

Figure 4-3: Different topologies being considered: (a) folded-Clos, (b) 2-D FB and (c) DF.

4.3.2 Scalability analysis with TCAM rules compaction

This subsection explores the use ofwildcards for flow table compaction for the three previous
topologies. Equation 4-1 considered one flow rule for each possible destination: host, switch
or group. However, when several destinations share the same output link, they might be
merged into a single rule depending on their addresses.

The minimum number of TCAM entries in a switch equals its port count, since at least
one entry is required to output frames on each port. This lower bound is reached naturally in
the 2-D Flattened Butterfly topology with per-group addressing. This occurs because each
switch is directly linked to its own 𝐼 terminals, the (𝑆 − 1) other switches in its own group
(different columns) and the remaining (𝐺−1) groups (different rows)without overlap. This is
highlighted in Figure 4-3(b) for switchR0. For three ormore dimensions, a similar reduction

68

4.3 Scalability mechanisms in Ethernet networks

4
8

16
32
64

128
256
512
1K
2K
4K
8K

16K
32K
64K

1K 4K 10K 25K 100K 300K 1M 4M 10 100

Flat a
ddressi

ng

TC
A

M
 e

n
tr

ie
s

(R
)

Number of computer hosts (H)

3-L folded-Clos per-switch
Dragonfly per-switch

2-D Flattened Butterfly per-switch
3-D Flattened Butterfly per-switch
4-D Flattened Butterfly per-switch

3-L folded-Clos per-group
Dragonfly per-group

2-D Flattened Butterfly per-group
3-D Flattened Butterfly per-group
4-D Flattened Butterfly per-group

Figure 4-4: Number of TCAM entries required for varying network size and topology, using per-
switch or per-group addressing. The points correspond to the maximum network size using
switches with 𝑘 ∈ {8, 16, 24, 48, 96} ports.

is feasible, by simply assigning the switch location coordinates (𝑋, 𝑌, 𝑍) to different sub-
fields in the header as presented in Figure 4-5 and using wildcards in the corresponding
sub-fields. Thus, a Flattened Butterfly of any dimension can reach the minimum number of
rules.

groupID switchID hostID

Generic per-group addressing (3-level hierarchy):

X switch coordinate hostID

3-D Flattened Butterfly address assignment:

Y switch coordZ switch coord

Figure 4-5: Hierarchical addressing in 3-D FBs considering forwarding rules compaction.

Figure 4-3(a) presents an excerpt of a folded-Clos, showing one pod and the uplinks to core
routers (level three of the network). Routing in the folded-Clos is up-down. The uplink
followed to core routers is independent of the destination, since all core routers are ancestors
of all pods (the same applies to neighbor switches in the pod). Thus, a hash of the source
fields can be used for static balancing of the uplinks, as in the example presented in the figure
with different colors. Again this leads to a number of rules equal to the switch ports.

69

4 HPC Networking Over Commodity Ethernet Technology

On the contrary, in the Dragonfly topology it is not possible to reduce the number of rules
to the number of switch ports. To illustrate it, consider the leftmost switch in Group 0 in
Figure 4-3(c). It requires one rule for each of its 𝐼 hosts, one rule for each of the 𝑆 − 1 direct
neighbors in the group, and one rule for each directly connected remote group, which equals
the port count. However, it also requires additional rules to reach the groups connected to
other switches in its group. At least, this would imply 𝑆 − 1 additional rules if all the rules
associated to a given output port could be compacted. However, in the general case this is
not possible because the addresses of the remote groups are not necessarily aligned, as in
the example in the cited figure: using wildcards to compact rules for remote groups 1 and 2
would also match group 3.

Figure 4-6 shows the number of rules for the topologies considered. In the case of the DF,
the maximum and minimum number of rules is presented; the actual number will be in-
between and will vary from switch to switch. In the other cases, the lower limit is reached.
Even in the worst case of the DF with more than 1 million nodes, the number of rules is
relatively low and fits in existent OpenFlow switches.

4

8

16

32

64

128

256

512

1.2K

1K 4K 10K 25K 100K 300K 1M 4M 10 100

TC
A

M
 e

n
tr

ie
s

(R
)

Network endpoints with full bisection bandwidth (H)

3-L folded-Clos (compact)
Dragonfly (no compaction)

Dragonfly (lower bound)

2-D Flattened Butterfly (compact)
3-D Flattened Butterfly (compact)
4-D Flattened Butterfly (compact)

Figure 4-6: Number of TCAM entries after compaction. The points correspond to the maximum
network size using switches with 𝑘 ∈ {8, 16, 24, 48, 96} ports.

70

4.4 MAC address rewriting

4.4 MAC address rewriting

This section identifies a problem generated by dynamic or on-the-fly rewriting of MAC ad-
dresses and introduces an alternative mechanism to automate host MAC configuration. The
scalability solution in Section 4.3 requires rewriting MAC addresses to include location in-
formation. Previous proposals implement dynamic rewriting of the frame headers in access
switches [143, 163]. However, this interferes with layer-2 service announcement mecha-
nisms, used for example in Open-MX.

Distributed discovery mechanisms rely on requests from the service users, such as ARP
for IP-to-MAC mapping, or announcements from the service provider, such as Open-MX
computing nodes announcing their availability. In the first case, requests can be intercepted
by the access switches and derived to a central fabric manager, as done in PortLand [143]
and SEATTLE [106] to attend ARP requests. In the second case, by contrast, broadcast and
multicast messages announce the service to all nodes, so a similar centralized solution is not
feasible. Furthermore, MAC rewriting interferes with these announcements. In fact, Open-
MX announcements include the source node MAC address in the data field, so receivers of
this frame record the original unmodified address and communication never happens.

Two alternative solutions are introduced next. The first onemodifies the service discovery
protocol, with receivers recording the MAC address in the announcement frame header,
rather than the data field. This is compatiblewith on-the-fly address rewriting and is possible
in Open-MX because it is open-source, but it might be unfeasible with proprietary stacks.

The second alternative modifies the MAC address in the hosts configuration, rather than
modifying it in the frame headers. Since individually modifying each host’s address is un-
feasible with hundreds of thousands of nodes, a control protocol has been designed to auto-
matically configure the host MAC at boot time. This protocol is denoted as Dynamic MAC
Protocol (DMP) and it is depicted in Figure 4-7. When a host boots, it asks for a MAC ad-
dress by sending a DMP request using a specific EtherType value. Its own switch identifies
this query and sends the frame back, overwriting the source address field with the new hier-
archical MAC address, as discussed in Section 4.3. One rule per connected host is required
for DMP, in addition to the routing rules discussed in the previous section. This approach
does not restrict the use of the host MAC address in the announcement payload nor the use
of hierarchical routing.

Both alternatives have been implemented and verified in a computer using Open vSwitch
and four virtual machines. In these tests OpenFlow 1.0.0 [145] has been used with the op-
tional action modify-field to change the header MAC field. The EtherType value 0x88b5
reserved for experimental purposes [91] has been used on DMP packets in the experiments.

71

4 HPC Networking Over Commodity Ethernet Technology

T
im

e

HOST A BOOTS

DMP CHANGE HOST
MAC TO:

02:00:00:01:00:01

DPM Query
Ethertype = 0x88b5

MAC_SRC = 00:22:04:77:14:4E
MAC_DST = 00:22:04:77:14:4E

HOST B BOOTS

DPM Response
Ethertype = 0x88b5

MAC_SRC = 02:00:00:01:00:02
MAC_DST = 00:22:04:77:14:4E DMP CHANGE HOST

MAC TO:
02:00:00:01:00:02

port=1 port=2

DPM Query
Ethertype = 0x88b5

MAC_SRC = 00:20:12:77:14:4E
MAC_DST = 00:20:12:77:14:4E

DPM Query
Ethertype = 0x88b5

MAC_SRC = 00:20:12:77:14:4E
MAC_DST = 00:20:12:77:14:4E

DPM Response
Ethertype = 0x88b5

MAC_SRC = 02:00:00:01:00:01
MAC_DST = 00:20:12:77:14:4E

DPM Response
Ethertype = 0x88b5

MAC_SRC = 02:00:00:01:00:01
MAC_DST = 00:20:12:77:14:4E

SwitchID
02:00:00:01:00

A

MAC:
00:20:12:77:14:4E

B

MAC:
00:22:04:77:14:4E

Figure 4-7: Sequence of packets when two hosts boot using the DMP protocol.

4.5 MAR-bP: Multipath Adaptive Routing based on Pauses

As a first approach to the objective of this chapter, this section aims to design a non-minimal
adaptive routing over a hardware as much close as possible to commodity Ethernet network
devicewithOpenFlow support. To do that, it explores adaptive routing in Ethernet networks
based on Ethernet pause messages [88] resulting in MAR-bP: Multipath Adaptive Routing
based on Pauses proposal. Oblivious multipath routing employs a fixed function for load
balancing, typically a hash of some header fields. Such approach is used in traditional link
aggregation [86] or equal-cost multipath [83] routing algorithm. Its disadvantage is that the
pathsmight receive a different load, leading to suboptimal throughput. By contrast, adaptive
routing dynamically balances the load of each path. An adaptive routing implementation is
more complex since it requires an estimation of the network load and instantiating addi-
tional routing entries.

Section 4.5.1 introduces conditional flow rules triggered by pause flow-control messages.
This is applied to both minimal routing, in Section 4.5.2, and non-minimal routing, in Sec-
tion 4.5.3. A discussion is presented in Section 4.5.4.

4.5.1 Proactive conditional flow rules

Section 4.2 concludes that reactive flow rules instantiated by the controller are notwell suited
to adapt switch routing to changing HPC traffic. To solve the aforementioned problem, the
idea of conditional flow rules is proposed. These rules are proactively instantiated by the
OpenFlow controller, and they are deactivated locally by the switch on network events, such
as link-level flow-control pauses. Using this idea, traffic is diverted to alternative paths when
a preferred one gets blocked due to congestion.

Figure 4-8 depicts the idea of conditional flow rules with the required changes to the flow
table. Besides ordinary rules, which indicate the output port associated with each termi-
nal connected to the switch, the system relies on two sets of rules: default and alternative,

72

4.5 MAR-bP: Multipath Adaptive Routing based on Pauses

with different priority. Both ordinary and default rules correspond to hierarchical address-
ing model, explained in Section 4.3, and they have high priority, whereas alternative rules
employ low priority. Default rules are conditional, and therefore dependent on the pause
status of their associated output port which is highlighted in Figure 4-8. Commonly, both
default rules and their corresponding alternative backup rules match for a given frame, but
default rules are used because of their higher priority. However, when a given output port
receives a pause, the corresponding default rules are deactivated, so alternative rules start to
be used, diverting traffic.

Port1PAUSE

PAUSE

PAUSE

PAUSE

PAUSE

mac dst=host A
mac dst=host B

mac dst=group1
mac dst=group2
mac dst=group3
mac dst=group4
mac dst=group5
mac dst=group6
mac dst=group7
mac dst=group8

in_port=1
in_port=2

P6Pause=F
P7Pause=F
P3Pause=F
P3Pause=F
P4Pause=F
P4Pause=F
P5Pause=F
P5Pause=F

High
High

High
High
High
High
High
High
High
High

Low
Low

Match pattern Condition Priority
TCAM Table - Forwarding

outport=1
outport=2

output=6
output=7
output=3
output=3
output=4
output=4
output=5
output=5

output=3
output=4

Action
Port2

Port3

Port4

Port5

Port6PAUSE

Port7PAUSE

Router 0 of Group 0

G1

G2

A

B

R1R1

R3R3

R2R2

Figure 4-8: Router’s architecture with conditional flow rules. When the condition fails, i.e., when
the output port is paused, the high-priority minimal routing rule is ignored, leading to the use of
a low-priority rule.

With this proposal, default paths are used until their queues become completely full. Both
default and alternative rules are proactively instantiated by the controller after topology dis-
covery. Their application for minimal or non-minimal multipath routing is discussed in the
next sections.

4.5.2 Conditional flow rules for minimal routing

Conditional flow rules can be applied to topologies with multiple minimal paths by assign-
ing a default rule to each of the default paths, and one or more alternative rules (for each
alternative minimal path using different levels of low priority) to paths already assigned to
other default rules.

In the case of the folded-Clos with compact routing rules, one default rule is assigned to
each uplink using per-source hashing, although per-destination hashing is equally possible.
Up to 𝑘 − 1 additional alternative rules can be assigned to the same per-source hash, for the
𝑘 − 1 remaining uplinks. This multiplies the number of uplink rules in a factor up to 𝑘.

73

4 HPC Networking Over Commodity Ethernet Technology

In 𝐷-dimensional Flattened Butterflies there are up to 𝐷 potential outputs for a given des-
tination, for the 𝐷 options of the first hop. Interestingly, in this case multipath routing can
be implemented without increasing the number of rules with respect to the compact case.
Higher-level rules (e.g., to reach a remote group)will be conditional with high priority, while
lower-level rules (e.g., destination switch index) will have low priority and employ wildcards
on the group bits.

Since there is no minimal path diversity in a Dragonfly topology, using conditional flow
rules to enablemultipleminimal routes does not apply. However, each access switch requires
𝐼 ordinary rules to eject the packets to the 𝐼 terminals connected to it and one rule per remote
group to route the packets to them minimally.

4.5.3 Conditional flow rules for non-minimal routing

Non-minimal routing using conditional flow rules relies on diverting traffic to a given inter-
mediate destination when the corresponding minimal path is congested. The intermediate
destination cannot be selected randomlywithout intervention from the controller, so a given
Valiant intermediate router will be statically assigned to each source node. The application
to Dragonflies and Flattened Butterflies is depicted in Figure 4-9.

Figure 4-9(a) shows the application of conditional non-minimal routing to Dragonfly net-
work. In this topology, global links are the most congestion-prone ones. Each switch em-
ploys several high-priority rules for minimal routing as discussed in Section 4.3.2. Of these,
rules for remote groups will be conditional. 𝐼 additional low-priority rules, one per each
terminal, are included to forward traffic from injection ports to remote groups. Note that
the input port can be checked in OpenFlow rules. When the conditional minimal rule is
deactivated, these additional rules forward traffic directly to global links, towards a remote
intermediate group. From that point, minimal routing is employed. Since a balanced Drag-
onfly has as many terminal per switch (𝐼 = 𝑝 = ℎ) as global ports [108], one non-minimal
output can be assigned to each compute hosts, effectively balancing traffic. This mechanism
to enable non-minimal routing requires 𝐼 additional rules and is equivalent to VLB-g-.

The application to Flattened Butterflies is similar, as depicted in Figure 4-9(b). In this
case, each switch is connected to 𝑆 − 1 remote groups but there are 𝐼 = 𝑆 compute hosts per
switch to achieve a balanced design [110], so one of the hosts will not have a non-minimal
path assigned (or one of them will be repeated).

4.5.4 Discussion

Deadlock issues, explained in Section 2.5, must be managed. For folded-Clos, simple up-
down routing avoids deadlock. As explained in that section, the proposal used in this chapter
relies on the use of multiple Virtual Channels (VCs). In particular, 𝐷 VCs are required for
fully adaptive routing in𝐷−dimensional Flattened Butterfly and just three VCs are required

74

4.5 MAR-bP: Multipath Adaptive Routing based on Pauses

G8

Group 0

G7 G2 G1G6 G5 G4 G3

Non-minimal path from Host A
Non-minimal path from Host B

 Minimal path to Group 4

R3R3R2R2R1R1R0R0

A B

(a) Dragonfly

G2

Minimal path
to R2

Non-minimal
path from

Host A

Non-minimal
path from

Host B and C

A

B

C

0.00.0

0.10.1

0.20.2 1.21.2

1.11.1

1.01.0 R2R2

2.12.1

1.21.2

G1

G0

(b) Flattened Butterfly

Figure 4-9: Non-minimal routing in (a) DF and (b) FB networks using conditional flow rules.

for Dragonfly, which can be reduced to two in the proposed MAR-bP adaptive routing im-
plementation since there are at most two hops of each type. These VCs can be mapped
directly to two different Ethernet Class-of-Service (CoS) levels and different switch buffers,
leaving enough CoS levels to differentiate other types of traffic. Class-of-service updates can
be embedded in existent OpenFlow rules.

The proposed adaptive routing decision relies on snooping pause link-level flow-control
messages. Alternative implementations might rely on explicit congestion notifications, as
proposed in the next section.

Adaptive routing mechanisms can increase traffic throughput at the cost of out-of-order
delivery. It is the responsibility of the transport protocol to detect and reorder network traffic
in such cases, these protocols are out of the scope of this chapter.

The use of a statically pre-selected Valiant path differs from the original random defini-
tion. Additional non-minimal paths can be included using different levels of low priority, at
the cost of an increased number of rules.

75

4 HPC Networking Over Commodity Ethernet Technology

4.6 QCN-Switch: adaptive routing based on ECNmessages

This section introduces QCN-Switch: a statistical non-minimal source-adaptive congestion-
aware routing algorithm relying on explicit congestion notification messages which extends
the MAR-bP routing algorithm introduced in the previous section.

Many previous mechanisms implement table-based adaptive routing that performs load
balancing. In previous proposals, balancing is typically performed with the granularity of
a packet [108, 96, 74], flowlet [99] or flow [62, 137, 63, 159]. However, those proposals ei-
ther employ a congestion-oblivious balancing function, which implies that they do not really
adapt to changing network congestion, and do not support non-minimal adaptive routing or
rely on packet-by-packet network information such as credit counters, with minimal feed-
back delay.

The proposed design adapts routing to network traffic by capitalizing on Quantized Con-
gestion Notification (QCN), which is detailed in Section 2.4.1, congestion messages gener-
ated when transit buffers are heavily used. Congestion Notification Messages (CNMs) update
network status with a coarse granularity, in the order of hundreds of packets. This is afford-
able for injection throttling, because injection rate is modulated in an almost-continuous
range, from zero to the maximum interface rate. By contrast, table-based adaptive routing
needs to select the destination between a small set of forwarding entries, so large notifica-
tion delays would fix the selection of a given path and overload some network area. Indeed,
a large feedback delay combined with a deterministic selection function in the forwarding
table may cause abrupt traffic oscillations.

This proposal extends the conditional flow rules, previously introduced in Section 4.5.1,
to forward traffic minimally or non-minimally based on a probability, as it is explained in
Section 4.6.1. The proposed QCN-Switch does not modify the QCN Congestion Point (CP)
whereas the QCN reaction point in NICs is disabled. Instead, source switches, which are di-
rectly connected to the destination NIC of a CNM, intercept QCN notifications and process
them in order to modify the aforementioned probability according to two different policies.
A base probability management variant, explained in Section 4.6.2, modulates the probabil-
ity of each output according to an Additive-Increase, Multiplicative-Decrease (AIMD) policy.
This base design is extended in Section 4.6.3 with a feedback comparison probability man-
agement variant, which targets the issue of throughput fall at uniform high loads present in
the base. Finally, a source processing mechanism that enable switches to process their own
CNMs is presented in Section 4.6.4.

4.6.1 Forwarding tables with probabilities

To provide a smooth balance in the utilization of different network paths between the recep-
tion of consecutive congestion notifications, this proposal relies on conditional flow rules

76

4.6 QCN-Switch: adaptive routing based on ECNmessages

with statistical path selection. Path selection is modulated with a set of control values de-
rived from the congestion status reported by the network. Such control values are calculated
to set the probability of forwarding trafficminimally using a given output port, so one value is
required per transit port. These values are denoted as minimal port probability or port prob-
ability, and their range is 0-100%. The previous design of conditional flow rules is similar to
the introduced in this section, but it uses a binary probability value that is 0% or 100%.

To implement the statistical path selection, routing table entries with priorities are con-
sidered. Priorities are used to discern minimal and non-minimal forwarding table entries:
high-priority conditional rules are used for minimal routing and low priority rules are used
for non-minimal routing. Routing is calculated so that, when path selection is possible, one
high and at least one low priority entries match a given packet. Source-adaptive routing
is considered during the evaluation, so path selection only occurs at injection and non-
minimal rules are applied only for injection ports, but the model might be applied to in-
transit adaptive routing. When only one rule match occurs, such rule is applied regardless
of its probability value.

A random number 𝑁, which ranges from zero to hundred, is employed when multiple
rules with different priorities match a packet, as follows. If 𝑁 exceeds the probability of the
output port of a matching high-priority conditional rule, this rule is not executed. Instead,
the matching lower-priority rule is followed. The random value 𝑁 may be generated from
the incoming frame, by selecting some bits from its CRC for example, or derived from a
pseudo-random sequence.

Figure 4-10 shows an example of the proposed routing table and associated port prob-
abilities for one switch in a Dragonfly group. The switch has five transit ports: ports 3-5
connect to other switches in the same Dragonfly group, and ports 6-7 connect to remote
groups. Table entries for minimal routing have high priority and employ a condition that is
associated to the probability of their output port; table entries for non-minimal routing have
low priority and are not conditional. In this example, port 5 has received large congestion
notifications and has reduced its probability to a low value (10%).

The random value generated for the query shown in Figure 4-10 is 𝑁 = 77. Thus, proba-
bility values lower than𝑁 disables minimal routing paths via ports 5 and 7 which are known
to be congested. When the condition is false, an alternative non-minimal path is selected
based on the input port of the packets.10 Regarding the example in the figure, the associated
table entries disabled are highlighted in red and alternative non-minimal paths are deter-
mined by the two entries in the lower part of the table. If there is not an alternative entry,
the condition will be ignored; this avoids non-minimal forwarding of in-transit traffic and
creating forwarding loops.

The probability of each conditional rule needs to be adapted to the congestion level in the
corresponding path, which is estimated from the feedback values received in the QCN con-

10Note that in certain cases the alternative rule might overlap the minimal path.

77

4 HPC Networking Over Commodity Ethernet Technology

Port1

mac dst=host A
mac dst=host B

mac dst=group1
mac dst=group2
mac dst=group3
mac dst=group4
mac dst=group5
mac dst=group6
mac dst=group7
mac dst=group8

in_port=1 (host A)

in_port=2 (host B)

N<P6MinProb
N<P7MinProb
N<P3MinProb
N<P3MinProb
N<P4MinProb
N<P4MinProb
N<P5MinProb
N<P5MinProb

High
High

High
High
High
High
High
High
High
High

Low
Low

Match pattern Condition Priority

TCAM Table – Forwarding

outport=1
outport=2

output=6
output=7
output=3
output=3
output=4
output=4
output=5
output=5

output=6
output=7

Action

Port2

Port3

Port7

Port4

Port5

Router 0 of Group 0

G2

Port6 G1

Probability

95

92

10

90

75
Random number (N): 77

C
o

n
su

m
p

ti
o

n
M

in
im

al

ro
ut

in
g

N
on

-m
in

im
al

ro

ut
in

g
A

B

R1R1

R2R2

R3R3

Figure 4-10: Router architecture with QCN-Switch proposal. This diagram portrays R0 of G0 under
adversarial traffic pattern for a (h=2, p=2, a=4) Dragonfly network. The condition or a rule fails
when N is higher than the probability of sending minimally by its associated port. In such case,
high-priority minimal routing rules are ignored (highlighted in red) leading to the use of a low-
priority rule.

gestion notificationmessages. Different policiesmay be considered to update the probability
values of each port; the base mechanism and one extension are presented next.

4.6.2 Base AIMD probability management

The basemechanism employs anAIMDpolicy to reduce the probability associated to an out-
put port when a CNM is received through it, modulated by the Feedback value 𝐹𝑏 indicated
in the explicit congestion notification message. Since QCN only considers negative conges-
tion notification messages and it does not notify the absence of congestion, the proposed
policy protocol is implemented as follows.

◼ Upon reception of a CNMwith feedback 𝐹𝑏 through a port, the probability of sending
the traffic minimally through this port is multiplied by a factor 𝑅, calculated as:

𝑅 = 1 − |𝐿𝑓 × 𝐹𝑏|, (4-3)

where 𝐿𝑓 is a limiting factor that determines the extent to which the probability de-
creases and 𝐹𝑏 values range from 0 to 63 as presented in Section 2.4.1. For example,
with 𝐿𝑓 =

1
128 , 𝑅 will be in the range between 0.5 and 1.

◼ A counter tracks the packets transmitted by each transit port between the reception of
CNM messages. The counter is reset every time a CNM message is received and it is
incremented for every transmitted packet. If it reaches a threshold𝑃𝐶𝑙, the probability
value associated with that port is increased by 𝑃𝐼%.

78

4.6 QCN-Switch: adaptive routing based on ECNmessages

Parameters 𝐿𝑓 and 𝑃𝐼 regulate the reaction time of this mechanism to changes in conges-
tion: 𝐿𝑓 determines how fast traffic is sent non-minimally after congestion is detected; anal-
ogously, 𝑃𝐼 indicates how quickly routers revert to minimal routing after congestion disap-
pears. The impact of these parameters is evaluated in Sections 4.7.4.3.2 and 4.7.4.3.3.

4.6.3 Feedback comparison probability management

Non-minimal adaptive routing needs to react to network traffic conditions to avoid conges-
tion under adversarial traffics. However, the information received from a single individual
port is not enough to accurately identify an adversarial traffic pattern. It should be noted
that an adversarial traffic pattern will cause congestion in one or a low number of ports while
a heavily loaded uniform load will cause congestion in all the ports.

When the network is heavily loaded under a uniform traffic pattern, all network buffers
get similarly loaded and all switches generate some congestion notifications. In this case,
switching to non-minimal routing because notifications are received from an individual port
is counterproductive: non-minimal routing increases the load in the network, which eventu-
ally generates more congestion notifications and further non-minimal routing, in a positive
control loop. The effect is that all traffic tends to be forwarded non-minimally, with reduced
throughput and increased latency.

Feedback comparison calculates an average feedback value 𝐹𝑏𝑎𝑣𝑔 which represents the av-
erage congestion of all transit ports of a switch. This value is calculated from themost recent
feedback values 𝐿𝑎𝑠𝑡 𝐹𝑏𝑖 received on each of its transit ports (𝑖) according to the following
expression:

𝐹𝑏𝑎𝑣𝑔 =
∑
𝑖=𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑝𝑜𝑟𝑡𝑠 |𝐿𝑎𝑠𝑡 𝐹𝑏𝑖|

𝑖
. (4-4)

Upon reception of each QCN message, the switch recalculates 𝐹𝑏𝑎𝑣𝑔 and compares this av-
erage with the feedback received in the CNM. If |𝐹𝑏| < 𝐹𝑏𝑎𝑣𝑔, the probability associated to
that port is increased by 𝑃𝐼%, same as occurs when no CNM is received for an interval in
the base policy. If |𝐹𝑏| is greater, the port’s probability is reduced by the factor:

𝑅 = 1 − 𝐿𝑓 × (𝐹𝑏 − 𝐹𝑏𝑎𝑣𝑔). (4-5)

Figure 4-11 shows an example of probabilities update using both probability management
variants: base and feedback comparison, under uniformor adversarial traffic. Theuse of𝐹𝑏𝑎𝑣𝑔
to calculate the reduction factor𝑅 in the latter reduces the impact of congestion notifications
on uniform loads, when all ports experience similarly high congestion values.

Buffer occupancy naturally suffers ephemeral variations, which is denoted as transient
congestion in the literature [192]. Therefore, congestion notification feedback values may
change significantly even in a stationary state, which may increase variability. The feed-
back comparison probability management variant employs two thresholds 𝑇ℎ1 and 𝑇ℎ2

79

4 HPC Networking Over Commodity Ethernet Technology

Port3

Port7

Port4

Port5

Router 0 – Group 0 – under ADV+1

Port6

Old
probability

95

92

10

90

75

Last Fb
received

10

13

58→60

15

20

Fbavg: 23

CNM
Fb=60

New
probability

Considered
mechanism

5

7

Base

Feedback
comparison

(a) Adversarial traffic pattern.

Port3

Port7

Port4

Port5

Router 0 – Group 0 – under UN

Port6

Old
probability

97

92

93

94

88

Last Fb
received

50

61

59→60

56

62

Fbavg: 57

CNM
Fb=60

New
probability

Considered
mechanism

49

90

Base

Feedback
comparison

(b) Uniform traffic pattern with high load.

Figure 4-11: Example of probability values update when a CNMwith Fb=60 arrives, under two dif-
ferent traffic scenarios for a switch in a Dragonfly network (h=2, p=2, a=4). Under uniform traffic
the port probability remains high when using the feedback comparison variant. Changing values
are highlighted in red.

to eliminate minor changes due to such transient variations. Port probabilities are not
modified when the feedback value received in a notification lays within the range (𝐹𝑏𝑎𝑣𝑔 −
𝑇ℎ1, 𝐹𝑏𝑎𝑣𝑔 + 𝑇ℎ2), as depicted in Figure 4-12. The impact of these thresholds is evaluated in
Section 4.7.4.3.4.

Fbavg

Th 1

Th 2

0 63
Increase probability

Decrease probability
Does not update

minimal port probability

Feedback value received

Figure 4-12: Thresholds used in the feedback-comparison probability management variant.

When network congestion disappears, CNMs might be no longer received given the lack
of positive, i.e., lack of congestion, notifications in QCN. In this case, 𝐹𝑏𝑎𝑣𝑔 might remain
with a high value with the previous implementation. While this potential issue has not been
observed during the simulations,11 a realistic implementation would need to adapt 𝐹𝑏𝑎𝑣𝑔,
for example reducing each 𝐿𝑎𝑠𝑡 𝐹𝑏𝑖 according to a negative exponential decrease when no
CNMs are received.

4.6.4 Source processingmechanism for input sensing

Depending on the switch internal speed-up, congestion trees, also known as high-order
head-of-line blocking [97], can be rooted at input or output ports [75], but with sufficient

11A case of congestion disappearing is presented in Figures 4-19(c) and 4-19(d).

80

4.7 Evaluation

speed-up this typically occurs at the outputs. The QCN-Switch adaptive routing intercept
CNMs messages, which are generated by QCN CP according to Section 2.4.1, in order to
adapt routing. As explained, the congestion sensing can be done at input or output buffers.
However, a pathological case of unfairness can occur specifically when congestion sensing
is implemented at the input buffers. Consider the situation of adversarial traffic presented
in Figure 3-5 on page 54. Congestion occurs in the minimal path, saturating input buffers
in local ports and the output buffer in the global port of 𝑅𝑂𝑈𝑇.

With output-buffer sampling, 𝑅𝑂𝑈𝑇 generates CNMs indicating congestion associated to
the output buffer of its global port; these CNMs are sent to all the eight nodes in the example,
and they are intercepted by their associated access router (R0, R1, R2 and𝑅𝑂𝑈𝑇 itself). In the
case of 𝑅𝑂𝑈𝑇, this CNM reduces the probability of the output port that generates the CNM,
whereas in the neighbor switches the probability that is reduced is associated to the port that
receives the CNM.

By contrast, with input-buffer sampling, CNMs are generated based on the occupancy
of the three buffers associated to local ports connected to the other source switches in the
example, and they are sent only to the neighbor switches. No CNM targets the two comput-
ing nodes associated to 𝑅𝑂𝑈𝑇, because their input buffers are not associated to transit ports.
Additionally, if the message was generated, it would need to be processed locally without
information about which is the congested output port. Therefore, 𝑅𝑂𝑈𝑇 never modifies its
own output port probabilities and always sends traffic minimally, suffering much higher
congestion. For this reason, nodes in 𝑅𝑂𝑈𝑇 may inject a much lower amount of traffic.

The source processing mechanism attacks this limitation trying to resemble the advantage
of sensing at output buffers which allows that generated CNMs can be sent to all sources
in the network regardless of their source switch. The introduced mechanisms enables all
switches to process their own CNMs generated based on congestion at input ports. When
a CNM is generated by a QCN congestion point in a switch, it is sent to the source as usual
but it is also processed in that same switch, as if it had been received from a neighbor switch.
In this case, the feedback of this QCN message is used to decrease the probability of the
output port used to forward the victim packet selected in the sampling process. This allows
all switches in a group to detect congestion and adapt their tables in response.

The evaluation of both sampling alternatives are presented in Section 4.7.4.1.1, including a
complete implementation which combines QCN-Switch with source processing and feedback
comparison.

4.7 Evaluation

The particular methodology employed in this chapter is presented in Section 4.7.1. Sec-
tion 4.7.2 presents an evaluation of the network power consumption for different topologies
and TCAM organizations proposed in Section 4.3. Then, the performance results of the

81

4 HPC Networking Over Commodity Ethernet Technology

proposed adaptive routing in Sections 4.5 and 4.6 are detailed in Sections 4.7.3 and 4.7.4
respectively.

4.7.1 Methodology

This section aims to introduce the aspects of the methodology which are particular to this
chapter and are not presented in Chapter 3. This includes the methodology used to deter-
mine the power consumption and the particular simulator configuration employed.

4.7.1.1 Power consumption

The power evaluation performed in this chapter takes into account the topology to be able
to calculate the consumption of electrical and optical SerDes. It also considers the power
consumption of the network devices’ CPU, buffers and, CAM or TCAM.

Models of power consumption of binary CAMs [84] or ternary CAMs [6] tables show
that power scales roughly proportionally with table size. In particular, the main power con-
sumption in TCAMs comes from its match-line logic, which grows linearly with the number
of entries. The consumption of these tables typically reaches several tens of watts [6, 101],
being the most hungry modules besides ports SerDes [48]. The tool available in [7] are used
to calculate the power consumption of TCAM tables considering 32 nm CMOS technology
and 1,000 header bits, which can be matched by OpenFlow 1.5.

4.7.1.2 Simulator configuration

The simulation experiments designed to evaluate the performance of non-minimal adap-
tive routings proposed have been carried out according to the methodology explained in
Chapter 3. Table 4-3 lists the simulation parameters concerning the proposals of this chap-
ter and any modification over the base simulation parameters exposed in Table 3-1. The
network simulator mimics the behavior of conditional flow rules as described in aforemen-
tioned sections. Packet size is set to 1 KB as an intermediate value between minimum and
maximum packet size for Ethernet technology. Network links have a bandwidth of 40 Gbps
and latencies of 40 ns and 400 ns respectively for electrical and optical ones, which corre-
spond to cables of 8 and 80meters. Four Ethernet CoS levels, using per-priority flow control
for a lossless implementation, are considered for deadlock avoidance and to prioritize QCN
congestion notification messages over the rest of traffic.

QCN congestion points have been implemented following the standard [10], including
the feedback calculation and timing parameters indicated in Section 2.4.1. The recommen-
dation to set 𝑄𝑒𝑞 to 20% of the size of physical buffer is followed and it is also maintained
the selection of 1 packet from each 100 for the sampling in the CP (denoted as Congestion
Point Cycle, CPC); this parameter is also part of the sensitivity analysis performed in the
evaluation. Another parameter for this study is the percentage of samples with a negative

82

4.7 Evaluation

Table 4-3: Particular simulation parameters used in this chapter.

Parameter Value

Link speed 40 Gbps

Packet size 1,000 bytes

Switch latency 200 ns

Local link latency 40 ns (8 m)

Global link latency 400 ns (80 m)

Class-of-service levels 4

Injection queues size 200 KBytesN
et
w
or

k
co

nfi
gu

ra
tio

n

Transit queues size 100 KBytes

Queue’s reference point 𝑄𝑒𝑞 = 20% of queue size

Weight value 𝑤 = 0

Congestion point cycle 𝐶𝑃𝐶 = 100 packetsQ
C
N

% of samples which actually generate a CNM %𝐶𝑁𝑀𝑠 = 30%

Reduction limiting factor 𝐿𝑓 = 1 / 64

Packet counter limit 𝑃𝐶𝑙 = 100 frames

Probability increase 𝑃𝐼 = 1 %

Q
C
N
-S

w
itc

h

Feedback comparison thresholds 𝑇ℎ1 = 0, 𝑇ℎ2 = 30

feedback value that actually generates a CNM; a default value of 30% is considered, and this
selection is justified in Section 4.7.4.3.1. QCN CPs are implemented at the input ports of
the switches, as suggested in [142], or at the output ports [10] to be able to compare both
alternatives. Preliminary explorations in [24] found that a parameter𝑤 = 0, which omits the
velocity in Equation 2-3, led to better results than the default 𝑤 = 2. QCN reaction points,
which implement injection throttling in the NICs, are disabled to focus the evaluation on
in-network congestion.

