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Abstract

Normality (a set of observations being sampled from a Gaussian process) is an important as-
sumption in a wide variety of statistical models. Therefore, developing procedures for testing
this assumption is a topic that has gained popularity over several years. Extensive literature
exists on goodness of fit tests for normality under the assumption of independent identical
distributed random variables. However, this is not the case for the context of stationary
stochastic process, case in which the independence assumption is violated. For this matter,
several tests have been proposed over the years. The aim of this work is to present a discus-
sion and references of the most common tests for normality in stationary processes, such as
FEpps, Lobato and Velasco, the random projections, and Psaradakis and Vavra. For assessing
model adequacy in a Bayesian approach,we propose an alternative methodology for checking
model’s assumptions inspired by the random projection results with promising results, in all
the designed case studies. Additionally we present our implemented nortsTest package, an R
package that performs all the reviewed tests mentioned above.

Keywords: Hypothesis test, stochastic process, stationarity, Gaussian process, Model’s diag-
nostic.

Resumen

Normalidad (un conjunto de observaciones son muestreadas de un Proceso Gaussiano) es un
supuesto importante en una gran cantidad de modelos estadisticos. Debido a eso, desarrollar
procedimientos para corroborar estos supuestos es un tema que ha ganado popularidad en
los dltimos anos. Existe una gran cantidad de literatura para el caso de variables aleatorias
independientes e identicamente distribuidas, pero, este no es el caso en el contexto de procesos
estocasticos estacionarios, donde el supuesto de independencia no se mantiene. Algunas prue-
bas de hipodtesis han sido propuestas a traves de los afos para resolver esta problematica. El
objetivo de este trabajo es presentar una discusién de las pruebas mas utilizadas para probar
normalidad en procesos estacionarios, tales como FEpps, Lobato y Velasco, las proyecciones
aleatorias, vy Psaradakis y Vavra. Para diagnostico de modelos en un enfoque Bayesiano,
proponemos una metodologia alternativa para la corroboraciéon de supuestos inspirada en los
resultados del método de las proyecciones aleatorias con prometedores resultados. Adicional-
mente, presentamos nuestro implementado paquete nortsTest, un paquete en R que realiza
las pruebas mencionadas anteriormente.

Palabras clave: Pruebas de hipdtesis, procesos estocasticos, estacionaridad, procesos Gaus-
siamos, diagnostico de modelos.
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Introduction

Normality (A set of observations are sampled from a Gaussian process) is an important as-
sumption in a wide variety of statistical models. Therefore, developing procedures for test-
ing these assumptions is a problem that has gained popularity over several years. Most of
the existing literature and implementations are for independent identically distributed data
(D’Agostino and Stephens 1986), but there are no results showing that these tests are con-
sistent in the context of stationary processes. Moreover, Gasser (1975) provides a simulation
study where Pearson’s test had an excessive rejection of the alternative hypothesis for depen-
dent data. For this matter, a small number of tests have been proposed over the years, but
as far of our knowledge, there are no consistent implementation of all these tests. The aim of
this work is to present a review of the implemented tests for normality, providing an general
framework of the four most important tests. And introduce our proposed methods for model
assessing in time-series analysis.

The four presented tests are discussed in chronological order; (i) the Epps test (Epps 1987)
based on the characteristic function, (ii) the corrected Skewness-Kurtosis (SK) test imple-
mented by Lobato and Velasco (2004), (iii) the random projection test proposed by Nieto-
Reyes, Cuesta-Albertos, and Gamboa (2014) and (iv) the Psadarakis and Vdvra test (Psaradakis
and Vavra 2017) that uses a bootstrap approximation of the Anderson and Darling (1952) test
statistic for stationary linear processes. Additionally, this work introduces our implemented
nortsTest package. The first R package for testing normality in stationary processes, that
provides implementations of all the previously mentioned tests. For assessing model adequacy
we present the check_residual () function for checking the assumptions in time-series mod-
els, it returns a report of tests for stationarity, seasonality, and normality, as diagnostic plots
for visual check. And in a Bayesian approach, we propose an alternative method for checking
the model’s assumptions inspired in the random projections methods of Cuesta-Albertos, del
Barrio, Fraiman, and Matréan (2007). The main procedure is, estimate the model’s errors and
projected in the real line, if the projected errors are normally distributed then, the model’s
normality assumptions are satisfied.

Section 1 provides the theoretical background, including preliminary concepts and results.
Section 2 introduces the normality tests for stationary processes, each subsection introducing
a test framework and including examples of the tests functions with simulated data. Section
3 provides numerical experiments with simulated data and a real data application. In Sub-
section 3.1 reports a simulation study for all the implemented tests, and Subsection 3.2 shows
an application of the normality tests for model diagnostic in Time series analysis. Section
4 introduces our proposal method for model diagnostic in Bayesian methods, showing the
method’s procedure, and presenting two study cases with simulated data. Finally, section 5
discusses the package functionality and provides our conclusions. Furthermore, we include
our future work on the package.



1. Preliminary concepts

This section provides some theoretical aspects of stochastic processes and Bayesian inference
that are a necessary theoretical framework for the following sections. The presented defini-
tions and results were obtained from Shumway and Stoffer (2010), Tsay (2010) and Migon,
Gamerman, and Louzada (2014).

1.1. Stochastic process

For the purpose of this work, T is a set of real values denoted as time, T' C R, for instance
T =N or T = Z, the naturals or integer numbers respectively. We denote by X := {X;}er
a stochastic process with X; a real random variable for each ¢t € T Following this notation, a
time-series is just a finite collection of ordered observations of X (Shumway and Stoffer 2010).
An important measure for a stochastic process is its mean function pu(t) := E[X;] for each
t € T, where E[-] denotes the usual expected value of a random variable. A generalization
of this measure is the k-th order centered moment function py(t) := E[(X; — u(t))¥] for each
t € T and k > 1; with the process variance function the second order centered moment,
0%(t) := pz(t). Other important indicators are the auto-covariance and auto-correlation
functions, which measure the linear dependency between two different time points of a given
process. For any t,s € T, they are, respectively,

(¢, s)
p2(t)V/ 2 (s)
Other widely used indicator functions for the analysis of processes are the skewness and

kurtosis functions, defined for each t € T as s(t) := uz(t)/[p2(t)]>/? and k(t) := pa(t)/[u2(t)]?
respectively.

V(t, ) = El(Xe — p(t))(Xs — p(s))] and p(t, 5) :=

A generally used assumption for stochastic processes is stationarity. It has a key role in
forecasting procedures of classic time-series modeling (Tsay 2010) or as a principal assumption
in de-noising methods for signal theory (Wasserman 2006).

Definition 1 A stochastic process X is said to be strictly stationary if, for every collection
7 = {t1,t2,...,txg} C T and h > 0, the joint distribution of {Xi}ier is identical to that of
{Xttnter

The previous definition is strong for applications. A milder version of it, which makes use of
the process first two moments, is weak stationarity.

Definition 2 A stochastic process X is said to be weakly stationary if its mean function is
constant in time, u(t) = p, its auto-covariance function only depends on the difference between
times, y(s,t) = o|t — s| for a 0 € R, and it has a finite variance function, ua(t) = pe < oo.

For the rest of this work, the term stationary will be used to specify a weakly stationary
process. A direct consequence of the stationarity assumption is that the previous indicator
functions get simplified. Thus, given a stationary stochastic process X, its mean function,
k-th order centered moment, for £ > 1, and auto-covariance function are respectively,

p=E[Xe], . = B[(Xe, — w)*] and y(h) = E[(Xy, 05 — 1) (Xe, — )],



which are independent of t; € T

Given a sample z1,...,z,, n € N, of equally spaced observations of X, their corresponding
estimators, sample mean, sample k-th order centered moment and sample auto-covariance,
are respectively

n n—h

n
fo=n"Y wi, i i=nt Y (@ — @)Y and J(h) =07t Y (wipn — ) (2 — i)
=1 =1 =1

A particular case in which stationarity implies strictly stationarity are Gaussian processes.