Any change of the default values shown in Table 4-3 will be clearly stated during the evalu-
ation. QCN standard configuration parameters and tuning possibilities of QCN-Switch are
described previously. A reduction limiting factor 𝐿𝑓 = 1/64 is employed, which allows for
output port percentage reductions in a factor up to 𝑅 = 1−63/64 = 0.0156. This guaranties a
very fast transition fromminimal to non-minimal routing. By contrast, a default probability
increase of 𝑃𝐼 = 1% is employed, which corresponds to a slow return to minimal routing
when congestion disappears. Such design is sensible, since minimal routing in presence of

83

4 HPC Networking Over Commodity Ethernet Technology

adversarial traffic in Dragonflies is much more limiting than non-minimal routing under
benign traffic. This is explored in Sections 4.7.4.3.2 and 4.7.4.3.3.

4.7.2 TCAM compaction and topology power comparison

This section compares the power consumption of the three topologies analyzed across the
chapter: folded-Clos, Flattened Butterfly and Dragonfly. The network supports ≈ 300, 000
hosts with full bisection bandwidth, built using 72-port Ethernet switches. Power calcula-
tions consider 40 Gbps ports and worst-case 64-byte packets. The energy required for read-
ing andwriting a 64-byte packet from the buffermemories is 4.5048 nJ and 4.4993 nJ respec-
tively, following the calculations in a previous work [48]. Optical ports consume ≈ 0.6 W
(4 lanes of 150 mW each) and the electrical ones, used to connect compute hosts in access
switches, a 20% less [4]. A fixed value of 30 W has been considered for the CPU and logic.

The number of switches differs per topology. In folded-Clos, a 4-stage topology is re-
quired for the desired size. The design relies on basic pods with 36 switches in the first and
second levels and 1,296 hosts. 1,296 stage-3 switches connect 36 pods in a stage-3 group,
which is replicated 6.5 times to reach 29,484 switches and 303,264 hosts. The Flattened But-
terfly requires four dimensions, with routers organized in a 15 × 15 × 15 × 6 array to reach
20,250 switches and 303,750 hosts. Finally, the Dragonfly employs 463 groups of 36 routers
and 648 compute hosts, leading to 16,668 switches and 300,024 terminals. These networks
do not reach themaximum size of each topology; in all cases, additional links in spare switch
ports are considered to provide full bisection bandwidth.

Both CAM and the four TCAM organizations from Section 4.3 are compared: CAM-flat
and TCAM-Flat represent a traditional Ethernet with per-host addressing, Per-Switch and
Per-Group are 2-level and 3-level hierarchical addressing model, respectively and Compact
is the TCAM compaction presented in Section 4.3.2. In the folded-Clos, the 3-level organi-
zation considers a pod to share a common group prefix. In Flattened Butterfly, a group is the
set of routers in the first dimension whereas in the Dragonfly, each group is mapped directly
to the group concept.

Figure 4-13 presents power results. In all topologies, the use of flat addressing with
TCAMs is clearly unfeasible, since these huge tables would consume more than 900 W per
switch and at least 15 MW overall.12 Per-switch addressing reduces these values to be com-
petitive with the original CAM approach, but the overall consumption ranges around aMW.
Per-group addressing significantly reduces TCAM power, getting very close to the optimal
solution based on compaction. Once TCAM power is minimized, the impact of topology
(which determines the number of switches) is what drives power consumption. The Drag-
onfly topology, besides not being able to fully compact TCAM flow entries, offers the best
result. Compact TCAM per-group Dragonfly setup reduces 54.1% of the original power in
12Resulting in an overall interconnection network power consumption of 19,3 MW, which is almost the pro-

jection for the maximum power consumption for an overall exascale system [111].

84

4.7 Evaluation

the reference CAM-flat folded-Clos from a saving of 17.0% due to TCAM compaction and
37.1% due to topology changes.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

CAM
-Flat

TCAM
-Flat

Per-Switch

Per-Group

Com
pact

CAM
-Flat

TCAM
-Flat

Per-Switch

Per-Group

Com
pact

CAM
-Flat

TCAM
-Flat

Per-Switch

Per-Group

Com
pact

Po

w
e
r

co
n
su

m
p

ti
o
n
 (

M
W

a
tt

s)

Optical SerDes Electrical SerDes Port Buffers

DragonflyFlattened ButterflyFolded-Clos

34,6 23,7 19,3
CPU Logic TCAM

Figure 4-13: Network power consumption dissection.

4.7.3 MAR-bP performance results

This section describes the performance results of MAR-bP: Multipath Adaptive Routing
based on Pauses, presented in Section 4.5, including the design of conditional flow rules
for minimal and non-minimal routing.

The interconnection network simulator mimics the behavior of conditional flow rules
as described in Section 4.5.1. Random Uniform (UN) and Adversarial shift (ADV+𝑖, with
offset 𝑖 = 1) traffic patterns have been considered. Piggyback (PB, [96]) routing algorithm
is used as source-adaptive reference; it implements per-packet adaptive routing relying on
state information for every global channel in a group distributed among switches within that
group. Additionally, Minimal (MIN) and Valiant load-balancing with a maximum-length
phase A path of one hop (VLB-g-) routing algorithms are the oblivious references for UN
and ADV+1 respectively.

Figure 4-14 shows average packet latency and throughput results under both above-
mentioned traffic patterns. UnderUN traffic,MAR-bP latency resembles the referenceMIN,
since traffic distribution does not generate congestion that do not trigger non-minimal rout-
ing. PB sends part of the traffic non-minimally which increases latency. In contrast, under
ADV+1 traffic, MAR-bP average latency under small loads is larger than VLB-g-. This oc-
curs because conditional flow rules rely on flow-level pauses, which implies that minimal
paths need to be saturated for non-minimal routing to occur. Hence, the amount of traffic

85

4 HPC Networking Over Commodity Ethernet Technology

routed minimally experiences larger congestion and increases average latency. Still, the av-
erage packet latency of the proposed MAR-bP routing proposal against optimized custom
HPC routing alternatives is competitive in medium and high loads.

MIN VLB-g- PB MAR-bP

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100
A

cc
e
p

te
d

 l
o
a
d

 (
%

)
Offered load (%)

(a) Average packet latency and throughput under uniform traffic.

 0

 2

 4

 6

 8

 10

 12

 14

 10 15 20 25 30 35 40 45 50 55

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(b) Average packet latency and throughput under adversarial traffic.

Figure 4-14: Average packet latency and throughput under (a) UN and (b) ADV+1 traffic patterns.

MAR-bP throughput under uniform traffic falls down due to congestion. However, the ref-
erence routing achieve a good throughput close to the theoretical maximum. The through-
put result of MAR-bP under adversarial traffic is greater than the reference oblivious and
adaptive routing references used because it uses non-minimal paths solely when minimal
paths are saturated, so the minimal paths are used completely and after, the traffic follows
non-minimal ones.

The issue detected in the latency results under adversarial traffic pattern and the through-
put drop observed under uniform traffic pattern limit the viability of MAR-bP. Hence, it is
not compared against QCN-Switch proposal evaluated next. In fact, QCN-Switch is initially
designed thinking in overcoming the limitations of MAR-bP.

86

4.7 Evaluation

4.7.4 QCN-Switch performance results

This section presents the performance results of the proposed QCN-Switch: adaptive rout-
ing based on ECN messages, introduced in Section 4.6. First, steady-state traffic is consid-
ered in Section 4.7.4.1, measuring throughput, latency and fairness. This first evaluation
shows that QCN-Switch with feedback comparison probability management variant doing
the sampling at the output queues exhibits the best results; thus, later sections focus only on
that configuration. Next, Section 4.7.4.2 evaluates the response time to traffic changes from
uniform to adversarial traffic patterns, and vice versa. A sensitivity analysis is presented, in
Section 4.7.4.3, for the most important parameters of the implementation.

4.7.4.1 Performance under steady loads

This section presents average packet latency and throughput results under random uniform
and adversarial shift with offset 𝑖 = 1 traffic patterns. MIN andVLBlgl routing algorithms are
used as the reference routings for UN and ADV+1 traffic patterns respectively. QCN sam-
pling at input and output queues are evaluated separately, considering the proposed variants
and mechanisms designed for QCN-Switch.

Note that throughput under ADV+1 traffic is limited to 1
𝑎⋅𝑝 = 1

2ℎ2 = 1
72 ≃

0.01389 phits/node/cycle when using minimal routing, because only 1 of the 72 global
network links per group is used, and to 0.5 phits/node/cycle when using non-minimal
routing due to the randomization of traffic which increases the load in the network. This
performance limitation underminimal routing is an effect of the topology, not of congestion.

4.7.4.1.1 QCN-Switch sampling at input buffers. Figure 4-15 presents the results when
QCN-Switch implements occupancy sampling at the input buffers under random uniform
and adversarial shift traffic patterns. QCN-Switch base is the base proposal using the AIMD
probability management variant, QCN-SW + feedback comparison and QCN-SW + source
processing implement, respectively, the base proposal of QCN-Switch sampling at input
buffers plus the feedback comparison probability management variant and the source pro-
cessing mechanism, and QCN-SW + source p. + fb. comparison implements QCN-Switch
proposal sampling at input buffers plus the feedback comparison probability management
variant and the source processing mechanism.

Under uniform traffic in Figure 4-15(a), all the QCN-based proposals obtain optimal
latency, similar to the reference MIN. PB sends part of the traffic non-minimally, which
slightly increases its latency, as observed in the inset plot. At high loads, both QCN-Switch
base and QCN-SW + source processing decrease their minimal port probability values after
receiving CNMs, diverting more traffic towards non-minimal paths. Such strategy does not
reduce overall congestion; on the contrary, it causes throughput at saturation plunge. How-
ever, QCN-SW+ feedback comparison corrects this problem and presents good throughput

87

4 HPC Networking Over Commodity Ethernet Technology

MIN
VLB-gl

PB

QCN-Switch base
QCN-SW + feedback comparison

QCN-SW + source processing
QCN-SW + source p. + fb. comparison

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 1.6

 1.7

 1.8

 1.9

 30 35 40 45

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(a) Average packet latency and throughput under uniform traffic.

 0
 2
 4
 6
 8

 10
 12
 14

 5 10 15 20 25 30 35 40 45 50
Offered load (%)

750

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

1.38

1.40

 10 20 30 40 50 60 70 80 90 100
Offered load (%)

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

 47

 48

 49

 50

 51

 60 65 70

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

(b) Average packet latency and throughput under adversarial traffic.

Figure 4-15: Average packet latency and throughput of QCN-Switch base, feedback comparison
probability management variant and source processingmechanismwith input-port sampling un-
der (a) UN and (b) ADV+1 traffic patterns.

at saturation; while there is a slight drop, it is relatively small and obtained throughput is
competitive with the adaptive reference PB. On the other hand, when feedback comparison
is combined with source processing, the throughput loss at saturation reappears.

In the context of ADV+1 in Figure 4-15(b), QCN-Switch base and QCN-SW + feedback
comparison have a large latency at low load because most switches are not aware of the con-
gestion caused by the adversarial traffic; indeed, all hosts connected to the respective switch
𝑅𝑂𝑈𝑇 of each group try to send all traffic following a minimal path. QCN-SW + source pro-
cessing, alone or combined with feedback comparison eliminates this rise on packet latency,
since it allows all switches in a group to detect congestion and to deal with it by using the
non-minimal paths. This effect is also visible in Figure 4-16 focusing on throughput fair-
ness. Unfortunately, the latency of QCN-SW + feedback comparison, which was the only
competitive one in terms of throughput under even loads as it can be seen in Figure 4-15(a),
is worse than QCN-Switch. The comparison with the average feedback value 𝐹𝑏𝑎𝑣𝑔 makes
minimal routing more frequent, which increases average latency under ADV+1.

88

4.7 Evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

A
cc

e
p

te
d

 l
o
a
d

 (
p

h
it

s/
n
o
d

e
/c

y
cl

e
)

PB
QCN-Switch base

QCN-SW + feedback comparison

QCN-SW + source processing
QCN-SW + source p. + fb. comp.

Figure 4-16: Throughput injected in each switch of G0 for the QCN-Switch base, feedback compari-
son probability management variant and source processingmechanismwith input-port sampling
under ADV+1 traffic pattern with a load of 0.4 phits/node/cycle.

Throughput results under ADV+1 are consistent with the latency values analyzed above.
QCN-SW + source processing, alone or with feedback comparison obtains the maximum
saturation throughput, and despite suffering some congestion at high loads, its throughput
is competitive with the oblivious Valiant. Note that both QCN-Switch base and QCN-SW
+ feedback comparison have a minor loss of throughput, around 2%, which occurs below
the saturation point. This is observed easily in the slope of their throughput curves before
saturation, lower than the expected 45° and this is indicative of throughput unfairness is-
sues. Figure 4-16 explores this problem in more detail, comparing the throughput obtained
by each switch of Group 0 at load 0.4 phits/node/cycle. Switch 𝑅11 corresponds to the router
𝑅𝑂𝑈𝑇 in Figure 3-5. Using QCN-Switch base, 𝑅11 injects significantly less traffic than other
switches of the group. As discussed in Section 4.6, 𝑅𝑂𝑈𝑇 does not receive a significant num-
ber of CNMs from the global link, because all traffic received in the destination group is
quickly dispatched to its target switch, so the queues do not get full; recall that during the
current evaluation subsection the detection point is implemented at the input buffers. As
expected, this unfairness is resolved when source processing is used, as 𝑅11 sends to itself
the same notification that would be sent to other switch when congestion is detected, which
means 𝑅11 also changes its minimal port probability for congested ports.

4.7.4.1.2 QCN-Switch sampling at output buffers. Figure 4-17 shows average packet la-
tency and throughput under uniform and adversarial shift traffic patterns13 using occupancy
sampling at the output queues with the AIMDprobabilitymanagement variant (QCN-Switch

13Alternative traffic patterns, which are not adversarial but impose significant network congestion, were evalu-
ated in [25] and are omitted here by concision and to keep the discourse in line with the whole dissertation.

89

4 HPC Networking Over Commodity Ethernet Technology

base), versus the reference routing algorithms. Note the source-processing mechanism is not
necessary because the base case is already fair when using output-port sampling. QCN-
SW + feedback comparison represents QCN-Switch using occupancy sampling at the output
buffers combined with the feedback comparison probability management variant.

MIN
VLB-gl

PB

QCN-Switch base
QCN-SW + feedback comparison

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 1.5

 1.6

 1.7

 1.8

 20 25 30 35

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(a) Average packet latency and throughput under uniform traffic.

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45 50
Offered load (%)

750

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

 2

 2.5

 3

 20 25 30 35

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

1.38

1.40

 10 20 30 40 50 60 70 80 90 100
Offered load (%)

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

 50

 50.5

 51

 90 95 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

(b) Average packet latency and throughput under adversarial traffic.

Figure 4-17: Average packet latency and throughput of the QCN-Switch base and feedback com-
parison probabilitymanagement variantwith output-buffer sampling under (a) UN and (b) ADV+1
traffic patterns.

Under uniform traffic, QCN-Switch base suffers a lost of peak throughput which is due to
the “positive control loop” described in Section 4.6.3, which starts when congestion is de-
tected and results on most traffic using non-minimally paths. However, QCN-SW + feed-
back comparison corrects this problem and presents good throughput at saturation, which
is competitive with the adaptive reference PB. At medium loads, PB sends part of the traf-
fic non-minimally, which increases latency as shown in the inset plot; by contrast, the two
QCN-Switch proposals obtain optimal latency, similar to the reference MIN.

In the context of adversarial traffic, the base proposal QCN-Switch base reduces network
latency over PB reference because it eliminates the local hop on the intermediate group. La-
tency results are also better than when using input-port sampling in Figure 4-15(b), because

90

4.7 Evaluation

congestion detection is more fair in this case. Throughput results under adversarial traffic
are consistent with the latency values analyzed above, resulting in almost ideal throughput
just below the reference mechanisms.

Figure 4-18 presents throughput fairness results with sampling at output queues. Output-
port sampling allows to generate CNMs that are intercepted by any switch in the group,
including the same router that generates the message. For this reason, the base proposal
is fair and there is no need to implement source processing mechanism. Adding feedback
comparison probability management variant to the base case does not impact on its fairness.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

A

cc
e
p
te

d
 l
o
a
d
 (

p
h
it

s/
n
o
d
e
/c

y
cl

e
)

PB
QCN-Switch base

QCN-SW + feedback comparison

Figure 4-18: Throughput injected in each switch of G0 for the QCN-Switch base and feedback com-
parisonprobabilitymanagement variantwithoutput-buffer samplingunderADV+1 trafficpattern
with a load of 0.4 phits/node/cycle.

Although the results exposed by Neeser et al. [142] suggest input-port sampling to perform
adaptive routing based on QCN, the evaluation results exposed in this section show that
QCN-Switch achieves better performance andmore consistent results sampling at the output
buffers than at input queues. Moreover, feedback comparison improves throughput. For this
reason, the rest of the evaluation is focused only on this configuration. In upcoming sections
all references to the proposed routing algorithm are denoted simply as QCN-Switch to refer
to QCN-Switch using occupancy sampling at the output buffers combined with the feedback
comparison probability management variant.

4.7.4.2 Performance under transient loads

This section evaluates the response time to traffic changes by modeling a network load of
0.4 phits/node/cycle that changes from uniform to adversarial patterns and vice versa. The
network is warmed-up for 2.4 ms with the first traffic pattern. At this point, denoted as
𝑡 = 0, the network is stable and then it is changed to the second traffic pattern and run this

91

4 HPC Networking Over Commodity Ethernet Technology

traffic pattern for 100 𝜇s. During this period, the evolution of the latency and misrouted
packets are registered, showing how the network transitions from one pattern to the other.
Figure 4-19 presents the average packet latency and the amount of misrouted packets for
both transient loads, UN to ADV+1 and vice versa.

PB QCN-Switch

Traffic changes from UN to ADV+1 traffic patterns.

 1

 2

 3

 4

 5

 6

UN 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Injection time (us)

 8
 16
 32
 64

 128

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

(a) Average packet latency.

 0

 20

 40

 60

 80

 100

UN 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
P
e
rc

e
n
t

o
f

m
is

ro
u
te

d
 p

a
ck

e
ts

Injection time (us)

 0

 2

 4

 6

 8

 10

UN
 95

 96

 97

 98

 99

 100

ADV

(b) Percentage of misrouted packets.

Traffic changes from ADV+1 to UN traffic patterns.

 1

 1.5

 2

 2.5

 3

 3.5

ADV 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(c) Average packet latency.

 0

 20

 40

 60

 80

 100

ADV 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Pe
rc

e
n
t

o
f

m
is

ro
u
te

d
 p

a
ck

e
ts

Injection time (us)

 95

 96

 97

 98

 99

 100

ADV
 7

 8

 9

UN

(d) Percentage of misrouted packets.

Figure 4-19: Average packet latency and percentage of misrouted packets of PB and the QCN-
Switch with output-buffer sampling and feedback-comparison probability management variant
changing fromUN to ADV+1 traffic patterns at injection time t=0 and vice versa.

The latency of QCN-Switch proposal under ADV+1 is lower than PB; this result is consis-
tent with Figure 4-17. The response time from UN to ADV+1 is almost 0.4 ms, while from
ADV+1 to UN it is much quicker (less than 0.005 ms). This change is faster because UN
uses all ports evenly and there is only one rule on each switch, i.e., the one associated with
the global link, that needs updating to use minimal paths. In other words, sending a small
amount of traffic non-minimally under UN has minimal impact on performance. On the
other hand, when the traffic changes from UN to ADV+1, all the traffic in a switch is fun-
neled towards the same global link until those rules are changed to use non-minimal paths,
creating a temporary hot-spot that requires some time to be absorbed by the network.

92

4.7 Evaluation

Comparing the percentage ofmisrouted packets between Figures 4-19(b) and 4-19(d) under
the uniform traffic phase, it can be seen that they are not the same; in the first plot the switch
has not detected any congestion during the UN traffic phase, so there is 0% misrouting;
on the second plot the percentage of traffic sent minimally is still trending down after the
previous ADV+1 traffic phase, and although it initially drops very quickly from 100% to 8%,
it progresses very slowly towards 0 afterwards.

4.7.4.3 Sensitivity analysis

This section studies the impact of the different parameters used in the routing algorithm,
both from the QCN notification part and the proposed implementation in the receiving
switches. Both steady-state and transient traffics have been used, changing one parameter at
a time from the configuration employed in previous evaluations. Hereon, the QCN-Switch
evaluated employs theQCN-Switch + feedback comparisonmodel using occupancy sampling
in the output buffers, which represents the best configuration as shown in previous sections.
Finally, the selected parameters set is evaluated for different network sizes.

4.7.4.3.1 Number of notifications: CPC and %CNMs. The 𝐶𝑃𝐶 parameter represents the
frequency of buffer sampling in QCN CPs. This section considers values for this parameter
to sample from every 100 packets, like QCN standard value, up to sample every 25 packets.
The parameter 𝑃𝐶𝑙, which defines the amount of packets sent following a given routing table
entry before an increasing of its output minimal port probability, is set accordingly.

Similarly, %𝐶𝑁𝑀𝑠 is a QCN parameter that indicates how many CNMs are generated
from buffer sampling operations with a negative result which implies congestion. By default,
%𝐶𝑁𝑀𝑠 is 10% in QCN, this is, only one message is sent every ten sampling operations
which report a negative result. However, evaluations in previous sections employ%𝐶𝑁𝑀𝑠 =
30%, and in this section considers values ranging from 10% to 80%. Combining 𝐶𝑃𝐶 and
%𝐶𝑁𝑀𝑠 parameters, this section evaluates a set of configurations that generates from 1 to
32 CNMs per 1,000 packets forwarded, denoted as 0.1% to 3.2% in the legend.

Figure 4-20 presents average latency and throughput under UN and ADV+1 traffics. Fig-
ure 4-20(a) shows a trade-off between the amount of messages generated and the perfor-
mance at UN loads. The most aggressive configuration (3.2%), and similar ones, suffer at
high loads because the overhead of the CNMs causes some non-minimal forwarding which
increases latency. In general, increasing the amount of CNMs has a slight impact on satura-
tion throughput under both traffic patterns. Besides, it increases latency at high loads under
UN traffic. The default configuration for QCN (0.1%) is too low for the proposed routing,
as it produces high latency at medium loads under ADV+1 traffic as seen in Figure 4-20(b).
Overall, the selected configuration (0.3%) produces competitive performance underUNand
ADV+1 traffics, both in terms of low latency at medium loads and peak throughput.

93

4 HPC Networking Over Commodity Ethernet Technology

MIN
VLB-gl

PB

CPC=100 - %CNMs=10 - 0.1%
CPC=100 - %CNMs=30 - 0.3%

CPC=75 - %CNMs=60 - 0.8%
CPC=50 - %CNMs=80 - 1.6%
CPC=25 - %CNMs=80 - 3.2%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 20 30 40 50 60 70 80 90

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(a) Average packet latency and throughput under UN traffic pattern.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

 48

 49

 50

 51

 90 95 100

(b) Average packet latency and throughput under ADV+1 traffic pattern.

Figure 4-20: Average packet latency and throughput of the QCN-Switch with output-buffer sam-
pling and feedback comparison, for different values of sampling interval and percentage of CNMs
sent under (a) UN and (b) ADV+1 traffic patterns.

Figure 4-21(a) shows the evolution of both average packet latency and percentage of mis-
routed packets when the traffic pattern changes from uniform to adversarial shift. As ex-
pected, increasing the frequency of congestion notification messages has the greatest im-
pact on the response time to traffic changes: the switches are aware of the changes on the
network load sooner as more CNMs are received. Response time is considered as the time
spent from the traffic change, at time 𝑡 = 0, to themoment in which average latency approxi-
mately converges to the new value. Using the default parameters from QCN presents a large
response time, close to 1ms. Using the base configuration presented in Table 4-3, a response
time of 0.4𝑚𝑠 is obtained, and increasing the amount of messages continues decreasing the
response time up to near 0.1 𝑚𝑠. The CNM frequency has no impact on the percentage of
misrouted packets, except a minor effect at the start of the transition phase.

Finally, Figure 4-21(b) shows the evolution of the minimal port probability of the port
connected to 𝑅𝑂𝑈𝑇 of a switch in the middle of group zero, during a traffic pattern change

94

4.7 Evaluation

PB

CPC=100 - %CNMs=10 - 0.1%
CPC=100 - %CNMs=30 - 0.3%

CPC=75 - %CNMs=60 - 0.8%
CPC=50 - %CNMs=80 - 1.6%
CPC=25 - %CNMs=80 - 3.2%

 2

 4

 6

 8

 10

 12

UN 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Injection time (us)

16
64

256

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

 0

 20

 40

 60

 80

 100

UN 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

P
e
rc

e
n
t

o
f

m
is

ro
u
te

d
 p

a
ck

e
ts

Injection time (us)

 0

 2

 4

 6

 8

 10

-100 UN -20
 95

 96

 97

 98

 99

 100

900 ADV 1000

(a) Average packet latency and percentage of misrouted packets.

0

2

4

6

8

10

UN 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

Injection time (us)

100

M
in

im
a
l p

o
rt

 p
ro

b
a
b
ili

ty
 (

%
)

(b) Evolution of the percentage of minimal routing in an intermediate router in G0, measured in the
congested port that connects minimally to the destination in ADV+1. Each marker represents
one change in the minimal port probability.

Figure 4-21: Transient response when traffic changes from UN to ADV+1, for different values of
sampling interval and percentage of CNMs.

from UN to ADV+1. For each configuration analyzed, which are codenamed in the legend,
one marker is presented in each instant in which the port probability value is updated. All
configurations reduce the minimal port probability rather quickly after the traffic change,
and it remains relatively low, under 10%. However, there is a significant variability in the
probability values. The evolution of the minimal port probability follows a sawtooth pattern
caused by the AIMD policy used. The increase stairs are steeper in the configurations with
more notifications (such as the square orangemarker - 3.2%, whose evolution is highlighted)
because a more aggressive 𝐶𝑃𝐶 value also implies a shorter interval 𝑃𝐶𝑙 between probabil-
ity increases. However, the results in Figure 4-21(b) do not present any clear conclusive
difference, as it is observed later in the similar plot in Figure 4-23(a) for the parameter 𝐿𝑓.

95

4 HPC Networking Over Commodity Ethernet Technology

In conclusion, the selection of the parameters 𝐶𝑃𝐶 and %𝐶𝑁𝑀𝑠 presents a trade-off be-
tween latency under high uniform traffic loads and reaction time needed to adapt to traffic
changes. The default values used in Table 4-3 present a competitive latency and a suffi-
ciently quick response time, according to the analysis of HPC applications requirements in
Section 4.2.

4.7.4.3.2 Reduction limiting factor Lf. It determines how strongly the switch reacts when
receiving CNM by decreasing the probability of sending traffic minimally. Figure 4-22
presents steady-state results under uniform and adversarial shift traffic patterns for values
of 𝐿𝑓 = {

1
256 ,

1
128 ,

1
85 ,

1
64 }, which implies approximately a maximum probability reduction of

0.25, 0.5, 0.75 and 1.

MIN
VLB-gl

PB

Reduction Lf = 1/256
Reduction Lf = 1/128

Reduction Lf = 1/85
Reduction Lf = 1/64

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(a) Average packet latency and throughput under uniform traffic.

 2

 3

 4

 5

 6

 7

 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

 50
 50.2
 50.4
 50.6
 50.8

 51

 90 95 100

(b) Average packet latency and throughput under adversarial traffic.

Figure 4-22: Average packet latency and throughput for different limiting factors Lf under UN and
ADV+1 traffic patterns.

The default value in Table 4-3, 𝐿𝑓 =
1
64 , is the most aggressive one and it produces the lowest

latency under ADV+1 traffic. However, other values present better latency under uniform
traffic at high loads. The impact on throughput is very small in both cases.

96

4.7 Evaluation

Figure 4-23 presents results under transient traffic pattern. Response time is affected con-
siderably by the value of 𝐿𝑓. The base value 𝐿𝑓 =

1
64 corresponds to a maximum reduction

factor of 𝑅 = 1 − 63
64 , this is, it can reduce the port percentage maximally after receiving a

single CNM. Larger values of 𝐿𝑓 present a slower convergence time, which is particularly
obvious in the average latency in Figure 4-23(a) and port probability in Figure 4-23(b). In
particular, 𝐿𝑓 =

1
128 , which corresponds to a maximum reduction value of 𝑅 ≈ 50%, is often

employed in control mechanisms based on an AIMD policy, such as TCP or QCN. It can be
observed that using such value causes significantly slower convergence: it requires about six
probability updates and more than twice the time as the base configuration to converge.

PB

Reduction Lf = 1/256
Reduction Lf = 1/128

Reduction Lf = 1/85
Reduction Lf = 1/64

 2

 4

 6

 8

 10

 12

UN 0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00

Injection time (us)

16
64

256

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

 0

 20

 40

 60

 80

 100

UN 0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00

Pe
rc

e
n
t

o
f

m
is

ro
u
te

d
 p

a
ck

e
ts

Injection time (us)

 0
 2
 4
 6
 8

 10

UN
 95
 96
 97
 98
 99

 100

1900 ADV 2000

(a) Average packet latency and percentage of misrouted packets.

 0

 20

 40

 60

 80

 100

UN 0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00

M
in

im
a
l
p
ro

b
a
b
ili

ty
 (

%
)

Injection time (us)

(b) Evolution of the percentage of minimal routing in an intermediate router in group 0, measured in
the congested port that connectsminimally to the destination inADV+1. Eachmarker represents
one change in the probability.

Figure4-23: Transient responsewhen trafficchanges fromUNtoADV+1trafficpattern, fordifferent
values of the reduction limiting factor Lf.

97

4 HPC Networking Over Commodity Ethernet Technology

4.7.4.3.3 Probability Increase PI. It determines the increase of the minimal port probabil-
ity, when no congestion notifications are received during an interval of 𝑃𝐶𝑙 = 100 frames.
Figure 4-24 presents results for steady-state traffic for different values of 𝑃𝐼. With low values
for𝑃𝐼 (0.1%or 0.5%), throughput and latency results under uniform traffic at high loads, pre-
sented in Figure 4-24(a), are poor because the system is slow to reduce non-minimal routing
after spurious CNMs are received. By contrast, high values of 𝑃𝐼 increase latency under ad-
versarial shift traffic in Figure 4-24(b), because a brief absence of notifications causes the
system to revert to minimal routing too soon.

MIN
VLB-gl

PB

Probability increase = 0.1 %
Probability increase = 0.5 %

Probability increase = 1 %
Probability increase = 2 %

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(a) Average packet latency and throughput under UN traffic pattern.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

 50
 50.2
 50.4
 50.6
 50.8

 51

 90 95 100

(b) Average packet latency and throughput under ADV+1 traffic pattern.

Figure 4-24: Average packet latency and throughput for different values of probability increase PI
under UN and ADV+1 traffic patterns.

Obviously, this parameter also determines the convergence time when transitioning from
ADV+1 to UN traffic. However, as discussed in Section 4.7.1.2, this transition time is not
as critical as the change from UN to ADV+1, and Figures 4-19(c) and 4-19(d) already pre-
sented an acceptable transient result. Considering this reason, transient results are omitted
for brevity, but it is clear that a higher 𝑃𝐼 would converge to 0% misrouted packets faster.

98

4.7 Evaluation

4.7.4.3.4 Feedback comparison thresholds Th1 and Th2. Section 4.6.3 introduces the use
of two thresholds to avoid excessive variations in the minimal port probability of the ports.
Threshold 𝑇ℎ1 controls the range of feedback values with which the probability is increased
when no CNM is received; preliminary evaluations show that it has a negligible impact on
performance. For this reason, this section presents an evaluation of the impact of threshold
𝑇ℎ2, which restricts the reduction of the minimal probabilities of each port. This threshold
represents the difference required between the feedback value received in a CNM, which
tops at 63, and the average 𝐹𝑏𝑎𝑣𝑔, in order to reduce the minimal port probability. Figure 4-
25 presents an evaluation of the impact of this threshold on steady load, for different values
of 𝑇ℎ2 from 0 to 50.

MIN
VLB-gl

PB

Threshold 2 = 0
Threshold 2 = 15
Threshold 2 = 30
Threshold 2 = 50

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(a) Average packet latency and throughput under UN traffic pattern.

 2

 3

 4

 5

 6

 7

 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

 50
 50.2
 50.4
 50.6
 50.8

 51

 90 95 100

(b) Average packet latency and throughput under ADV+1 traffic pattern.

Figure 4-25: Average packet latency and throughput for different feedback-comparison threshold
Th2 under UN and ADV+1 traffic patterns.

Figure 4-25(a) presents average packet latency and throughput under uniform traffic. A
small to medium value 𝑇ℎ2 allows the switch to ignore transient congestion fluctuations. A
large value means that only CNMs that report an abrupt change will cause a reduction of

99

4 HPC Networking Over Commodity Ethernet Technology

the minimal port probability, which is good for UN traffic. In fact, not using a threshold
(i.e., 𝑇ℎ2 = 0) produces poor latency and throughput. However, a very high value is bad
under adversarial shift traffic presented in Figure 4-25(b) because probability is not properly
reduced and throughput goes down. Thus, using the intermediate value of 𝑇ℎ2 = 30 is the
best option for a network that may support different traffic loads.

4.7.4.3.5 Network size. Previous sections have evaluated the parameter selection using a
network size of 5,256 terminals, which corresponds to a Dragonfly network using ℎ = 6
global links per switches and 23 ports used per router. Figure 4-26 shows the results for
different network sizes, ranging from 1,056 (ℎ = 4, 15 ports used per switch) to 16,512
compute hosts (ℎ = 8, 31 ports used per switch) under random uniform and adversarial
shift traffic patterns. Evaluations show maximum throughput in saturation, and latency at
intermediate loads. Except for the aforementioned network size, all the evaluations use the
same set of parameters presented in Table 4-3; QCN-Switch parameters are not modified for
different network sizes. MIN and VLB-gl oblivious routings are also included as a reference.

Uniform traffic:
MIN

QCN-SW + Fb. comparison

Adversarial traffic:
VLB-gl

QCN-SW + Fb. comparison

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

1056 2550 5256 9702 16512

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Network size (end terminals)

 40

 50

 60

 70

 80

 90

 100

1056 2550 5256 9702 16512

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Network size (end terminals)

Figure 4-26: Average packet latency and throughput for different network sizes under UN (blue)
and ADV+1 (yellow) traffic patterns. Average packet latency is obtained under 65% (UN) or 35%
(ADV+1) load and throughput is obtained under 100% of load. Results for oblivious routing (MIN
andVLB) are also presented as a reference.

Saturation throughput remains fairly stable for different network sizes. UnderADV+1 traffic
QCN-Switch saturation throughput is in all cases virtually identical to Valiant. Under UN
traffic, it is close to the reference MIN, and it is better for larger network sizes. Average
packet latency slightly grows with the network size in both oblivious references. A similar
effect occurs for QCN-Switch, but latency increases slightly more under ADV+1 traffic.

These results suggest that the selected parameters are valid for a broad range of network
sizes, but they accept a fine-tuning for far different configurations.

100

4.8 Conclusions

4.8 Conclusions

This chapter identifies the requirements of high-performance computing interconnection
networks compared to traditional data center ones. Also, it explores proposals designed
for scalable DC networks using commodity switches in exascale-level HPC interconnects.
The results suggest that most of the proposals do not properly apply to HPC systems, such
as network overlay technologies VXLAN or TRILL that require large switch tables relying
on flooding; on-the-fly MAC address rewriting mechanisms which interfere with layer-2
service announcement; or fine-grained per-flow load balancing mechanisms.

By contrast, the proposals of this chapter rely on a hierarchical routing based on location-
dependent MAC addresses, TCAM rules compaction, a dynamic mechanism to assign
location-dependent MAC addresses to compute hosts and conditional flow rules to imple-
ment the proposed source-adaptive routing algorithms in the network devices. The im-
plementation is realistic and requires minimal changes in OpenFlow switches. This set of
mechanisms permit the implementation of low-power networks based on Dragonflies and
Flattened Butterflies topologies using commodity Ethernet switches. Accomplished evalua-
tions show that performance is optimal under random uniform traffic pattern and remains
competitive against ad-hoc HPC routing algorithms under adversarial shift traffic pattern,
while providing energy savings up to 54%.

Two routing algorithms have been proposed based on conditional flow rules, one based
on pause and another based on explicit congestion notification messages. The former one
is initially proposed to overcome the lack of credits on Ethernet networks, and is a naïve
implementation. This simple implementation experiences performance limitations, such
as high latency, and throughput drops which have been overcome with the latter proposal
based on ECN messages.

The proposed QCN-Switch uses statistical routing driven by the interception of explicit
congestion notification messages generated using commodity QCN. Preliminary QCN-
Switch design exploration shows that it is better to rely on output-port sampling than on
input-port sampling, because it not only provides better performance but it is critical to pro-
vide fairness under adversarial traffic. Feedback comparison probabilitymanagement variant
is key to eliminate costly misrouting that occurs at saturated benign loads, while still using
non-minimal paths to reduce any other congestion caused by uneven loads.

The steady-state performance of the final QCN-Switch design is comparable to state-of-
the-art sophisticated high-performance alternatives such as Piggyback. Considering tran-
sient changes of traffic, while the resulting design does not adapt routing as quickly as other
routing algorithms that rely on credit counters, it responds in a sub-millisecond time frame,
which is typically enough for most applications. A sensitivity analysis presents the design
trade-offs, particularly improving performance for uniform or adversarial traffic patterns or
trading off faster response time for lower saturation throughput.

101

4 HPC Networking Over Commodity Ethernet Technology

In conclusion, the trade-offs of relying exclusively on ECN notifications for non-minimal
adaptive routing has been explored, and a feasible routing and a switch design for HPC low-
diameter networks based on commodity Ethernet technology have been also provided.

102

Non-minimal Adaptive RoutingWith

Latency Improvements 5
Low-diameter high-radix interconnection networks require non-minimal adaptive
routing algorithms to avoid network congestion. These routings dynamically select be-
tween forwarding traffic following a minimal or a non-minimal path. To accomplish
that, they need to define two key aspects: 1) how to select between both types of paths
and 2) which non-minimal path to employ. The first typically relies on the Universal
Globally Adaptive Load-balancing routing algorithm (UGAL, [172]) but it can also be
based on the QCN-Switch architecture presented in the previous chapter. The second
typically relies on Valiant Load-Balancing routing algorithm (VLB, [187]), which di-
verts traffic to a random intermediate router before sending it to its final destination.

This chapter is motivated, in Section 5.1, by an analysis of the original VLB that
suggests two potential improvements regarding the selection of the intermediate node
𝑅𝑅𝑂𝑂𝑇. First, when traffic is local1 the randomization introduced by VLB results in un-
necessarily long paths. Instead, a restricted version of VLB, introduced in Section 5.2,
randomizes traffic within a local partition, avoiding congestion and generating shorter
paths. Second, in certain cases the path to the selected𝑅𝑅𝑂𝑂𝑇 may be blocked. To over-
come this situation, a version of VLB with recomputation, introduced in Section 5.3,
selects a new𝑅𝑅𝑂𝑂𝑇 on each routing computation stage as long as the associated path to
reach the currently selected one remains stalled. The main proposal of this chapter, in-
troduced in Section 5.4, is ACOR: Adaptive Congestion-Oblivious Routing. It leverages
the restricted and recomputation techniques to reduce path length for local and global
traffic, and to extend it when the network conditions are adverse. Same as VLB, ACOR
does not send trafficminimally. However, it can be combined with non-minimal adap-
tive routing mechanisms such as Piggyback. In this case, Piggyback selects between
minimal and non-minimal paths and ACOR determines the non-minimal path.

Evaluation results, in Section 5.5, show that restricted improvement of VLB is highly

effective in cases of local traffic andVLBwith recomputation increases injection, further

reducing average latency and increasing throughput. ACOR avoids any pathological

throughput limitation and reduces base latency in all cases, up to 28% standalone and

up to 25.5% when combined with Piggyback, while requiring a simple implementa-

tion. This combination achieves rivaling throughput and significantly lower latency

compared to base Piggyback.

1Traffic is local to a particular partition of the networkwhichmust be defined for each topology. For example,
this partition can be the first dimension in a Flattened Butterfly or the group in a Dragonfly.

103

5 Non-minimal Adaptive RoutingWith Latency Improvements

Chapter contents

5.1 Motivation . 105

5.2 RVLB: Restricted Valiant Load-Balancing 105

5.3 VLB-Recomp: Valiant Load-Balancing Recomputation 107

5.4 ACOR: Adaptive Congestion-Oblivious Routing 108

5.4.1 Motivation and overview . 108

5.4.2 ACOR design . 109

5.4.2.1 Selection of a VLB phase A policies sequence 110

5.4.2.2 ACOR level management . 111

5.4.3 PB-ACOR: adaptive Piggyback with ACOR 112

5.5 Evaluation . 112

5.5.1 Simulator configuration . 112

5.5.2 RVLB performance results . 113

5.5.3 VLB-Recomp performance results 114

5.5.4 ACOR performance results . 116

5.5.4.1 Performance under steady loads 116

5.5.4.2 Performance under transient loads 120

5.5.4.3 Sensitivity analysis . 121

5.5.5 PB-ACOR performance results . 124

5.5.5.1 Performance under steady loads 125

5.5.5.2 Performance under transient loads 125

5.6 Conclusion . 127

104

5.1 Motivation

5.1 Motivation

Under adversarial traffic patterns, presented in Section 3.2.2, Minimal routing algorithm
(MIN), presented in Section 2.3.1, saturates somenetwork links, which become a bottleneck.
VLB routing algorithm, presented in Section 2.3.2, avoids such bottlenecks by randomizing
traffic. Original VLB routing first sends traffic minimally to a random intermediate router
𝑅𝑅𝑂𝑂𝑇 in its phase A following a lgl path. Then, in its phase B, traffic is sent minimally from
𝑅𝑅𝑂𝑂𝑇 to the actual destination.

While VLB prevents network bottlenecks, it employs paths that may be unnecessarily
long and imposes an excessive load on the network. Short non-minimal paths have been
employed in previous works, such as the lg- phase A path used in [108, 96]. However, un-
der certain adversarial traffic patterns (e.g., ADV+ℎ defined in Section 3.2.2.1.2), it does not
randomize traffic enough and some local links in the intermediate groups become a bottle-
neck.

Topology-custom UGAL routing on Dragonfly (T-UGAL, [156]) pre-computes a set of
Valiant paths that reduce average distance on Dragonfly networks with more than one link
between each pair of groups, usually denoted as global trunking. However, it does not react
to the current level of congestion, and so using shorter VLB paths only when congestion is
not severe; instead, the precomputed set of paths is used for all traffic loads.

The key goal of this chapter is to find a routing algorithm that employs short non-minimal
paths and uses them during the load range in which pathological performance limitations
are not introduced, and that dynamically increases the number of hops in VLB phase A
when shorter paths introduce those performance issues.

5.2 RVLB: RestrictedValiant Load-Balancing

The original definition of Valiant load-balancing, described in Section 2.3.2, randomizes
perfectly the paths of packets in a hypercube network, balancing the use of resources regard-
less of the traffic pattern. However, it does not consider the case of hierarchical networks or
topologies consisting of multiple orthogonal dimensions, where the source and destination
may be located in the same partition or subset of dimensions. Hence, selecting a random
destination among all the switches of the network may lead to unnecessary packet divert-
ing and increased path length for certain topologies. For example, this may occur when the
network is hierarchical, such as the Dragonfly or multilevel Fat-tree, or consists of multiple
orthogonal dimensions, such as the HyperX network, and both the source and destination
are confined to the same partition of the hierarchy (e.g., group, pod) or the same subset of di-
mensions. In such cases, selecting a randomdestination outside the partition implies leaving
and returning to the original partition, which increases the path length without contributing
to congestion avoidance.

105

5 Non-minimal Adaptive RoutingWith Latency Improvements

This issue represents a more general case of the turn-around problem identified by Yébenes
et al. [193] in the SlimFly topology, where packets visit the same switch twice in their path,
turning around and going back through the same route. In such cases, the subsegment of the
path between the two visits to the same switch can be omitted without negatively impacting
the benefits of packet randomization. However, in the general case the problem is slightly
different, because the paths of VLB phase A, i.e., towards the intermediate switch 𝑅𝑅𝑂𝑂𝑇,
and phase B, i.e., from 𝑅𝑂𝑂𝑇 to the actual destination, may not overlap while the complete
route is still unnecessarily long. Figure 5-1 depicts this issue in a Dragonfly network with
global trunking, this is, more than one global link connecting pairs of groups, and in a 4 × 4
Flattened Butterfly (HyperX). In the Dragonfly using VLB routing algorithm the selected
random intermediate switch, 𝑅𝑅1 in the presented example, is in a remote group, and no
switch is traversed twice because the two paths to the intermediate switch and to the desti-
nation are disjoint. However, the resultant path is needlessly long; restricting the selection
of the intermediate switch to a router local group (𝑅𝑅2), by the proposed Restricted Valiant
Load-Balancing (RVLB), avoids the congestion issue present in the minimal link while pro-
viding a shorter path. A similar case occurs in the Flattened Butterfly, where RVLB avoids
changing the row when both source and destination are in the same row, i.e., partition; the
same applies when both source and destination are in the same column, or in general, in a
given subset of dimensions.

RVLB avoids this problem by limiting the selection of the intermediate switch to the lo-
cal partition when the source and destination terminals belong to the same partition. If
source and destination are in different partitions, RVLB behaves as the original VLB routing
algorithm. The definition of a network partition is topology-dependent.

Considering a Dragonfly network, RVLB can be applied to packets with source and desti-
nation in the samepartition, this is, it can be applied to intra-group traffic. In this case, RVLB
only selects an intermediate switch from the local group, which shortens the non-minimal
paths. Pathological congestion effects may occur with such traffic pattern which is denoted
as Adversarial Local (ADVL) and is presented in Section 3.2.2.1.3. An example of this traffic
pattern appears when all terminals attached to a router communicate with compute hosts in
the next switch. In such case, original VLB avoids the congestion selecting an intermediate
switch 𝑅𝑅𝑂𝑂𝑇 in a remote group, so the packet leaves the source group2 to return to it later.
By contrast, RVLB only selects an intermediate switch 𝑅𝑅𝑂𝑂𝑇 within the local group, which
generates shorter paths and still avoids the congestion issue in the minimal link.

RVLB can also be applied to the selection of non-minimal paths in adaptive routings
which are build upon Valiant load-balancing algorithm. When both source and destina-
tion terminals are in the same partition, the non-minimal path considered by these routings
can be restricted, so the packet is first sent to an intermediate switch in the local partition
and then sent minimally to its destination.

2Note that the source group is also the destination group.

106

5.3 VLB-Recomp: Valiant Load-Balancing Recomputation

RS: Source

RR1: VLB Intermediate
RR2: RVLB Intermediate

RD: Destination
MIN: Minimal routing

VLB: Valiant routing

RVLB: Restricted Valiant routing

RSRSRS R0.2R0.2R0.2

RR2RR2RR2

RDRDRD

Partition = Group (P0)

R0.4R0.4R0.4

R0.3R0.3R0.3

R1.2R1.2R1.2

Partition P1

R1.4R1.4R1.4

RR1RR1RR1R1.0R1.0R1.0

R1.1R1.1R1.1

R1.5R1.5R1.5

(a) Dragonfly

R0.0R0.0R0.0 R1.0R1.0R1.0 R2.0R2.0R2.0 R3.0R3.0R3.0

P0
R0.0 R1.0 R2.0 R3.0

P0

RSRSRS R1.1R1.1R1.1 RR2RR2RR2 RDRDRD

P1
RS R1.1 RR2 RD

P1

R0.2R0.2R0.2 R1.2R1.2R1.2 R2.2R2.2R2.2 R3.2R3.2R3.2

P2
R0.2 R1.2 R2.2 R3.2

P2

R0.3R0.3R0.3 RR1RR1RR1 R2.3R2.3R2.3 R3.3R3.3R3.3

P3
R0.3 RR1 R2.3 R3.3

P3

(b) Flattened Butterfly

Figure 5-1: Example of MIN, VLB and RVLB between source (RS) and destination (RD) routers in
DF and FB topologies. Note that some network links are omitted by simplicity. The intermediate
switches are: RR1 and RR2. In both cases, the Valiant path shows an example of turn-around prob-
lem without traversing the same switch twice. The restricted Valiant path is shorter than VLB and
avoids pathological congestion within. MIN is obviously the shortest path in every case.

5.3 VLB-Recomp: Valiant Load-Balancing Recomputation

Valiant routing randomizes the paths of the packets to balance the use of network resources.
However, transient congestion may appear, which generates Head-of-Line (HoL) blocking
and delays injection.

107

5 Non-minimal Adaptive RoutingWith Latency Improvements

This issue can bemitigatedwithValiant Load-Balancing Recomputation (VLB-Recomp), also
named Valiant with recomputation. In this mechanism, the selection of the intermediate
switch𝑅𝑅𝑂𝑂𝑇 for each packet is performed at the source router, as in the originalmechanism.
Whenever a packet is at the head of its injection buffer and the required output port, which
is at the beginning of phase A, is blocked, the routing algorithm recomputes a new random
intermediate switch in the routing computation stage. The detection of a blocked packet at
the head of the buffer can be implemented in modern routers like the blocked counters [49]
at arbiter inputs implemented in the Cray Aries ASIC [13], which increment their value
if a flit is available at the input but instead arbitration has selected a different input. The
recomputation of the intermediate router usually change the output port and ease packet
injection, increasing throughput. Such recomputation may occur several times, until the
packet is injected; once the packet is in-transit, the 𝑅𝑅𝑂𝑂𝑇 does not change. VLB-Recomp
can be combined with the RVLB mechanism from Section 5.2, limiting the recomputation
of the intermediate switch to the subset of allowed switches.

Unlike the original VLB, VLB-Recomp is not oblivious, because the intermediate destina-
tion ismodified depending on the status of the network. According to the taxonomydetailed
in Section 2.3, VLB-Recomp is adaptive and congestion-oblivious, because it routes based on
the availability of output ports and not on an estimation of the network congestion.

The idea of recomputing the VLB intermediate switch can also be applied to adaptive
routings, such as Piggyback (PB, [96]): when the required destination port for the selected
intermediate switch is blocked, the switch’s RC unit recomputes the 𝑅𝑅𝑂𝑂𝑇 and performs
a new routing decision. With this modification, Piggyback with recomputation remains
adaptive and congestion-aware as in the original PB implementation, because it routes based
on the availability of output ports due to recomputation, but also based on an estimation of
the network congestion to determine if a minimal or non-minimal path should be used.

5.4 ACOR: Adaptive Congestion-Oblivious Routing

This section proposes ACOR: Adaptive Congestion-Oblivious Routing. After a just follow-
ing initial overview, its design is presented in Section 5.4.2 and its application to Piggyback
adaptive routing is discussed in Section 5.4.3.

5.4.1 Motivation and overview

This section motivates the use of a routing which combines short and long paths for VLB
phase A based on the network conditions, considering the trade-off between the length of
the path and performance results under pathological traffic patterns.

As explained in Section 2.3.2, multiple VLB phase A policies can be used to generate the
path for phase A which routes the packet from source to the intermediate router. They are

108

5.4 ACOR: Adaptive Congestion-Oblivious Routing

presented in Table 5-1. The three shorter options experience performance issues under
pathological traffic patterns, as explained in Section 2.3.2. Usually, the trade-off has been
solved using the longest path [15, 60], which avoids any pathological situation at the cost of
the largest base network latency; The phase A precedes the minimal path lgl of phase B.

Table 5-1: ConsideredVLB phase A policies.

Name Maximum phase
A path length

Longest VLB
path

VLBlgl 3 hops l1 g1 l2 – l3 g2 l4

VLBlg- 2 hops l1 g1 – l3 g2 l4

VLB-gl 2 hops g1 l2 – l3 g2 l4

VLB-g- 1 hop g1 – l3 g2 l4

The goal of ACOR is to optimize the common case providing minimal latency, while sup-
porting pathological traffic patterns with longer paths. This is implemented by adapting
the selected VLB phase A policy to the network conditions. The implementation of the
VLB phase A policies in Table 5-1 is based on the restriction mechanism introduced in Sec-
tion 5.2. Indeed, a VLB phase A policy can be seen as applying a restriction on the allowed
intermediate switches under global traffic: VLB-g- restricts the selection of the random in-
termediate destination to switches directly connected to the source switch, but belonging to
different group, VLB-gl restricts to any of the switches in groups directly connected to the
source switch, VLBlg- restricts to any of the switches directly connected to the source group3

and VLBlgl does not apply any restriction to the selection and whichever switch within the
whole interconnection network can be selected.

5.4.2 ACOR design

ACOR employs a path A policy sequence, which is a sequence of VLB phase A policies, or-
dered from the shortest to the longest path. The number of policies in a given sequence is
defined as the sequence level. Table 5-2 presents three sequences used in this chapter, with
two levels (2L-A and 2L-B) or three levels (3L). The selection of these specific policies is
discussed in Section 5.4.2.1.

The sequence used is fixed for a given implementation. ACOR switches from one policy
to another in the sequence based on the recomputation technique introduced in Section 5.3.
The ACOR level, or simply level, defines the currently selected phase A policy from the se-
quence. When a packet cannot be injected because the output port is blocked, its path is

3Note that the source group could be also selected as the intermediate destination; in such case, the hop (g)
in phase A is omitted.

109

5 Non-minimal Adaptive RoutingWith Latency Improvements

Table 5-2: ACOR path A policy sequences. Phase A policies are summarized in Table 5-1.

Name Label Sequence

Two-levels (A) 2L-A VLB-g- −−−−−−−−−−−−→VLBlgl

Two-levels (B) 2L-B VLB-gl →VLBlgl

Three-levels 3L VLB-g-→VLB-gl →VLBlgl

Path Length: 1 2 3

recomputed. In such case, the ACOR level for the given packet can change towards longer
paths before recomputing the path. When a routing is computed, the intermediate switch is
selected according to the restrictions imposed by the current ACOR level, i.e., the current
phase A policy.

AnACOR level can bemaintained per individual packet or per switch. In the latter option,
all the packets injected in each switch during a certain period of time are routed following
the sequence imposed by the switch’s ACOR level. These two alternative implementations,
denoted as ACOR-Packet and ACOR-Switch respectively, are described in Section 5.4.2.2.

5.4.2.1 Selection of aVLB phase A policies sequence

Table 5-1 presents the available VLB phase A policies in the Dragonfly. Since there are poli-
cies with three different maximum path lengths, it makes sense to select sequences with two
or three policies, in increasing order of path length. All the sequences need to end in the
largest policy (VLBlgl), which corresponds to the original VLB definition and avoids any
pathological congestion introduced by shortening the path in phase A. Short paths are used
first, to reduce base latency in absence of congestion.

Two different policies with length 2 are present in Table 5-1: VLB-gl and VLBlg-. Com-
pared to VLB-g-, each of these policies solve one different pathological congestion problem,
as discussed in Section 2.3.2. The second local hop in VLB-gl avoids the pathological conges-
tion in the intermediate group under Adversarial shift traffic pattern with offset ℎ (ADV+ℎ)
presented in Section 3.2.2.1.2, whereas the first local hop in VLBlg- avoids the unfairness and
certain congestion to a lesser extent under Adversarial Consecutive traffic pattern (ADVC)
presented in Section 3.2.2.1.4.

The selection of which of these policies to use in a sequence is based on two arguments.
First, it is relevant which of the two problems occurs at a lower load. Saturation caused
by ADV+ℎ occurs at load 1

ℎ phits/node/cycle, for example 0.16 to 0.12 phits/node/cycle for
ℎ ∈ {6 − 8}. The unfairness and congestion under ADVC occur close to saturation, near
0.5 phits/node/cycle. These effects are observed in the evaluation in Section 5.5. Second,
the problems under ADVC lie in the source group, while congestion under ADV+ℎ occurs

110

5.4 ACOR: Adaptive Congestion-Oblivious Routing

in a remote group (the intermediate Valiant group, 𝐺𝑅𝑂𝑂𝑇), which is more difficult to detect
at injection time to make an accurate and early decision. For both reasons, it is reasonable
to select VLB-gl over VLBlg-, since it solves the congestion in the remote group that would
otherwise appear at low loads.

With the selection of the length-2 phase A policy VLB-gl, the three resulting sequences
are presented in Table 5-2. Two sequences with two levels are considered: 2L-A presents the
lowest base latency by starting with VLB-g- but switches to longer paths at lower loads; 2L-B
gives an intermediate latency for a wider range of loads. The three-level policy 3L presents
a more complex implementation, but tries to optimize a wide range of loads.

5.4.2.2 ACOR level management

The ACOR level of each packet at the head of an injection buffer indicates which phase A
policy from the sequence is used when routing the packet. The recomputation mechanism
is employed when packets cannot be injected, which is a sign of congestion issues created
by the traffic pattern, the load and the current ACOR level. This mechanism is leveraged to
raise the level towards longer paths when packets get blocked repeatedly. EachACOR level is
managed independently, but the implementation details differwhen themanagement occurs
per packet or switch.

In ACOR-Packet all packets start with the minimum level, so the shortest path is se-
lected by default. Before the recomputation is performed, the ACOR level of each packet
is raised when the output port is unavailable. When the ACOR level reaches the longest pol-
icy (VLBlgl, Tables 5-1 and 5-2), it remains in such policy until the packet is injected. Since
the amount of recomputation increases with the offered load and pathological congestion
issues in the network, packets quickly adapt to use longer paths in presence of congestion.

In ACOR-Switch an ACOR switch level is derived from blocked output ports throughout
the switch. All the packets injected in the switch during a certain period of time are routed
following the sequence imposed by this switch level. The ACOR level of the switch is initial-
ized with the first level of the sequence and increases and decreases according to the amount
of blocked packets. Since this value adds information from blocked packets of many indi-
vidual ports, it does not increase with every blocked packet. Instead, different thresholds
are used, together with a hysteresis mechanism to provide stability and avoid oscillations.

For each transition in the path A policy sequence, ACOR-Switch employs two thresholds
to increase (𝐼𝑇1, 𝐼𝑇2) and decrease (𝐷𝑇1, 𝐷𝑇2) the ACOR switch level. A blocked packet
counter is maintained and a Hysteresis Interval (𝐻𝐼) is defined. The values for these parame-
ters have been determined empirically and presented in Section 5.5.4.3. The blocked packet
counter is reset at the end of every hysteresis interval. The switch level increases when the
number of blocked packets exceeds the current increase threshold, without waiting for the
end of the hysteresis interval. By contrast, the level is decreased only when the number of
blocked packets is lower than the current decrease threshold at the end of the interval. This

111

5 Non-minimal Adaptive RoutingWith Latency Improvements

design boosts a quick change to longer non-minimal paths when congestion is detected and
a slow return to smaller non-minimal paths when congestion disappears.

Such design is sensible, since it continues injecting the packets through a longer VLB
phase A policy up to the end of the interval, which is more than enough to avoid congestion
by increasing slightly the average latency. However, not changing to a longer phase A policy
on time introduces much more congestion.

5.4.3 PB-ACOR: adaptive Piggyback with ACOR

ACORcanbe used as the basis of a non-minimal source-adaptive routing algorithms, such as
UGAL or Piggyback. These routing algorithms select between minimal and non-minimal
paths at injection based on an estimation of the network congestion. In an ACOR-based
implementation, the non-minimal path is defined by the current ACOR level from the path
A policy sequence.

In these routing algorithms, packetsmay be blockedwhen they want to advance following
minimal or non-minimal paths. Packets that are blocked when trying to follow minimal
paths are not considered for increasing the ACOR level nor the hysteresis mechanism in
ACOR-Switch. For this reason, appropriate thresholds may differ from the original ACOR
implementation without these underlying adaptive routing algorithms.

5.5 Evaluation

Firstly, this section presents the particular simulator configuration for the evaluations per-
formed in this chapter and then, the performance results of the proposals. First, both intro-
duced techniques, RVLB and VLB-Recomp, are evaluated in Sections 5.5.2 and 5.5.3. Dur-
ing the evaluation, the latter includes the former one because, as it will be seen later, RVLB
performs equally or better than VLB. Next, the ACOR adaptive routing introduced in this
chapter, which leverages the previous mentioned techniques to modify the length of non-
minimal paths, is evaluated both stand-alone and combined with Piggyback respectively, in
Sections 5.5.4 and 5.5.5.

5.5.1 Simulator configuration

The simulation experiments designed to evaluate the performance of the proposals intro-
duced in this chapter in Sections 5.2, 5.3 and 5.4 have been carried out according to the
methodology explained in Chapter 3. Details about the traffic pattern used in the evalua-
tion experiments can be found in Section 3.2.2. The network simulator mimics the behavior
of RVLB and VLB-Recomp techniques and ACOR and PB-ACOR routing algorithms, as
described in the aforementioned sections.

112

5.5 Evaluation

Oblivious routing algorithms, Minimal (MIN) and Valiant Load-Balancing (VLB), imple-
mented as explained in Sections 2.3.1 and 2.3.2 have been used because they provide the
best performance under uniform or adversarial traffic patterns. Four phase A path lengths
for VLB are considered: lgl, lg-, -gl, -g-.

Piggyback is included as an adaptive reference that implements per-packet source-
adaptive regional congestion-aware routing algorithm, relying on state information for each
global channel within a particular group. PB considers a global channel (𝑔𝑐) as saturated
if the inequality shown in Equation 2-2 is satisfied. This information is distributed among
switches of the group. PB employs lgl for phase A path and requires 4 and 2 virtual channels
to avoid deadlocks on local and global links respectively.

The combination of the base simulation parameters presented in Table 3-1 and the par-
ticular ones for this chapter listed in Table 5-3 determine the network parameters and the
configuration for ACOR and PB-ACOR routing algorithms, unless otherwise stated during
a particular experiment.

Table 5-3: Particular simulation parameters used to evaluate the proposals of this chapter.

Parameter Value

Switch hysteresis interval 𝐻𝐼 = 500 ns

Increase level thresholds 𝐼𝑇1 = 15, 𝐼𝑇2 = 500

A
C
O
R

Decrease level thresholds 𝐷𝑇1 = 5, 𝐷𝑇2 = 15

Switch hysteresis interval 𝐻𝐼 = 500 ns

ACOR increase level thresholds 𝐼𝑇1 = 15, 𝐼𝑇2 = 50

PB
-A

C
O
R

ACOR decrease level thresholds 𝐷𝑇1 = 5, 𝐷𝑇2 = 15

5.5.2 RVLB performance results

Figure 5-2 presents the average packet latency and throughput results for adversarial local
traffic pattern, explained in Section 3.2.2.1.3, usingminimal routing algorithm as a reference
and Valiant load-balancing and Piggyback routing algorithms with and without applying to
them the restricted technique. The ADVL traffic pattern is used in this evaluation instead
of Adversarial shift (ADV+𝑖) because there is no intra-group traffic in, so VLB and RVLB
behave exactly the same under such traffic. ADVL pattern solely presents intra-group traffic,
so the impact of RVLB over VLB is significant, as can be seen in the presented figure.

Using MIN the local link connecting pairs of neighbor switches becomes a bottleneck,
and only 1

𝑝 = 16.6% of the traffic can be delivered using the minimal routes. Before this sat-
uration point, MIN presents optimal latency. VLB and PB with VLBlgl phase A policy raise

113

5 Non-minimal Adaptive RoutingWith Latency Improvements

MIN

Non Restricted VLB
Non Restricted PB

Restricted VLB
Restricted PB

 0

 0.25

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(a) Latency

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(b) Throughput

Figure5-2:Averagepacket latencyandthroughputofVLBandPBusingandnotusing the restricted
technique under ADVL traffic pattern.

the saturation point of the accepted load near 50%. However, latency below the saturation
point increases significantly, due to the extra cost of the two additional global hops to and
from a remote intermediate group, and throughput is limited below 50%. Both VLB and PB
using the restricted technique accept almost 100% of the offered load, since they avoid the
turn-around problem and generate short paths as depicted in Figure 5-1, even though the
throughput obtained by PB at high loads is lower due to the use of minimal paths. Further-
more, the latency is significantly lower than the one achieved byVLB,with a 69.9% reduction
for a 30% load.

In conclusion, the restricted variants of VLB and PB performs equal or better than the
original ones under the evaluated traffic pattern on this chapter or on previous work [21].
Hence, in upcoming sections all references to the mechanism are denoted simply as VLB
and PB to refer to RVLB and RPB respectively.

5.5.3 VLB-Recomp performance results

Figure 5-3 presents average packet latency and throughput results for different traffic pat-
terns using VLB and PB (employing restricted technique) with and without recomputation
technique (VLB-Recomp and PB-Recomp), as explained in Section 5.3. MIN is included
as a reference. Latency results are presented in the load region before saturation and, in all
cases latency is improved by recomputing the intermediate destination. This is expected,
since the re-computation occurs when packets cannot be injected because of congestion in
the originally selected path; the recomputation mechanism selects another path, and injects
traffic earlier, so packets accumulate a lower latency. In the case of ADV traffic (which typ-
ically requires VLB routing algorithm) with a load of 40%, average latency is reduced by
11.4% when using recomputation.

114

5.5 Evaluation

 MIN

VLBlgl w/o recomputation
PB w/o recomputation

VLBlgl w/ recomputation
PB w/ recomputation

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d
 l
o
a
d
 (

%
)

Offered load (%)

(a) Average packet latency and throughput under UN traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(b) Average packet latency and throughput under ADV+1 traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(c) Average packet latency and throughput under ADVC traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(d) Average packet latency and throughput under ADV+h traffic.

Figure 5-3: Average packet latency and throughput of restricted Valiant load-balancing, with and
without recomputation, under different traffic patterns.

115

5 Non-minimal Adaptive RoutingWith Latency Improvements

Throughput results after the saturation point differ for each traffic pattern. Both UN and
ADV+1 present a similar trend, with the original VLB routing algorithm presenting high
variability and slightly reduced throughput. The reference with MIN routing is significantly
different, with higher throughput underUNdue to a lower usage of the global links, and very
poor throughput under adversarial traffic because only one global link is used to carry all
the traffic from every group, limiting the accepted load to 1

𝑎⋅𝑝 =
1
2ℎ2 = 1.38%. As mentioned

above, Valiant with recomputation injects packets earlier, which leads to higher throughput,
with an increase between 4.3% and 5.9%.

An evaluation of restricted Valiantwith recomputation usingmultiple injection buffers and
testing different allocation policies has been carried out in a previous work [21] and it is not
included here for simplicity. In general, the use ofmultiple injection buffers is detrimental to
the achieved throughput. However, using recomputation helps to alleviate the performance
degradation when the congestion is not completely uniform, leveraging the less congested
links to dispatch packets faster, and presents a lower overall impact due to use of multiple
injection buffers than the RVLB without recomputation.

As VLB-Recomp and PB-Recomp perform equally or better than VLB and PB, respec-
tively, for all the evaluated traffic patterns, the subsequent evaluations employ VLB-Recomp
as VLB and PB-Recomp as PB. Therefore, the rest of this chapter employs restricted and
recomputation techniques as a baseline.

5.5.4 ACOR performance results

This section evaluates the performance of ACOR-Packet and ACOR-Switch under steady-
state traffic in Section 5.5.4.1 and under transient traffic loads in Section 5.5.4.2. It also ana-
lyzes the selection of configuration parameters through a sensitive analysis in Section 5.5.4.3.

5.5.4.1 Performance under steady loads

Figure 5-4 presents average packet latency and throughput of ACOR-Packet under UN,
ADV+1, ADVC and ADV+ℎ traffic patterns. As a reference, the result with MIN and VLB
routing is also displayed; MIN is the baseline reference under UN traffic since it achieves
minimal latency. Results with VLB routing consider the three relevant VLB phase A poli-
cies in Table 5-1: VLB-g-, VLB-gl and VLBlgl. Each of these policies has a higher base latency
over the previous ones, due to the additional local hops introduced. On the other hand,
VLBlgl presents the highest throughput under adversarial traffic patterns, since its better
randomization avoids pathological congestion. VLB-gl achieves lower latency at medium
loads under ADVC and ADV+ℎ traffic. This confirms the analysis in Section 5.4.2.1 where
an optimal sequence of phase A policies employs VLB-g- at low traffic loads and VLB-gl at
medium traffic loads to reduce latency, and VLBlgl after the saturation point of VLB-gl to
achieve competitive throughput.

116

5.5 Evaluation

MIN

VLB-g-
VLB-gl
VLBlgl

ACOR 2L-A
ACOR 2L-B

ACOR 3L

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d
 l
o
a
d
 (

%
)

Offered load (%)

(a) Average packet latency and throughput under UN traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d
 l
o
a
d
 (

%
)

Offered load (%)

(b) Average packet latency and throughput under ADV+1 traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(c) Average packet latency and throughput under ADVC traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(d) Average packet latency and throughput under ADV+h traffic.

Figure5-4:Averagepacket latencyand throughputofACOR-Packetunderdifferent trafficpatterns.

117

5 Non-minimal Adaptive RoutingWith Latency Improvements

Figure 5-4 presents results for ACORwith the three path A policy sequences listed in Table 5-
2. Since all of them employ the VLBlgl phase A policy at the highest level, they achieve com-
petitive throughput under all traffic patterns; under ADV+ℎ there is a difference in through-
put between policies, with sequence 2L-B outperforming the others. This occurs because
under this traffic there is a pathological effect of congestion in the intermediate group which
requires a non-minimal local hop, as discussed in Section 2.3.2. However, this effect oc-
curs in a remote group, and ACOR relies on the congestion spreading back to the source
group in order to trigger a change in the ACOR level. The 2L-B sequence is able to reach
higher throughput because all the levels use a VLB phase A policy that selects an intermedi-
ate switch instead of a group; for the same reason, the other policies suffer from high latency
under medium loads.

The 2L-A and 3L sequences present similar latency curves, albeit slightly lower for the 3L
mechanism. This occurs because the 3L sequence has a lower proportion of packets using
the highest level in the sequence, which is VLBlgl policy, since two level changes are required
to reach it. Therefore, the 3L variant is not effective in the per-packet implementation. The
2L-B sequence has a higher base latency due to the extra local hop at the source group, but
lower latency at intermediate loads under ADVC and ADV+ℎ traffic, because the additional
local hop allows to mitigate congestion.

Figure 5-5 displays the performance results with ACOR-Switch under the same traffic pat-
terns evaluated with ACOR-Packet.4 Thismechanism, althoughmore complex thanACOR-
Packet, is able to better identify the pathological congestion issues, using the same ACOR
level for all the packets in the same switch. Throughput results are similar to those from
ACOR-Packet except underADV+ℎ traffic, where all the sequences now achieve competitive
performance. Managing the ACOR levels per-switch renders very different latency values,
with the curves matching those from VLB with the different policies and rapid transitions
between phase A policies. Latency with the 2L-B and 3L sequences is slightly higher than
ACOR-Packet at intermediate loads, but stays relatively flat before the saturation point. This
is particularly noticeable with the 3L sequence, which now fully transitions between levels
to try to adapt to the optimal decision under all loads.

Another feature of ACOR is that it is able to adapt to different needs at different switches
in the group. Figure 5-6 shows the average accepted load for all the hosts at each switch
of the G0 of the network, under a 0.5 phits/node/cycle load of ADVC traffic. Under this
pattern, terminals at the last switch of the group have uneven access to the minimal global
links, since they are all directly connected. This favors a higher amount of minimally-routed
traffic at the bottleneck switch, but prevents them from sending traffic non-minimally when
the VLB-g- and VLB-gl policies are used. ACOR exhibits a similar accepted traffic load for
all the switches in the group with all the sequences, even 2L-A and 3L which employ VLB-g-

4Alternative traffic patterns, which are not adversarial but impose significant network congestion, were evalu-
ated in [21] and are omitted here for concision and to keep the discourse in line with the whole dissertation.

118

5.5 Evaluation

MIN

VLB-g-
VLB-gl
VLBlgl

ACOR 2L-A
ACOR 2L-B

ACOR 3L

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d
 l
o
a
d
 (

%
)

Offered load (%)

(a) Average packet latency and throughput under UN traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d
 l
o
a
d
 (

%
)

Offered load (%)

(b) Average packet latency and throughput under ADV+1 traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(c) Average packet latency and throughput under ADVC traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(d) Average packet latency and throughput under ADV+h traffic.

Figure5-5:Averagepacket latencyand throughputofACOR-Switchunderdifferent trafficpatterns.