Definition 3 A stochastic process X is said to be a Gaussian process if for every finite
collection T = {t1,ta,...,tx} C T, the joint distribution of {X;}ierhas a multivariate normal
distribution.

A series of mean zero uncorrelated random variables with finite constant variance is known
as white noise. If additionally, it is formed of independent and identically distributed (i.i.d)
normal random variables, it is known as Gaussian white noise; which is a particular case
of stationary Gaussian process. For the rest of the work, X; ~ N(u,0?) denotes that the
random variable X; is normally distributed with mean y and variance o and x?(v) denotes
the chi square distribution with v degree freedom.

Other classes of stochastic processes can be defined using collections of white noise, for in-
stance, the linear process.

Definition 4 Let X be a stochastic process. X is said to be linear if it can be written as
Xe=p+) bier—i,
1EZ

where {€; }iez is a collection of white noise random variables and {¢;}icz is a set of real values
such that >,c7 |¢;| < oc.

An important class of processes is the auto-regressive moving average (ARMA). Box and
Jenkins (1990) introduced it for time series analysis and forecast, becoming very well-known
in the 90s and early 21st century.

Definition 5 For any non-negative integers p,q, a stochastic process X is an ARM A(p,q)
process if it is a stationary process and

p q
Xi=> ¢iXeit Y i, (1)
i=0 i=0

where {¢;}1_, and {0;}]_, are sequences of real values with ¢g =0, ¢p, # 0, g =1 and 6, # 0
and {€; }icz s a collection of white noise random variables.

Particular cases of ARM A processes are the auto-regressive (AR(p) := ARM A(p,0)) and
the mean average (M A(q) := ARM A(0, q)) processes. Additionally, a random-walk is a non-
stationary process satisfying (1) with p = 1, ¢1 = 1 and ¢ = 0. Several properties of an



ARM A process can be extracted from its structure. For that, the AR and M A polynomials
are introduced

P
AR: ¢(z)=1-— Zgbiz’ and MA: 0(z) = Zeizl,
i=0 1=0
where z is a complex number and, as before, ¢9 = 0, ¢, # 0, 6p = 1 and 6, # 0. Conditions
for stationarity, order selection and process behavior are properties studied from these two
polynomials.
For modeling volatility in financial data Bollerslev (1986) proposed the generalized auto-

regressive conditional heteroscedastic (GARCH) class of processes as a generalization of the
auto-regressive conditional heteroscedastic (ARCH) processes (Engle 1982).

Definition 6 For any s,k € N, a stochastic process X is a GARCH (s, k) process if it has
the following structure

Xt = W+ o€t
s k
2 2 2
oy = ap + Z Qi€ + Zﬁiata
=1 =1

where s and k are non-negative integers, ju is the process mean, {a;};_; and {B;}¥_, are non-
negative sequences of real values, oq is a positive constant value, and {e;}ier is a collection
of white noise random variables.

A more general class of processes are the state-space models (SSM s), which have gained pop-
ularity over the years as techniques for smoothing (West and Harrison 2006) and forecasting
(Hyndman and Khandakar 2008) in time series analysis.

Definition 7 Let X be an stochastic process and let be ; € © C R*d > 0, a vector of
parameters defined in a parametric space © for every t € T, then X is a SSM process if
satisfies

Xi = f(0r—1) + 7r(0i—1)es
0 = g(0i—1) + w(b—1)es,

where f,g,7 and w are functional over ©, and {€ }1er is a collection of white noise random
variables denoted as errors.

A vparticular type of STMs that analyzes the level, trend and seasonal components of the
process is known as error, trend, and seasonal (ETS) models. There are over 32 different
variations of the ETS models (Hyndman, Koehler, Ord, and Snyder 2008). One of them is
the ET'S(M, A, A) model.

Definition 8 A SSM process X follows an ETS(M,A,A) model, if the process accepts
Xe=[Lis1+Ti—1+ Se1](1+ &)

as innovation equation and



Li = Liaqi+ T+ a(Li—1 +Ti—1 + Si—m)e
T, = Ty +B(Li—1 +Ti—1 + Si—m)e
St = Stem +7(Lim1 + Ti—1 + St—m) e,

as state equations. «,f,v € [0,1], m € N denotes the period of the series and {€} is a
collection of white noise random variables denoted as errors. For each t € Z, Ly, T; and Sy
represent respectively the level, trend and seasonal component.

1.2. Bayesian inference

Let Y :={¥1,Y>,...,Y,} a finite collection of random variables with common distribution P
depending on a vector of unknowns parameters 0 = (61,02, ...,60,) assuming values in a set
denoted by © C R?, for d > 0. The likelihood function of 6:

1(0;Y): 0 — RT,

is a function that associates the value P(Y|0) to each . Therefore, for given values of Y, the
likelihood is computed as follows:

n
L(0;Y) = [[ P(Yi|Yiz1, Yica, ..., Y2, Y1,0),
=1

note that in a frequentist approach, the likelihood is sufficient to compute adequate estimates
of the unknown parameters 6, but in a Bayesian scheme, additional information can be
incorporated using a prior distribution P(f), and the unknown quantities can be obtained
using the Bayes theorem:

PO,Y) 1(0;Y)P(0)

POY) = "5y = pyy 2)

Where P(0|Y) is denoted as the posterior distribution of 0, 1(0;Y) is the likelihood function,
and P(Y') does not depend of 6, then, it can be removed from (2) as constant. Therefore, the
Bayes theorem can be written as:

PO)Y) o 1(6:Y)P(6). (3)

Then, a numeric estimator for 6 is estimated using the expected value of the posterior distri-
bution as
E[]Y] = /9P(0|Y)d0,
0

denoted as the posterior mean of 6. A relevant aspect of a Bayesian scheme is that it allows
to obtain automatic prediction for future observations. To predict a new value Y, 1, whose
probabilistic description is P(Y;,+1]6), then

P(Ypui|Y) = /@ P(Yps1,0]Y)d6 = /@ P(Ys1|0)P(0]Y)d6,

where P(Y;,11|Y) is denoted as the predictive distribution.



1.3. Introduction to Markov Chain Monte Carlo methods

A Bayesian approach for inference has become very popular over the last years, because of
its advantage of incorporate prior knowledge about the parameters into a model. But, its
practical use was limited because for most of the problems an analytical solution for the
posterior can not be found, and an approximate solution might be a computational challenge.
In the last decades, the Markov chain Monte Carlo (MCMC) algorithms (Brooks, Gelman,
Jones, and Meng 2011) allow an approximation of the solution by drawing random samples
from the posterior distribution, but for most of the problems, this approach was too time-
consuming.

MCMC methods allow to simulate dependent realizations of a stochastic process, such that
these simulations form an irreducible Markov chain that has the target distribution (i.e the
posterior) as its stationary distribution. The MCMC gas origin with Metropolis, Rosen-
bluth, Rosenbluth, Teller, and Teller (1953), the propose this method for simulating a liquid
in equilibrium with its gas phase. Hastings (1970) generalize Metropolis algorithm using
asymmetric distributions. In Gelfand and Smith (1990) introduce a particular case of the
Metropolis-Hasting known as the Gibbs Sampler. Over the years, several adaptations of the
Metropolis-Hasting algorithm such as Reversible Jump MCMC, Sequential Monte Carlo, and
Hamiltonian Monte Carlo (HMC) Duane (1987), have been proposed for improving the speed
of convergences.