119

5 Non-minimal Adaptive RoutingWith Latency Improvements

VLB-g-
VLB-gl
VLBlgl

ACOR 2L-A
ACOR 2L-B

ACOR 3L

 0

 10

 20

 30

 40

 50

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

A

cc
e
p
te

d
 l
o
a
d
 (

%
)

Figure 5-6: Averaged throughput accepted for each switch of G0 under ADVC traffic pattern with a
load of 50% using ACOR-Switch.

at the earliest level; the capability of switching between policies for each switch allows it to
prevent pathological throughput unfairness effects as those suffered with VLB routing.

5.5.4.2 Performance under transient loads

A key benefit of ACOR is its ability to adapt to the network needs under different traffic
loads, by changing the VLB phase A policy used. Figure 5-7 illustrates the effect of the
transition between ACOR levels, displaying the average packet latency under ADV+ℎ traffic
that changes the traffic load. Results withVLB are provided as a reference. PB is not included
as a reference because it always employs VLBlgl for the packets routed non-minimally, so
there is no change in its behavior in this experiment.

When the traffic load increases, in Figure 5-7(a), the VLB-g- policy is no longer competi-
tive and the latency of VLB with this policy increases significantly. ACOR transitions from
using the VLB-g- policy that provides the lowest base latency at low load (5%) to a VLB-gl

policy which has the lowest latency at high load (25%). Conversely, when the traffic load
decreases, in Figure 5-7(b), ACOR changes from the VLB-gl policy to VLB-g-. In both cases,
ACOR matches the latency of VLB with the most suitable phase A policy for each load, and
is able to reach a steady behavior in less than 2 𝜇𝑠 in both transitions. Results to transitory
changes with other parameters resulting in other cycle durations are discussed later.

Figure 5-8 displays the current ACOR level for different switches of the same group, under
the same transient traffic as in Figure 5-9. Certain switches change earlier to a higher level,
depending on the amount of time it takes for the congestion to propagate back to them. In
general, it can be observed that all the switches transition to a higher level in less than 1 𝜇𝑠,
and to a lower level in less than 0.5 𝜇𝑠.

120

5.5 Evaluation

VLB-g-
VLB-gl
VLBlgl

ACOR 3L

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(a) From 5% to 25%.

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(b) From 25% to 5%.

Figure 5-7: Average packet latency of ACOR-Switch 3L under ADV+h traffic with transient traffic
loads. At t=0, load transitions from (a) 5% to 25% and from (b) 25% to 5%.

R0
R1

R2
R3

R4
R5

R6
R7

R8
R9

R10
R11

VLB-g-

VLB-gl

-2 -1 0 1 2 3

A
C

O
R

 L
e
v
e
l

Injection time (us)

(a) From 5% to 25%.

VLB-g-

VLB-gl

-2 -1 0 1 2 3

A
C

O
R

 L
e
v
e
l

Injection time (us)

(b) From 25% to 5%.

Figure5-8: Evolutionof theACOR level of individual routers in agroupusingACOR-Switch3Lunder
ADV+h traffic pattern with transient traffic loads. At t=0, load transitions from (a) 5% to 25% and
from (b) 25% to 5%. Note that VLBlgl level is omitted for clarity because it is not used.

5.5.4.3 Sensitivity analysis

ACOR-Switch relies on several parameters to manage the ACOR level of the switch. The
ACOR level controls what phase A policy is used from those available in the sequence. The
following paragraphs analyze each parameter, either alone or in groups, to present the ro-
bustness and the stability of the proposal.

5.5.4.3.1 Hysteresis interval: HI. The hysteresis interval defined in Section 5.4.2.2 deter-
mines the amount of time that ACORwaits before deciding to decrease a level, if the number
of packets is below the threshold. Figure 5-9 presents different cycle durations to evaluate its
impact in the sensitivity of ACOR-Switch with the three-level sequence. Results of different

121

5 Non-minimal Adaptive RoutingWith Latency Improvements

VLB phase A policies are provided as a reference. The behavior in Figure 5-9(a) shows that
when short hysteresis intervals are used, longer transition time with higher peak latency oc-
curs, which may seem counter-intuitive. A short interval resets the blocked packet statistics
more often, which delays the transition to a higher level in the sequence until the network
congestion becomes more severe. By contrast, a long interval is slightly detrimental when
the traffic load decreases because it delays the transition to a lower level.

VLB-g-
VLB-gl
VLBlgl

ACOR-3L HI=300
ACOR-3L HI=500
ACOR-3L HI=700

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(a) From 5% to 25%.

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(b) From 5% to 25%.

Figure 5-9: Average packet latency of ACOR-Switch 3L under ADV+h traffic pattern with transient
traffic loads to evaluate three different cycle durations. At t=0, load transitions (a) from 5% to 25%
and (b) from 25% to 5%.

5.5.4.3.2 ACOR level management thresholds: IT1, IT2, DT1 and DT2. Two threshold val-
ues determine the decision to increase or decrease a level in the sequence, one to increase
and one to decrease for every level transition. Figure 5-10 displays the impact of the increase
threshold values with the three-level sequence, for a sweep in the traffic load under ADV+𝑖
traffic with 𝑖 ∈ {1, ℎ}. The first threshold controls the transition from VLB-g- to VLB-gl, and
the second threshold determines the change from VLB-gl to VLBlgl. Results of VLB are used
as a reference. Lower increase threshold values make routing more eager to transit to a
higher level, increasing the latency, whereas higher thresholds force the routing to stay in
the current level for higher loads, which can lead to network congestion. The latter effect is
observed in Figure 5-10 with 𝐼𝑇1 = 25. The selected values 𝐼𝑇1 = 15 and 𝐼𝑇2 = 500 as the
default parameters to evaluate the proposal represent a trade-off between both effects and
achieve competitive performance under both patterns.

Similarly, Figure 5-11 shows the behavior for different decrease thresholds. In this case,
the behavior is the opposite of the increase threshold: a lower value allows ACOR to transit
more easily to a lower level. Since the transition to the highest level in the sequence occurs
under high traffic loads, the impact of the second threshold is rather limited. However,

122

5.5 Evaluation

VLB-g-
VLB-gl
VLBlgl

ACOR 3L with IT1=05 and IT2=500
ACOR 3L with IT1=10 and IT2=500
ACOR 3L with IT1=25 and IT2=500
ACOR 3L with IT1=15 and IT2=500
ACOR 3L with IT1=15 and IT2=100
ACOR 3L with IT1=15 and IT2=200
ACOR 3L with IT1=15 and IT2=700

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(a) ADV+1

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(b) ADV+h

Figure 5-10: Latency of ACOR-Switch 3L with different increase thresholds (IT1, IT2) values under
(a) ADV+1 and (b) ADV+h traffic patterns.

the first threshold has a significant impact in the latency at medium loads under ADV+1
traffic, making the routing algorithm more prone to higher latency with a lower threshold:
lower values allow the routing to transition more easily to the previous level and provoke
oscillations in the selection of the phase A policy. Again, the values 𝐷𝑇1 = 5 and 𝐷𝑇2 = 15
selected for the evaluation of the proposal represent a good trade-off in the performance
results.

5.5.4.3.3 Network size. Figure 5-12 shows the behavior of ACOR-3L with a network size
of 1,056 and 16,512 compute hosts; note that these curves can be compared with the re-
sults presented in Figure 5-5 for a network size of 5,256 compute nodes used across this
dissertation. ACOR changes from VLB-g- to VLB-gl phase A policy when the latency em-
ploying VLB-g- is triggered for each size under ADV+ℎ traffic pattern and similarly jumps
from VLB-gl to VLBlgl when VLB using VLB-gl is saturated. The configuration parameters of
three-level ACOR routing algorithm are different for each network size because the satura-
tion point of each phase A policy under different traffic patterns is tied to the ℎ parameter of
Dragonfly topology. So, for the network size used across this work, the simulation param-
eters are presented in Table 5-3 and 𝐼𝑇1 = {20, 10} and 𝐷𝑇1 = {8, 3} are used for network
sizes of 1,056 and 16,512 compute hosts respectively. As it can be concluded, the behavior
of three-level ACOR in the simulation results is the same for different network sizes.

123

5 Non-minimal Adaptive RoutingWith Latency Improvements

VLB-g-
VLB-gl
VLBlgl

ACOR 3L with DT1=00 and DT2=05
ACOR 3L with DT1=03 and DT2=10
ACOR 3L with DT1=05 and DT2=15
ACOR 3L with DT1=07 and DT2=20
ACOR 3L with DT1=10 and DT2=25

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(a) ADV+1

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(b) ADV+h

Figure 5-11: Latency of ACOR-Switch 3Lwith different decrease thresholds (DT1,DT2) values under
() ADV+1 and (a) ADV+h traffic patterns.

1056 VLB-g-
1056 VLB-gl
1056 VLBlgl

1056 ACOR 3L

16512 VLB-g-
16512 VLB-gl
16512 VLBlgl

16512 ACOR 3L

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(a) ADV+1 traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(b) ADV+h traffic.

Figure 5-12: Latency of ACOR-Switch 3L with two different network sizes (1,056 and 16,512 com-
pute hosts) under (a) ADV+1 and (b) ADV+h traffic patterns.

5.5.5 PB-ACOR performance results

This section evaluates the performance of PB-ACOR, the variant of Piggyback presented
in Section 5.4.3 that relies on ACOR for determining the non-minimal path length. Sec-
tion 5.5.5.1 presents its performance results under steady-state traffic patterns and its per-
formance under transient traffic loads is discussed in Section 5.5.5.2.

124

5.5 Evaluation

5.5.5.1 Performance under steady loads

Figure 5-13 presents results for PB-ACOR with three different path A policy sequences un-
der the usual traffic patterns,5 based on the ACOR-Switch variant. Parameter tuning for PB-
ACOR has been carried out similarly to the ACOR case presented in Section 5.5.4.3. The
parameters used to configure the network simulator are presented in Table 5-3, and differ
from the parameters used in ACOR because the non-minimal path is not used for all pack-
ets, so the amount of blocking differs. The thresholds used in PB-ACOR make the change
to VLBlgl non-minimal paths easier than in ACOR. Since VLBlgl gives better latency at inter-
mediate loads, the latency of PB-ACOR using sequences 2L-B and 3L is more competitive
than 2L-A. After saturation, all the adaptive mechanisms present a similar throughput.

Under UN traffic, the latency of the baseline PB is higher than MIN. This is explained
by the system sending part of the traffic non-minimally, possibly caused by transient con-
gestion [192]. Note that the models used in this thesis do not employ the history window
proposed in [192] to mitigate transient congestion. By contrast, the latency of PB-ACOR
is almost optimal (similar to MIN), up to a load of 75% using sequences 2L-B and L3. Ap-
parently, the use of shorter paths provided by ACOR helps reduce the effect of transient
congestion.

The effect in adversarial traffic is similar to ACOR. At low loads, the hop count is reduced
and latency is improved. In the three adversarial patterns presented, latency at 10% load is
reduced by 16.5% to 25.5%. At intermediate loads, both mechanisms start to behave simi-
larly because both rely on VLBlgl, and saturation throughput is equal.

5.5.5.2 Performance under transient loads

Same as ACOR, PB-ACOR is able to adapt the routing to the live network situation by
changing the phase A policy. Furthermore, it delegates the selection between minimal or
non-minimal paths to the underlying Piggyback. Figure 5-14 depicts the effect of the tran-
sition between different traffic patterns, displaying the average packet latency at the same
offered load on both traffic patterns. Note that the offered load should be set before the sat-
uration point, under both traffic patterns, because the experiment analyzes average packet
latency. The percentage of misrouted packets has been evaluated as in Section 4.7.4.2 but is
not presented for concision. Results of VLB and ACOR are provided as references that do
not use minimal routing. MIN routing is not presented because the performed evaluations
show that its reacting time is higher than 20 𝜇𝑠. PB adaptive reference reacts to the network
congestion and selects between a minimal or non-minimal path for each packet.

When the traffic pattern changes from UN to ADV+ℎ, in Figure 5-14(a), VLB-g- saturates
and its latency tends to infinity. The other two VLB curves remain stable because both sup-

5Alternative traffic patterns, which are not adversarial but impose significant network congestion, were evalu-
ated in [22] and are omitted here for concision and to keep the discourse in line with the whole dissertation.

125

5 Non-minimal Adaptive RoutingWith Latency Improvements

MIN
VLBlgl

PB

PB-ACOR 2L-A
PB-ACOR 2L-B

PB-ACOR 3L

Average packet latency and throughput under UN traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(a) Latency.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(b) Throughput.

Average packet latency and throughput under ADV+1 traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(c) Latency.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(d) Throughput.

Average packet latency and throughput under ADVC traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(e) Latency.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(f) Throughput.

Average packet latency and throughput under ADV+h traffic.

 0.5

 0.75

 1

 1.25

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(g) Latency.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(h) Throughput.

Figure 5-13: Average packet latency and throughput of PB-ACOR under different traffic patterns.
MIN andVLB are presented as references.

126

5.6 Conclusion

VLB-g-
VLB-gl
VLBlgl

ACOR 3L
PB

PB-ACOR 3L

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(a) From UN to ADV+h.

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(b) From ADV+h to UN.

Figure 5-14: Average packet latency of PB-ACOR 3L under transient traffic loads with an offered
load of 25%. At t=0, load transitions from (a) UN to ADV+h and (b) ADV+h to UN.

port the ADV+ℎ traffic pattern. ACOR also remains stable and its latency resembles VLB-gl.
PB’s latency grows quickly, up to the same value obtained by VLBlgl, because it increases the
amount of non-minimally routed packets to adapt to the ADV+1 traffic. The average packet
latency of PB-ACOR before 𝑡 = 0 is the lowest because it resembles MIN, as it is presented
in Figure 5-13(a). Beyond the traffic change, PB-ACOR starts to send packets through non-
minimal paths and so it increases its average packet latency. As it can be seen, the adaptability
of PB-ACOR to the traffic pattern is as quick as PB. However, after an initial step, PB-ACOR
reduces its ACOR level and so, the obtained latency result. Conversely, in Figure 5-14(b),
VLB-g- recovers a non-saturated situation when the traffic changes fromADV+ℎ to UNwith
a delay higher than 8 𝜇𝑠. As previously, the other twoVLB curves and ACOR continue with-
out any change. PB decreases the amount of traffic injected non-minimally and reduces its
latency. Moreover, PB-ACOR quickly reduces the phase A path length for the packets sent
non-minimally and obtains a slightly lower average packet latency than PB. In both cases,
PB-ACOR employs themost suitable phase A policy for each situation, and it is able to reach
to a traffic change from a steady situation in less than 2 𝜇𝑠 in both transitions.

5.6 Conclusion

This chapter firstly introduces two improvements to Valiant routing, targeting high-radix
networks: 1) restricted technique improves the performance of VLB for traffics with locality,
selecting the intermediate router in the samenetwork partition as the source anddestination.
Examples of such partitions have been introduced for Dragonfly and Flattened Butterfly
networks; and 2) Valiant with recomputation avoids HoL blocking at injection by selecting

127

5 Non-minimal Adaptive RoutingWith Latency Improvements

an alternative random intermediate router when the output port is stalled. Secondly, based
on these two techniques and extending the restrictions in the intermediate path to global
traffic, ACOR: Adaptive Congestion-Oblivious Routing is introduced.

The goal of ACOR is to optimize the common case providing minimal latency while sup-
porting pathological traffic patterns with longer paths. It expands the idea of path recompu-
tation to adapt the routing to network conditions, changing the phase A policy, which deter-
mine the path used for the non-minimally sent packets, following a given sequence ordered
by path length. It prevents variability in the results through a simple hysteresis mechanism.
ACOR needs, for each topology, the definition of the partition concept, which determines
the elements that are considered as local, the available different length VLB phase A policies
and relevant path A policy sequences. This chapter presents examples of some details of
the design for folded-Clos, Flattened Butterfly and Dragonfly topologies. However, all the
design details and the evaluation are explained over a Dragonfly topology. The implemen-
tation is relatively simple, according to the description presented in Section 5.4.2, and it can
be extrapolated to other topologies. Three sequences of VLB phase A policies with different
length have been considered in this chapter. Same as Valiant, ACOR does not send traffic
minimally, so its performance under benign traffic is suboptimal. The ACOR mechanism
has been coupled with a non-minimal adaptive routing, PB in the case of a Dragonfly net-
work. The result of that combination is PB-ACOR, which selects the shortest feasible non-
minimal path but only when theminimal route is congested. Thismechanismmaintains the
benefits from ACOR for adversarial traffic and is competitive under uniform traffic.

Evaluation results show that all the ACOR variants avoid any throughput pathologies and
reduce base latency by up to 28%, compared to a Valiant which has applied the restricted
and recomputation techniques. The lowest latency values are achieved with a three-level se-
quence that exploits three different path A policies; however, the two-level sequence 2L-B
presents similar results except below 15% loads, where its base latency is higher. ACOR also
avoids pathological unfairness underADVC traffic and react to the traffic changes in a steady
situation in less than 2 𝜇𝑠. Two management strategies for the transitions in the sequence
have been considered, per-packet and per-switch. Per-switch management achieves better
performance as it considers the amount of blocked packets across the whole switch; how-
ever, per-packet management with the 2L-B sequence has similar performance except for
higher latency at low loads, and lower implementation costs. PB-ACOR mechanism main-
tains the benefits fromACOR for adversarial traffic and is competitive under uniform traffic.
It reaches high throughput and optimal latency under UN traffic, significantly outperform-
ing Valiant, and improves base latency up to 25.5%. It also achieves rivaling throughput
and a significantly lower latency compared to base PB. Moreover, its reaction time to traffic
changes is as quick as PB to be in a non-saturated situation and less than 2 𝜇𝑠 to achieve a
stable situation. For these reasons, PB-ACOR with the three-level path A policy sequence
and per-switch level management results outperforms the rest of evaluated mechanisms.

128

Latency-optimized Non-minimal Adaptive

Routing for Dragonfly Networks 6
Low-diameter network topologies require non-minimal routing algorithms to avoid
network congestion, such as Valiant Load-Balancing (VLB). However, it doubles path
length and base latency. As discussed previously, while using shorter non-minimal
paths may improve performance, it may also introduce congestion depending on the
traffic pattern.

A main objective is that the routing algorithm determines at injection a path for the
packets which introduces the minimum amount of additional hops while avoids net-
work congestion issues. Previous chapter introduces a routing that pursues the same
objective. However, that proposal does not maximize the performance in all situa-
tions nor takes into account the traffic pattern present in the network. One option to
overcome the latter and observe what is happening in the network is to analyze the
performance counters exposed by modern routers. An analysis of the impact of differ-
ent VLB phase A policies and the idea of using performance counters to infer the traffic
pattern present in the network are presented in Section 6.1.

This chapter proposes LIAN: Latency-Improved Adaptive Non-minimal routing algo-
rithm for Dragonfly networks in Section 6.2. LIAN extends the use of traffic counters
already present in modern routers to adapt non-minimal path length based on the in-
ferred traffic pattern. It also modulates the routing decision based on live network
conditions. Same as ACOR routing algorithm introduced in Chapter 5, the decision
if route the packets minimally or non-minimally can be done by adaptive routing al-
gorithms such as Universal Globally Adaptive Load-balancing (UGAL, [172]) or Piggy-
back (PB, [96]) or by the QCN-Switch architecture introduced in Chapter 4.

Evaluation results, discussed in Section 6.3, conclude that LIAN obtains almost-
optimal latency and outperforms state-of-the-art adaptive routingmechanisms, reduc-
ing latency by up to 30.0%, providing stable throughput and throughput fairness. The
path length is well adapted to the network conditions so, the latency is as low as pos-
sible in all evaluated scenarios. Depending on the traffic pattern detected, the path
length is increased to avoid network congestion. This also is evaluated under tran-
sient traffic pattern to study the LIAN reaction time and performance results, exhibit-
ing an almost-immediate reaction time. Additionally, the modulation of underline
UGAL mechanism is very effective. Moreover, the evaluations shows that LIAN does
not present routing unfairness.

The conclusions of this chapter, presented in Section 6.4, allow to classify LIAN as a
non-minimal source-adaptive local congestion-aware routing algorithm that combines

129

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

the following desirable properties:

◼ relying solely on local information;

◼ employing the shortest VLB phase A path allowed by the live network situation
without introducing congestion;

◼ providing stable saturation throughput.

Chapter contents

6.1 Analysis and motivation . 131

6.1.1 Traffic counters measure carried traffic 131

6.1.2 Impact of Valiant phase A path length 132

6.1.2.1 Impact of the first local hop in Valiant phase A path 133

6.1.2.2 Impact of the second local hop in Valiant phase A path 134

6.2 LIAN: Latency-Improved Adaptive Non-minimal routing for Dragon-
fly networks . 136

6.2.1 LIAN overview . 136

6.2.2 Traffic estimation using extended counters 137

6.2.3 Non-minimal paths in LIAN . 138

6.2.3.1 Global counters and first local hop 138

6.2.3.2 Intermediate-local counters and second local hop 139

6.3 Evaluation . 140

6.3.1 Simulator configuration . 141

6.3.2 Extended global and intermediate-local counters 143

6.3.2.1 Extended global counters in LIAN 143

6.3.2.2 Intermediate-local counters in LIAN 144

6.3.3 LIAN performance results . 146

6.3.3.1 LIAN compared to oblivious routings 146

6.3.3.2 LIAN compared to other source adaptive routings 149

6.3.3.3 Throughput fairness and the use of the l1 hop 151

6.3.3.4 Performance under transient loads 151

6.4 Conclusions . 154

130

6.1 Analysis andmotivation

6.1 Analysis andmotivation

This section analyzes some limitations of previous work that motivated the development of
LIAN: the counter-based traffic detection and the impact of short non-minimal paths. First,
regarding counter-based adaptive routing, it identifies how forwarded-traffic counters mea-
sure actual carried traffic instead of offered traffic,1 which significantly reduces throughput
after the saturation point. Next, regarding the length of non-minimal paths, it studies the
impact of short non-minimal paths on different traffic patterns.

6.1.1 Traffic counters measure carried traffic

Routers for HPC systems maintain an extensive number of performance counters [49, 131].
The main use of them is monitoring the systems and analyzing their performance by pro-
viding information about latency, number of flits across interfaces, stalls, etc [35, 56, 8].
However, these collected statistics can be leveraged, for example, to infer the traffic pattern
or to quantify the contention present in the network. Based on this information, an adaptive
non-minimal routing algorithm can be designed.

Traffic Pattern-based adaptive Routing for Dragonfly networks (TPR, Faizian et al. [61])
relies on aforementioned traffic counters to modulate the UGAL decision between minimal
and non-minimal paths at the source. TPR defines counters that measure both local and
non-local intra-group and inter-group traffic and based on these counters it defines multi-
ple regions that specify different levels of intensity or adverseness. For example, the local
inter-group counters track the amount of packets for a given destination group that are for-
warded from the input ports, per interval. All of these counters do not measure offered
traffic,1 instead they measure carried traffic, which is influenced by the routing algorithm,
generating a cyclic dependency because they are used to influence routing. This dependency
may mislead the result of the adaptive routing mechanism at saturation, as explained in the
following example.

Figures 6-1(a) and 6-1(c) show the throughput vs applied load plots for a Dragonfly net-
work underAdversarial shift (ADV+𝑖) with offset 𝑖 = 1 andAdversarial Consecutive (ADVC)
traffic patterns using TPR. At saturation, the router queues may get completely full, tran-
siently stalling forwarding. When this happens, traffic counters may fall bellow the “high
intensity” threshold, which mislabels traffic intensity as “medium” and biases the routing
function towards minimal routing. This increases the network bottleneck problem and fur-
ther reduces both injected traffic and the counters for the given destination group, which
preserves the mislabeling problem. Overall, this results in reduced throughput after the
saturation point, as observed in Figures 6-1(a) and 6-1(c). This congestion is not uniform
across all routers, as observed in Figures 6-1(b) and 6-1(d). They depict maximum, average

1The one that would be sent in a network with infinite resources.

131

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

and minimum traffic sent to group one per router. The difference between the highest and
lowest injecting nodes grows with the offered load after saturation, leading to a significant
imbalance.

Throughput Min. Inj. to G.1 Avg. Inj. to G.1 Max. Inj. to G.1

ADV+1 traffic

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(a) Average throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

In
je

ct
io

n
 t

o
 G

ro
u
p

 1
 (

Pa
ck

e
ts

)
Offered load (%)

(b) Minimum, average and maximum traffic in-
jected towards G1.

ADVC traffic

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(c) Average throughput.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

In
je

ct
io

n
 t

o
 G

rp
.

1
 (

Pa
ck

e
ts

)

Offered load (%)

(d) Minimum, average and maximum traffic in-
jected towards G1.

Figure 6-1: Average throughput and minimum, average and maximum value for local injection to
group 1 for all switches within group 0 under ADV+1 and ADVC traffic patterns using TPR routing
in a Dragonfly network with h=6.

6.1.2 Impact of Valiant phase A path length

As explained in Section 2.3.2, multiple VLB phaseA policies can be used to generate the path
for phase A which precedes the minimal path 𝑙𝑔𝑙 of phase B. They were previously presented
in Table 5-1. This section explores the impact of VLB phase A path length in a Dragonfly
network. Note that due to VLB being implemented as restricted (see Section 5.2 in p. 105),
if both source and destination routers are in the same group, paths of phase A consist on
a single local hop l. Since this chapter is focused on global traffic, the non-minimal global

132

6.1 Analysis andmotivation

hop g is clearly required to remove the bottleneck in the global link otherwise caused by
adversarial trafficwhen the destination is in a remote group. Therefore, four paths forValiant
phase A may be considered: lgl, -gl, lg- and -g-. Note that with two global hops in the path,
throughput is limited to 50%.

First, it is analyzed the impact of saving the first local hop in Section 6.1.2.1. Next, Sec-
tion 6.1.2.2 analyzes the impact of saving the second local hop, proposed originally for the
Dragonfly Valiant load-balancing routing algorithm implementation in [108].

6.1.2.1 Impact of the first local hop inValiant phase A path

This section analyzes the relevance of the first local hop l1 in VLB phase A paths using an
adversarial traffic pattern. Figure 6-2 shows throughput per router in a group managing
ADVC traffic, using oblivious VLB and adaptive TPR routing algorithms, where VLB paths
employ -gl and lgl policies for the phase A.

VLB-gl VLBlgl TPR-gl TPRlgl

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

A

cc
e
p
te

d
 l
o
a
d
 (

%
)

Figure6-2:Accepted throughput foreachswitchofgroup0underADVCtrafficpattern,withoffered
load of 45%, comparing two path lengths usingVLB andTPR routings.

Under oblivious VLB, all injectors randomize traffic and all their traffic is acceptedwith both
path policies. With adaptive TPR, part of the traffic from Routers 0-10 is sent minimally to
switch 11 according to the ADVC traffic pattern depicted in Figure 3.2.2.1.4. This traffic,
which must be forwarded by the ℎ global links in Router 11 as 𝑅𝑂𝑈𝑇 (see Figure 3-8, p. 56),
interferes with the traffic sent from its own 𝑝 = ℎ compute hosts. With the -gl path policy,
𝑅11 also employs the same ℎ global links for its own traffic, so injection is reduced in this
router causing throughput unfairness. By contrast, using lgl path policy the router 𝑅11 may
employ all the global links in the group, and all the routers inject the maximum load despite
the interference of minimal traffic.

133

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

6.1.2.2 Impact of the second local hop inValiant phase A path

This section explores the impact of the second local hop in VLB phase A paths, based on a
performance analysis of ADV+𝑖 traffic pattern and an analysis of the load received in local
links for each variant of non-minimal path length.

This section explores the impact of omitting the second local hop l2 in VLB phase A paths.
Homogeneous traffic in which all routers inject with the same pattern is considered. This
traffic can be divided into multiple ADV+𝑖 traffic patterns, one per global offset in the orig-
inal pattern. The congestion generated by each ADV+𝑖 traffic independently is analyzed.

Figure 6-3 shows the accepted load under ADV+𝑖 traffic pattern for each possible 𝑖 in an
ℎ = 6Dragonfly network with an injection load of 0.5 phits/node/cycle. Both oblivious VLB
and adaptive TPR routing algorithms are considered. There are 𝐺 = 2ℎ2 + 1 = 73 groups,
so 𝑖 ∈ {−36, ..., −1} ∪ {+1, ..., +36}, in abscissas; no value is presented for 𝑖 = 0. Lines depict
measured throughput for each of the four possible policies for VLB phase A.

 0

 10

 20

 30

 40

 50

-36-30-24-18-12 -6 6 12 18 24 30 36

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Global offset i

(a) Oblivious VLB.

VLB-g-
VLB-gl
VLBlg-
VLBlgl

 0

 10

 20

 30

 40

 50

-36-30-24-18-12 -6 6 12 18 24 30 36

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Global offset i

(b) TPR adaptive routing.

TPR-g-
TPR-gl
TPRlg-
TPRlgl

Figure 6-3: Average throughput with offered load of 50% on ADV+i traffic pattern in a Dragonfly
network using obliviousVLB and adaptive TPR routings with different path lengths in phase A.

134

6.1 Analysis andmotivation

Eliminating the second local hop l2 under these traffic patterns significantly reduces
throughput: both -gl and lgl path policies almost reach the maximum throughput of 0.5
phits/node/cycle, but other ones (-g- and lg-) fall significantly lower. This motivates the use
of -g- or lg- phase A path policies when the load is low to reduce latency, and -gl or lgl ones
when the load is high to avoid network saturation. Also, considering ADV+𝑖 traffic in iso-
lation the first non-minimal local hop does not help alleviate congestion but increases path
length (and traffic load), so the throughput for lg- and lgl is respectively lower than for -g-
and -gl path policies; other traffic patterns behave differently. This occurs for both oblivious
VLB and non-minimal adaptive TPR routing algorithms.

The maximum throughput using -g- (and lg-) phase A paths is not constant: in these ex-
amples, it varies with the offset of the ADV+𝑖 traffic pattern, with minimum values for 𝑖
being multiples of ℎ, and maximum result for intermediate values of 𝑖. Next, an approxi-
mate model is introduced in order to estimate this maximum throughput. It is considered
ADV+𝑖 traffic with 𝑖 > 0; negative offset is analogous because the palmtree global link ar-
rangement, described in Section 2.2.1, is symmetric. The analysis focuses on the location of
the intermediate router,𝑅𝑅𝑂𝑂𝑇. Figure 3-6 shows a groupwhich behaves as the intermediate
group for non-minimal packets received from other groups, using -g- or lg- paths. The load
on local links in this intermediate group is analyzed next.

Consider𝐴𝐷𝑉+𝑖 = 𝐴𝐷𝑉+(𝑘⋅ℎ+𝑚) traffic with 0 ≤ 𝑚 < ℎ and 𝑘 ≥ 0; negative values are
symmetric. With the palmtree global link arrangement employed in LIAN, traffic received
in the intermediate group through router𝑅𝑖2 needs to leave to the destination group through
router𝑅𝑖−𝑘 or𝑅𝑖−𝑘−1 (𝑚𝑜𝑑 2ℎ). Therefore, the traffic received in router𝑅𝑖 is forwarded by only
two local links 𝑙−𝑘 and 𝑙−𝑘−1 in the l3 hop. Specifically, flows received by 𝑚 global links leave
through local link 𝑙−𝑘−1 and the remaining traffic from ℎ −𝑚 links is forwarded by local link
𝑙−𝑘.3 The largest of 𝑚 and ℎ − 𝑚 determines which type of local link saturates first and gives
an upper bound for accepted load, since both 𝑙−𝑘 and 𝑙−𝑘−1 can only accept 1 phit/node/cycle.
𝐴𝐷𝑉 + (𝑘 ⋅ ℎ) traffic (𝑚 = 0) provides the lowest throughput since local link 𝑙−𝑘 receives the
aggregated throughput of all the ℎ incoming global links in 𝑅𝑖, limiting throughput to 1

ℎ on
average. The highest throughput is obtained when the global offset is the intermediate value
between 𝑘 ⋅ ℎ and (𝑘 + 1) ⋅ ℎ because traffic is evenly distributed between both local links.
Note also that 𝑘 = 0 implies that part of the traffic leaves through 𝑙−1 and part of the traffic
leaves directly without any local hop (there is no 𝑙−0), reducing congestion.

2Section 2.3.2 denotes the router at the intermediate group that receives the packet from the source group as
𝑅𝐶 on the VLB phase A. However, here it is interesting to identify it through its position within the group.

3Considering the groups numbered in counter-clockwise order in a circle, like in Figure 2-7(b); This result is
not totally accurate by one unit when the intermediate group𝐺𝑅𝑂𝑂𝑇 is between the source𝐺𝑆 and destina-
tion group𝐺𝐷 (𝐺𝑆 ≤ 𝐺𝑅𝑂𝑂𝑇 ≤ 𝐺𝐷). The source of that one unit deviation can be seen in Figure 6-6 because
there are two rounded group indexes, which correspond to the negative and positive intermediate-local
counters (𝐼𝐿−ℎ, 𝐼𝐿+ℎ), adjacent in the middle due to the fact that −ℎ2 and +ℎ2 are different groups. This has
been deliberately ignored in this analysis because it would make the model more complex with a negligible
impact on performance. However, it explains the tiny drift of the minimal throughput values observed in
Figure 6-3 for large offsets.

135

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

For example, Figure 6-4 depicts the case of 𝐴𝐷𝑉 + 8 = 𝐴𝐷𝑉 + (1 ⋅ ℎ + 2) traffic using -g-
as VLB phase A path in an ℎ = 6 Dragonfly. Traffic from 𝑚 = 2 global links is forwarded
through local link 𝑙−2 whereas traffic from ℎ−𝑚 = 6−2 = 4 global links is forwarded through
local link 𝑙−1. This limits throughput to 1/4 = 25% under this traffic. The results presented
in Figure 6-3 are close to this limit. Note that the previous analysis does not account for the
local hops in the source and destination groups, which reduce measured throughput below
the previously calculated bound. Accounting for this traffic is practically not feasible.

G0 as intermediate group

... ...

global
inbound links

G18 G13G17G16 G14G15

global
outbound links

G24 G19G23 G20G22 G21

l-1

global
outbound links

G30 G25G29 G26G28 G27

l-2

R7 R8
R9

RC

Figure 6-4: Bottleneck at local links of the intermediate group under ADV+8 traffic pattern in a
Dragonfly topology with h=6.

6.2 LIAN: Latency-Improved Adaptive Non-minimal routing

for Dragonfly networks

This section introduces LIAN: A Latency-Improved Adaptive Non-minimal routing algorithm
for Dragonfly networks. After an initial overview, extended counters are detailed in Sec-
tion 6.2.2 and the non-minimal path selection is presented in Section 6.2.3.

6.2.1 LIAN overview

LIAN can be classified as a non-minimal source-adaptive local congestion-aware routing al-
gorithm. Source router computation selects a non-minimal path for each packet and deter-
mines if such packet should be sent following a minimal or non-minimal path. The non-
minimal path is selected based on a restricted version of VLB routing algorithm4 that can
skip each of the two local hops 𝑙1 and 𝑙2 in phaseApath. Then, the selection betweenminimal
and non-minimal path relies on the occupancy of each path, based on a variant of UGAL.

4Extending the RVLB, introduced in Section 5.2, to be able to select 𝑅𝑅𝑂𝑂𝑇 intermediate switches that fit in
routing paths skipping l1, l2 or both local links.

136

6.2 LIAN: Latency-Improved Adaptive Non-minimal routing for Dragonfly networks

In both cases, decisions depend on an estimation of the current offered traffic, which relies
on traffic counters.

Traffic counters combine information from injected traffic per interval and the instanta-
neous amount of traffic in the injection queues, as explained in Section 6.2.2. Since they ex-
tend the simple implementation of a traffic counter, these are denoted as extended counters.
LIAN employs two sets of extended counters per router denoted as: global and intermediate-
local counters. Global counters are employed to determine whether it is safe to skip the first
local hop l1 and to modulate UGAL, whereas intermediate-local counters are used deter-
mine the same for second local hop l2.

First, 2ℎ2 global counters {𝐺±1, 𝐺±2, ..., 𝐺±ℎ2} per router measure the offered traffic to-
wards each of the 2ℎ2 remote groups. Their values are obtained from the router injection
ports. Source routers determine when to skip l1 based on these counters, as defined in Sec-
tion 6.2.3.1.

Second, 2ℎ calculated5 intermediate-local counters {𝐼𝐿±1, 𝐼𝐿±2, ..., 𝐼𝐿±ℎ} estimate the load
that would be received on the local links in intermediate groups if the non-minimal routing
omitted the l2 local hop (-g- or lg- phase A path policies) as introduced in Section 6.1.2.2.
Each router maintains one intermediate-local counter 𝐼𝐿𝑖 per type of local link 𝑙𝑖 departing
from it, with the terminology introduced in Section 2.2.1. Each of these counters is derived
from the values of a subset of the global counters, as defined in Section 6.2.3.2.

Based on the values of the global counters and intermediate-local counters, LIAN deter-
mines a suitable policy for VLB phase A, selecting a random intermediate router that fits
with such non-minimal path. Finally, the value of the global counter associated to the desti-
nation of the packet, which represents traffic intensity, is used to modulate UGAL. It biases
the result towards minimal or non-minimal routing by modifying the threshold parameter
𝑇 in equation 2-1. Three load levels are defined, each with its own threshold 𝑇.

6.2.2 Traffic estimation using extended counters

Section 6.1.1 identifies the limitations of estimating traffic using the amount of packets that
are forwarded from each injection queue, or injected into the network. This section in-
troduces an alternative mechanism which considers both newly injected packets (𝑖𝑛𝑗𝑖) and
packets transiently stored in injection queues (𝑠𝑡𝑜𝑟𝑖).

If stored packets were considered, the corresponding global counter would be increased
each time a generated packet entered an injection queue, and it would be correspondingly
decreased when the packet leaved the queue. Stored-based counters have a very small aver-
age value before the saturation point, and grow quickly when traffic load exceeds this load,
because traffic cannot be delivered as fast as it is generated and packets get stalled in the input

5Computed directly from the values of some global counters. They can be seen as SQL non-persistent calcu-
lated columns.

137

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

queues. Thus, they provide useful information under saturation. By contrast, stored-based
counters require buffer filling, so they do not accurately reflect the traffic pattern before sat-
uration, and they react slowly to traffic changes.

LIAN employs extended counters, which combine information from both injected and
stored packets. The dynamic range of the original injection-based counters depends on the
sampling interval. By contrast, the range of stored-based counters depends on the size of the
input buffers. For this reason, the calculation of combined counters relies on a parameter 𝑤
used to weight the different types of counters, as follows:

𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑖 = 𝑖𝑛𝑗𝑖 + 𝑤 × 𝑠𝑡𝑜𝑟𝑖. (6-1)

The parameter 𝑤 needs to be set so that: 1) the most benign traffic under saturation is not
confused with adversarial traffic patterns; and 2) adversarial traffic patterns after saturation
is not mistaken with medium or low-intensity traffic, as seen in Section 6.1.1 and analyzed
previously in Section 4.6.3.

6.2.3 Non-minimal paths in LIAN

This section presents the mechanisms used by LIAN routing algorithm to determine when
and how to shorten non-minimal paths, based on estimations of traffic.

6.2.3.1 Global counters and first local hop

Section 6.1.2.1 discussed the necessity of the first local hop l1 in non-minimal paths. In
particular, consider a shortened non-minimal path without l1 (−𝑔𝑙2 or −𝑔−). Since the first
hop is global, the selection of the intermediate group is limited to those groups directly
connected to the source router, so the packet is directly forwarded using one of its global
links with non-minimal routing. When minimal paths also employ these global links, there
may benot enough resources to accommodate traffic fromother routers, such as theminimal
traffic from other links observed in Section 6.1.2.1.

LIAN avoids this problem with a simple approach: it uses the first non-minimal local hop
l1 when there are several global links in the source router that receive toomuchminimal load;
minimal load denotes the load that these links would receive if minimal routing is used. This
is obtained from the extended global counters discussed in Section 6.2.2. Specifically, each
router tracks the global counters associated to the remote groups directly connected to it. If
several of them (a parameter denoted as Saturated Global Counters threshold, 𝑆𝐺𝐶𝑡ℎ) receive
a value exceeding a given Global Counter Saturation threshold (𝐺𝐶𝑆𝑡ℎ), then l1 is used, this
is, the non-minimal intermediate group is selected without restriction. Otherwise, the non-
minimal path intermediate group is restricted to those groups directly connected, i.e., l1 is
not used. An example of LIAN computation regarding the first local hop l1 for a specific
situation is shown in Figure 6-5.

138

6.2 LIAN: Latency-Improved Adaptive Non-minimal routing for Dragonfly networks

Port5
…

Port11

Router 0 of Group 0

Port12

Router configuration:

Set global port saturated (GCSth): 10
Consider first local hop (SGCth): 2

Port13

Port14

Port15

Port 1

Port 2

Port 3

Port 4

Global cntr. G1 15
Global counters (Local Packets to Group i)

Global cntr. G2 6
Global cntr. G... ...
Global cntr. G28 0
Global cntr. G29 2
Global cntr. G30 8
Global cntr. G31 11
Global cntr. G32 5

of Global counters saturated: 1 (< SGCtg)

First local hop on Phase A of VLB will
not be taken by injected packets

1

2

3

4

G29

G30

G31

G32

R1-7R1-7

Figure 6-5: Example of LIAN decision about l1 hop in a router R0 of a Dragonfly network with h=4.
The picture shows input and output ports, LIAN configuration thresholds, global counters and the
LIAN decision.

6.2.3.2 Intermediate-local counters and second local hop

This section details intermediate-local counters, which estimate the extent of intermediate-
group local-link congestion with the current traffic, and then how to use them to determine
when it is safe to skip l2 in the routing. Section 6.1.2.2 explains how skipping the second
local hop (l2 in phase A) in non-minimal paths concentrates traffic in certain local links
used as the l3 hop, causing pathological congestion. Specifically, for traffic with global offset
𝑘 × ℎ + 𝑚, with 0 ≤ 𝑚 < ℎ, hop 𝑙3 exclusively employs local links of type 𝑙−𝑘 or 𝑙−𝑘−1, and it
uses them proportionally to (ℎ − 𝑚) and 𝑚 respectively.

LIAN employs 2ℎ intermediate-local counters per router, one per each minimum value
in the -g- phase A path throughput plot in Figure 6-3(a), i.e., one per each possible global
destination offset 𝐴𝐷𝑉 + (𝑘 ⋅ ℎ + 𝑚) with 𝑚 = 0. Each of these counters estimates the load
imposed in one type of local link 𝑙𝑖, should the l2 hop be omitted from a non-minimal path.6

Since a packet with global offset 𝑘 × ℎ + 𝑚 may contribute to congestion in links 𝑙−𝑘 or
𝑙−𝑘−1, LIAN accounts for it in both corresponding counters 𝐼𝐿−𝑘 and 𝐼𝐿−𝑘−1, proportionally
to their probability of use ℎ−𝑚

ℎ and 𝑚
ℎ respectively. Therefore, flows with different but close

global offset contribute to congestion in the same type of local links: All 2ℎ − 1 flows with
global offset (𝑘 − 1) × ℎ + 1 to (𝑘 + 1) × ℎ − 1 contribute to congestion in links of type 𝑙−𝑘, and
have to be accounted for in the intermediate-local counter 𝐼𝐿−𝑘.7

6Note that both minimums associated to global offsets ±ℎ2 correspond to saturation of the local link 𝑙−ℎ;
these offsets are consecutive due to the modulo function, and both appear because of the aforementioned
case of choosing the intermediate group 𝐺𝑅𝑂𝑂𝑇 between the source and destination groups, which is more
frequent for large offset values.

7These flows also affect counters 𝐼𝐿−𝑘+1 and 𝐼𝐿−𝑘−1.

139

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

Intermediate-local counters do not need to be calculated from each packet from the injec-
tion queues, since global counters already track the offered load to each destination group
(i.e., global offset). Therefore, intermediate-local counters are directly calculated from their
values 𝐺𝑖. According to the previous discussion, each intermediate-local counter 𝐼𝐿𝑖 is sim-
ply obtained with the following sum:

𝐼𝐿−𝑘 =
+(ℎ−1)
�

𝑗=−(ℎ−1)
�
ℎ − |𝑗|
ℎ � ⋅ 𝐺𝑘⋅ℎ+𝑗 (𝑚𝑜𝑑 2ℎ2+1). (6-2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0 21 22 23 24 25 26 27 28 29 30 31 32

IL-1

IL-2

IL-3

IL-4

IL+1

IL+2

IL+3

IL+4

Figure 6-6: Intermediate-local counters {𝐼𝐿±1, 𝐼𝐿±2, ..., 𝐼𝐿±ℎ} in a router of G0 for a Dragonfly net-
work (h=4) using the palmtree global link arrangement .

Figure 6-6 depicts intermediate-local counters of any router of G0 in an ℎ = 4 Dragonfly
network. For example, in the same ℎ = 4 Dragonfly network the derived counter 𝐼𝐿−3 is
obtained from global counters as follows:

𝐼𝐿−3 =
1
4
𝐺9 +

2
4
𝐺10 +

3
4
𝐺11 +

4
4
𝐺12 +

3
4
𝐺13 +

2
4
𝐺14 +

1
4
𝐺15.

Once they are calculated, intermediate-local counters are used to evaluate at injection if the
non-minimal path omitting l2 is feasible, or if it introduces congestion and l2 should be in-
cluded, as follows. For each packet sent to a destination group with global offset 𝑘 × ℎ + 𝑚,
the source router checks its intermediate-local counters 𝐼𝐿−𝑘 associated with the destination
global offset and if none of them exceeds an empirical threshold (Intermediate-Local Conges-
tion threshold, 𝐼𝐿𝐶𝑡ℎ), then congestion is not relevant and l2 is skipped from phase A path;
otherwise, l2 is included in phase A to avoid congestion.

6.3 Evaluation

Firstly, this section presents the particular simulator configuration for the evaluations per-
formed in this chapter and then, the performance results of the proposals. Next, extended
global and intermediate-local counters are evaluated in Section 6.3.2. And finally, the intro-
duced LIAN routing algorithm is compared to oblivious and adaptive routing algorithms in
Section 6.3.3 using steady-state and transient traffic patterns.

140

6.3 Evaluation

6.3.1 Simulator configuration

The simulation experiments designed to evaluate the performance of the proposals intro-
duced in this chapter have been carried out according to the methodology explained in
Chapter 3. Steady-state and transient traffic patterns presented in Section 3.2.2 are employed
for the evaluation experiments. Thenetwork simulatormimics the behavior of LIAN routing
algorithm as described in previous section. It employs the extended metric for traffic coun-
ters explained in Section 6.2.2. The intermediate-local counters introduced in Section 6.2.3.2
are updated each cycle according to Equation 6-2. LIAN modulates the length of phase A
of VLB paths as follows: when any of the intermediate-local counters associated to the des-
tination of a packet exceeds threshold 𝐼𝐿𝐶𝑡ℎ, the second local hop l2 is considered, and any
switch may be selected as intermediate random switch (𝑅𝑅𝑂𝑂𝑇); otherwise, only routers di-
rectly connected to the source group are selected. The l1 hop in VLB phase A depends on
global counters. For each global counter for a group directly connected to the source switch,
when its value exceeds the 𝐺𝐶𝑆𝑡ℎ threshold, the global counter is considered saturated. If
the number of saturated global counters in a router exceeds the 𝑆𝐺𝐶𝑡ℎ threshold, packets
may take the first local hop in the phase A of VLB path.

Oblivious routing algorithms,Minimal (MIN) andValiant load-balancing (VLB8)) imple-
mented as explained in Sections 2.3.1, 2.3.2 and 5.2, have been used because they provide
the best performance under uniform or adversarial traffic patterns. Four paths with different
lengths are considered for VLB phase A: lgl, lg-, -gl, -g-.

Piggyback (PB, [96]) is included as an adaptive reference that implements per-packet non-
minimal source-adaptive regional congestion-aware routing algorithm, relying on state in-
formation for each global channel within a particular group. PB considers a global chan-
nel (𝑔𝑐) as saturated if the inequality shown in Equation 2-2 is satisfied. This information is
distributed among switches of the group. PB employs lgl path policy for phaseA and requires
4 and 2 virtual channels, in local and global network links respectively, to avoid deadlocks.

Piggyback-ACOR routing algorithm (PB-ACOR, Section 5.4.3) is also employed because
it uses short non-minimal paths based on the load detected in the interconnection network.
It extends the source-adaptive PB based on ACOR, which is introduced in Chapter 5. The
ACOR path A policy sequence is agnostic to the traffic pattern, following the sequence −𝑔− ↔
−𝑔𝑙 ↔ 𝑙𝑔𝑙. PB-ACOR increases the number of hops in the phase A of VLB when packets are
blocked several times at the head of the injection buffers. Two thresholds are used to increase
(𝐼𝑇1, 𝐼𝑇2) and decrease (𝐷𝑇1, 𝐷𝑇2) the non-minimal path length. A Hysteresis Cycle (𝐻𝐼) is
employed to provide stability and avoid oscillations. The path length is extended when the
blocked packet counter exceeds the corresponding increase threshold, or reduced if it is
lower than the decrease threshold after the hysteresis interval.

8Due to the performance of RVLB-Recomp is better or equal than VLB, as shown in the previous chapter, it is
also used here as VLB. Hence, all VLB references use restricted and recomputation mechanisms presented
in Sections 5.2 and 5.3.

141

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

Traffic pattern-based adaptive routing for Dragonfly networks (TPR, [61]) is based on UGAL
and has been briefly explained in Section 6.1.1. Regarding the defined adverseness regions,
each region corresponds to certain router counters values. Thresholds that separate adjacent
regions are obtained empirically. When sending traffic to a certain destination, TPR mod-
ulates the UGAL parameter 𝑇 based on the region associated to such destination, so that
under intense adversarial traffic patterns it is more likely to forward traffic non-minimally
and vice-versa. The implementation of TPR used in this chapter employs two load thresh-
olds (𝐿𝐼𝑙 and 𝐿𝐼ℎ) to modulate the UGAL threshold 𝑇 because in the performed simulations
only the impact of local inter-group traffic is quantified. Hence, this implementation of TPR
considers three traffic regions. TPR requires the same number of VCs as PB routing. The
TPR’s window size for each counter is 200 cycles. The counters aremaintained using a circu-
lar queue logic, so, after the initial 200 cycles, counters will have precise values every cycle.

The combination of the base simulation parameters listed in Table 3-1 and the particular
ones for this chapter presented in Table 6-1 determine the network parameters and the con-
figuration for PB-ACOR, TPR and LIAN routing algorithms, unless otherwise stated during
a particular experiment.

Table 6-1: Particular simulation parameters for the proposals of this chapter.

Parameter Value

Switch hysteresis interval 𝐻𝐼 = 500 ns

ACOR increase level thresholds 𝐼𝑇1 = 15, 𝐼𝑇2 = 50

PB
-A

C
O
R

ACOR decrease level thresholds 𝐷𝑇1 = 5, 𝐷𝑇2 = 15

History window 𝐻𝑊 = 200 cycles

Counters Mode Uses only 𝑖𝑛𝑗𝑖 (Eq. 6-1)

Inter low/high injection ths. 𝐿𝐼𝑙 = 3, 𝐿𝐼ℎ = 5TP
R

UGAL threshold constant 𝑇 benign=150, mix=-30, adv.=-150

History window 𝐻𝑊 = 200 cycles

Inter low/high injection ths. 𝐿𝐼𝑙 = 3, 𝐿𝐼ℎ = 5

UGAL threshold constant 𝑇 benign=150, mix=-30, adv.=-150

Counters mode Extended (Equation 6-1)

Extended counter weigh 𝑤 = 0.1

Intermediate-local congestion th. 𝐼𝐿𝐶𝑡ℎ = 20

Global counter saturation th. 𝐺𝐶𝑆𝑡ℎ = 5

LI
A
N

Saturated Global Counters th. 𝑆𝐺𝐶𝑡ℎ = 3

142

6.3 Evaluation

6.3.2 Extended global and intermediate-local counters

This section evaluates the impact of extended global and intermediate-local counters, intro-
duced in Section 6.2.2 under different traffic patterns.

6.3.2.1 Extended global counters in LIAN

This section explores the use of extended global counters. To isolate the impact of the counter
model, all mechanisms rely on the longest paths for non-minimal routing (pure VLBwith lgl
path for phase A) and global counters are used to modulate UGAL. Four different counter
models are explored: Injected is a traditional implementation in which the counter tracks
forwarded traffic (𝑤 = 0 in Equation 6-1); Stored only considers the packets that transiently
stay in the input queues, and is only presented as a reference; and Extended, using two dif-
ferent weight values 𝑤 = {0.1, 1} as defined in Equation 6-1. Figure 6-7 shows the traffic
counter value and throughput for each traffic pattern: ADV+1, ADVC and UN. ADV+ℎ,
which is omitted, is similar to ADV+1.

The Injected counter model reflects the limitations analyzed in Section 6.1.1: under tran-
sient network stalls and over the saturation point, input queues get full because traffic cannot
be forwarded as fast as it is generated and the Injected counter value decreases. This situa-
tion causes an incorrect estimation of the traffic pattern, guessing that the network load is
less adverse and incorrectly biasing UGAL towards MIN. Hence, the saturation throughput
starts to fall as show on Figures 6-1(a) and 6-1(a) and in Figures 6-7(g) and 6-7(h).

Regarding stored-based counters, before saturation almost all packets are immediately
forwarded and the counter has aminuscule average value. This value grows quicklywhen the
offered load exceeds the saturation point. This happens because packets cannot be delivered
as fast as they are generated, so they are received at the injection rate and are delivered at the
accepted load rate, quickly accumulating at the injection queues. The aforementioned has
two problems for traffic estimation: first, it is difficult to differentiate UN traffic at saturation
from adversarial traffic at medium or high loads, as observed in the poor throughput curves
(particularly, UN shows severe congestion after saturation); second, they only pass the traffic
thresholds after the saturation point, but the routing should react before this point. Latency
results in Figure 6-7 show poor results for Stored counter model under adversarial traffic.
Therefore, stored-based counters alone cannot be used to estimate traffic pattern.

Extended counters combine injection and stored weighted by the parameter 𝑤, as ex-
plained in Section 6.1.1. Extended counters prevent the lack of information of using only
the injection-based counter and avoid the problem caused onUN throughput by having only
the stored-based counter. The weight 𝑤 needs to be large enough to avoid congestion under
saturation in adversarial traffic patterns (by increasing the counter values and the biasing to-
wards non-minimal routing), but small enough to prevent the congestion in UN. Figure 6-7
presents two options for tuning the parameter 𝑤. When 𝑤 = 1 is used, the large value of the

143

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

Injected Stored Extended w=1 Extended w=0.1

Average global counter

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

P
h
it

s

Offered load (%)

(a) ADV+1 traffic

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

P
h
it

s

Offered load (%)

(b) ADVC traffic

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

P
h
it

s

Offered load (%)

(c) UN traffic

Average packet latency

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(d) ADV+1 traffic

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(e) ADVC traffic

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

(f) UN traffic

Average throughput

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(g) ADV+1 traffic

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(h) ADVC traffic

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Offered load (%)

(i) UN traffic

Figure 6-7: Impact of extended counters. Average global counter value, packet latency and
throughput for four implementations of traffic counters and three traffic patterns.

stored component produces the same undesired behavior under UN traffic pattern, because
counter values at saturation become too large. A small value 𝑤 = 0.1 lowers the extended
counter to the same range of the injection counter alone under UN traffic pattern, as seen in
Figure 6-7(c). The throughput obtained under UN by extended counters using 𝑤 = 0.1 is
similar to using injection-based counter alone and the throughput underADV+1 andADVC
keeps stable after saturation thanks to the effect of the queued packets.

6.3.2.2 Intermediate-local counters in LIAN

This section explores the use of intermediate-local counters and how they help to determine
when the second non-minimal local hop l2 is required. Figure 6-8 presents the evolution of
the relevant intermediate-local counters for different traffic patterns and load. Two different
non-minimal paths are considered: -gl and -g-, with and without the second local hop l2.

144

6.3 Evaluation

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

In
te

rm
e
d
ia

te
-l

o
ca

l
cn

tr
.
IL

-1

Offered load (%)

ADV+1 VLB-g-
ADV+1 VLB-gl
ADV+2 VLB-g-
ADV+2 VLB-gl
ADV+3 VLB-g-
ADV+3 VLB-gl
ADV+4 VLB-g-
ADV+4 VLB-gl
ADV+5 VLB-g-
ADV+5 VLB-gl
ADV+h VLB-g-
ADV+h VLB-gl

(a) IL-1 counter value for ADV+i traffic pattern, 𝑖 ∈ {1, ..., ℎ = 6} with -g- and -gl phase A paths.

A: ADV+2 & ADV+4 VLB-g-
A: ADV+2 & ADV+4 VLB-gl
B: ADV+3 & ADV+9 VLB-g-
B: ADV+3 & ADV+9 VLB-gl

IL-1 ADV+9 & ADV+11 VLB-g-
IL-1 ADV+9 & ADV+11 VLB-gl
IL-2 ADV+9 & ADV+11 VLB-g-
IL-2 ADV+9 & ADV+11 VLB-gl

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

In
te

rm
e
d
ia

te
-l

o
ca

l
cn

tr
.
IL

-1

Offered load (%)

(b) IL-1 counter value for two different pairs of
combined adversarial traffic patterns.

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

In
t.

-l
o
ca

l
co

u
n
te

rs
.
IL

-1

IL
-2

Offered load (%)

(c) IL-1 and IL-2 counters under combined
adversarial traffic patterns ADV+9 and
ADV+11.

Figure 6-8: Intermediate-local counter analysis, using non-minimal paths -g- and -gl. Saturation
using -g- occurs approximately at the same counter value in all cases, indicated in red.

The first experiment in Figure 6-8(a) considers six adversarial traffic patterns ADV+𝑖, with
different global offset 𝑖 from 1 to ℎ = 6. According to the analysis in Section 6.1.2.2 and
the values in Figure 6-3(a), each of these traffic patterns get a progressively lower saturation
point with the phase A path -g-, but -gl is always close to the 50% limit. This occurs because
-g- concentrates traffic on one or two intermediate local links. Intermediate-local counters
track the load in such links, so their value at saturation should be the same regardless of
the traffic. Results confirm the previous analysis: all the different traffic patterns saturate
at different load value, but the intermediate-local counter value at saturation is similar in
all cases, around 17 phits/interval. Saturation is identified because counter values using -g-
phase A path start to growmuch faster, when input queues start to fill, but when using phase

145

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

A path -gl they continue to grow with the same rate. Before this saturation point, counters
for both phase A paths -g- and -gl match.

Intermediate-local counters application is not restricted to adversarial patterns that send
traffic to a single destination group. Figure 6-8(b) presents results for amixed traffic pattern,
introduced in Section 3.2.2.1.5, that divides traffic evenly between two destination groups:
groups +2 and +4 in case “A” and groups +3 and +9 in case “B”. Both combinations saturate
at the same range as before, around 17 phits. Additionally, the 𝐼𝐿−1 counter value overlaps
in both cases. Indeed, when the non-null corresponding values are replaced in Equation 6-2
using ℎ = 6 both cases match, since:

𝐼𝐿−1𝐴 =
2
6
𝐺2 +

4
6
𝐺4 𝑎𝑛𝑑 𝐼𝐿−1𝐵 =

3
6
𝐺3 +

3
6
𝐺9.

Since traffic is divided evenly, 𝐺2 = 𝐺4 and 𝐺3 = 𝐺9, so both 𝐼𝐿−1𝐴 and 𝐼𝐿−1𝐵 grow at the
same rate.Finally, Figure 6-8(c) presents an example use case, in which the traffic pattern
employed divides traffic evenly between two destination groups, +9 and +11. Since both
values lie between ℎ = 6 and 2ℎ = 12, these flows will increase remote-local counters 𝐼𝐿−1
and 𝐼𝐿−2 as follows:

𝐼𝐿−1 =
3
6
𝐺9 +

1
6
𝐺11 𝑎𝑛𝑑 𝐼𝐿−2 =

3
6
𝐺9 +

5
6
𝐺11.

Results confirm that 𝐼𝐿−2 grows faster and determines the saturation point, at around 22%
of the offered load. After this point, the values of both counters increase suddenly for phase
A path -g-, since injection is restricted after local link 𝑙−2 saturates and packets accumulate
at the input queues; this does not occur using paths -gl.

These results confirm that intermediate-local counters can be used to estimate the neces-
sity of the second local hop 𝑙2 in phase A path when using non-minimal routing.

6.3.3 LIAN performance results

This section evaluates the performance of LIAN comparedwith oblivious and other adaptive
routings, considering latency, throughput, fairness and response time to traffic changes.

6.3.3.1 LIAN compared to oblivious routings

This section compares the performance of LIAN routing algorithm with oblivious routings.
MIN has been selected as the baseline reference under UN traffic pattern because it achieves
the best performance on both, latency and throughput. For VLB routing, the four non-
minimal phaseApath lengths considered in this chapter have been employed: -g-, -gl, lg- and
lgl. VLBlgl presents the best randomization to avoid any pathological congestion. However,
it is at the cost of higher base latency compared with the other shorter paths. Figure 6-

146

6.3 Evaluation

9 presents average latency and throughput of MIN, VLB with the above-mentioned path
lengths on phase A and the proposed LIAN under different traffic patterns.

Performance results under UN traffic pattern are as expected: VLB with different path
lengths present different base latencies and a throughput close to 50%. By contrast, LIAN
mimics MIN and achieves optimal latency and throughput.

Using MIN under adversarial traffic patterns, saturation is reached at very low load be-
cause the global links between neighbor switches become a bottleneck, and only a small part
of the traffic can be delivered using the minimal routes, concretely 1

𝑎⋅𝑝 =
1
2ℎ2 ≃ 1.38% and

ℎ
𝑎⋅𝑝 =

1
2ℎ ≃ 8.33% under ADV+𝑖 and ADVC respectively. Before these low saturation points,

optimal latency is obtained using MIN. VLB raises the saturation point to different loads,
depending on the non-minimal path used. LIAN routing raises that point near 50% in all
adversarial traffic patterns presenting also optimal latency.

Under ADV+1, VLB variants from 1 hop (-g-) to 3 hops (lgl) in phase A obtain differ-
ent base latencies, but throughput is near 50% before saturation point in all cases. After
this point, only VLBlg- suffers congestion. LIAN routing obtains optimal latency like VLB
with only a global hop (𝑔) on phase A, because of its latency in Figure 6-9(b), and a stable
throughput very close to 50%.

Under ADV+ℎ, the local link bottleneck limits the throughput up to 1/𝑝 ≃ 16% using
VLB phase A policies -g- and lg-. The two other VLB cases with the second local hop reach
a throughput near the 50% limit. LIAN routing obtains a throughput close to the 50% limit
and achieves an optimal latency: at different increasing loads it approximates the latency of
MIN (up to 1.38%), VLB-g- (up to 16.6%) and VLB-gl (up to 50%).

The results under ADVC follow the same trend as ADV+ℎ. In this case, the saturation
point of -g- and lg- is around 25%, and 50% with the second local hop. As previously, LIAN
achieves an optimal latency because it adapts the routing to the network conditions.

Under this ADVC traffic pattern, terminals directly attached to the latest router of the
group,𝑅𝑂𝑈𝑇, have uneven access to the global links to be used forminimal routes. This direct
connection favors a higher amount of minimally-routed traffic from those injectors, but
prevents them from sending traffic non-minimally when paths -g- or -gl are used. Figure 6-
10 shows the average accepted load for each switch in the group 0 of the network, under an
offered load of 50% and ADVC traffic. VLB with -g- or lg- phase A paths suffers reduced
throughput and pathological unfairness effects, particularly the latter. By contrast, when -gl
or lgl phase A paths are used, VLB is fair because all the switches exhibit a similar accepted
traffic load. LIAN is totally fair because all routers have the same accepted load.

In conclusion, LIAN routing achieves a performance equal to or better than the best obliv-
ious routing algorithms in both metrics, latency and throughput, for each traffic pattern
analyzed. Moreover, LIAN does not present obvious effects of routing unfairness.

147

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

MIN VLB(-g-) VLB(-gl) VLB(lg-) VLB(lgl) LIAN

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(a) Average packet latency and throughput under UN traffic pattern.

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(b) Average packet latency and throughput under ADV+1 traffic pattern.

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(c) Average packet latency and throughput under ADVC traffic pattern.

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(d) Average packet latency and throughput under ADV+h traffic pattern.

Figure 6-9: Average packet latency and throughput under UN, ADV+1, ADVC and ADV+h traffic
patterns, comparing LIAN with oblivious routings.

148

6.3 Evaluation

VLB-g- VLB-gl VLBlg- VLBlgl LIAN

 0

 10

 20

 30

 40

 50

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

A
cc

e
p
te

d
 l
o
a
d
 (

%
)

Figure 6-10: Average throughput accepted for each switch ofG0 underADVC trafficpatternwith an
offered load of 50%, comparing LIAN with oblivious routings.

6.3.3.2 LIAN compared to other source adaptive routings

This section compares the performance of LIAN with other source-adaptive routing algo-
rithms. PB has been selected as the baseline reference. TPR has been evaluated because it
relies on traffic counters andmodifies the UGAL parameters. PB-ACOR blindly adapts non-
minimal path to network load for reducing latency. Figure 6-11 presents the performance
of these mechanisms and LIAN under different traffic patterns.

In terms of latency, both PB and TPR employ complete non-minimal paths, so under
adversarial traffic patterns in Figures 6-11(b)-6-11(c) they quickly catch up with the latency
of VLBlgl presented earlier in Figure 6-9. Even at low load of only 10%, LIAN reduces latency
by 27%over PB and by 28%overTPRunderADV+1 traffic. PB-ACORalso improves latency
at low loads, but it adapts the path length to absolute network load only, whereas LIAN
selects the suitable path according to the inferred traffic pattern and load. At an intermediate
load of 30%, LIAN reduces PB-ACOR latency by 30.0% under ADV+1 traffic pattern. Under
UN traffic pattern all routing algorithms are competitive.

In terms of throughput, TPR has a peak result close to 50% under adversarial traffic pat-
terns in Figures 6-11(b)-6-11(c). However, after this saturation point its throughput falls,
as explained in Section 6.1.1, down to the result obtained by PB, which is the lowest in our
evaluations. PB-ACOR and LIAN obtain a stable throughput over saturation very close to
the theoretical maximum of 50%. Again, under UN traffic all routings are competitive.

Figure 6-12 shows the average accepted load grouped by switch for the analyzed source
adaptive routings under an offered load of 50%. As it is well known, PB routing suffers a
pathological unfairness issue under ADVC [68]. TPR also exhibits this problem but it is less
pronounced. Whereas ACOR adapting the non-minimal path length is fair (see Figure 5-6,
p. 120), PB-ACOR inherits the unfairness issue of PB since it is based on the latter to select

149

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

PB TPR PB-ACOR LIAN

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d
 l
o
a
d
 (

%
)

Offered load (%)

(a) Average packet latency and throughput under UN traffic pattern.

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d
 l
o
a
d
 (

%
)

Offered load (%)

(b) Average packet latency and throughput under ADV+1 traffic pattern.

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(c) Average packet latency and throughput under ADVC traffic pattern.

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Offered load (%)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

A
cc

e
p

te
d

 l
o
a
d

 (
%

)

Offered load (%)

(d) Average packet latency and throughput under ADV+h traffic pattern.

Figure 6-11: Average packet latency and throughput under UN, ADV+1, ADVC and ADV+h traffic
patterns comparing LIAN with other source-adaptive routingmechanisms.

150

6.3 Evaluation

PB TPR PB-ACOR LIAN

 0

 10

 20

 30

 40

 50

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

A

cc
e
p
te

d
 l
o
a
d
 (

%
)

Figure 6-12: Average throughput accepted for each switch of G0 underADVC trafficwith an offered
load of 50% comparing LIANwith other source-adaptive routings.

between minimal or non-minimal routes. As shown, LIAN exhibits a perfect throughput
fairness between all switches within the group.

In conclusion, the latency result achieved by LIAN is optimal and the throughput is very
close to the theoretical maximum for each traffic pattern analyzed.

6.3.3.3 Throughput fairness and the use of the l1 hop

This section analyzes the behavior of LIAN considering the use of the 𝑙1 hop, according to the
implementation described in Section 6.3.1. While Figures 6-10 and 6-12 present throughput
fairness results under ADVC traffic pattern, Figure 6-13 breaks the accepted load for each
switch by the path followed, either minimal or any of the non-minimal paths considered in
this chapter.

As explained previously in Section 3.2.2.1.4, ADVC unfairness comes from the concen-
tration of traffic in router 𝑅𝑂𝑈𝑇 (𝑅11 in the presented example) to be forwarded to the ℎ
consecutive groups. For this reason, short non-minimal paths that omit the 𝑙1 hop should
not be used by the terminals connected to the bottleneck switch 𝑅𝑂𝑈𝑇. This is solved by
LIAN according to the explanation in Section 6.2.3.1. As shown in Figure 6-13, 𝑅11 iden-
tifies its global queues as saturated and it sends traffic using non-minimal paths with the
𝑙1 hop. Other routers in the group continue using minimal paths or non-minimal paths
without this 𝑙1 hop.

6.3.3.4 Performance under transient loads

LIAN is able to adapt the routing to the live network situation by changing the VLB phase
A policy used by each packet and modulating UGAL based on the inferred traffic pattern
present in the network. This section evaluates these capabilities: 1) using a traffic pattern

151

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

LIAN(MIN) LIAN-g- LIAN-gl LIANlg- LIANlgl

 0

 10

 20

 30

 40

 50

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

A

cc
e
p
te

d
 l
o
a
d
 (

%
)

Figure 6-13: Average throughput accepted using LIAN routing for each switch of G0 divided into
MIN and the four possible VLB phase A policies under ADVC traffic pattern with a load of 50%.

with two given offered loads, which requires LIAN to adapt the phase A path policy; and
2) using two different traffic patterns that requires LIAN to decide between a minimal or
non-minimal path for each packet.

Figure 6-14 shows the transition between different phase A policies due to a changing on
the offered load. It displays the average packet latency under ADV+ℎ traffic that changes
from 5% to 25% and vice versa. These values are selected because they are supported by dif-
ferent phaseA path policies. Three relevantVLB phaseA policies are provided as a reference.
PB and TPR are not presented because both routing algorithms apply directly VLBlgl and do
not adapt the path length, so there is no difference in their latency during the experiment
except the change due to load variation, which can be analyzed in Figure 6-11.

When the traffic load increases, in Figure 6-14(a), the VLB-g- policy is no longer compet-
itive and the latency of VLB with this policy increases significantly. ACOR transitions from
using the VLB-g- policy that provides the lowest base latency at low load (5%) to a VLB-gl

policy which has the lowest latency at high load (25%). This change is done in less than 2 𝜇𝑠
but it has a non-desirable peak. However, LIAN is able to adapt the phase A path followed
by the packets without any transitory peak. Conversely, when the traffic load decreases, in
Figure 6-14(b), VLB-g- recovers a non-saturated situation after a delay higher than 8 𝜇𝑠. As
previously, the other two VLB curves remain equally except for the minimum change due to
the difference of offered load. PB-ACOR and LIAN quickly reduce the phase A path length
for the packets sent non-minimally. In both cases, LIAN employs the most suitable phase
A policy for each situation, and it is able to react to traffic changes from a steady situation
without any transitory issue.

Figure 6-15 shows the average packet latency suffered during the transitions from UN to
ADV+ℎ traffic pattern and vice versa while keeping 25% offered load. Different VLB curves

152

6.3 Evaluation

VLB-g-
VLB-gl
VLBlgl

ACOR
LIAN

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(a) From 5% to 25%.

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(b) From 25% to 5%.

Figure6-14:Averagepacket latencyofLIANunderADV+h trafficpatternwith transient traffic loads.
At t=0, load transitions (a) from 5% to 25% and (b) from 25% to 5%.

are omitted for clarity. These results can be seen for the same experiment in Figure 5-14.
PB, TPR and ACOR are presented as adaptive references. The first two do not adapt the
non-minimal path length and the latest adapt VLB phase A path as explained before. PB
and ACOR shares information between the group to decide if routing a packet minimally
or non-minimally based on the global links availability. However, TPR and LIAN employs
only router’s information to make that.