Lets present the original Metropolis-Hasting algorithm for Bayesian Inference. For a finite
collection of random variables X with unknown parameter 6, and P(6) a selected prior, lets
denote as:

e m the number of simulations

e f(0) = P(X/0)P(0) is the proposal function for the posterior distribution.
o J(0;/0:—1) a predefined Markov Chain’s jump distribution.

e The Metropolis-Hastings ratio

F(0)7(0-1/0.)
f(0r-1)J(0./01-1)

Then the Metropolis-Hastings algorithms is shown in Algorithm 1, its working principle is
as follows: for an arbitrary value #y a Markov Chain {6;}!", is generated using a transition
function J with stationary distribution f, which convergences in law to a random variable from
f. Hastings (1970) provides further theoretical subjects such as convergences and Ergodic
theorems for his proposed MCMC method, and Brooks et al. (2011) provides a practical
overview of MCMC methods and its applications.

The major problem of the Metropolis Hastings methodology is its slow convergence in high
dimensional problems, where the number of iterations m is to big to guarantee the Markov
Chain convergence. However, in the last years this has changed with the development of new
algorithms and the rapid increase of general computing power (Hoffman and Gelman 2014;
Betancourt 2017).

10



Algorithm 1 Metropolis-Hasting algorithm

Require: m, f and J
Ensure: A sample 0;,60,,...,0,, of P(0/X)
Draw a value 6y such that f(6p) >0
forte€1,2,3...,mdo
Draw 6, from J
calculate r
set a« = min(r,1)
Draw a value U from a uniform U(0, 1) distribution.

if U < a then
Set 6; = 0,
else
Set 0; = 0;_4
end if
end for

11



2. Normality tests for stationary processes

Extensive literature exists on goodness of fit tests for normality under the assumption of
independent and identical distributed random variables, including Pearson’s chi-squared test
(Pearson and Henrici 1895), Kolmogorov-Smirnov test (Smirnov 1948), Anderson-Darling
test (Anderson and Darling 1952), SK test (Jarque and Bera 1980) and Shapiro-Wilk test
(Shapiro and Wilk 1965; Royston 1982) among others. These procedures have been widely
used in many studies and applications, see D’Agostino and Stephens (1986) for further details.
There are no results, however, showing that the above tests are consistent in the context of
stationary processes, case in which the independence assumption is violated. For instance,
Gasser (1975) provides a simulation study where Pearson’s chi-squared test has an excessive
rejection rate under the null hypothesis for dependent data. For this matter, several tests have
been proposed over the years; a selection of which we reference here. Epps (1987) provides a
test based on the characteristic function and a similar test is proposed by Hinich (1982) based
on the process’ spectral density function (Berg, Paparoditis, and Politis 2010, for further
insight). Gasser (1975) gives a correction of the SK test, with several modifications made
in Lobato and Velasco (2004); Bai and Ng (2005); Psaradakis (2017), which are popular in
many financial applications. Bontemps and Meddahi (2005) constructs a test based on Stein’s
characterization of a Gaussian distribution. Using the random projection method (Cuesta-
Albertos et al. 2007), Nieto-Reyes et al. (2014) build a test that upgrades the performance of
Epps (1987) and Lobato and Velasco (2004) procedures. Furthermore, Psaradakis and Vévra
(2017) proposed a bootstrap approximation of the Anderson and Darling (1952) test statistic
for stationary linear processes.

Despite the existing literature, consistent implementations of goodness of fit test for normality
of stationary processes in programming languages such as R or Python are limited. We
present here the nortsTest package: it performs the tests proposed in Epps (1987), Lobato
and Velasco (2004), Nieto-Reyes et al. (2014) and Psaradakis and Vavra (2017). To install the
latest release version of nortsTest from CRAN, type install.packages("nortsTest") within
R. The current development version can be installed from GitHub using the next code:

R> if (!requireNamespace("remotes")) install.packages("remotes")
R> remotes::install_github("asael697/nortsTest",dependencies = TRUE)

Additionally, the package offers visualization functions for descriptive time series analysis and
several diagnostic methods for checking stationarity and normality assumptions for the most
used time series models of several R packages. To elaborate on this, Subsection 2.1 introduces
the package functionality and software and Subsection 2.2 provides an overview of the used
methods for checking stationarity and seasonality. Finally, Subsections 2.3-2.6 present a gen-
eral framework of each of the implemented test and their functionality by providing simulated
data examples.

2.1. Software

The package works as an extension of the nortest package (Gross and Ligges 2015), which
performs normality tests in random samples but for independent data. The building block
functions of the nortsTest package are:

e epps.test(), function that implements the test of Epps,

12



e lobato.test(), function that implements the test of Lobato and Velasco,

e rp.test(), function that implements the random projection test of Nieto-Reyes, Cuesta-
Albertos and Gamboa, and

e vavra.test(), function that implements the test of Psaradaki and Vavra.

Each of these functions accepts a numeric (numeric) or ts (time series) class object for
storing data, and returns a htest (hypothesis test) class object with the main results for the
test. To guarantee the accuracy of the results, each test performs unit root tests for checking
stationarity and seasonality (see Subsection 2.2) and displays a warning message if any of
them not satisfied.

For visual diagnostic, the package offers different plot functions based on the ggplot2 package
(Wickham 2009): the autoplot() function plots numeric, ts and mts (multivariate time
series) classes while the gghist () and ggnorm() functions are for plotting histogram and qq-
plots respectively; and on the forecast package (Hyndman and Khandakar 2008): ggacf ()
and ggPacf () for the display of the auto-correlation and partial auto-correlations functions
respectively.

Furthermore, inspired in the function check.residuals () of the forecast package, we provide
the check_residuals() function for checking assumptions of the model using the estimated
residuals. Thus this function checks stationarity, seasonality (see Subsection 2.2) and nor-
mality, presenting a report of the used tests and conclusions. If the plot option is TRUE, the
function displays several plots for visual checking. An illustration of these functions is pro-
vided in Subsection 3.2, where we show the functions details and their utility for assumptions
commonly checked in time series modeling.

2.2. Tests for stationary

For checking stationarity, the nortsTest package uses unit root and seasonal unit-roots tests.
These tests work similarly, checking whether a specific process follows a random-walk model,
which clearly is a non-stationary process.

Unit root tests

A stochastic process X is non stationary if it follows a random-walk model. This statement
is equivalent to say that the AR(1) polynomial (¢(z) = 1 — ¢2) of X has a unit root !. The
most commonly used tests for unit root testing are Augmented Dickey Fuller (Said and Dickey
1984), Phillips-Perron (Perron 1988), kpps (Kwiatkowski, Phillips, Schmidt, and Shin 1992)
and Ljung-Boz Box and Pierce (1970). The urrot.test() and check_residual() functions
perform these tests, making use of the tseries package (Trapletti and Hornik 2019).

Seasonal unit root tests

Let X be a stationary process and m be its period?. X follows a seasonal random walk if it
can be written as
Xt = Xt—m + €,

Tf ¢ = 1, then ¢(2) = (1 — 2z) which its only root is one
2For observed data, m is the number of observations per unit of time
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where € is a collection of i.i.d random variables. In a similar way, the process X is non-
stationary if it follows a seasonal random-walk. Or equivalently, X is non-stationary if
the seasonal AR(1) polynomial (¢y,(2) = 1 — ¢2™) has a unit root. The seasonal() and
check_residuals() functions perform the OCSB test (Osborn, Chui, Smith, and Birchenhall
1988) from the forecast package, and the HEGY (Beaulieu and Miron 1993) and Ch (Canova
and Hansen 1995) tests from the uroot package (de Lacalle 2019).

2.3. Test of Epps

The x? test for normality proposed by Epps (1987) compares the empirical characteristic
function of the one-dimensional marginal of the process with the one of a normally distributed
random variable evaluated at certain points on the real line. Several authors, such as Lobato
and Velasco (2004) and Psaradakis and Vavra (2017), point out that the greatest challenge
in this test is its implementation procedure.

Let X be a stationary stochastic process that satisfies

Z It|¥|y(t)| < oo for some k > 0. (4)

t=—00

The null hypothesis is that the one-dimensional marginal distribution of X is a Gaussian
process. As wee see in what follows, the procedure for constructing the test consists of
defining a function g, estimating its inverse spectral matrix function, minimizing the generated
quadratic function in terms of the unknown parameters of the random variable and, finally,
obtaining the test statistic, which converges in distribution to a 2.

Given N € N with N > 2, let
A={A=0,. ., ) eRY i Ny < Njypand \; >0, fori=1,2,..., N}
and g : R x A — R” be a measurable function, where
g(x, ) := [cos(A1x),sin(A1x), . .., cos(Anx), sin(Anz)].
Additionally, let gg : A — R be a function defined by
9o(A) = [Re(®g(A1)), Im(Pg(A1)), . ., Re(Po(An)), Im(Py(An))]",

where the Re(+) and Im(+) are the real and imaginary components of a complex number and @y
is the characteristic function of a normal random variable with parameters 6 = (u,0?) € O,
an open bounded set contained in R x R™. For any A € A, let us also denote

1 n
— [cos(MX¢),sin(A1Xy), . . ., cos(AnXy), sin(AnXy)]".
t=1

3

Let f(v;0,\) be the spectral density matrix of {g(X¢, A) }1ez at a frequency v. Then, for v = 0,
it can be estimated by

[n?/5]

F(0;6,)) : (f: (Xt.0,\) +2Z (1—1i/| 2/5JnZZ G(Xpir A )
— t=1

14



where G(X;.0,A) = (G(A) — 96(A\)(G(N) — go(A))! and |-] denotes the floor function. The test
statistic general form under Hj is

Qn()‘) = Ierélél {Qn(ea )\)} )

with

Qn(0,2) = (G(A) = 9o(N)' Gy (M) (@A) — g0(N))
where G, is the generalized inverse of the spectral density matrix 27rf(9;9, A). Let 6 =
arg mingee {@n(0, A)} be the argument that minimizes @;,(6, A) such that 0 is in a neighbor-
hood of 6,, = (11,7(0)). To guarantee its’ existence and uniqueness, the following assumptions
are required. We refer to them as assumption (A.).

(A.) Let 6y be the true value of § = (u,02) under Hy, then for every A € A the following
conditions are satisfied.

— f(0;0,)) is positive definite.

— ®p(A) is twice differentiable with respect to  in a neighborhood of 6.

_ 0%9(N)

~ 00)o=0,

— The set Og(A) :={0 € O : Py(\;) = Py, (Ni),i =1,..., N} is a finite bounded set
in ©. And 6 is a bounded subset R x R™.

— £(0;0,)) = £(0;00, ) and D(6g, ) = D(B.\) for all 6 € Og(N).

— The matrix D (6, A) € RV*2 for N > 2, has rank 2.

Under these assumptions, the Epps’s main result is presented as follows.

Theorem 1 (Epps (1987) Theorem 2.1) Let X be a stationary Gaussian process such
that (4) and (A.) are satisfied, then nQn(\) —q X2(2N — 2) for every X € A.

For the current nortsTest version, we define A := {(1.0,1.0,2.0,2.0)/7(0)}, where 4(0) is the
sample variance. Therefore, the implemented test statistics converges to a x? distribution
with two degree freedom. In the next version of the package, the user will set A as desired,
with the current value as default.

Example 1 A, stationary, AR(2) process is drawn using a beta distribution with shapel =
9 and shape2 = 1 parameters, and the implementation of the test of Epps, epps.test(), is
performed. At significance level o = 0.05, the null hypothesis of normality is correctly rejected.

R> set.seed(298)
R> # Simulating the AR(2) process
R> x = arima.sim(250,model = list(ar =c(0.5,0.2)),
rand.gen = rbeta,shapel = 9,shape2 = 1)
R>epps.test (x)

Epps test
data: x

epps = 16.597, df = 2, p-value = 0.0002489
alternative hypothesis: x does not follow a Gaussian Process
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2.4. Test of Lobato and Velasco

Lobato and Velasco (2004) provides a consistent estimator for the corrected SK test statistic®
for stationary processes (Lomnicki 1961; Gasser 1975, for further insight). On the contrary
to the test of Epps, it does not require of additional parameters for the approximation of the
test sample statistic. The general framework for the test is presented in what follows.

Let X be a stationary stochastic process that satisfies

> () < oo ()
t=0

The null hypothesis is that the one-dimensional marginal distribution of X is normally dis-
tributed, that is
Hy: Xy ~ N(p,0?) for all t € R.

Let kq(j1,72,--.,J¢-1) be the g-th order cummulant of X1, X14j,,..., X14j,_,. Ho is fulfilled
if all the marginal cummulants above the second order are zero. In practice, it is tested
just for the third and fourth order marginal cummulants, equivalently, in terms of moments,
the marginal distribution is normal by testing whether uz = 0 and ps = 3u3. For non
correlated data, the SK test compares the SK statistic against upper critical values from a
x%(2) distribution (Bai and Ng 2005). For a Gaussian process X satisfying (5), it holds the
limiting result
13
vl "7, 5| —a N[02,Xp)],
fia — 3fi3 [ |
where 0y := (0,0)! € R? and S := diag(6F®), 24F®) ¢ R?*? is a diagonal matrix with

F®) =32 i)k for k = 3,4 (Gasser 1975).
The following consistent estimator in terms of the auto-covariance function is proposed in

Lobato and Velasco (2004)

n—1

F® = 3" 30)FE) +70m— )],
t=1-—n
to build a generalized SK test statistic
_ i3 n(fia — 3fip)’
- 6FO 24F(4)

Similar to the SK test for non-correlated data, the G statistic is compared against upper
critical values from a x2(2) distribution. This is seen in the below result that establishes
the asymptotic properties of the test statistics, so that the general test procedure can be
constructed. The result requires the following assumptions, denoted by (B.), for the process
X.

(B.) — E[X/%]<ocforteT.
o 5 oo g (s s Gg1)| < o0 for ¢ =2,3,...,16.

3 Also known as the Jarque-Bera test, Jarque and Bera (1980).
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o\ 1/2
- 255 (E { E[(Xo — p)*|B;] - ,uk] ) < oo for k = 3,4, where B; denotes the
o-field generated by X;, t < —j.

- EL(XO—mk—uk}2+2z;?°;1E([<Xo—u>’f—uk} () = ) = jue]) > 0 for ke =
3,

Note that these assumptions imply that the higher-order spectral densities up to order 16 are
continuous and bounded.

Theorem 2 (Lobato and Velasco (2004), Theorem 1) Let X be a stationary process.
If X is Gaussian and satisfies (5) then G —4 x*(2), and under assumption (B.), the test
statistic G diverges whenever ug # 0 or piq # 3u3.

Example 2 A, stationary, M A(3) process is drawn using a gamma distribution with rate
= 3 and shape = 6 parameters and the test of Lobato and Velasco is performed using the
function lobato.test () of the proposed nortstTest package. At significance level o = 0.05,
the null hypothesis of normality is correctly rejected.