PB TPR PB-ACOR LIAN

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(a) From UN to ADV+h.

 0.5

 0.75

 1

 1.25

-2 0 2 4 6 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

A
v
e
ra

g
e
 p

a
ck

e
t

la
te

n
cy

 (
u
s)

Injection time (us)

(b) From ADV+h to UN.

Figure 6-15: Average packet latency of LIAN under transient traffic loads with an offered load of
25%. At t=0, load transitions (a) fromUN to ADV+h and (b) from ADV+h to UN.

When the traffic pattern changes from UN to ADV+ℎ, in Figure 6-15(a), the PB’s latency
grows quickly because it increases the amount of non-minimally routed packets to adapt
to the adversarial traffic pattern. The latency result of TPR before 𝑡 = 0 explains that the
amount of non-minimally traffic injected by TPR during the UN phase is lower than by PB.

153

6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks

The same can be concluded for ACOR and LIAN. After that change, these three algorithms
starts to route the packets through non-minimal paths, deduced from the increment on
the average packet latency. The increment of ACOR suffers a peak which was detected in
Section 5.5.5.2. As it can be seen, the path length determined by TPR is equal to PB and
LIAN offers the best result, keeping the latency stable and as low as possible. Conversely,
in Figure 6-15(b) the behavior is similar. In this case ACOR does not suffer any transitory
issue and as before, LIAN obtains the best result.

In conclusion, LIAN is able to adapt the routing to send the traffic minimally or non-
minimally and to modify the length of non-minimal paths based on the network and par-
ticular router conditions.

6.4 Conclusions

Low-diameter high-radix interconnection networks, such as Dragonflies, require non-
minimal adaptive routing to deal with adversarial traffic patterns due to its lack of minimal-
length path diversity. Such non-minimal adaptive routing algorithms typically rely on
UGAL mechanism and Valiant algorithm, which sets the length of non-minimal paths to
the double of minimal ones. Traffic counters, which are widely available in actual products,
contain valuable information about potential congestion points in the network.

The estimation of offered load can be used to shorten the length of non-minimal paths,
provided it does not introduce additional congestion points. This is leveraged by the LIAN
proposal, which combines UGAL, extended traffic counters to estimate offered load and a
specific regular global link arrangement of the Dragonfly topology to dynamically optimize
the length of non-minimal paths.

The results show that properly tuned extended counters correctly identify network traffic
in all possible ranges, leading to accurate routing under both benign and adversarial traf-
fic patterns. Also, LIAN routing algorithm achieves a performance equal to or better than
the best oblivious routing for each traffic pattern analyzed. In those conditions, LIAN also
achieves optimal latency given that non-minimal paths with the ideal number of hops are
used when VLB is required to avoid congestion. This feature allows latency reductions up
to 30.0% over PB adaptive routing algorithm. Furthermore, its throughput is very close to
the theoretical maximum for each traffic pattern analyzed, which makes it very competi-
tive compared with state-of-the-art adaptive routing algorithms. Moreover, LIAN does not
present obvious effects of routing unfairness and its throughput is stable after saturation
point.

With these features, LIAN is the first non-minimal source-adaptive congestion-aware
routing algorithm that combines the desirable properties of relying solely on local informa-
tion, employing the shortest path allowed by the current traffic pattern without introducing
congestion and providing stable saturation throughput.

154

RelatedWork 7
This chapter makes a literature review and outlines the most notable related works to

the proposals presented on this dissertation. The literature around non-minimal adap-

tive routing algorithms for efficient interconnection networks is extensive. In the same

way as the objective of this dissertation is divided in two orthogonal sub-objectives,

the related work is also divided in two sections. Hence, first, it is reviewed the related

work concerning the research exposed in Chapter 4 and afterwards the related work

regarding Chapters 5 and 6.

Chapter contents

7.1 Adaptive routing without credits . 157

7.2 Adapting the length of non-minimal paths 160

155

7.1 Adaptive routing without credits

7.1 Adaptive routing without credits

Motivated by the Mont-Blanc project [157] and its use of System on Chips (SoCs) which
usually have an Ethernet network interface, the research exposed in Chapter 4 is focused
on commodity Ethernet technology. Intel developed the Omni-Path [32] interconnection
network architecture, which is based on Ethernet, but it has recently been discontinued and
Intel will not continue the development of Omni-Path networks. However, Cray has re-
cently proposed the Slingshot [166], its latest interconnection network technology, for the
future exascale and hyper-scale systems. This architecture is based on high-radix Ethernet
switches and some specialized customEthernet protocols tomaintain the compatibility with
standard Ethernet network devices and to improve its performance resulting in a suitable
technology for High-Performance Computing (HPC) workloads. To do that, it upgrades or
removes some limitations of Ethernet, such as the minimum packet size or the inter-packet
gap, and adds some features to provide resiliency at different levels. An alternative vendor-
independent interconnection technology frequent in HPC is InfiniBand [153]. Mellanox
hardware with switches arranged in a Fat-tree topology is the most commonly used Infini-
Band implementation, such as in the Summit [184] and Sierra [119] supercomputers [175].
InfiniBand switches provide low-latency lossless interconnection, with paths defined by a
central Subnet Manager analogously to OpenFlow controllers. InfiniBand subnetworks are
limited to 48K compute hosts because logical addresses are 16 bits with one fourth of the
address space reserved for multicast. However, they have no other inherent scalability limi-
tations. A study of adaptive routing strategies in InfiniBand networks can be found in [55].
However, InfiniBand host channel adapters are not typically found in embedded SoCs.

Section 4.3 has already discussed alternative mechanisms to achieve scalability with com-
modity Ethernet switches, such as Virtual extensible Local Area Network (VXLAN, [124])
encapsulation or layer-2multipath overlays such as Shortest Path Bridging (SPB, [90]),Trans-
parent Interconnection of Lots of Links (TRILL, [151]) and vendor variants such as Brocade’s
Virtual Cluster Switching (VCS, [37]) or Cisco’s FabricPath [45]. These mechanisms still
require to maintain in access switches large CAM tables with as many entries as compute
nodes in the network, and the required encapsulation can hinder path latency. Packet header
rewriting has been employed to provide location-dependent identification in several works,
such as Portland [143], MOOSE [163] or In-Packet Bloom Filter [123].

Due to the lack of flow-control credits in Ethernet, proposals in Chapter 4 are based on
other signals. Firstly, MAR-bP relies on link-level flow control Ethernet’s pause messages
present in 802.1Qbb [88]. However, this schema in a Dragonfly topology requires the prop-
agation of the congestion to the router outputs to be able to sense it. To overcome this lack
of global knowledge and notify the information about congestion, without spreading it, to
the router that can resolve, a explicit signal [195] can be considered. Particularly, QCN-
Switch introduced in Section 4.6 relies on Explicit Congestion Notification (ECN) messages

157

7 RelatedWork

which have been used in commodity networks for a long time. IP has ECN bits for ex-
plicit congestion notification [158]. These bits are set when switch queues exceed a given
threshold, possibly following a marking policy such as RED [65]. TCP may react to packets
with the ECN source flag set by decreasing its congestion window, which throttles injec-
tion. A similar approach with a single-bit forward notification is used in InfiniBand [152],
Intel Omni-Path [32] and RDMA over Converged Ethernet (RoCE, [92, 130, 131]), the lat-
ter being encapsulated over UDP/IP. When packets are received with the congestion flag
active, the destination generates a response notifying the presence of congestion in the for-
ward path. Quantized Congestion Notification (QCN, [89]) generates backwards congestion
notification messages at layer 2, which include a multi-bit feedback value computed from
both the current queue occupancy and from the increase or decrease rate. Data Center
TCP (DCTCP, [11]) also estimates the amount of congestion based on the count of ECN
flags measured during a given interval, which typically is equivalent to the TCP round-trip
time. QCN-Switch concretely leverages the ECN messages from QCN already present in
the network to adapt the routing. However, another alternative can be the use of specific
messages [195] as it is done by Shpiner et al. [170].

Adaptive routing and Software-DefinedNetworking (SDN) concepts have been introduced
in Sections 2.3 and 2.6 and considered through the research exposed in Chapter 4. Propos-
als that employ adaptive routing using SDN include Hedera [62], ElasticTree [81] or Mi-
croTE [27]. All these proposals rely on per-flow load estimation, with an excessive latency
for HPC applications as discussed in Section 4.2. A more detailed discussion on large flow
recognition is presented in [115], considering several alternatives based on packet sampling
or inline datapath measurement. By contrast, HPC implementations which support packet-
by-packet adaptive routing have been implemented in or proposed for multiple topologies,
such as folded-Clos [109, 164], Flattened Butterflies [110, 9] or Dragonflies [108, 96, 74].
Their selection between minimal or non-minimal paths typically relies on a comparison be-
tween the link-level flow-control credits of both outputs, which are not available in com-
modity Ethernet switches. However, Sensi et al. [166] have proposed the request queue
credits in its Slingshot interconnection network architecture to be able to apply a source-
adaptive routing algorithm, which selects the least congested path between four minimal
and other four non-minimal paths, over their Ethernet-compatible Rosetta switches. Ad-
ditionally, such packet-by-packet adaptive routing is typically not supported in commodity
Ethernet switches since it permits packet reordering, which significantly interferes withTCP
fast retransmit [190].

In the context of DC or HPC based on commodity technology, which is the starting point
of Chapter 4, alreadymentioned proposals have been introduced for load balancing like De-
voFlow [137], which derives from OpenFlow, Planck [159] architecture that employs port
mirroring to extract network information and apply this knowledge to traffic engineering
and the work proposed by Kandula et al. [99] which avoids the disturbing packet reordering

158

7.1 Adaptive routing without credits

while it is able to balance the load dynamically by its introduced Flowlet Aware Routing En-
gine (FLARE) traffic splitting algorithm. At more basic level, adaptive routing is supported
in that context in multiple technologies, at layer-3 such as IP or layer-2 such as TRILL [196],
typically using Equal-Cost MultiPath (ECMP, [83]) which preserves in-order delivery by
consistently mapping packets from the same flow to the same path. In such mechanisms,
forwarding tables include multiple matching entries for a given destination, and the selec-
tion process is typically performed using a hash of some fields, such as the addresses, of the
packet. While this guarantees that all packets from the same flow follow the same path, it
does not consider non-minimal adaptive routing nor is modulated by the congestion level.
Even more basic, in Cray Cascade (XC) systems [60] minimal routing algorithm is used for
traffic that need to avoid packet reordering, and in IBMPERCS system [15] the programmer
is who decides whether minimal or non-minimal routing is employed.

Minkenberg et al. [136] introduced the use of ECN messages to adapt traffic in data cen-
ters. Their proposal differs from the approach introduced in Chapter 4 in two fundamental
aspects. First, they do not consider non-minimal routing, with the increased load intro-
duced by non-minimal paths and the associated positive feedback loop. Second, they do
not consider a probability for each available path, nor a recovery mechanism to restore min-
imal routing when congestion disappears. Instead, they consider fixed time intervals, and
routing information is reset on each interval by discarding its current status and reverting
to minimal traffic.

The mechanisms proposed in Chapter 4 adapt the traffic based on pause link-level flow-
control frames (Section 4.5) or based on snooped ECN messages which modify the prob-
abilities of minimal paths in the routing table (Section 4.6). Universal Globally-Adaptive
Load-balanced routing algorithm (UGAL, [172]) selects at injection and on a packet-per-
packet way between minimal or Valiant load-balancing routing algorithms, but it relies on
flow-control credit counters and requires regional information. More elaboratemechanisms
improve this non-minimal routing decision, both at the source or in-transit [96, 74]. Pig-
gyback [96] and the averaging proposal in [192] consider the average occupancy (or credit
count) of all the ports in a switch, somehow similar to the proposed feedback comparison
probabilitymanagement variant in Section 4.6.3. Contention counters introduced by Fuentes
et al. [66] support non-minimal routing using traffic demand information, which is the out-
put ports that would be used under minimal routing. Their Explicit Contention Notification
(ECtN) mechanism routing algorithm based on those contention counters distributes ex-
plicitmessages with port contention information, which is the traffic demand for each global
port in a Dragonfly topology, resembling ECN. Unfortunately, unlike the proposal in Chap-
ter 4, contention counters as employed by the authors are not amenable to a straightforward
implementation in commodity switches.

The policies described in Section 4.6 replace QCN injection throttling at the NICs with
adaptive routing in source switches, based on in-network congestion information sensed at

159

7 RelatedWork

in-transit buffers. Endpoint congestion would still need to throttle injection, but as it has
been already mentioned, this thesis is focused on in-network congestion and discards any
evaluation of endpoint congestion. Injection throttling might be handled using the original
QCN implementation or any other ECN mechanism, by identifying CNMs generated by
endpoints and not intercepting them in the network switches. Alternative implementations
may rely on congestion avoidance at the transport level, such as TCP congestion control,
or on the use of proactive reservations to avoid saturating the network, such as SRP [94],
CRP [134], SMSRP and LHRP [95].

Conditional flow rules based on OpenFlow were introduced in a different context in
AVANT-GUARD by Shin et al. [169]. Their conditional flow rules are triggered when a
potential attack is discovered to enforce the security policy. The proposed switch data-path
is similar in both cases. However, the proposals introduced in Chapter 4 need to detect alter-
native triggers such as pause frames or an integer comparison between two numbers which
ranges from 0 to 100: one random and another that acts as a probability. Moreover, NEC
ProgrammableFlow [141] extended OpenFlow 1.0 to support conditional failover rules and
conditional routing, but their implementation is used to mimic policy-based rather than
adaptive routing. The work presented in Chapter 4 relied on multiple class-of-service levels
with conditional OpenFlow rules to avoid deadlock. Alternative mechanisms rely on path
restrictions, such as TCP-Bolt [174].

The power consumption of TCAM has been discussed in Section 4.3 and table size mini-
mization has been considered across all Chapter 4. The power consumption devoted to sig-
nal transmission on links depends on the link technology, interconnect topology and link
speed. Different topologies which target low overall power consumption have been consid-
ered across the aforementioned chapter. Congdon et al. [48] dissect the power consumption
of an OpenFlow switch, but they do not consider the impact of the network topology. The
impact of topology has been considered by Abts et al. [4] to dynamically reduce link speed
to adapt to traffic load. However, they do not consider the impact of forwarding table orga-
nization. An implementation for HPC which relies on low-power Ethernet was presented
in [161]. Similarly, ElasticTree [81] completely shuts down links and modifies routing to
save link power.

7.2 Adapting the length of non-minimal paths

Several mechanisms have proposed different adaptions of Valiant Load-Balancing (VLB)
routing algorithm, in which the intermediate router selection is not performed among all
the routers in the network and then, the Valiant path is shortened. The original proposal
for VLB in the Dragonfly by Kim et al. [108] selects a random intermediate group, instead
of a router, VLBlg- policy following the terminology proposed by this dissertation. This re-
duces the length of the path and the amount of virtual channels but introduces pathological

160

7.2 Adapting the length of non-minimal paths

performance issues under certain adversarial traffic patterns [72]. Similarly, the Dragonfly
implementations proposed in Chapter 4 divert traffic using a single global hop for the phase
A (VLB-g-), which is equivalent to select a random group adjacent to the source switch; in
this case, the implementation is constrained to using commodity Ethernet hardware without
bookkeeping information in the packet headers. The ACOR routing proposed in Chapter 5
reduces the non-minimal path length, but falls back to the complete Valiant path in phase A
under high injection loads to guarantee the absence of pathological issues. In ACOR-Switch
implementation, routers maintain a given ACOR level, which indicates the specific path to
use in VLB phase A. This level may increase or decrease, based on an indirect estimation of
network congestion detected by a switch allocator retry. ACOR levels vary according to the
sequence −𝑔− ↔ −𝑔𝑙 ↔ 𝑙𝑔𝑙. However, ACOR is oblivious to the traffic pattern present in the
network because it takes the decision to route the packetsminimally or non-minimally when
it detects congestion on the output ports based on accounting the switch allocator retries.
Hence, it requires that the congestion is propagated to the source for suffering allocator re-
tries at source switch, leading to suboptimal results in certain cases that are overcome by the
proposal in Chapter 6. T-UGAL by Rahman et al. [156] proposes a modified UGAL routing
for Dragonfly networks with more than one link between groups (global trunking) which
employs a subset of Valiant paths with shorter average path length. It reduces the number of
hops in both phase A and B of the VLB path. However, it is based on an offline computation
of the possible paths and, just like ACOR, it does not adapt the paths to the current traffic
pattern. The proposal in Chapter 6, LIAN, overcomes this design limitation reacting to the
traffic pattern inferred from the interconnection network through a set of counters in the
routers.

Different proposals have implemented restricted and shorted variants of Valiant routing
in other topologies. The proposal for randomized routing in multidimensional square meshes
in [187] does not randomize all the 𝑁 dimensions, but only 𝑁 − 1; congestion is avoided
assuming a single injector per switch, but this is not typically the case in current and forth-
coming parallel systems. The DAL adaptive routing mechanism in HyperX [9] follows the
idea of the RVLB technique, which is introduced in Section 5.2, misrouting only in the di-
mensions with offset. The Cray Cascade system [60] implements a mechanism similar to
restricted Valiant technique, based on two different sets of tables [148]. Valiant routing
in the indirect Orthogonal Fat-trees [185] and Multi-layer Full-Mesh [70] networks is re-
stricted to switches with connected nodes in [103]. The already-mentioned proposal by
Yébenes et al. [193] identifies the turn-around problem in Valiant routing in the SlimFly
topology [28], and introduces a modified version of Valiant routing for this topology that
only makes one non-minimal hop in phase A. However, they do not focus on other cases
where path shortening improves performance and does not introduce congestion. Multiple
short non-minimal paths are employed in other cases. For example, the Jellyfish random
topology by Singla et al. [173] relies on a k-shortest path algorithm [194] to find a set of paths

161

7 RelatedWork

(minimal and non-minimal) to each destination. However, it does not study path selection
techniques, leaving that task to the end-to-end congestion control mechanism. Moreover,
it would never consider maximum-length Valiant paths, which are required in some cases
as observed in this dissertation. Furthermore, previous proposals do not formally prove
the absence of pathological performance issues under any traffic pattern. ACOR and LIAN
approaches, introduced in Section 5.4 and Section 6.2 respectively, can be adapted to such
restricted routing variants and both fall back to the complete Valiant path in phase A under
high load or congestion situations detected by the counters, which guarantees the absence
of such hypothetical pathologies.

There is no awareness of any application of the re-computation of the𝑅𝑅𝑂𝑂𝑇 based on net-
work congestion toVLB as described in Section 5.3, but there are adaptive routing proposals
that somehow resemble it. For example, the aforementioned DAL adaptive routing in Hy-
perX [9] deroutes traffic in a given dimension based on the unavailability of output ports;
therefore, it dynamically diverts traffic to an intermediate destination which is computed
dynamically.

Previous works have considered the use of traffic counters to modify routing based on
a central controller, such as Hedera [62]. They work on a per-flow granularity and their
adaptation time is significantly larger than in LIAN. LIAN employs extended traffic counters
to estimate offered traffic instead of carried traffic. In Hedera, this problem is dealt using an
iterative algorithm. TPR [61] exploits traffic counters to modify UGAL threshold, but it fails
to estimate offered traffic and does not leverage traffic information to shorten non-minimal
paths.

162

Conclusions and FutureWork 8
The evolution of computing systems resulting in faster, more capable and parallel sys-
tems makes the importance of interconnection networks be in constant growth. They
play a crucial role on determining the overall performance and cost of the computing
systems. The interconnection network topology determines the performance bounds
of the network. All the capabilities offered by the topology must be exploited by the
routing algorithm to accomplish as much as possible of these performance limits.

The PhD work presented in this dissertation started with the objective of designing
non-minimal adaptive routing algorithms for efficient interconnection networks. This
is approached from two orthogonal points of view: 1) decoupling the selection between
minimal and non-minimal paths from flow-control credits and enabling the use of
commodity Ethernet technology for scalable exascale environments; and 2) employing
non-minimal paths with different path lengths based on the network conditions which
allows to optimize the latency to the current situation of the network.

Through the completion of the PhD work presented in this dissertation, both ob-

jectives have been achieved as it is further detailed in the following section, in which

the conclusions of this thesis are explained. The result of this PhD thesis is a set of

proposals which allows to implement a non-minimal adaptive routing algorithm for

efficient interconnection networks because: 1) the QCN-Switch adaptive routing algo-

rithm, which resembles the performance of state-of-the-art custom high-performance

computing proposals, implemented upon the introduced architecture allows to deploy

scalable HPC interconnection networks over commodity Ethernet OpenFlow network

devices; and 2) ACOR and LIAN allow the optimization of latency by adapting the

length of non-minimal paths to the current network conditions.

Chapter contents

8.1 Conclusions . 165

8.2 Future directions . 168

8.3 Publications . 170

163

8.1 Conclusions

8.1 Conclusions

This dissertation explains different proposals to design and implement source-adaptive non-
minimal routing algorithms for efficient interconnection networks. The adaptability of these
routing algorithms, based on the network conditions, allows them to select between mini-
mal and non-minimal paths for each packet and to define non-minimal paths with different
lengths. In summary, this dissertation proposes four source adaptive non-minimal routing
algorithms and switch architecture changes to be capable of implementing a pro-active and
per-packet basis adaptive routing depending on the network conditions.

The first proposed routing algorithm, MAR-bP is initially proposed to overcome the lack
of flow-control credits on commodity Ethernet networks. Its implementation is naïve, since
it defines a fixed non-minimal path based in solely one hop. With the objective of over-
coming the limitations of the previous proposal, QCN-Switch is introduced extending the
architecture introduced with MAR-bP. It enables the possibility of selecting the output port
statistically based on explicit congestion notification messages snooped from the network.
Although the QCN-Switch implementation is also naïve because it is initially defined to use
non-minimal paths relying on one hop1, this architecture together with the implemented
routing offers the possibility to select between minimal and non-minimal paths packet-by-
packet over a novel practicable implementation of HPC interconnection network built upon
commodity Ethernet OpenFlow devices.

As a first approach to the second sub-objective, two techniques (RVLB and VLB-Recomp)
regarding the selection of theValiant Load-Balancing (VLB) intermediate router (𝑅𝑅𝑂𝑂𝑇) are
introduced to develop ACOR, a source-adaptive routing algorithm capable of adapting the
number of hops in the non-minimal paths based on live network conditions. This routing
proposal is topology-agnostic and employs the amount of routing attempts done by packets
to take the misrouting decision. Focused on the same sub-objective, LIAN routing is pro-
posed. While, same as ACOR, it aims to optimize the amount of hops in non-minimal paths
based on network conditions and uses RVLB mechanism, it is based on a series of network
counters and is topology-dependent. Note that these two latest proposals cannot be directly
implemented over the network architecture proposed in Chapter 4 due to technology con-
straints. However, the idea of both proposals is compatible with that architecture and could
be combined if technology for programming the routers’ data-path is used.

Chapter 4 introduces a novel practicable implementation of High-Performance Comput-
ing (HPC) interconnection networks based on commodity Ethernet switches relying on a hi-
erarchical routing and addressing based on location-dependent MAC addresses, TCAM rules
compaction, a dynamic mechanism to assign location-dependent MAC addresses to terminals
and pro-active conditional OpenFlow rules for adaptive routing. The implementation of the

1The proposed implementation employs one hop for the non-minimal paths but this could be enlarged em-
ploying more forwarding rules than those initially proposed.

165

8 Conclusions and FutureWork

above-mentioned set of mechanisms is realistic and requires minimal changes in OpenFlow
switches allowing the implementation of low-power and low-diameter networks based on
commodity Ethernet.

Whereas most adaptive routing mechanisms proposed for low-diameter networks rely
on local congestion information, such as credits, to decide between using minimal and non-
minimal paths to forward each new packet, due to technology constraints, this routing sets
up its adaptability on explicit congestion notifications. The proposed QCN-Switch uses sta-
tistical routing driven by intercepting explicit congestion notification messages generated
using commodity QCN2 congestion points in switches.

The steady-state performance of the finalQCN-Switch design relying on output-port sam-
pling and feedback comparison probability management variant is comparable to state-of-
the-art sophisticated HPC routing alternatives such as Piggyback. Considering transient
changes of traffic, while the resulting design does not adapt routing as quickly as othermech-
anisms that rely on credits, it responds in a sub-millisecond time frame, which is typically
enough formost applications. A sensitivity analysis presents the trade-offs of the design, par-
ticularly improving performance for uniform or adversarial traffic patterns. In conclusion,
it is proposed a naïve one non-minimal hop1 adaptive routing which leverages ECN noti-
fications to send each packet by minimal or non-minimal path and it is provided a feasible
switch design for low-diameter networks based on commodity white-box Ethernet switches.

Valiant load-balancing routing algorithmused to achieve good performance under adver-
sarial traffic patterns in low-diameter networks, such as Dragonfly, extends the length of the
path and so, increases the base network latency. Two improvements to VLB are introduced
in Chapter 5: 1) RVLB improves performance for traffic with locality, selecting the inter-
mediate router (𝑅𝑅𝑂𝑂𝑇) in the same network partition as the source and destination; and
2) RVLB-Recomp avoids head-of-line blocking at injection by selecting an alternative 𝑅𝑅𝑂𝑂𝑇
when the output port associated with the current is stalled.

Based on these mechanisms, ACOR: Adaptive Congestion-Oblivious Routing is also intro-
duced in that chapter. The goal of ACOR is to optimize the common case exhibitingminimal
latency, while supporting pathological traffic patterns with longer paths. It applies the two
above-mentioned improvements to Valiant by extending the restrictions which determine
the path of VLB phase A to global traffic and expanding the idea of path recomputation to
adapt to network conditions, changing the non-minimal path following a given sequence
ordered by path length. It prevents variability in the results through a simple hysteresis
mechanism and the implementation is relatively simple. However, it cannot be implemented
straightforward over the router architecture presented in Chapter 4 due to technology con-
straints.

Same as VLB, ACOR does not send traffic minimally, so its performance under benign
traffic is suboptimal. For this reason, the ACORmechanism has been coupledwith a source-

2Quantized Congestion Notification (QCN, [89]).

166

8.1 Conclusions

adaptive non-minimal routing algorithm to decide betweenminimal or ACORpath for each
injected packet. In this case, Piggyback has been employed but the switch architecture pre-
sented in Chapter 4 could be employed if data-path programmable routers are available. The
combination of PB and ACOR, hereon PB-ACOR, selects the shortest feasible non-minimal
path, but only when the minimal route is congested. This mechanism maintains the benefits
of ACOR regarding adversarial traffic and is competitive under benign traffic. Evaluation
results show that all the ACOR variants avoid any throughput pathologies and unfairness
issues and reduce base latency by up to 28% compared to a Valiant with restricted and re-
computation techniques already applied (RVLB-Recomp). Furthermore, PB-ACOR reaches
high throughput and optimal latency under uniform traffic pattern and achieves rivaling
throughput and significantly lower latency compared to base PB.

Following the same trend of ACOR to reduce the number of hops in the non-minimal
paths, Chapter 6 introduces LIAN: Latency-Improved Adaptive Non-minimal routing for
Dragonfly networks. This proposal pursues the idea of shortening the length of non-minimal
paths based on offered load estimation. The counters proposed resembles the performance
counters already present in modern routers. Based on global counters which tracks the of-
fered load to each group in the network some intermediate-local counters are derived by a
simple calculation combining some of them. The equation that determines how to combine
these global counters is extrapolated from the symmetry exposed by the palmtree regular
global link arrangement of the Dragonfly topology.

Both, global and intermediate-local counters are used to statistically infer the conges-
tion on intermediate groups and analyze the demand of global output ports. Based on that,
LIAN is able to determine the VLB phase A policy that packets must employ, if they are sent
non-minimally, to dynamically optimize the length of non-minimal paths. LIANovercomes
the need of ACOR to analyze the congestion at the source because it is based on inferring
the traffic load rather than the recomputation technique. LIAN also modulates the UGAL
threshold 𝑇 based on global counters to detect the traffic offered load and a small series of
empirically obtained thresholds which establishes three intensity zones.

The results show that introduced extended counters correctly identify network traffic in
all possible ranges, leading to accurate routing under both benign and adversarial traffic pat-
terns. Also, LIAN routing achieves a performance equal to or better than the best oblivious
routing for each traffic pattern analyzed. In those conditions, LIAN also achieves optimal la-
tency selecting non-minimal paths with the ideal number of hops that should be used when
VLB is required to avoid congestion. This feature allows latency reductions up to 30.0% over
PB-ACOR. Furthermore, its throughput is very close to the theoretical maximum for each
traffic pattern analyzed, which makes it very competitive compared with the state-of-the-art
adaptive routing algorithms. Moreover, LIAN does not present obvious effects of routing
unfairness and its throughput is stable after saturation point. In addition, performance re-
sults exhibit an almost-immediate reaction time to traffic changes, both changing from one

167

8 Conclusions and FutureWork

traffic pattern to another and changing the offered load for the same traffic pattern. In con-
clusion, LIAN is the first source-adaptive non-minimal routing algorithm that combines the
desirable properties of: 1) relying solely on local information; 2) employing the shortest VLB
phase A path allowed by the live network situation without introducing congestion; and 3)
providing stable saturation throughput.

Section 1.2 sets the objective of designing non-minimal adaptive routing algorithms
for efficient interconnection networks and splits it in the following two orthogonal sub-
objectives: 1) design a routing capable of selecting between minimal or non-minimal path
without relying on credits, and 2) design a routing capable of adapting the number of hops
in the non-minimal paths to the network conditions instead of directly using paths accord-
ing to Valiant load-balancing algorithm. In light of the above conclusions, the two sub-
objectives have been addressed by this work because; 1) Chapter 4 addresses the first sub-
objective providing QCN-Switch, which is a routing algorithm that decides if routing each
packet minimally or non-minimally based on ECN messages snooped from the network,
and a novel practicable implementation of HPC networks based on commodity Ethernet
switches. 2) Chapter 5 and Chapter 6 provide two different routing algorithms to optimize
the number of hops in the non-minimal paths. Moreover, an adaptive selection between
minimal and non-minimal paths is also done by these routings, however this is based on
UGAL and flow-control credits. For this reason, a combination of LIAN plus QCN-Switch
is a straightforward future work as it is explained later.

The result of this PhD thesis is a set of proposals which allows to implement a non-
minimal adaptive routing algorithm for efficient interconnectionnetworks contributing sep-
arately to two orthogonal aspects of it. On the one hand, the QCN-Switch implemented
upon the presented architecture allows to deploy scalable HPC interconnection networks
over commodity Ethernet OpenFlow network devices employing an adaptive routing which
resembles the performance of state-of-the-art custom HPC proposals. On the other hand,
ACOR allows to make a topology-agnostic traffic engineering which adapts the packet la-
tency to the current network conditions. Additionally, LIAN improves the previous latency
reduction and optimizes the length of non-minimal paths in a Dragonfly topology using the
palmtree global link arrangement.

8.2 Future directions

This dissertation has accomplished the objective from which this PhD work started, and to
conduct that, several contributions to the study of non-minimal adaptive routings for effi-
cient interconnection networks have been done. Nevertheless, each proposal literally opens
the door to new challenges that can be grouped as new research lines. A few interesting
ones, which can be built upon this work, are briefly introduced next.

168

8.2 Future directions

◼ Implement and develop LIAN together with QCN-Switch over programmable network
devices: Implement LIAN over QCN-Switch using commodity Ethernet with pro-
grammable data-path network devices to provide an optimized solution for a scal-
able Dragonfly network built upon commodity Ethernet devices and focused on low-
power and on optimizing the average latency suffered by packets.

◼ Identify and handle endpoint and network congestion separately: In a case of end-
point congestion, exploiting path diversity through adaptive non-minimal routing al-
gorithms increases the pressure on the interconnection network and can reduce the
performance instead of increasing it. Detecting this situation combined with any type
of injection throttling can prevent the spread of the congestion to the whole network
and the performance degradation.

◼ Cooperation between terminals and routers: Computational power of source hosts are
bigger than routers and also, terminals know partially the following packets to inject
to the network. However, the router has the routing tables and knows the status of the
neighbors and network links. A bit of cooperation between terminals and routers by
sharing information may improve the routing decisions on source adaptive routing
algorithms.

◼ Translate restricted technique for Valiant load-balancing routing algorithm to other
topologies: The locality of Dragonfly or Flattened Butterfly topologies is quite direct,
based on groups or dimensions, but how to apply RVLB to other topologies without
suffering congestion under any traffic pattern is not trivial.

◼ Translate the topology-dependent counters from LIAN to other topologies: The rota-
tional symmetry exploited in Chapter 6 to optimize the routing based in intermediate-
local counters is not directly translatable to other topologies or other Dragonfly global
link arrangements. However, it could be an interesting study.

◼ Implement and develop ACOR over programmable data-path OpenFlow network de-
vices: The advent of white-box data-path programmable network devices could al-
low the implementation of the recomputation technique and then, the ACOR routing
algorithm can be implemented over commodity Ethernet with programmable data-
path OpenFlow network devices. The selection of non-minimal path based on ACOR
can be combined with Piggyback or UGAL routing algorithms based on credits as
well as over the architecture for HPC systems based on ECN messages like Ethernet
802.1Qau.

◼ Employ the LIAN counters also to decide between minimal or non-minimal routing for
each packet: Traffic counters employed to modulate UGAL threshold could be used

169

8 Conclusions and FutureWork

directly to determine the injection of the packets following minimal or non-minimal
paths omitting the use of UGAL and credits.

◼ Extend LIAN to be able to determine the length of the whole non-minimal path: LIAN
routing algorithm optimizes the length of the VLB phase A to the detected network
conditions but does not analyze the second minimal phase of VLB routing algorithm.
The selection of intermediate router 𝑅𝑅𝑂𝑂𝑇 can be restricted to determine the whole
non-minimal path on the source router.

8.3 Publications

The research presented in this PhD thesis is partially supported or related with the following
publications obtained during the training period to accomplish the PhD:

⧫ M. Benito, E. Vallejo, and R. Beivide, “LIAN: Latency-Improved Adaptive Non-
minimal routing for Dragonfly Networks,” Submitted and pending review.