R> set.seed(298)

R> # Simulating the MA(3) process

R> x = arima.sim(250,model = list(ma =c(0.2,0.3,-0.4)),
rand.gen = rgamma,rate = 3,shape = 6)

R> lobato.test (x)

Lobato and Velasco's test

data: x
lobato = 62.294, df = 2, p-value = 2.972e-14
alternative hypothesis: x does not follow a Gaussian Process

2.5. The Random Projections test

The previous two proposals only test for the normality of the one-dimensional marginal dis-
tribution of the process, which is inconsistent against alternatives whose one-dimensional
marginal is Gaussian. Nieto-Reyes et al. (2014) provides a procedure to fully test normality
of a stationary process using a Crammér-Wold type result (Cuesta-Albertos et al. 2007) that
uses random projections to differentiate among distributions. We show this result below. The
result works for separable Hilbert spaces, however here, for its later application, we restrict
it to 12, the space of square summable sequences over N, with inner product (-, -).

Theorem 3 (Cuesta-Albertos et al. (2007), Theorem 3.6) Let n be a dissipative dis-
tribution on 1? and Z a 1?>-valued random element, then Z is Gaussian if and only if

n{h €1%:(Z,h) has a Gaussian distribution} > 0.

A dissipative distribution (Nieto-Reyes et al. 2014, Definition 2.1) is a generalization of the
concept of absolutely continuous distribution to the infinite dimensional space. To construct
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a dissipative distribution in /2, it is made use of the Dirichlet process (Gelman, Carlin, Stern,
Dunson, Vehtari, and Rubin 2013). In practice, the h € 2 is drawn with a stick-breaking
process that makes use of beta distributions.

Let X = {Xi}iez be a stationary process. As X is normally distributed if the process
X .= {Xk}r<: is Gaussian for each ¢ € Z, using the result above, Nieto-Reyes et al. (2014)
provides a procedure for testing that X is a Gaussian process by testing whether the process
Y = {Y}'}icz is Gaussian.

Y=Y hiXe = (X, h), (6)
=0

where (X h) is a real random variable for each t € Z and h € [?. Thus, Y" is a stationary
process constructed by the projection of X on the space generated by h. Therefore, X is
a Gaussian process if and only if the marginal distribution of Y is normally distributed.
Additionally, the hypothesis of the tests Lobato and Velasco or Epps, such as (4), (5), (A)
and (B), imposed on X are inherited by Y". Then, those tests can be applied to evaluate
the normality of the marginal distribution of Y. Further conditions such as, a discussion on
the specific beta parameters used to construct the distribution from which to draw h, select a
proper amount of combinations to establish the number of projections required to improve the
method performance, have to be considered. All of these details are discussed in Nieto-Reyes
et al. (2014).

Next, we summarize the test of random projections in practice:

1. Select k, the number of independent projections to be used (by default k = 64).

2. Half of the random elements in which to project are drawn from a dissipative distribution
that makes use of a particular beta distribution (5(2,7) by default). Then the test of
Lobato and Velasco is applied to the odd number of projected processes, and the Epps
test to the even.

3. The other half are drawn analogously but using another beta distribution (3(100,1) by
default). Then again the test of Lobato and Velasco is applied to the odd number of
projected process, and the Epps test to the even.

4. The obtained k p-values are combined using the false discover rate (Benjamini and
Yekutieli 2001).

The rp.test () function implements the above procedure. The user might provide optional
parameters such as the number of projections k, the parameters of the first beta distribution
parsl and those of the second pars2. In the next example, the rp.test is applied to a
stationary GARCH(1,1) process drawn using normal random variables.

Example 3 A stationary GARCH(1,1) process * is drawn using standard normal distribution
and the parameters ayg =0, oy = 0.2 and 1 = 0.3.

“A GARCH(1,1) process is stationary if the parameters a and J satisfy the inequality oo + 8 < 1 (Bollerslev
1986).
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R> set.seed(3466)

R> # Simulating the GARCH(1,1) process

R> spec = garchSpec(model = list(alpha = 0.2, beta = 0.3))
R> x = ts( garchSim(spec, n = 300) )

R> rp.test (x,k=250)
k random projections test

data: x
k = 250, lobato = 1.2720, epps = 3.2891, p-value = 0.7946
alternative hypothesis: x does not follow a Gaussian Process

The random projections test is applied to the simulated data with k = 250 as the number
of projections (as recommended by the authors). At significance level v = 0.05, there is no
evidence to reject null hypothesis of normality.

The random.projection() function upgrades the lobato.test() and epps.test() func-
tions for fully testing normality. This function generates the projected process Y as in
(6), the shapel and shape2 function’s arguments are the parameters of a beta distribution
used to generate the stick-breaking process h. And then, the lobato.test () or epps.test()
functions can be applied to the resulting Y process for fully testing.

Example 4 We use the AR(2) process simulated in Example 1, to fully check of normal-
ity using the epps.test() and random.projection() functions, where shapel = 100 and
shape2 = 1 are the arguments for generating the new projected process Yh. At significance
level o = 0.05, the null hypothesis of normality is again correctly rejected.

R> set.seed(298)

R> x = arima.sim(250,model = list(ar =c(0.5,0.2)),rand.gen = rbeta,
shapel = 9,shape2 = 1)

R> y = random.projection(x,shapel = 100, shape2 = 1,seed = 298)

R> epps.test(y)

Epps test

data: x
epps = 11.645, df = 2, p-value = 0.002961
alternative hypothesis: x does not follow a Gaussian Process

2.6. The Psaradakis and Vavra’s test

Psaradakis and Vévra (2017) proposed a distance test for normality of the one-dimensional
marginal distribution of a stationary process. The test is based on the Anderson and Darling
(1952) test statistic and makes use of an auto-regressive sieve bootstrap approximation to
the null distribution of the sample test statistic. Although the test is said to be applicable
to a wider class of non-stationary processes, by transforming them into stationary by means
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of a fractional difference operator, no theoretic result was apparently provided to sustain
this transformation. Therefore, here we restrict the presentation and implementation of the
procedure to stationary processes.

Let X be a stationary process satisfying

Xt == Zeiet—i + Ho, te Z7 (7)
=0

where g € R, {0,122, € I? with 6y = 1 and {&}3°2, a collection of mean zero i.i.d random
variables. The null hypothesis is that the one-dimensional marginal distribution of X is
normally distributed,

Hy: F(po++/v(0)z) — Fn(z) =0, for all x € R,

where F is the cumulative distribution function of Xy, and F denotes the standard normal
cumulative distribution function. Note that if ¢ is normally distributed, then the null hypoth-
esis is satisfied. Conversely, if the null hypothesis is satisfied, then ¢y is normally distributed
and consequently Xj.

The considered test for Hy is based on the Anderson-Darling distance statistic

pa= [ Il VAT~ Do)

Pyl —Fn(e)] N (®)

where F),(+) is the empirical distribution function associated to F' based on a simple random
sample of size n. Psaradakis and Vavra (2017) propose an auto-regressive sieve bootstrap
procedure to approximate the sampling properties of Ay arguing that making use of classical
asymptotic inference for A, is problematic and involved. This scheme is motivated by the
fact that under some assumptions for X, including (7), ¢; admits the representation,

€t = Z¢1(Xt—z - IU'O)7 te Za (9)
i=1

for certain type of {¢;}22, € I2. The main idea behind this approach is to generate a bootstrap
sample €; to approximate ¢ with a finite-order auto-regressive model. This is because the
distribution of the processes €; and €/ coincide asymptotically if the order of the auto-regressive
approximation grows simultaneously with n at an appropriate rate (Bithlmann 1997). The
procedure makes use of the €;® to obtain the X;* through the bootstrap analog of (9). Then,
a bootstrap sample of the Ay statistic, A%, is generated making use of the bootstrap analog
of (7).

This test is implemented in the vavra.test() function. 1,000 sieve-bootstrap replications
are used by default. The presented values are Monte-Carlo estimates of the Ay statistic and
p-value.

Example 5 A stationary ARM A(1,1) process is simulated using a standard normal distribu-
tion, and the implementation of the test of Psaradakis and Vdvra is performed. At significance
level o = 0.05, there is no evidence to reject the null hypothesis of normality.
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R> set.seed(298)

R> # Simulating the ARMA(1,1) process

R> x = arima.sim(250,model = list(ar = 0.2, ma = 0.34))
R> vavra.test(x)

Psaradakis-Vavra test
data: x

bootstrap A = 1.5798, p-value = 0.796
alternative hypothesis: x does not follow a Gaussian Process
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3. Simulations and data analysis

3.1. Numerical experiments

Inspired in Psaradakis and Vavra (2017) and Nieto-Reyes et al. (2014) simulation studies,
this work proposes a similar procedure. This study involves drawing data from the AR(1)

process

Xt = ¢Xt_1 + €, te Z, for ¢ € {0, 1025, :|:04}

(10)

where the {¢€; };cz are i.i.d random variables. For the distribution of the ¢; we consider different
scenarios: standard normal (N), standard log-normal (logN), Student t with 3 degrees of
freedom (t3), chi-squared with 10 degrees of freedom (x?(10)) and beta with parameters (7,1).
As in Psaradakis and Véavra (2017), m = 1,000 independent draws of the above process are
generated for each pair of parameter ¢ and distribution.

n = 100 n = 250
distribution ¢ -0.4 -0.25 0.0 0.25 0.4 -04 -0.25 0.0 0.25 0.4
Lobato and Velasco
N 0.045 0.042 0.039 0.052 0.037 0.044 0.054 0.056 0.050 0.048
logN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
t3 0.806 0.872 0.873 0.882 0.796 0.980 0.992 0.999 0.993 0.983
X2(10) 0.553 0.685 0.776 0.667 0.559 0.968 0.995 0.997 0.996 0.964
beta(7,1) 0.962 0.995 0.999 0.996 0.958 1.000 1.000 1.000 1.000 1.000
Epps
N 0.066 0.077 0.084 0.075 0.070 0.058 0.059 0.065 0.073 0.068
logN 0.825 0.884 0.969 0.958 0.948 0.998 0.999 1.000 1.000 1.000
t3 0.202 0.294 0.363 0.288 0.207 0.716 0.838 0.909 0.855 0.752
X2(10) 0.319 0.465 0.548 0.461 0.361 0.631 0.836 0.917 0.841 0.729
beta(7,1) 0.781 0.953 0.991 0.960 0.887 0.996 1.000 1.000 1.000 0.999
Random Projections, k = 10
N 0.007 0.009 0.007 0.006 0.006 0.021 0.027 0.025 0.021 0.018
logN 0.891 0.865 0.772 0.625 0.515 1.000 1.000 1.000 1.000 1.000
t3 0.293 0.267 0.204 0.122 0.098 0.989 0.993 0.995 0.983 0.961
X2(10) 0.223 0.231 0.201 0.131 0.086 0.954 0.993 0.992 0.949 0.840
beta(7,1) 0.605 0.533 0.363 0.184 0.108 1.000 1.000 1.000 1.000 1.000
Psaradakis and Vavra
N 0.056 0.046 0.038 0.052 0.046 0.050 0.061 0.044 0.055 0.047
logN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ts 0.714 0.802 0.850 0.768 0.644 0.959 0.987 0.997 0.990 0.960
x2(10) 0.500 0.692 0.800 0.660 0.542 0.911 0.985 0.995 0.985 0.922
beta(7,1) 0.956 1.000 1.000 0.998 0.972 1.000 1.000 1.000 1.000 0.999

Table 1: Rejection rate estimates over m = 1,000 trials of the four studied goodness of fit
test for the null hypothesis of normality. The data is drawn using the process defined in (10)
for different values of ¢ and n displayed in the columns and different distributions for €; in

the rows.
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Each is taken of length past + n, with past = 500 and n € {100,250, 500,1000}. The first
500 data points of each realization are then discarded in order to eliminate start-up effects.
The n remaining data points are used to compute the value of the test statistic of interest. In
each particular scenario, the rejection rate is obtained by computing the proportion of times
that the test is rejected among the m trials.

n = 500 n = 1,000
distribution ¢-04 -0.25 0.0 0.25 0.4 -04 -0.25 0.0 0.25 0.4

Lobato and Velasco

N 0.042 0.053 0.037 0.041 0.043 0.049 0.051 0.046 0.043 0.047
logN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
t3 0.968 0.987 0.989 0.983 0.962 1.000 1.000 1.000 1.000 1.000
x2(10) 0.902 0.965 0.996 0.976 0.880 1.000 1.000 1.000 1.000 1.000
beta(7,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Epps
N 0.063 0.077 0.078 0.072 0.073 0.051 0.048 0.052 0.056 0.062
logN 0.989 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
t3 0.569 0.705 0.781 0.694 0.587 0.999 1.000 1.000 1.000 0.999
chisq10 0.534 0.745 0.859 0.740 0.611 0.999 1.000 1.000 1.000 1.000

beta(7,1) 0.983 0.998 1.000 1.000 0.989 1.000 1.000 1.000 1.000 1.000
Random Projections k = 10

N 0.016 0.015 0.012 0.019 0.017 0.015 0.016 0.019 0.018 0.018
logN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
t3 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000
chisq10 1.000 1.000 1.000 1.000 0.993 1.000 1.000 1.000 1.000 1.000

beta(7,1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Psaradakis and Vavra

N 0.064 0.046 0.048 0.038 0.050 0.055 0.049 0.045 0.057 0.042
logN 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
t3 0.908 0.972 0.982 0.958 0.896 1.000 1.000 1.000 1.000 1.000
chisq10 0.824 0.954 0.988 0.958 0.856 1.000 1.000 1.000 1.000 1.000

beta(7,1) 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Rejection rate estimates over m = 1,000 trials of the four studied goodness of fit
test for the null hypothesis of normality. The data is drawn using the process defined in (10)
for different values of ¢ and n displayed in the columns and different distributions for €; in
the rows. ¢ € {0,£0.25,+0.4}, n € {500,1000}.

Tables 1 and 2 presents the rejection rate estimates. For every process of length n, the
columns represent the used AR(1) parameter, and the rows the proposed distribution where
the processes were sampled. The obtained results are consistent with those obtained in the
publications were the different tests were proposed. As expected, rejection rates are around
0.05 when the data is drawn making use of the standard normal distribution, as in this case
the data is drawn from a Gaussian process. Conversely, high rejection rates are registered for
the other distributions. Although low rejection rates for the x?(10) distribution for the Epps
and random projection test are observed, they consistently tend to 1 when the length of the
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process, n, increases.

The number of projections for this study is k = 10, this is by far a lower number than the
recommended by Nieto-Reyes et al. (2014), but even in these conditions, the obtained results
are satisfactory, having even better performance than the tests of Epps (1987), or Psaradakis
and Vavra (2017).

3.2. Real data application

As an illustrative example, we analyze the monthly mean carbon dioxide, in parts per million
(ppm), measured at the Mauna Loa Observatory, in Hawaii, from March 1958 to November
2018. The carbon dioxide data measured as the mole fraction in dry air on Mauna Loa
constitute the longest record of direct measurements of CO2 in the atmosphere. This dataset
is available in the astsa package (Stoffer 2020) under the name cardox data and it is displayed
in the left panel of Figure 1.