⧫ M. Benito, P. Fuentes, E. Vallejo, and R. Beivide, “ACOR: Adaptive congestion-
oblivious routing in Dragonfly networks,” Journal of Parallel and Distributed Com-
puting, vol. 131, pp. 173–188, Sep. 2019. doi: 10.1016/j.jpdc.2019.04.022

⧫ ——, “Analysis and improvement of Valiant routing in low-diameter networks,” in
2018 IEEE 4th InternationalWorkshop onHigh-Performance InterconnectionNetworks
in the Exascale andBig-Data Era (HiPINEB), IEEE, Feb. 2018. doi: 10.1109/hipineb.
2018.00009

⧫ M. Benito, E. Vallejo, C. Izu, and R. Beivide, “Non-minimal adaptive routing based
on explicit congestion notifications,” Concurrency and Computation: Practice and Ex-
perience, vol. 31, no. 2, e4440, Jan. 2018. doi: 10.1002/cpe.4440

⧫ M. Benito, E. Vallejo, R. Beivide, and C. Izu, “Extending commodity OpenFlow
switches for large-scale HPC deployments,” in 2017 IEEE 3rd International Workshop
onHigh-Performance InterconnectionNetworks in the Exascale and Big-Data Era (HiP-
INEB), IEEE, Feb. 2017. doi: 10.1109/hipineb.2017.12

⧫ N. Rajovic, A. Rico, F. Mantovani, D. Ruiz, J. O. Vilarrubi, C. Gomez, L. Backes, D.
Nieto, H. Servat, X. Martorell, J. Labarta, E. Ayguade, C. Adeniyi-Jones, S. Derradji,
H. Gloaguen, P. Lanucara, N. Sanna, J.-F. Mehaut, K. Pouget, B. Videau, E. Boyer, M.
Allalen, A. Auweter, D. Brayford, D. Tafani, V. Weinberg, D. Brommel, R. Halver, J. H.
Meinke, R. Beivide, M. Benito, E. Vallejo, M. Valero, and A. Ramirez, “The Mont-
Blanc prototype: An alternative approach for HPC systems,” in SC’16: International
Conference for High Performance Computing, Networking, Storage and Analysis, IEEE,
Nov. 2016. doi: 10.1109/sc.2016.37

170

https://doi.org/10.1016/j.jpdc.2019.04.022
https://doi.org/10.1109/hipineb.2018.00009
https://doi.org/10.1109/hipineb.2018.00009
https://doi.org/10.1002/cpe.4440
https://doi.org/10.1109/hipineb.2017.12
https://doi.org/10.1109/sc.2016.37

8.3 Publications

⧫ M. Benito, E. Vallejo, and R. Beivide, “On the use of commodity Ethernet technol-
ogy in exascale HPC systems,” in 2015 IEEE 22nd International Conference on High
Performance Computing (HiPC), IEEE, Dec. 2015. doi: 10.1109/hipc.2015.32

The following list of publications are out of the scope of this dissertation but were performed
during the same period:

⧫ P. Fuentes, M. Benito, E. Vallejo, J. L. Bosque, R. Beivide, A. Anghel, G. Rodríguez, M.
Gusat, C.Minkenberg, andM. Valero, “A scalable synthetic trafficmodel of Graph500
for computer networks analysis,” Concurrency and Computation: Practice and Experi-
ence, vol. 29, no. 24, e4231, Jul. 2017. doi: 10.1002/cpe.4231

⧫ E. Vallejo, P. Fuentes, and M. Benito, “Aprendizaje autónomo del estudiante apoyado
en recursos audiovisuales en el contexto de un grado de ingeniería informática: Ex-
periencias con metodologías de enseñanza activas,” in Libro de Actas IN-RED 2017
- III Congreso Nacional de Innovación Educativa y de Docencia en Red, Universitat
Politècnica València, Jul. 2017. doi: 10.4995/inred2017.2017.6753

171

https://doi.org/10.1109/hipc.2015.32
https://doi.org/10.1002/cpe.4231
https://doi.org/10.4995/inred2017.2017.6753

Bibliography

[1] 802.1D-1990: IEEE standard for local and metropolitan area networks: Media access
control (MAC) bridges, 3 ParkAvenue,NewYork,Usa: IEEEComputer Society, 1991.
doi: 10.1109/IEEESTD.1991.101050 (see p. 64)

[2] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, and I. Iliadis, “A four-terabit packet
switch supporting long round-trip times,” IEEE Micro, vol. 23, no. 1, pp. 10–24, Jan.
2003. doi: 10.1109/mm.2003.1179894 (see p. 14)

[3] D. Abts, A. Bataineh, S. Scott, G. Faanes, J. Schwarzmeier, E. Lundberg, T. John-
son, M. Bye, and G. Schwoerer, “The Cray BlackWidow,” in Proceedings of the 2007
ACM/IEEE conference on Supercomputing - SC’07, ACM Press, 2007. doi: 10.1145/
1362622.1362646 (see pp. 13, 21)

[4] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy proportional
datacenter networks,” in International Symposium on Computer Architecture (ISCA),
Saint-Malo, France: ACM, 2010, pp. 338–347, isbn: 978-1-4503-0053-7. doi: 10.
1145/1815961.1816004 (see pp. 84, 160)

[5] A. Agarwal, “Limits on interconnection network performance,” IEEE Transactions
on Parallel and Distributed Systems, vol. 2, no. 4, pp. 398–412, 1991. doi: 10.1109/
71.97897 (see pp. 13, 21)

[6] B. Agrawal and T. Sherwood, “Ternary CAM power and delay model: Extensions
and uses,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 16,
no. 5, pp. 554–564, 2008, issn: 1063-8210. doi: 10.1109/TVLSI.2008.917538 (see
p. 82)

[7] B. Agrawal and T. Sherwood, Ternary CAM (TCAM) power and delay modeling, ac-
cessed: 2015-02-09, Mar. 2006. [Online]. Available: https://sites.cs.ucsb.edu/
~arch/mem-model (see p. 82)

[8] V. Ahlgren, S. Andersson, J. Brandt, N. Cardo, S. Chunduri, J. Enos, P. Fields, A.
Gentile, R. Gerber, M. Gienger, J. Greenseid, A. Greiner, B. Hadri, Y. He, D. Hoppe,
U. Kaila, K. Kelly, M. Klein, A. Kristiansen, S. Leak, M. Mason, K. Pedretti, J.-G. Pic-
cinali, J. Repik, J. Rogers, S. Salminen, M. Showerman, C. Whitney, and J. Williams,
“Large-scale system monitoring experiences and recommendations,” in 2018 IEEE

173

https://doi.org/10.1109/IEEESTD.1991.101050
https://doi.org/10.1109/mm.2003.1179894
https://doi.org/10.1145/1362622.1362646
https://doi.org/10.1145/1362622.1362646
https://doi.org/10.1145/1815961.1816004
https://doi.org/10.1145/1815961.1816004
https://doi.org/10.1109/71.97897
https://doi.org/10.1109/71.97897
https://doi.org/10.1109/TVLSI.2008.917538
https://sites.cs.ucsb.edu/~arch/mem-model
https://sites.cs.ucsb.edu/~arch/mem-model

Bibliography

International Conference on Cluster Computing (CLUSTER), IEEE, Sep. 2018. doi:
10.1109/cluster.2018.00069 (see p. 131)

[9] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “HyperX: Topol-
ogy, routing, and packaging of efficient large-scale networks,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis, 2009,
pp. 1–11 (see pp. 21, 158, 161, 162)

[10] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B. Prabhakar, and
M. Seaman, “Data center transport mechanisms: Congestion control theory and
IEEE standardization,” in 2008 46th Annual Allerton Conference on Communication,
Control, and Computing, Sep. 2008, pp. 1270–1277 (see pp. 82, 83)

[11] M.Alizadeh,A.Greenberg,D.A.Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan, “Data center TCP (DCTCP),” in ACM SIGCOMM Conference,
2010, pp. 63–74, isbn: 978-1-4503-0201-2 (see p. 158)

[12] G. Almasi, Highly parallel computing. Redwood City, CA: Benjamin - Cummings
Publishing Co. Inc., 1989, isbn: 9780805301779 (see pp. i, 1)

[13] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, Cray XC series network, WP-
Aries01-1112, accessed: 2015-06-10, 2012. [Online]. Available: https://www.cray.
com/sites/default/files/resources/CrayXCNetwork.pdf (see pp. 22, 108)

[14] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-speed switch
scheduling for local-area networks,” ACM Transactions on Computer Systems,
vol. 11, no. 4, pp. 319–352, Nov. 1993. doi: 10.1145/161541.161736 (see p. 15)

[15] B.Arimilli, R. Arimilli, V. Chung, S. Clark,W.Denzel, B.Drerup, T.Hoefler, J. Joyner,
J. Lewis, J. Li, N. Ni, and R. Rajamony, “ThePERCS high-performance interconnect,”
in 2010 18th IEEE Symposium on High Performance Interconnects, IEEE, Aug. 2010.
doi: 10.1109/hoti.2010.16 (see pp. 22, 109, 159)

[16] D.H. Bailey, E. Barszcz, J. T. Barton,D. S. Browning, R. L. Carter, L. Dagum, R. A. Fa-
toohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-
ishnan, and S. K. Weeratunga, “The NAS parallel benchmarks, summary and pre-
liminary results,” in ACM/IEEE Conference on Supercomputing, ser. Supercomput-
ing’91, Albuquerque, New Mexico, United States: ACM, 1991, pp. 158–165, isbn:
0-89791-459-7. doi: 10.1145/125826.125925 (see p. 62)

[17] E. Baubold and J. D. Haenle, “A method of deadlock-free resource allocation and
flow control in packet networks,” in Proceedings of theThird International Conference
on Computer Communication, Toronto, Canada, August 3-6, 1976, P. K. Verma, Ed.,
International Council for Computer Communication, 1976, pp. 483–487 (see p. 16)

174

https://doi.org/10.1109/cluster.2018.00069
https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
https://doi.org/10.1145/161541.161736
https://doi.org/10.1109/hoti.2010.16
https://doi.org/10.1145/125826.125925

Bibliography

[18] D. U. Becker, “Efficient microarchitecture for network-on-chip routers,” accessed:
2016-02-17, Ph.D. dissertation, Stanford University, Aug. 2012. [Online]. Available:
http://purl.stanford.edu/wr368td5072 (see p. 17)

[19] D. U. Becker and W. J. Dally, “Allocator implementations for network-on-chip
routers,” in Proceedings of the Conference on High Performance Computing Network-
ing, Storage andAnalysis - SC’09, ACMPress, 2009. doi: 10.1145/1654059.1654112
(see p. 17)

[20] M. Belka,M.Doubet, S.Meyers, R.Momoh,D. Rincon-Cruz, andD. P. Bunde, “New
link arrangements for dragonfly networks,” in 2017 IEEE 3rd International Work-
shop on High-Performance Interconnection Networks in the Exascale and Big-Data
Era (HiPINEB), IEEE, Feb. 2017. doi: 10.1109/hipineb.2017.14 (see pp. 24, 25)

[21] M. Benito, P. Fuentes, E. Vallejo, and R. Beivide, “Analysis and improvement of
Valiant routing in low-diameter networks,” in 2018 IEEE 4th International Work-
shop on High-Performance Interconnection Networks in the Exascale and Big-Data
Era (HiPINEB), IEEE, Feb. 2018. doi: 10.1109/hipineb.2018.00009 (see pp. iv, vi,
114, 116, 118)

[22] ——, “ACOR: Adaptive congestion-oblivious routing in Dragonfly networks,” Jour-
nal of Parallel and Distributed Computing, vol. 131, pp. 173–188, Sep. 2019. doi:
10.1016/j.jpdc.2019.04.022 (see pp. iv, vi, 125)

[23] M. Benito, E. Vallejo, and R. Beivide, “On the use of commodity Ethernet technol-
ogy in exascale HPC systems,” in 2015 IEEE 22nd International Conference on High
Performance Computing (HiPC), IEEE, Dec. 2015. doi: 10.1109/hipc.2015.32 (see
pp. iv, v)

[24] M. Benito, E. Vallejo, R. Beivide, and C. Izu, “Extending commodity OpenFlow
switches for large-scale HPC deployments,” in 2017 IEEE 3rd International Work-
shop on High-Performance Interconnection Networks in the Exascale and Big-Data
Era (HiPINEB), IEEE, Feb. 2017. doi: 10.1109/hipineb.2017.12 (see pp. iv, v, 83)

[25] M. Benito, E. Vallejo, C. Izu, and R. Beivide, “Non-minimal adaptive routing based
on explicit congestion notifications,” Concurrency and Computation: Practice and
Experience, vol. 31, no. 2, e4440, Jan. 2018. doi: 10.1002/cpe.4440 (see pp. iv, v,
89)

[26] T. Benson, A. Akella, andD. A.Maltz, “Network traffic characteristics of data centers
in thewild,” in 10thACMSIGCOMMConference on InternetMeasurement (IMC’10),
Melbourne, Australia, 2010, pp. 267–280, isbn: 978-1-4503-0483-2. doi: 10.1145/
1879141.1879175 (see p. 63)

175

http://purl.stanford.edu/wr368td5072
https://doi.org/10.1145/1654059.1654112
https://doi.org/10.1109/hipineb.2017.14
https://doi.org/10.1109/hipineb.2018.00009
https://doi.org/10.1016/j.jpdc.2019.04.022
https://doi.org/10.1109/hipc.2015.32
https://doi.org/10.1109/hipineb.2017.12
https://doi.org/10.1002/cpe.4440
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175

Bibliography

[27] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained traffic engi-
neering for data centers,” in Proceedings of the Seventh COnference on Emerging Net-
working EXperiments and Technologies, ser. CoNEXT ’11, Tokyo, Japan: ACM, 2011,
8:1–8:12, isbn: 978-1-4503-1041-3. doi: 10.1145/2079296.2079304 (see p. 158)

[28] M. Besta and T. Hoefler, “SlimFly: A cost effective low-diameter network topology,”
in IEEE/ACM Intl. Conf. on High Performance Computing, Networking, Storage and
Analysis (SC’14), New Orleans, LA, USA, 2014 (see pp. 21, 39, 161)

[29] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P.-T. Bremer, “Analyzing network
health and congestion in Dragonfly-based supercomputers,” in 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), IEEE, May 2016. doi:
10.1109/ipdps.2016.123 (see p. 53)

[30] Bhuyan and Agrawal, “Generalized hypercube and hyperbus structures for a com-
puter network,” IEEE Transactions on Computers, vol. C-33, no. 4, pp. 323–333, Apr.
1984. doi: 10.1109/tc.1984.1676437 (see p. 21)

[31] A. Bicas, “IBM power system AC922 introduction and technical overview,” IBM
Corp., Tech. Rep., Mar. 2018, REDP-5472-00, accessed: 2020-08-13 (see p. 61)

[32] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer, K. D.
Underwood, and R. C. Zak, “Enabling scalable high-performance systems with the
IntelOmni-Path architecture,” IEEEMicro, vol. 36, no. 4, pp. 38–47, 2016, issn: 0272-
1732 (see pp. 7, 14, 157, 158)

[33] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W.-K.
Su, “Myrinet: A gigabit-per-second local area network,” IEEE Micro, vol. 15, no. 1,
pp. 29–36, 1995. doi: 10.1109/40.342015 (see p. 28)

[34] P. Bosshart, G. Varghese, D. Walker, D. Daly, G. Gibb, M. Izzard, N. McKeown, J.
Rexford, C. Schlesinger, D. Talayco, andA.Vahdat, “P4,”ACMSIGCOMMComputer
Communication Review, vol. 44, no. 3, pp. 87–95, Jul. 2014. doi: 10.1145/2656877.
2656890 (see p. 42)

[35] J. M. Brandt, E. Froese, A. C. Gentile, L. Kaplan, B. A. Allan, and E. J. Walsh, “Net-
work performance counter monitoring and analysis on the Cray XC platform,” May
2016 (see p. 131)

[36] R. Brightwell, K. Pedretti, K. Underwood, and T. Hudson, “SeaStar interconnect:
Balanced bandwidth for scalable performance,” IEEE Micro, vol. 26, no. 3, pp. 41–
57, May 2006. doi: 10.1109/mm.2006.65 (see p. 21)

[37] “Brocade VCS fabric technical architecture,” Brocade Communications Systems,
Inc, Tech. Rep., 2012 (see p. 157)

176

https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1109/ipdps.2016.123
https://doi.org/10.1109/tc.1984.1676437
https://doi.org/10.1109/40.342015
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1109/mm.2006.65

Bibliography

[38] C. Camarero, E. Vallejo, and R. Beivide, “Topological characterization of Hamming
and Dragonfly networks and its implications on routing,” ACM Transactions on Ar-
chitecture and Code Optimization, vol. 11, no. 4, pp. 1–25, Dec. 2014. doi: 10.1145/
2677038 (see pp. ii, 23–25)

[39] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane:
Taking control of the enterprise,” in Proceedings of the 2007 conference on Applica-
tions, technologies, architectures, and protocols for computer communications - SIG-
COMM’07, ACM Press, 2007. doi: 10.1145/1282380.1282382 (see p. 41)

[40] B. Casemore, L. Rosenberg, R. Brothers, R. Costello, R. Mehra, P. Jirovsky, and N.
Greene, Worldwide enterprise communications and datacenter networks 2014: Top 10
predictions, IDC report, 2014 (see p. 61)

[41] K.-Y. K. Chang, S.-T. Chuang, N. McKeown, and M. Horowitz, “A 50 Gb/s 32×32
CMOS crossbar chip using asymmetric serial links,” in 1999 Symposium on VLSI
Circuits. Digest of Papers (IEEE Cat. No.99CH36326), Japan Society Applied Physics
(JSAP), 1999. doi: 10.1109/vlsic.1999.797221 (see p. 14)

[42] F. M. Chiussi, J. G. Kneuer, and V. P. Kumar, “Low-cost scalable switching solutions
for broadband networking:TheATLANTA architecture and chipset,” IEEE Commu-
nications Magazine, vol. 35, no. 12, pp. 44–53, Dec. 1997. doi: 10.1109/mcom.1997.
642833 (see p. 14)

[43] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output queue-
ing with a combined input output queued switch,” in IEEE INFOCOM’99. Confer-
ence on Computer Communications. Proceedings. Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. The Future is Now (Cat.
No.99CH36320), IEEE, 1999. doi: 10.1109/infcom.1999.751673 (see p. 15)

[44] Cisco Inc., Cisco Catalyst 3750-X and 3560-X series switches data sheet, accessed:
2015-01-28, May 2013. [Online]. Available: https://www.cisco.com/c/en/us/
products/collateral/switches/catalyst-3560-x-series-switches/data_

sheet_c78-584733.html (see p. 64)

[45] ——, “Nexus 7000 FabricPath whitepaper version 2.0,” Cisco, Tech. Rep., Sep. 2013
(see pp. 64, 157)

[46] ——, Cisco Nexus 3548-X and 3524-X switches data sheet, accessed: 2015-01-28,
2015. [Online]. Available: https : / / www . cisco . com / c / en / us / products /
collateral/switches/nexus-3548-switch/data_sheet_c78-707001.html

(see p. 64)

[47] C.Clos, “A study of non-blocking switchingnetworks,”Bell SystemTechnical Journal,
vol. 32, no. 2, pp. 406–424,Mar. 1953. doi: 10.1002/j.1538-7305.1953.tb01433.x
(see pp. 5, 21)

177

https://doi.org/10.1145/2677038
https://doi.org/10.1145/2677038
https://doi.org/10.1145/1282380.1282382
https://doi.org/10.1109/vlsic.1999.797221
https://doi.org/10.1109/mcom.1997.642833
https://doi.org/10.1109/mcom.1997.642833
https://doi.org/10.1109/infcom.1999.751673
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-3560-x-series-switches/data_sheet_c78-584733.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-3560-x-series-switches/data_sheet_c78-584733.html
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-3560-x-series-switches/data_sheet_c78-584733.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3548-switch/data_sheet_c78-707001.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-3548-switch/data_sheet_c78-707001.html
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x

Bibliography

[48] P. Congdon, P. Mohapatra, M. Farrens, and V. Akella, “Simultaneously reducing
latency and power consumption in OpenFlow switches,” Networking, IEEE/ACM
Transactions on, vol. 22, no. 3, pp. 1007–1020, Jun. 2014, issn: 1063-6692. doi: 10.
1109/TNET.2013.2270436 (see pp. 82, 84, 160)

[49] Cray Inc., “About Aries hardware counters,” Tech. Rep., Nov. 2018, accessed: 2020-
07-30 and downloaded as PDFwith publication number S-0045-40. [Online]. Avail-
able: https://pubs.cray.com/bundle/Aries_Hardware_Counters_S-0045-
40/page/About_Aries_Hardware_Counter_S-0045.html (see pp. vii, 108, 131)

[50] Dally and Seitz, “Deadlock-free message routing in multiprocessor interconnection
networks,” IEEETransactions onComputers, vol. C-36, no. 5, pp. 547–553,May 1987.
doi: 10.1109/tc.1987.1676939 (see p. 34)

[51] W. Dally, “Performance analysis of k-ary n-cube interconnection networks,” IEEE
Transactions on Computers, vol. 39, no. 6, pp. 775–785, Jun. 1990. doi: 10.1109/12.
53599 (see pp. 13, 21)

[52] ——, “Virtual-channel flow control,” IEEE Transactions on Parallel and Distributed
Systems, vol. 3, no. 2, pp. 194–205, Mar. 1992. doi: 10.1109/71.127260 (see pp. 34,
39)

[53] W. J. Dally and C. L. Seitz, “The torus routing chip,” Distributed Computing, vol. 1,
no. 4, pp. 187–196, Dec. 1986. doi: 10.1007/bf01660031 (see p. 34)

[54] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection Networks. San
Francisco, CA,USA:MorganKaufmannPublishers Inc., 2004, isbn: 9780080497808
(see pp. i, iv, 3, 8, 16–19, 21, 27, 34, 35, 38, 47, 50, 51, 53)

[55] A. Daryin and A. Korzh, “Early evaluation of direct large-scale InfiniBand net-
works with adaptive routing,” Supercomputing frontiers and innovations, vol. 1, no. 3,
pp. 56–69, 2015, issn: 2313-8734 (see p. 157)

[56] A. DeConinck, H. A. Nam, D. Morton, A. Bonnie, C. Lueninghoener, J. M. Brandt,
A. C. Gentile, K. Pedretti, A. M. Agelastos, C. T. Vaughan, S. D. Hammond, B. A.
Allan, M. Davis, and J. J. Repik, “Runtime collection and analysis of system metrics
for production monitoring of Trinity Phase II,” May 2017 (see p. 131)

[57] S. Derradji, T. Palfer-Sollier, J.-P. Panziera, A. Poudes, and F.W.Atos, “TheBXI inter-
connect architecture,” in 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects, IEEE, Aug. 2015. doi: 10.1109/hoti.2015.15 (see p. 14)

[58] J. Domke, S. Matsuoka, I. Radanov, Y. Tsushima, T. Yuki, A. Nomura, S. Miura, N.
McDonald, D. L. Floyd, and N. Dube, “The first supercomputer with HyperX topol-
ogy:A viable alternative to fat-trees?” In 2019 IEEE SymposiumonHigh-Performance
Interconnects (HOTI), IEEE, Aug. 2019. doi: 10.1109/hoti.2019.00013 (see p. 22)

178

https://doi.org/10.1109/TNET.2013.2270436
https://doi.org/10.1109/TNET.2013.2270436
https://pubs.cray.com/bundle/Aries_Hardware_Counters_S-0045-40/page/About_Aries_Hardware_Counter_S-0045.html
https://pubs.cray.com/bundle/Aries_Hardware_Counters_S-0045-40/page/About_Aries_Hardware_Counter_S-0045.html
https://doi.org/10.1109/tc.1987.1676939
https://doi.org/10.1109/12.53599
https://doi.org/10.1109/12.53599
https://doi.org/10.1109/71.127260
https://doi.org/10.1007/bf01660031
https://doi.org/10.1109/hoti.2015.15
https://doi.org/10.1109/hoti.2019.00013

Bibliography

[59] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineering Ap-
proach, M. K. Publishers, Ed. Elsevier Science & Technology, Jul. 29, 2002, 624 pp.,
isbn: 978-1558608528 (see pp. i, ii, 3, 40)

[60] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson, J.
Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade: A scalable HPC system based
on a Dragonfly network,” in 2012 International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, Nov. 2012. doi: 10.1109/sc.
2012.39 (see pp. 22, 29, 39, 109, 159, 161)

[61] P. Faizian, J. F. Alfaro, M. S. Rahman, M. A. Mollah, X. Yuan, S. Pakin, and M. Lang,
“TPR: Traffic pattern-based adaptive routing for dragonfly networks,” IEEE Trans-
actions on Multi-Scale Computing Systems, vol. 4, no. 4, pp. 931–943, Oct. 2018, issn:
2372-207X. doi: 10.1109/TMSCS.2018.2877264 (see pp. 131, 142, 162)

[62] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera:
Dynamic flow scheduling for data center networks,” in USENIX Conference on Net-
worked Systems Design and Implementation (NSDI), 2010 (see pp. 62, 76, 158, 162)

[63] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fain-
man, G. Papen, and A. Vahdat, “Helios: A hybrid electrical/optical switch architec-
ture for modular data centers,” in ACM SIGCOMM Conference, New Delhi, India,
2010, pp. 339–350, isbn: 978-1-4503-0201-2 (see pp. 62, 76)

[64] M. Flajslik, E. Borch, andM.A. Parker, “Megafly:A topology for exascale systems,” in
Lecture Notes in Computer Science, Springer International Publishing, 2018, pp. 289–
310. doi: 10.1007/978-3-319-92040-5_15 (see pp. 21, 29)

[65] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-
ance,” IEEE/ACMTrans. Netw., vol. 1, no. 4, pp. 397–413, Aug. 1993, issn: 1063-6692
(see p. 158)

[66] P. Fuentes, E. Vallejo, M. Garcia, R. Beivide, G. Rodriguez, C. Minkenberg, and M.
Valero, “Contention-based nonminimal adaptive routing in high-radix networks,”
in 2015 IEEE International Parallel and Distributed Processing Symposium, 2015,
pp. 103–112 (see p. 159)

[67] P. Fuentes, M. Benito, E. Vallejo, J. L. Bosque, R. Beivide, A. Anghel, G. Rodríguez,
M. Gusat, C. Minkenberg, and M. Valero, “A scalable synthetic traffic model of
Graph500 for computer networks analysis,” Concurrency and Computation: Practice
and Experience, vol. 29, no. 24, e4231, Jul. 2017. doi: 10.1002/cpe.4231 (see p. iv)

[68] P. Fuentes, E. Vallejo, C. Camarero, R. Beivide, and M. Valero, “Network unfairness
in Dragonfly topologies,” The Journal of Supercomputing, vol. 72, no. 12, pp. 4468–
4496, 2016, issn: 1573-0484. doi: 10.1007/s11227-016-1758-z (see pp. 30, 149)

179

https://doi.org/10.1109/sc.2012.39
https://doi.org/10.1109/sc.2012.39
https://doi.org/10.1109/TMSCS.2018.2877264
https://doi.org/10.1007/978-3-319-92040-5_15
https://doi.org/10.1002/cpe.4231
https://doi.org/10.1007/s11227-016-1758-z

Bibliography

[69] Fujitsu, Supercomputer Fugaku: The world’s top-level supercomputer, accessed: 2020-
08-13. [Online]. Available: https : / / www . fujitsu . com / global / about /

innovation/fugaku (see p. 61)

[70] Fujitsu Laboratories Ltd., Fujitsu laboratories develops technology to reduce network
switches in cluster supercomputers by 40%, maintains network performance, lowers
energy consumption, accessed: 2015-07-14, Jul. 2014. [Online]. Available: https :
//www.fujitsu.com/global/about/resources/news/press-releases/2014/

0715-02.html (see p. 161)

[71] Fujitsu Limited, “Fujitsu processor A64FX,” Fujitsu, Tech. Rep., 2020, accessed:
2020-08-13. [Online]. Available: https://www.fujitsu.com/downloads/SUPER/
a64fx/a64fx_datasheet.pdf (see p. 61)

[72] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero, M. Valero, G. Ro-
driguez, J. Labarta, and C. Minkenberg, “On-the-fly adaptive routing in high-radix
hierarchical networks,” in 2012 41st International Conference on Parallel Processing,
IEEE, Sep. 2012. doi: 10.1109/icpp.2012.46 (see pp. 25, 30, 161)

[73] M. García, P. Fuentes, M. Benito, M. Odriozola, E. Vallejo, and R. Beivide, FOGSim
interconnection network simulator, accessed: 2020-08-20, 2014. [Online]. Available:
https://www.atc.unican.es/sw_fogsim.html (see pp. v, 51)

[74] M. García, E. Vallejo, R. Beivide, M. Odriozola, and M. Valero, “Efficient routing
mechanisms for dragonfly networks,” in The 42nd International Conference on Par-
allel Processing (ICPP-42), 2013 (see pp. 61, 76, 158, 159)

[75] P. J. García, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and F. Naven, “Dynamic evo-
lution of congestion trees: Analysis and impact on switch architecture,” in High
Performance Embedded Architectures and Compilers: First International Conference,
HiPEAC 2005, Barcelona, Spain, November 17-18, 2005. Proceedings, T. Conte, N.
Navarro, W.-m. W. Hwu, M. Valero, and T. Ungerer, Eds. Springer Berlin Heidel-
berg, 2005, pp. 266–285, isbn: 978-3-540-32272-6 (see p. 80)

[76] M. Gerla and L. Kleinrock, “Congestion control in interconnected LANs,” IEEE Net-
work, vol. 2, no. 1, pp. 72–76, Jan. 1988. doi: 10.1109/65.3241 (see p. 35)

[77] B. Goglin, “High-performance message-passing over generic Ethernet hardware
with Open-MX,” Parallel Computing, vol. 37, no. 2, pp. 85–100, 2011, issn: 0167-
8191 (see p. 64)

[78] P. Gratz, B. Grot, and S.W. Keckler, “Regional congestion awareness for load balance
in networks-on-chip,” in 2008 IEEE 14th International Symposium on High Perfor-
mance Computer Architecture, IEEE, Feb. 2008. doi: 10.1109/hpca.2008.4658640
(see p. 27)

180

https://www.fujitsu.com/global/about/innovation/fugaku
https://www.fujitsu.com/global/about/innovation/fugaku
https://www.fujitsu.com/global/about/resources/news/press-releases/2014/0715-02.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2014/0715-02.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2014/0715-02.html
https://www.fujitsu.com/downloads/SUPER/a64fx/a64fx_datasheet.pdf
https://www.fujitsu.com/downloads/SUPER/a64fx/a64fx_datasheet.pdf
https://doi.org/10.1109/icpp.2012.46
https://www.atc.unican.es/sw_fogsim.html
https://doi.org/10.1109/65.3241
https://doi.org/10.1109/hpca.2008.4658640

Bibliography

[79] K. Günther, “Prevention of deadlocks in packet-switched data transport systems,”
IEEE Transactions on Communications, vol. 29, no. 4, pp. 512–524, Apr. 1981. doi:
10.1109/tcom.1981.1095021 (see p. 39)

[80] E. Hastings, D. Rincon-Cruz, M. Spehlmann, S. Meyers, A. Xu, D. P. Bunde, and V. J.
Leung, “Comparing global link arrangements forDragonfly networks,” in 2015 IEEE
International Conference on Cluster Computing, IEEE, Sep. 2015. doi: 10 . 1109 /
cluster.2015.57 (see pp. 24, 25)

[81] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown, “ElasticTree: Saving energy in data center networks,” in 7th USENIX
Conference on Networked Systems Design and Implementation (NSDI’10), San Jose,
California: USENIX Association, 2010, pp. 17–17 (see pp. 158, 160)

[82] A. J. Hoffman and R. R. Singleton, “On Moore graphs with diameters 2 and 3,” IBM
Journal of Research and Development, vol. 4, no. 5, pp. 497–504, Nov. 1960. doi:
10.1147/rd.45.0497 (see pp. iv, 8)

[83] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” The Internet Society,
Tech. Rep., Nov. 2000. doi: 10.17487/rfc2992 (see pp. 72, 159)

[84] I. Y.-L.Hsiao,D.-H.Wang, andC.-W. Jen, “Powermodeling and low-power design of
content addressable memories,” in IEEE Intl. Symp. on Circuits and Systems (ISCAS),
vol. 4, 2001, 926–929 vol. 4. doi: 10.1109/ISCAS.2001.922390 (see p. 82)

[85] IBM, “Overview of the IBM Blue Gene/P project,” IBM Journal of Research and De-
velopment, vol. 52, no. 1.2, pp. 199–220, Jan. 2008. doi: 10.1147/rd.521.0199 (see
p. 21)

[86] IEEE 802.3ad-2000 - IEEE standard for information technology - local and metropoli-
tan area networks - part 3: Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specifications-aggregation of multiple
link segments, IEEE Computer Society, Jul. 2000 (see p. 72)

[87] IEEE 802.3x-1997 - IEEE standards for local and metropolitan area networks: Sup-
plements to carrier sense multiple access with collision detection (CSMA/CD) access
method and physical layer specifications - specification for 802.3 full duplex operation
and physical layer specification for 100 Mb/s operation on two pairs of category 3 or
better balanced twisted pair cable (100BASE-T2), IEEE Computer Society, Jul. 2000
(see p. 61)

[88] IEEE standard for local and metropolitan area networks–media access control (MAC)
bridges and virtual bridged local area networks - amendment 17: Priority-based flow
control, 802.1Qbb, IEEE Computer Society, 2011 (see pp. 61, 72, 157)

181

https://doi.org/10.1109/tcom.1981.1095021
https://doi.org/10.1109/cluster.2015.57
https://doi.org/10.1109/cluster.2015.57
https://doi.org/10.1147/rd.45.0497
https://doi.org/10.17487/rfc2992
https://doi.org/10.1109/ISCAS.2001.922390
https://doi.org/10.1147/rd.521.0199

Bibliography

[89] IEEE standard for local and metropolitan area networks–virtual bridged local area
networks - amendment: 10: Congestion notification, 802.1Qau, IEEE Computer So-
ciety, 2010 (see pp. 37, 158, 166)

[90] IEEE standard for local and metropolitan area networks: Virtual bridged local area
networks - amendment 8: Shortest path bridging, 802.1aq, IEEE Computer Society,
Mar. 2012 (see p. 157)

[91] IEEE Standards Association, Assigned Ethertype values list, accessed: 2015-02-17,
Mar. 2005. [Online]. Available: http://standards.ieee.org/develop/regauth/
ethertype/eth.txt (see p. 71)

[92] Infiniband Trade Association, Supplement to InfiniBand architecture specification
volume 1 release 1.2.1. annex a17: RoCEv2, accessed: 2015-01-20, Sep. 2, 2014. [On-
line]. Available: https://cw.infinibandta.org/document/dl/7781 (see pp. 64,
158)

[93] N. Jain, A. Bhatele, X. Ni, N. J. Wright, and L. V. Kale, “Maximizing throughput
on a Dragonfly network,” in SC’14: International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, Nov. 2014. doi: 10.1109/sc.
2014.33 (see pp. 53, 55)

[94] N. Jiang, D. U. Becker, G. Michelogiannakis, and W. J. Dally, “Network congestion
avoidance through speculative reservation,” in IEEE International Symposium on
High-Performance Computer Architecture, Feb. 2012, pp. 1–12 (see p. 160)

[95] N. Jiang, L. Dennison, and W. J. Dally, “Network endpoint congestion control for
fine-grained communication,” in SC’15: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2015, pp. 1–12 (see p. 160)

[96] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on large scale inter-
connection networks,” ACM SIGARCH Computer Architecture News, vol. 37, no. 3,
p. 220, Jun. 2009. doi: 10.1145/1555815.1555783 (see pp. ii, 32, 33, 61, 76, 85, 105,
108, 129, 141, 158, 159)

[97] M. Jurczyk andT. Schwederski, “Phenomenon of higher order head-of-line blocking
in multistage interconnection networks under nonuniform traffic patterns,” IEICE
Transactions on Information and Systems, vol. 79, pp. 1124–1129, 1996 (see p. 80)

[98] R. Kahn and W. Crowther, “Flow control in a resource-sharing computer network,”
IEEE Transactions on Communications, vol. 20, no. 3, pp. 539–546, Jun. 1972. doi:
10.1109/tcom.1972.1091202 (see p. 34)

[99] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load balancing without
packet reordering,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 2, pp. 51–62,
Mar. 2007, issn: 0146-4833. doi: 10.1145/1232919.1232925 (see pp. 76, 158)

182

http://standards.ieee.org/develop/regauth/ethertype/eth.txt
http://standards.ieee.org/develop/regauth/ethertype/eth.txt
https://cw.infinibandta.org/document/dl/7781
https://doi.org/10.1109/sc.2014.33
https://doi.org/10.1109/sc.2014.33
https://doi.org/10.1145/1555815.1555783
https://doi.org/10.1109/tcom.1972.1091202
https://doi.org/10.1145/1232919.1232925

Bibliography

[100] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The nature of data
center traffic: Measurements & analysis,” in 9th ACM SIGCOMM Conference on In-
ternet Measurement Conference, Chicago, Illinois, USA: ACM, 2009, pp. 202–208,
isbn: 978-1-60558-771-4 (see p. 62)

[101] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction in TCAM for
power aware SDN,” English, in Distributed Computing and Networking, ser. Lecture
Notes in Computer Science, D. Frey, M. Raynal, S. Sarkar, R. Shyamasundar, and P.
Sinha, Eds., vol. 7730, Springer Berlin Heidelberg, 2013, pp. 439–444, isbn: 978-3-
642-35667-4. doi: 10.1007/978-3-642-35668-1_32 (see p. 82)

[102] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output queueing on a
space-division packet switch,” IEEE Trans. Communications, vol. 35, pp. 1347–1356,
1987 (see pp. 14, 15)

[103] G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, and T. Hoefler, “Cost-
effective diameter-two topologies: Analysis and evaluation,” in SC’15: International
Conference for High Performance Computing, Networking, Storage and Analysis, Nov.
2015, pp. 1–11. doi: 10.1145/2807591.2807652 (see p. 161)

[104] D. J. Kerbyson and K. J. Barker, “Analyzing the performance bottlenecks of the
POWER7-IH network,” in 2011 IEEE International Conference on Cluster Comput-
ing, IEEE, Sep. 2011. doi: 10.1109/cluster.2011.35 (see p. 55)