Carbon Dioxide Levels at Mauna Loa Forecast: Carbon Dioxide Levels at Mauna Loa
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Figure 1: Left panel: CO2 Levels at Mauna Loa, time-series plot. The cardox data show a
positive tendency and strong seasonality. Right panel: forecast of the next 12 months for the
CO2 levels at Mauna Loa, the model’s predictions capture the time-series behaviour.

The time-series clearly has trend and seasonal components (see Figure 1), therefore, an ade-
quate model that filters both components has to be selected. We propose a Gaussian linear
state space model (STM), implemented by the forecast package (Hyndman and Khandakar
2008). This function fits 32 different STMs with different characteristics for trend and sea-
sonality, and selects the best one according to the Bayesian Information criteria (BIC) (Chen
and Chen 2008). For the cardox data, the best fitted model is a Multiplicative error, additive
trend-seasonality (ETS(M,A,A)) model, (see Definition 8).

R> library(forecast)
R> summary(ets(astsa::cardox))

ETS(M,A,A)
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Call:
ets(y = cardox)

Smoothing parameters:
alpha = 0.5591
beta 0.0072
gamma = 0.1061

Initial states:

1 = 314.6899
b = 0.0696
s = 0.6611 0.0168 -0.8536 -1.9095 -3.0088 -2.7503

-1.2155 0.6944 2.1365 2.7225 2.3051 1.2012
sigma: 9e-04

AIC AICc BIC
3136.280 3137.140 3214.338

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.02324 0.3120 0.24308 0.0063088 0.068840 0.1559102 0.07275949

The cardox data satisfies the models assumptions if the model’s errors follow a stationary
Gaussian process. Using the estimated model’s errors (residuals), we propose a normality
test to check Gaussianity ( Section 2) and a unit root test for stationarity (subsection 2.2).

This can be performed automatically using our propose function check_residuals(), that
displays the results of the Augmented Dickey-Fuller and random projection tests.

R> check_residuals(model,unit_root = "adf",normality = "rp",plot = TRUE)
3k 3k 5k 5k >k >k 5k ok 5k >k >k >k 5k 5k >k >k %k 3k 5k >k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k 5k >k >k >k >k 3k >k >k *k >k >k >k >k *k *k >k >k
Unit root test for stationarity:
Augmented Dickey-Fuller Test
data: y

Dickey-Fuller = -9.7249, Lag order = 8, p-value = 0.01
alternative hypothesis: stationary

Conclusion: y is stationary
stk s ok stk ok skskeokok sk ok kb sk o s ok sk sk sk ok s ok stk ok o s ok sk sk ok o o ok sk ok ok

Goodness of fit test for Gaussian Distribution:
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k random projections test
data: y

k = 64, lobato = 3.679, epps = 1.3818, p-value = 0.5916
alternative hypothesis: y does not follow a Gaussian Process

Conclusion: y follows a Gaussian Process

3k 3k 3k 3k >k 5k >k 3k 3k 3k 3k %k 3k >k 3k 3k 5k 3k >k 3k >k 5k 3k >k 5k >k 3k >k 5k 3k >k 5k >k 3k >k >k 5k >k 5k >k %k 5k >k 5k %k >k %k %k >k %k

check residuals:
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Figure 2: Diagnostic plots for the residuals of the ETS(M,A,A) model. The upper panel
shows the residuals time-series plot, showing small oscillations around zero, which insinuates
stationarity. The middle plots are the residuals histogram (middle-left) and quantile-quantile
plot (middle-right), both plots suggest that the residuals have a normal distribution. The
lower panel shows the autocorrelation functions, for both plots, the autocorrelations are close
to zero giving the impression of stationarity.

The obtained results indicate that the null hypothesis of non-stationary is rejected at signifi-
cance o = 0.01. Additionally, there is no evidence to reject the null hypothesis of normality
at significance a = 0.05. Consequently, we conclude that the residuals follow a stationary
Gaussian process. Additionally, Figure 2 performs different diagnostic plots for the residuals,
indicating that the assumptions of the model are satisfied.

As the assumptions of the model have been checked, it can be used for instance to forecast.
The result of applying the following function is displayed in the right panel of Figure 1. It
presents the Carbon dioxide data for the last 8 years and a forecast of the next 12 months.
It is observable from the plot that the model captures the process trend and periodicity.
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4. Model assessment in Bayesian Methods

Model assessment in a Bayesian approach remains as computational challenge. Several so-
lutions based on the predictive distribution have been considered. The Bayes factor (Kass
and Raftery 1995) for model selection allows comparing alternative models when proper prior
distributions are established. For model selection, the Watanabe information criteria (WAIC)
of Watanabe (2010) as an improvement of the deviance information criteria (DIC) proposed
by Spiegelhalter, Best, Carlin, and Van Der Linde (2002). And Vehtari, Gelman, and Gabry
(2016) implement an approximate leave one out cross-validation.

For assessing model adequacy, Guttman (1967) and Gelman (1996) propose the posterior
predictive checks (PPC) methods, that compares the simulated predictive distribution with
the data empirical distribution. For this matter, Johnson (2004) implements a Bayesian
version of Pearson’s goodness of fit test, and Gabry, Simpson, Vehtari, Betancourt, and
Gelman (2019) implement visual PPC methods for models diagnostic.

On the last years, the PPC methods are the most used for model assessment in Bayesian
modeling, the main problem of this methods in stochastic process and time series analysis is
that stationarity is required for an accurate computation of the process’ empirical distribution,
and this condition might not be satisfied in practice. As an alternative procedure, we propose
a visual method for model adequacy using the random projection method of Cuesta-Albertos
et al. (2007). The main idea of this procedure is to obtain a multivariate sample of the model’s
residuals using a MCMC algorithm and then, use the random projections method to assess
normality. The advantage of this approach is that the process’ empirical distribution is not
need to check the models assumptions, giving a clear advantage to the PPC methods.

For the purpose of this work, the proposed method is applied to time series models with
Gaussian assumptions, but it can be extended to any type of parametric model, with any
distribution assumption. In the following subsection we present the methods procedure, and
two case studies using simulated data.

4.1. The random projections method for Bayesian model assessing

Let X = {Xj, Xo,..., Xy} be afinite collection of an stochastic process, and denote M a para-
metric Gaussian model imposed to X restricted to 8 € ©, a vector of unknown parameters.
Then, lets assume that the model M can be expressed State space model as in Definition
7, with equations:

Xi = f(0i—1) +7(01—1)es

Or = g(0i—1) + w(Oi—1)es,

where f,g,r and w are functional over O, and {¢}}_; is a collection of white noise random
variables denoted as errors. Then for assessing model adequacy, lets check if the models errors
are normally distributed, where the errors can be estimated as

-—_— . *
€i~_)/;_)/i7

where Y;* is an estimate of Y;, based on the predictive distribution, see Pettit (1986) for
further details. In practice, the sample obtained from the posterior distribution in a MCMC
algorithm can be used to generate observations from the predictive distribution, which in turn

can be used to compute the estimate errors. Let E := {6(1), @ . ,e(m)} be a multivariate
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sample of the errors € := [e], €2, ..., €], for an arbitrary model M, where m is the number
of simulations obtained by a MCMC methodology. A straightforward procedure is to check
if every sample of the error components (¢;), for ¢ := 1,2,...,n are normally distributed,
but this task is computational expensive. Another approach is to check if all the m sampled

values
k) = [egk),egk), ) ,eg“)], fork=1,2,....,m

are random elements of a multivariate normal distribution, this approach presents a compu-
tational challenge, but can be easily solved using the random projections methods of Cuesta-
Albertos et al. (2007).

Let H = R™ be a separable Hilbert space with inner product (-,-), n a dissipative distribution
on R”, and every vector of errors €*) is a R"-valued random element for k = 1,2,...,m.
Then, applying Theorem 3.6 of Cuesta-Albertos et al. (2007), every ¢®) is Gaussian if and
only if n(E) > 0, where

E ={h eR": (¢® h) has a Gaussian distribution}.

Let {hy}}"; be a collection of R"-valued random elements sampled from a stick-breaking pro-
cess 1), every hy is then used to project every simulated error ¢(¥) to the one-dimensional space
R, obtaining an one-dimensional sample of projected errors { (¢ h;)}™, where normality
can be easily checked. Therefore, the model errors € are multivariate Gaussian distributed if
and only if the collection {(¢®, h;)}7, has a one-dimensional Gaussian distribution. Finally,
for assessing normality in the obtained one-dimensional sample, we propose using histograms,

density plots, boxplots and quantile-quantile plots for visual methods.

Even so this new approach validates the model without any additional computations such as
the process’ empirical distribution, the major problem is that visual methods are not a proper
methodology, then a more robust way is need for a proper validation, but unfortunately there
are not much references for hypothesis testing in a Bayesian inference approach.

4.2. Case Studies

In this subsection we propose 2 simulations studies using simulated data. All cases are ana-
lyzed using Bayesian ARMA models, implemented by the varstan package (Matamoros and
Torres 2020), an R package that implements Bayesian time series models using a Hamiltonian
Monte Carlo (HMC) Betancourt (2017). For every parameter, this algorithm returns a sim-
ulated Markov chain, which stationary distribution is the parameter posterior distribution.
Additionally, the package provides a multivariate sample of the model’s errors as well.

Case 1: stationary Gamma AR(1) process
For this case, we draw 250 simulations from a stationary AR(1) process.
Xi=po+ ¢Xi—1 + €,
with pg = 0, ¢ = 0.34 and the white noise errors are simulated using a Gamma distribution

with parameters o = 2 and § = 3. For analyze this data set we propose the next model:

M;: Gaussian AR(1) process
Xi = po + ¢Xit1 + €,
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where:

€ ~ N(O, 1),

and priors:

Ho ~ t7,
6 ~ N(0,0.5),

where t7 represent a t student distribution with 7 degrees of freedom and N represents a
normal distribution. For the HMC we propose 1 chain of 4,000 iteration, and then, the first
2,000 iterations are discarded in order to eliminate start-up effects. As Table 3 shows, a bad
selection of models assumption is hardly noted in the estimation process. Even so, that the
posterior mean values are bad estimations for ug and ¢, the potential scale reductions factors
R’s (Vehtari, Gelman, Simpson, Carpenter, and Biirkner 2020) are 1, indicating that the
simulated chains are stationary. And the effective sample size (ess) are all around 2,000 (the
number of defined iterations) indicating low correlation in the simulated chain, therefore,
no illness is found in the HMC procedure. Figure 3, shows the sample distribution of the

parameters  mean se 2.5%  97.5% ess R
o 0.90 0.00 0.89 0.90 2019.03 1.00
¢ 0.17 0.00 0.17 0.18 2007.52 1.00

loglik -198.13 0.03 -198.18 -198.07 2179.49 1.00

Table 3: Case 1: Estimated values of M7, the mean column present the parameters posterior
mean estimates, se is the posterior estimates standard error, columns 4 and 5 represents
the credible intervals at a 95% credibility, the effective sample size shows the number of
independent equivalent sample are generated from the simulated chain. And the potential
scale reductions factors R’s (Vehtari et al. 2020) shows the chains convergences for values
close to 1.

projected errors, as it is shown, the distribution is asymmetric, and the quantile-quantile plot
show that the sample quantiles do not match the theoretical ones of a normal distribution.
We conclude, the errors are not normally distributed, and therefore, the model’s assumptions
are not adequate for the simulated AR(1) gamma process.

Case 2: stationary Gaussian MA(1) process

In a similar way, we draw n = 300 simulations of a stationary MA(1) process.
Xi = po+ 01+ ¢

with pg = 0, ¢ = 0.15 and the white noise errors are simulated using a standard normal dis-
tribution. For analyze this dataset, we use the following model: Ms: Gaussian MA(1) process

Xi = po + Oei—1 + €,

where,

€ ~ N(0,1),

and priors,
o ~ tr,
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Figure 3: Diagnostic plot for projected errors, model M;: Gamma AR(1) process dataset.
The upper left plot compares the projected errors histogram with the theoric density plot of
a normal distribution. The upper right plot show the density plot for the projected errors.
The lower left plot is a qqplot it compares the projected errors sample quantiles with the ones
of a standard normal distribution. And the lower right plot is the projected error’s boxplot.

6 ~ N(0,0.5).

Following the same technical specifications for the HMC as in the previous study case, the
indicators in Table 4 shows that the simulated chains are stationary, and the posterior mean
estimates are accurate to the real specified parameters.

mean se 2.5% 97.5% ess R
o 0.03 0.00 0.02 0.03 886.19 1.00
0 0.18 0.00 0.018 0.19 1084.23 1.00
loglik -423.29 0.04 -423.36 -423.22 964.35 1.00

Table 4: Case 2: Estimated values for Gaussian MA (1) process, the mean column present the
parameters posterior mean estimates, se is the posterior estimates standard error, columns
4 and 5 represents the credible intervals at a 95% credibility, the effective sample size shows
the number of independent equivalent sample are generated from the simulated chain. And
the potential scale reductions factors R’s show the chains convergences for values close to 1.

Figure 4, shows the sample distribution of the projected errors, as it is shown, the distribution
is symmetric, and the quantile-quantile plot shows that the sample quantiles match the the-
oretical ones of a normal distribution. We conclude, the errors are normally distributed, and
therefore, the model’s assumptions are adequate for the simulated Gaussian MA (1) process.
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Figure 4: Diagnostic plot for projected errors, model My: Gaussian MA(1) process. The
upper left plot compares the projected errors histogram with the theoric density plot of a
normal distribution. The upper right plot show the density plot for the projected errors. The
lower left plot is a qqgplot it compares the projected errors sample quantiles with the ones of
a standard normal distribution. And the lower right plot is the projected error’s boxplot.

5. Conclusions

This work gives a general overview from most tests available for normality in stationary pro-
cess, and provides examples that illustrate every test implementation. At the date of this
work, no consistent application or package of all these tests was found. In the context of
stationary processes, some authors have available the Matlab code used from their simulation
studies, but in these cases, the code was restrictive and not suitable for use in real data ap-
plications. Therefore, the nortsTest is the first package that implements consistent test for
normality in stationary process. Additionally the packages provides a too tool for automatic
model checking and diagnostic, for the most common models implemented in several R pack-
ages, Matamoros and Nieto-Reyes (2020).

Model’s assumption check is an important part in statistical analysis, this works focus on
providing tools, for model diagnostic in time series model. On a Bayesian approach, our
proposed method is an alternative for assessing model adequacy, providing a tool for model
diagnostic in time series analysis where stationary might not be satisfied, therefore, a PPC
method might not be reliable. Even so we obtained promising results in both case studies,
a further study might be necessary, several situations such as the number of projections, the
method’s sensibility, and a general implementation for distribution different than a normal
distribution need to be considerate.

Future work and projects
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For the nortsTest package, additional tests such as Bispectral (Hinich 1982) and Stein’s
characterization (Bontemps and Meddahi 2005) will be incorporated in its second version;
as upgrades in the optimization and bootstrap procedures for the Epps and Psaradaskis &
Vavra’s tests for faster performance. Also the creation of different implementations of the
Skewness-Kurtosis test besides Lobato € Velasco’s.
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