[105] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer communica-
tion switching technique,”Computer Networks (1976), vol. 3, no. 4, pp. 267–286, Sep.
1979. doi: 10.1016/0376-5075(79)90032-1 (see p. 34)

[106] C. Kim, M. Caesar, and J. Rexford, “SEATTLE: A scalable ethernet architecture for
large enterprises,” ACM Trans. Comput. Syst., vol. 29, no. 1, 1:1–1:35, 2011, issn:
0734-2071. doi: 10.1145/1925109.1925110 (see p. 71)

[107] J. Kim,W.Dally, B. Towles, andA. Gupta, “Microarchitecture of a high-radix router,”
in 32nd International Symposium on Computer Architecture (ISCA’05), IEEE, 2005.
doi: 10.1109/isca.2005.35 (see p. 13)

[108] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable Drag-
onfly topology,” ACM SIGARCH Computer Architecture News, vol. 36, no. 3, pp. 77–
88, Jun. 2008. doi: 10.1145/1394608.1382129 (see pp. ii, iv, 8, 21, 22, 24, 26, 30,
32, 39, 52, 57, 61, 66, 74, 76, 105, 133, 158, 160)

[109] J. Kim, W. J. Dally, and D. Abts, “Adaptive routing in high-radix Clos network,” in
SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006. doi:
10.1109/SC.2006.10 (see p. 158)

183

https://doi.org/10.1007/978-3-642-35668-1_32
https://doi.org/10.1145/2807591.2807652
https://doi.org/10.1109/cluster.2011.35
https://doi.org/10.1016/0376-5075(79)90032-1
https://doi.org/10.1145/1925109.1925110
https://doi.org/10.1109/isca.2005.35
https://doi.org/10.1145/1394608.1382129
https://doi.org/10.1109/SC.2006.10

Bibliography

[110] ——, “Flattened Butterfly: A cost-efficient topology for high-radix networks,” ACM
SIGARCH Computer Architecture News, vol. 35, no. 2, p. 126, Jun. 2007. doi: 10.
1145/1273440.1250679 (see pp. iv, 8, 21, 22, 39, 66, 74, 158)

[111] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, K. Yelick, K. Bergman,
S. Borkar, D. Campbell, W. Carlson,W. Dally, M. Denneau, P. Franzon,W. Harrod, J.
Hiller, S. Keckler, D. Klein, P. Kogge, R. S. Williams, and K. Yelick, ExaScale comput-
ing study: Technology challenges in achieving exascale systems, Sep. 2008 (see p. 84)

[112] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting to the new normal for
computer architecture,” Computing in Science & Engineering, vol. 15, no. 6, pp. 16–
26, Nov. 2013. doi: 10.1109/mcse.2013.95 (see pp. i, 1)

[113] T. Kohonen, Content-Addressable Memories, 2nd ed. Springer Berlin Heidelberg,
1987, isbn: 9783540176251. doi: 10.1007/978-3-642-83056-3 (see p. 17)

[114] D. Kreutz, F. M. V. Ramos, P. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,” CoRR,
vol. abs/1406.0440, 2014 (see p. 67)

[115] R.Krishnan, L. Yong,A.Ghanwani,N. So, andB.Khasnabish, “Mechanisms for opti-
mizing link aggregation group (LAG) and equal-costmultipath (ECMP) component
link utilization in networks (RFC 7424),” Internet Engineering Task Force (IETF),
RFC 7424, Jan. 2015, ISSN: 2070-1721, accessed: 2015-05-14. [Online]. Available:
https://tools.ietf.org/html/rfc7424 (see p. 158)

[116] H. T. Kung, T. Blackwell, and A. Chapman, “Credit-based flow control for ATMnet-
works,” in Proceedings of the conference on Communications architectures, protocols
and applications - SIGCOMM’94, ACM Press, Oct. 1994. doi: 10.1145/190314.
190324 (see p. 36)

[117] J. Labarta, S. Girona, and T. Cortes, “Analyzing scheduling policies usingDimemas,”
Parallel Computing, vol. 23, no. 1-2, pp. 23–34, Apr. 1997. doi: 10.1016/s0167-
8191(96)00094-4 (see p. 51)

[118] J. Laudon and D. Lenoski, “The SGI origin,” in Proceedings of the 24th annual in-
ternational symposium on Computer architecture - ISCA’97, ACM Press, 1997. doi:
10.1145/264107.264206 (see p. 21)

[119] Lawrence Livermore National Laboratory, Sierra supercomputer, accessed: 2020-08-
26. [Online]. Available: https://computing.llnl.gov/computers/sierra (see
pp. 21, 157)

184

https://doi.org/10.1145/1273440.1250679
https://doi.org/10.1145/1273440.1250679
https://doi.org/10.1109/mcse.2013.95
https://doi.org/10.1007/978-3-642-83056-3
https://tools.ietf.org/html/rfc7424
https://doi.org/10.1145/190314.190324
https://doi.org/10.1145/190314.190324
https://doi.org/10.1016/s0167-8191(96)00094-4
https://doi.org/10.1016/s0167-8191(96)00094-4
https://doi.org/10.1145/264107.264206
https://computing.llnl.gov/computers/sierra

Bibliography

[120] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient supercomput-
ing,” IEEE Transactions on Computers, vol. C-34, no. 10, pp. 892–901, Oct. 1985. doi:
10.1109/tc.1985.6312192 (see p. 21)

[121] S.-Y. Li, “Theory of periodic contention and its application to packet switching,”
in IEEE INFOCOM’88, Seventh Annual Joint Conference of the IEEE Computer and
Communcations Societies. Networks: Evolution or Revolution?, IEEE, 1988. doi: 10.
1109/infcom.1988.12933 (see p. 15)

[122] Los AlamosNational Laboratory,Trinity supercomputer, accessed: 2020-08-26. [On-
line]. Available: https://www.lanl.gov/projects/trinity/ (see p. 22)

[123] C.Macapuna, C. Rothenberg, andM.Magalhães, “In-packet Bloom filter based data
center networking with distributed OpenFlow controllers,” in IEEE GLOBECOM
Workshops (GC Wkshps), Dec. 2010, pp. 584–588. doi: 10.1109/GLOCOMW.2010.
5700387 (see p. 157)

[124] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright, “Virtual extensible local area network (VXLAN): A framework for
overlaying virtualized layer 2 networks over layer 3 networks (RFC 7348),” Inde-
pendent Submission, RFC 7348, Aug. 2014, ISSN: 2070-1721, accessed: 2015-01-16.
[Online]. Available: https://tools.ietf.org/html/rfc7348 (see pp. 65, 157)

[125] A. McAuley and P. Francis, “Fast routing table lookup using CAMs,” in IEEE INFO-
COM’93 The Conference on Computer Communications, Proceedings, IEEE Comn-
put. Soc. Press, 1993. doi: 10.1109/infcom.1993.253403 (see p. 17)

[126] N. McDonald, M. Isaev, A. Flores, A. Davis, and J. Kim, “Practical and efficient
incremental adaptive routing for HyperX networks,” in Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analy-
sis, ACM, Nov. 2019. doi: 10.1145/3295500.3356151 (see p. 26)

[127] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,”
IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp. 188–201, Apr. 1999.
doi: 10.1109/90.769767 (see p. 18)

[128] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz, “Tiny Tera:
A packet switch core,” IEEE Micro, vol. 17, no. 1, pp. 26–33, 1997. doi: 10.1109/40.
566194 (see pp. 14, 15)

[129] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: Enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, p. 69, Mar. 2008.
doi: 10.1145/1355734.1355746 (see pp. 41, 61)

[130] Mellanox Inc., “RoCE in the data center,”Mellanox, Tech. Rep., Oct. 2014 (see pp. 64,
158)

185

https://doi.org/10.1109/tc.1985.6312192
https://doi.org/10.1109/infcom.1988.12933
https://doi.org/10.1109/infcom.1988.12933
https://www.lanl.gov/projects/trinity/
https://doi.org/10.1109/GLOCOMW.2010.5700387
https://doi.org/10.1109/GLOCOMW.2010.5700387
https://tools.ietf.org/html/rfc7348
https://doi.org/10.1109/infcom.1993.253403
https://doi.org/10.1145/3295500.3356151
https://doi.org/10.1109/90.769767
https://doi.org/10.1109/40.566194
https://doi.org/10.1109/40.566194
https://doi.org/10.1145/1355734.1355746

Bibliography

[131] ——, “InfiniBand port counters,”Mellanox, Tech. Rep., Apr. 9, 2019, accessed: 2020-
07-30. [Online]. Available: https : / / community . mellanox . com / s / article /
infiniband-port-counters (see pp. vii, 131, 158)

[132] ——, “RoCE v2 consideration,” Mellanox, Tech. Rep., Apr. 2019, accessed: 2020-08-
23. [Online]. Available: https://community.mellanox.com/s/article/roce-v2-
considerations (see p. 64)

[133] L. Mhamdi, “PBC: A partially buffered crossbar packet switch,” IEEE Transactions
on Computers, vol. 58, no. 11, pp. 1568–1581, Nov. 2009. doi: 10.1109/tc.2009.65
(see p. 14)

[134] G.Michelogiannakis, N. Jiang, D. Becker, andW. J. Dally, “Channel reservation pro-
tocol for over-subscribed channels and destinations,” in SC’13: Intl Conf.High Perfor-
mance Computing, Networking, Storage andAnalysis, Nov. 2013, pp. 1–12 (see p. 160)

[135] M. Miller and J. Sirán, “Moore graphs and beyond: A survey of the degree/diameter
problem,” The Electronic Journal of Combinatorics, vol. 1000, May 2013. doi: 10.
37236/35 (see pp. iv, 8)

[136] C. Minkenberg, M. Gusat, and G. Rodriguez, “Adaptive routing in data center
bridges,” in 17th IEEE Symposium on High Performance Interconnects (HOTI), 2009,
pp. 33–41. doi: 10.1109/HOTI.2009.14 (see p. 159)

[137] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis, and S. Banerjee,
“DevoFlow: Cost-effective flow management for high performance enterprise net-
works,” in SIGCOMM Workshop on Hot Topics in Networks, 2010, isbn: 978-1-4503-
0409-2 (see pp. 62, 76, 158)

[138] S.Mukherjee, P. Bannon, S. Lang, A. Spink, andD.Webb, “TheAlpha 21364 network
architecture,” IEEE Micro, vol. 22, no. 1, pp. 26–35, 2002. doi: 10.1109/40.988687
(see p. 21)

[139] H. M. Mulder, “Interval-regular graphs,” Discrete Mathematics, vol. 41, no. 3,
pp. 253–269, 1982. doi: 10.1016/0012-365x(82)90021-8 (see p. 21)

[140] M. Nabeshima, “Performance evaluation of a combined input- and crosspoint-
queued switch,” IEICE Transactions on Communications, pp. 737–741, Jan. 2000 (see
p. 14)

[141] NECCorporation, “NECProgrammableFlow: An open and programmable network
fabric for datacenters and the cloud,”NECCorporation, Tech. Rep., 2012 (see p. 160)

[142] F. D. Neeser, N. I. Chrysos, R. Clauberg, D. Crisan, M. Gusat, C. Minkenberg, K. M.
Valk, and C. Basso, “Occupancy sampling for terabit CEE switches,” in 20th An-
nual Symposium onHigh-Performance Interconnects, 2012, pp. 64–71. doi: 10.1109/
HOTI.2012.14sci (see pp. 37, 83, 91)

186

https://community.mellanox.com/s/article/infiniband-port-counters
https://community.mellanox.com/s/article/infiniband-port-counters
https://community.mellanox.com/s/article/roce-v2-considerations
https://community.mellanox.com/s/article/roce-v2-considerations
https://doi.org/10.1109/tc.2009.65
https://doi.org/10.37236/35
https://doi.org/10.37236/35
https://doi.org/10.1109/HOTI.2009.14
https://doi.org/10.1109/40.988687
https://doi.org/10.1016/0012-365x(82)90021-8
https://doi.org/10.1109/HOTI.2012.14sci
https://doi.org/10.1109/HOTI.2012.14sci

Bibliography

[143] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrish-
nan, V. Subramanya, and A. Vahdat, “PortLand: A scalable fault-tolerant layer 2 data
center network fabric,” in ACM SIGCOMM Conference on Data Communication,
ser. SIGCOMM ’09, Barcelona, Spain: ACM, 2009, pp. 39–50, isbn: 978-1-60558-
594-9 (see pp. 65, 71, 157)

[144] Open Compute Project Community, Open compute project network specifications
and designs, accessed: 2015-12-17, 2015. [Online]. Available: http : / / www .

opencompute.org/wiki/Networking/SpecsAndDesigns (see p. 61)

[145] Open Networking Foundation, OpenFlow switch specification version 1.0.0, ONF
TS-001, accessed: 2015-01-13, Dec. 2009. [Online]. Available: http://archive.
openflow.org/documents/openflow-spec-v1.0.0.pdf (see pp. 41, 71)

[146] ——, OpenFlow switch specification version 1.5.1, ONF TS-025, accessed: 2020-08-
22, Mar. 2015. [Online]. Available: https : / / www . opennetworking . org / wp -
content/uploads/2014/10/openflow-switch-v1.5.1.pdf (see p. 42)

[147] C. Ozveren, R. Simcoe, and G. Varghese, “Reliable and efficient hop-by-hop flow
control,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 4, pp. 642–
650, May 1995. doi: 10.1109/49.382155 (see p. 36)

[148] M. Parker, S. Scott, A. Cheng, and J. Kim, “Progressive adaptive routing in a Drag-
onfly processor interconnect network,” US 9,137,143 B2, Sep. 15, 2015 (see p. 161)

[149] C. Partridge, P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham,M.Hathaway,
P. Herman, A. King, S. Kohlami, T. Ma, J. Mcallen, T. Mendez, W. Milliken, R. Os-
terlind, R. Pettyjohn, J. Rokosz, J. Seeger, M. Sollins, S. Storch, B. Tober, G. Troxel,
D. Waitzman, and S. Winterble, “A fifty gigabit per second IP router,” IEEE/ACM
Transuctions on Networking, 1998 (see p. 15)

[150] I. Pérez, E. Vallejo, and R. Beivide, “SMART++: Reducing cost and improving effi-
ciency of multi-hop bypass in NoC routers,” in Proceedings of the 13th IEEE/ACM
International Symposium on Networks-on-Chip - NOCS’19, ACM Press, 2019. doi:
10.1145/3313231.3352364 (see p. 35)

[151] R. Perlman, “RBridges: Transparent routing,” in INFOCOM 2004. Twenty-third An-
nualJoint Conference of the IEEE Computer and Communications Societies, vol. 2,
2004, 1211–1218 vol.2. doi: 10.1109/INFCOM.2004.1357007 (see pp. 64, 157)

[152] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni, W. Rooney, T. Engbersen, R.
Luijten, R. Krishnamurthy, and J. Duato, “Solving hot spot contention using Infini-
Band architecture congestion control,” in High Performance Interconnects for Dis-
tributed Computing Workshop (HPI-DC), 2005 (see pp. 37, 158)

[153] G. F. Pfister, “An introduction to the InfiniBand architecture,” High Performance
Mass Storage and Parallel I/O, vol. 42, pp. 617–632, 2001 (see pp. 7, 64, 157)

187

http://www.opencompute.org/wiki/Networking/SpecsAndDesigns
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://doi.org/10.1109/49.382155
https://doi.org/10.1145/3313231.3352364
https://doi.org/10.1109/INFCOM.2004.1357007

Bibliography

[154] M. Ponce, R. van Zon, S. Northrup, D. Gruner, J. Chen, F. Ertinaz, A. Fedoseev,
L. Groer, F. Mao, B. C. Mundim, M. Nolta, J. Pinto, M. Saldarriaga, V. Slavnic, E.
Spence, C.-H. Yu, and W. R. Peltier, “Deploying a top-100 supercomputer for large
parallel workloads,” in Proceedings of the Practice and Experience in Advanced Re-
search Computing on Rise of the Machines (learning) - PEARC’19, ACM, Jul. 2019.
doi: 10.1145/3332186.3332195 (see p. 22)

[155] B. Prabhakar and N. McKeown, “On the speedup required for combined input- and
output-queued switching,” Automatica, vol. 35, no. 12, pp. 1909–1920, Dec. 1999.
doi: 10.1016/s0005-1098(99)00129-6 (see pp. 14, 15)

[156] M. S. Rahman, S. Bhowmik, Y. Ryasnianskiy, X. Yuan, and M. Lang, “Topology-
custom UGAL routing on Dragonfly,” in Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, ACM, Nov.
2019. doi: 10.1145/3295500.3356208 (see pp. 105, 161)

[157] N. Rajovic, A. Rico, F. Mantovani, D. Ruiz, J. O. Vilarrubi, C. Gomez, L. Backes,
D. Nieto, H. Servat, X. Martorell, J. Labarta, E. Ayguade, C. Adeniyi-Jones, S. Der-
radji, H. Gloaguen, P. Lanucara, N. Sanna, J.-F. Mehaut, K. Pouget, B. Videau, E.
Boyer, M. Allalen, A. Auweter, D. Brayford, D. Tafani, V. Weinberg, D. Brommel, R.
Halver, J. H. Meinke, R. Beivide, M. Benito, E. Vallejo, M. Valero, and A. Ramirez,
“The Mont-Blanc prototype: An alternative approach for HPC systems,” in SC’16:
International Conference for High Performance Computing, Networking, Storage and
Analysis, IEEE, Nov. 2016. doi: 10.1109/sc.2016.37 (see pp. iv, 8, 9, 157)

[158] K. Ramakrishnan, S. Floyd, andD. Black, “The addition of explicit congestion notifi-
cation (ECN) to IP (RFC 3168),” NetworkWorking Group, RFC 3168, Sep. 2001, ac-
cessed: 2015-02-3. [Online]. Available: https://tools.ietf.org/html/rfc3168
(see pp. 37, 158)

[159] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal, J. Carter, and R.
Fonseca, “Planck: Millisecond-scale monitoring and control for commodity net-
works,” in ACM Conference on SIGCOMM, Chicago, Illinois, USA: ACM, 2014,
pp. 407–418, isbn: 978-1-4503-2836-4 (see pp. 63, 76, 158)

[160] R. Rojas-Cessa, E. Oki, and H. J. Chao, “CIXOB-k: Combined input-crosspoint-
output buffered packet switch,” inGLOBECOM’01. IEEEGlobal Telecommunications
Conference (Cat. No.01CH37270), IEEE, 2001. doi: 10.1109/glocom.2001.966256
(see p. 14)

[161] K. Saravanan, P. Carpenter, and A. Ramirez, “Power/performance evaluation of
energy efficient ethernet (EEE) for high performance computing,” in Performance
Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium on,
2013, pp. 205–214. doi: 10.1109/ISPASS.2013.6557171 (see p. 160)

188

https://doi.org/10.1145/3332186.3332195
https://doi.org/10.1016/s0005-1098(99)00129-6
https://doi.org/10.1145/3295500.3356208
https://doi.org/10.1109/sc.2016.37
https://tools.ietf.org/html/rfc3168
https://doi.org/10.1109/glocom.2001.966256
https://doi.org/10.1109/ISPASS.2013.6557171

Bibliography

[162] R. Schaller, “Moore’s law: Past, present and future,” IEEE Spectrum, vol. 34, no. 6,
pp. 52–59, Jun. 1997. doi: 10.1109/6.591665 (see pp. i, 1)

[163] M. Scott, A. Moore, and J. Crowcroft, “Addressing the scalability of Ethernet with
MOOSE,” in Proc. DC CAVES Workshop, 2009 (see pp. 65, 71, 157)

[164] S. Scott, D. Abts, J. Kim, and W. Dally, “The BlackWidow high-radix clos network,”
in 33rd International Symposium on Computer Architecture (ISCA’06), IEEE, 2006.
doi: 10.1109/isca.2006.40 (see pp. 13, 14, 158)

[165] S. L. Scott and G. M. Thorson, “The Cray T3E network: Adaptive routing in a high
performance 3D torus,” 1996 (see p. 21)

[166] D. D. Sensi, S. D. Girolamo, K. H. McMahon, D. Roweth, and T. Hoefler, “An in-
depth analysis of the Slingshot interconnect,” CoRR, vol. abs/2008.08886, 2020, Ac-
cessed: 2020-08-26. arXiv: 2008.08886. [Online]. Available: https://arxiv.org/
abs/2008.08886 (see pp. 6, 22, 157, 158)

[167] D. Serpanos, M. Katevenis, and E. Spyridakis, “ATLAS I: Building block for ATM
networks with credit-based flow control,” in The Fourth IEEE Workshop on High-
Performance Communication Systems, IEEE, Jun. 1997. doi: 10.1109/hpcs.1997.
864038 (see p. 36)

[168] D. Serpanos and T. Wolf, Architecture of network systems, 1st. San Francisco, CA,
USA: Morgan Kaufmann, 2011, isbn: 9780080922829. doi: 10.5555/1995302 (see
p. 13)

[169] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD: Scalable and
vigilant switch flow management in software-defined networks,” in ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS’13, Berlin, Ger-
many: ACM, 2013, pp. 413–424, isbn: 978-1-4503-2477-9. doi: 10.1145/2508859.
2516684 (see p. 160)

[170] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Zahavi, “Dragonfly+:
Low cost topology for scaling datacenters,” in 2017 IEEE 3rd International Work-
shop on High-Performance Interconnection Networks in the Exascale and Big-Data
Era (HiPINEB), IEEE, Feb. 2017. doi: 10.1109/hipineb.2017.11 (see pp. 21, 158)

[171] H. J. Siegel, Interconnection networks for large-scale parallel processing : theory and
case studies (2nd Ed.) New York: McGraw-Hill, 1990, isbn: 0070575614 (see p. 19)

[172] A. Singh, “Load-balanced routing in interconnection networks,” accessed: 2014-7-
7, Ph.D. dissertation, Stanford University, 2005. [Online]. Available: http://cva.
stanford.edu/publications/2005/thesis_arjuns.pdf (see pp. ii, 31, 103, 129,
159)

189

https://doi.org/10.1109/6.591665
https://doi.org/10.1109/isca.2006.40
https://arxiv.org/abs/2008.08886
https://arxiv.org/abs/2008.08886
https://arxiv.org/abs/2008.08886
https://doi.org/10.1109/hpcs.1997.864038
https://doi.org/10.1109/hpcs.1997.864038
https://doi.org/10.5555/1995302
https://doi.org/10.1145/2508859.2516684
https://doi.org/10.1145/2508859.2516684
https://doi.org/10.1109/hipineb.2017.11
http://cva.stanford.edu/publications/2005/thesis_arjuns.pdf
http://cva.stanford.edu/publications/2005/thesis_arjuns.pdf

Bibliography

[173] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking data cen-
ters randomly,” in USENIX Symp. on Networked Systems Design and Implementation
(NSDI), 2012, pp. 225–238 (see p. 161)

[174] B. Stephens, A. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter, “Practical DCB
for improved data center networks,” in INFOCOM, 2014 Proceedings IEEE, 2014,
pp. 1824–1832. doi: 10.1109/INFOCOM.2014.6848121 (see p. 160)

[175] C. B. Stunkel, R. L. Graham, G. Shainer, M. Kagan, S. S. Sharkawi, B. Rosenburg, and
G. A. Chochia, “The high-speed networks of the Summit and Sierra supercomput-
ers,” IBM Journal of Research and Development, vol. 64, no. 3/4, 3:1–3:10, 2020 (see
pp. 21, 157)

[176] Y. Sun andM. S. Kim, “Ahybrid approach toCAM-based longest prefixmatching for
IP route lookup,” in 2010 IEEE Global Telecommunications Conference GLOBECOM
2010, IEEE, Dec. 2010. doi: 10.1109/glocom.2010.5683639 (see p. 17)

[177] Y. Tamir and G. L. Frazier, “High-performance multi-queue buffers for VLSI com-
munications switches,” ACM SIGARCH Computer Architecture News, vol. 16, no. 2,
pp. 343–354, May 1988. doi: 10.1145/633625.52439 (see p. 15)

[178] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective commu-
nication operations in MPICH,” The International Journal of High Performance
Computing Applications, vol. 19, no. 1, pp. 49–66, Feb. 2005. doi: 10 . 1177 /

1094342005051521 (see p. 54)

[179] Top500 supercomputer ranking, accessed: 2020-08-10, 2020. [Online]. Available:
http://www.top500.org (see pp. iii, 61)

[180] S. Toueg and K. Steiglitz, “Some complexity results in the design of deadlock-free
packet switching networks,” SIAM Journal on Computing, vol. 10, no. 4, pp. 702–
712, Nov. 1981. doi: 10.1137/0210053 (see pp. ii, 38)

[181] B. Towles and W. Dally, “Worst-case traffic for oblivious routing functions,” IEEE
Computer Architecture Letters, vol. 1, no. 1, pp. 4–4, Jan. 2002. doi: 10.1109/l-
ca.2002.12 (see p. 30)

[182] W. H. Tranter, D. P. Taylor, R. E. Ziemer, N. F. Maxemchuk, and J. W. Mark, “In-
put versus output queueing on a SpaceDivision packet switch,” in The Best of the
Best: Fifty Years of Communications andNetworking Research. 2007, pp. 561–570 (see
p. 15)

[183] U.S Department of Energy (DOE) - Office of Science, Exascale computing project,
accessed: 2015-06-18. [Online]. Available: https://www.exascaleproject.org
(see p. 3)

190

https://doi.org/10.1109/INFOCOM.2014.6848121
https://doi.org/10.1109/glocom.2010.5683639
https://doi.org/10.1145/633625.52439
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1177/1094342005051521
http://www.top500.org
https://doi.org/10.1137/0210053
https://doi.org/10.1109/l-ca.2002.12
https://doi.org/10.1109/l-ca.2002.12
https://www.exascaleproject.org

Bibliography

[184] ——, Summit Oak Ridge national laboratory’s 200 petaflop supercomputer, accessed:
2020-08-13. [Online]. Available: https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit (see pp. 21, 61, 157)

[185] M. Valerio, L. Moser, and P. Melliar-Smith, “Recursively scalable fat-trees as inter-
connection networks,” inProceeding of 13th IEEEAnnual International PhoenixCon-
ference on Computers and Communications, IEEE, 1994. doi: 10.1109/pccc.1994.
504091 (see p. 161)

[186] L. G. Valiant, “A scheme for fast parallel communication,” SIAM Journal on Com-
puting, vol. 11, no. 2, pp. 350–361, May 1982. doi: 10.1137/0211027 (see pp. ii, 8,
29)

[187] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel communication,”
in Proceedings of the thirteenth annual ACM symposium on Theory of computing -
STOC’81, ACM Press, 1981. doi: 10.1145/800076.802479 (see pp. ii, 8, 29, 103,
161)

[188] J.Wade andC. Sodini, “Dynamic cross-coupled bitline content addressablememory
cell for high density arrays,” in 1985 International Electron Devices Meeting, IRE,
1985. doi: 10.1109/iedm.1985.190952 (see p. 17)

[189] Y. T. Wang and B. Sengupta, “Performance analysis of a feedback congestion control
policy under non-negligible propagation delay,” ACM SIGCOMM Computer Com-
munication Review, vol. 21, no. 4, pp. 149–157, Aug. 1991. doi: 10.1145/115994.
116007 (see p. 35)

[190] Y. Wang, G. Lu, and X. Li, “A study of internet packet reordering,” in Infor-
mation Networking. Networking Technologies for Broadband and Mobile Networks,
ser. Lecture Notes in Computer Science, vol. 3090, Springer BerlinHeidelberg, 2004,
pp. 350–359, isbn: 978-3-540-23034-2. doi: 10.1007/978-3-540-25978-7_36 (see
p. 158)

[191] P. Wijetunga, “High-performance crossbar design for system-on-chip,” in The 3rd
IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003.
Proceedings., IEEE Comput. Soc, 2003. doi: 10.1109/iwsoc.2003.1213023 (see
p. 14)

[192] J. Won, G. Kim, J. Kim, T. Jiang, M. Parker, and S. Scott, “Overcoming far-end con-
gestion in large-scale networks,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), Feb. 2015, pp. 415–427 (see pp. 79, 125,
159)

191

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit
https://doi.org/10.1109/pccc.1994.504091
https://doi.org/10.1109/pccc.1994.504091
https://doi.org/10.1137/0211027
https://doi.org/10.1145/800076.802479
https://doi.org/10.1109/iedm.1985.190952
https://doi.org/10.1145/115994.116007
https://doi.org/10.1145/115994.116007
https://doi.org/10.1007/978-3-540-25978-7_36
https://doi.org/10.1109/iwsoc.2003.1213023

Bibliography

[193] P. Yébenes, J. Escudero-Sahuquillo, P. J. García, F. J. Quiles, and T. Hoefler, “Im-
proving non-minimal and adaptive routing algorithms in Slim Fly networks,” in
2017 IEEE 25thAnnual SymposiumonHigh-Performance Interconnects (HOTI), Aug.
2017, pp. 1–8. doi: 10.1109/HOTI.2017.11 (see pp. 106, 161)

[194] J. Y. Yen, “Finding the K shortest loopless paths in a network,” Management Science,
vol. 17, no. 11, pp. 712–716, 1971, issn: 00251909, 15265501 (see p. 161)

[195] E. Zahavi, I. Keslassy, andA. Kolodny, “Distributed adaptive routing for big-data ap-
plications running on data center networks,” in Proceedings of the eighth ACM/IEEE
symposium on Architectures for networking and communications systems - ANCS’12,
ACM Press, 2012. doi: 10.1145/2396556.2396578 (see pp. 157, 158)

[196] H. Zhai, F. Hu, R. Perlman, D. E. 3rd, and O. Stokes, “Transparent interconnection
of lots of links (TRILL): End station address distribution information (ESADI) pro-
tocol (RFC 7357),” Internet Engineering Task Force (IETF), RFC 7357, Sep. 2014,
ISSN: 2070-1721, accessed: 2015-02-6. [Online]. Available: https://tools.ietf.
org/html/rfc7357 (see pp. 65, 159)

[197] Y. Zhang, O. Tuncer, F. Kaplan, K. Olcoz, V. J. Leung, and A. K. Coskun, “Level-
spread: A new job allocation policy for Dragonfly networks,” in 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), IEEE, May 2018. doi:
10.1109/ipdps.2018.00121 (see p. 53)

192

https://doi.org/10.1109/HOTI.2017.11
https://doi.org/10.1145/2396556.2396578
https://tools.ietf.org/html/rfc7357
https://tools.ietf.org/html/rfc7357
https://doi.org/10.1109/ipdps.2018.00121

	Title page
	Resumen
	Agradecimientos
	Abstract
	Contents
	List of figures
	List of tables
	1 Introduction
	1.1 Interconnection networks
	1.2 Objectives
	1.3 Major dissertation contributions
	1.4 Outline

	2 Background
	2.1 Router
	2.2 System level topology
	2.2.1 Dragonfly

	2.3 Routing
	2.3.1 Minimal (MIN)
	2.3.2 Valiant Load-Balancing (VLB)
	2.3.3 Universal Globally Adaptive Load-balancing (UGAL)
	2.3.4 Piggyback (PB)

	2.4 Flow control
	2.4.1 Quantized Congestion Notification (QCN)

	2.5 Deadlock and livelock
	2.6 Software-Defined Networking (SDN)

	3 Methodology
	3.1 Metrics
	3.1.1 Throughput
	3.1.2 Latency
	3.1.3 Fairness

	3.2 Simulation
	3.2.1 FOGSim interconnection network simulator
	3.2.2 Synthetic workloads
	3.2.2.1 Steady-state traffic patterns
	3.2.2.1.1 Random Uniform (UN)
	3.2.2.1.2 Adversarial shift (ADV+i)
	3.2.2.1.3 Adversarial Local (ADVL)
	3.2.2.1.4 Adversarial Consecutive (ADVC)
	3.2.2.1.5 Mixed (MIX)

	3.2.2.2 Transient traffic pattern

	3.2.3 Simulator configuration

	4 HPC Networking Over Commodity Ethernet Technology
	4.1 Motivation
	4.2 Interconnection requirements: HPC vs. DC
	4.3 Scalability mechanisms in Ethernet networks
	4.3.1 Scalability analysis of hierarchical addressing
	4.3.2 Scalability analysis with TCAM rules compaction

	4.4 MAC address rewriting
	4.5 MAR-bP: Multipath Adaptive Routing based on Pauses
	4.5.1 Proactive conditional flow rules
	4.5.2 Conditional flow rules for minimal routing
	4.5.3 Conditional flow rules for non-minimal routing
	4.5.4 Discussion

	4.6 QCN-Switch: adaptive routing based on ECN messages
	4.6.1 Forwarding tables with probabilities
	4.6.2 Base AIMD probability management
	4.6.3 Feedback comparison probability management
	4.6.4 Source processing mechanism for input sensing

	4.7 Evaluation
	4.7.1 Methodology
	4.7.1.1 Power consumption
	4.7.1.2 Simulator configuration

	4.7.2 TCAM compaction and topology power comparison
	4.7.3 MAR-bP performance results
	4.7.4 QCN-Switch performance results
	4.7.4.1 Performance under steady loads
	4.7.4.1.1 QCN-Switch sampling at input buffers.
	4.7.4.1.2 QCN-Switch sampling at output buffers.

	4.7.4.2 Performance under transient loads
	4.7.4.3 Sensitivity analysis
	4.7.4.3.1 Number of notifications: CPC and %CNMs.
	4.7.4.3.2 Reduction limiting factor Lf.
	4.7.4.3.3 Probability Increase PI.
	4.7.4.3.4 Feedback comparison thresholds Th1 and Th2.
	4.7.4.3.5 Network size.

	4.8 Conclusions

	5 Non-minimal Adaptive Routing With Latency Improvements
	5.1 Motivation
	5.2 RVLB: Restricted Valiant Load-Balancing
	5.3 VLB-Recomp: Valiant Load-Balancing Recomputation
	5.4 ACOR: Adaptive Congestion-Oblivious Routing
	5.4.1 Motivation and overview
	5.4.2 ACOR design
	5.4.2.1 Selection of a VLB phase A policies sequence
	5.4.2.2 ACOR level management

	5.4.3 PB-ACOR: adaptive Piggyback with ACOR

	5.5 Evaluation
	5.5.1 Simulator configuration
	5.5.2 RVLB performance results
	5.5.3 VLB-Recomp performance results
	5.5.4 ACOR performance results
	5.5.4.1 Performance under steady loads
	5.5.4.2 Performance under transient loads
	5.5.4.3 Sensitivity analysis
	5.5.4.3.1 Hysteresis interval: HI.
	5.5.4.3.2 ACOR level management thresholds: IT₁, IT₂, DT₁ and DT₂.
	5.5.4.3.3 Network size.

	5.5.5 PB-ACOR performance results
	5.5.5.1 Performance under steady loads
	5.5.5.2 Performance under transient loads

	5.6 Conclusion

	6 Latency-optimized Non-minimal Adaptive Routing for Dragonfly Networks
	6.1 Analysis and motivation
	6.1.1 Traffic counters measure carried traffic
	6.1.2 Impact of Valiant phase A path length
	6.1.2.1 Impact of the first local hop in Valiant phase A path
	6.1.2.2 Impact of the second local hop in Valiant phase A path

	6.2 LIAN: Latency-Improved Adaptive Non-minimal routing for Dragonfly networks
	6.2.1 LIAN overview
	6.2.2 Traffic estimation using extended counters
	6.2.3 Non-minimal paths in LIAN
	6.2.3.1 Global counters and first local hop
	6.2.3.2 Intermediate-local counters and second local hop

	6.3 Evaluation
	6.3.1 Simulator configuration
	6.3.2 Extended global and intermediate-local counters
	6.3.2.1 Extended global counters in LIAN
	6.3.2.2 Intermediate-local counters in LIAN

	6.3.3 LIAN performance results
	6.3.3.1 LIAN compared to oblivious routings
	6.3.3.2 LIAN compared to other source adaptive routings
	6.3.3.3 Throughput fairness and the use of the l₁ hop
	6.3.3.4 Performance under transient loads

	6.4 Conclusions

	7 Related Work
	7.1 Adaptive routing without credits
	7.2 Adapting the length of non-minimal paths

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future directions
	8.3 Publications

	Bibliography

