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  Abstract
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Competitive state anxiety is an integral feature of sports performance but despite its pervasiveness, there is still much debate
concerning the measurement of the construct.Adopting a network approach that conceptualizes symptoms of a construct as paired
associations, we proposed re-examining competitive state anxiety as a system of interacting components in a dataset of 485
competitive athletes from the UK. Following a process of data reduction, we estimated a network structure for 15 items from the
modified Three Factor Anxiety Inventory using the graphical LASSO algorithm. We then examined network connectivity using node
predictability. Exploratory graph analysis was used to detect communities in the network and bridge expected influence calculated
to estimate the influence of items from one community to items in other communities. The resultant network produced a range of
node predictability values. Community detection analysis derived three communities that corresponded with previous research
and several nodes were identified that bridged these communities. We conclude that network analysis is a useful tool to explore
the competitive state anxiety response and we discuss how the results of our analysis might inform the assessment of the
construct and how this assessment might inform interventions.

   

  Contribution to the field

Sport at all levels of performance is often characterized by a demand to perform optimally in pressure situations. As a result,
sport psychologists are frequently called upon to help performers deal with the competitive anxiety response that often
accompanies such pressure. Yet, despite the pervasiveness of the competitive anxiety response, there is still much debate
concerning the measurement of the construct. Typically, competitive anxiety is measured using self-report inventories that are
constructed using traditional measurement theory and methods. Network analysis has emerged as a viable alternative to the
traditional approach. Networks have been used to describe many psychological constructs, for example, depression,
post-traumatic stress disorder, eating disorders and trait rumination. To date, networks have not been adopted in the field of
sport psychology and the present manuscript is the first to do so. We use network analysis to re-examine a recently proposed
model of competitive state anxiety using methods recently introduced in the network literature. Our findings add to the growing
body of literature that has shown that personality dimensions can be conceptualized in network terms and introduce the method
to the field of sport psychology. Given the extensive literature on competitive state anxiety, our findings set the scene for novel
research directions focused upon model conceptualization and the development of more effective interventions for athletes
performing under pressure.
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Abstract 

Competitive state anxiety is an integral feature of sports performance but despite its 

pervasiveness, there is still much debate concerning the measurement of the construct. 

Adopting a network approach that conceptualizes symptoms of a construct as paired 

associations, we proposed re-examining competitive state anxiety as a system of interacting 

components in a dataset of 485 competitive athletes from the UK. Following a process of data 

reduction, we estimated a network structure for 15 items from the modified Three Factor 

Anxiety Inventory using the graphical LASSO algorithm. We then examined network 

connectivity using node predictability. Exploratory graph analysis was used to detect 

communities in the network and bridge expected influence calculated to estimate the 

influence of items from one community to items in other communities. The resultant network 

produced a range of node predictability values. Community detection analysis derived three 

communities that corresponded with previous research and several nodes were identified that 

bridged these communities. We conclude that network analysis is a useful tool to explore the 

competitive state anxiety response and we discuss how the results of our analysis might 

inform the assessment of the construct and how this assessment might inform interventions. 

 

Keywords: anxiety, network analysis, predictability, community detection, graph theory, state 

anxiety 
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Network Analysis of Competitive State Anxiety 1 

Introduction 2 

The measurement of competitive state anxiety (CSA) has been the subject of much debate 3 

in the sport psychology literature (Hardy, 1997, Mellalieu et al., 2006). While long 4 

acknowledged as a multidimensional construct (Cox et al., 2003; Martens et al., 1990), there 5 

have been important strides made towards understanding the exact nature of that 6 

multidimensionality to better understand the function of the construct. For example, Cheng, 7 

Hardy and Markland (2009) presented a model comprised of cognitive and physiological 8 

anxiety and a regulatory dimension, included to reflect the adaptive nature of the competitive 9 

anxiety response. A unique feature of Cheng et al.’s model is the differentiated structure of 10 

cognitive and physiological anxiety, designed to account for the unique processes subsumed 11 

within these dimensions. Specifically, the full model includes three higher order dimensions 12 

reflected by five lower order subcomponents; cognitive anxiety, reflected by worry and self-13 

focused attention; physiological anxiety, reflected by autonomic hyperactivity and somatic 14 

tension and the regulatory dimension consisting of a single subcomponent, perceived control. 15 

To measure their model Cheng et al. developed the Three Factor Anxiety Inventory (TFAI). 16 

Initial testing failed to support the predicted hierarchical structure and Cheng et al. settled on 17 

a three-factor fit comprising cognitive anxiety, physiological anxiety and perceived control. 18 

Further support for the predictive validity of the model was established in subsequent 19 

research (Cheng and Hardy, 2016; Cheng et al., 2011). In both studies, the regulatory 20 

dimension played a key role in the dynamics of the anxiety response. 21 

Jones et al. (2019) extended the work of Cheng and associates by respecifying the 22 

structure of the CSA model. From a conceptual standpoint, Jones et al. suggested that the 23 

self-focus subcomponent of the cognitive anxiety dimension proposed by Cheng et al. failed 24 
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to recognize the commonly accepted multidimensional nature of this construct, which is more 25 

typically composed of public and private facets (Fenigstein et al., 1975; Geukes et al., 2013). 26 

In addition to specifying a structure that fully differentiated private and public self-focus, 27 

Jones et al. used a novel approach to model specification and measurement. Rather than adopt 28 

the reflective approach of classic test theory, where variation in scores on measures is a 29 

function of the true score and error, Jones et al. adopted a hybrid approach, consisting of 30 

reflective and formative measurement. In formative models, variables are viewed as 31 

composites of indicators, a notion Jones et al. applied to a higher-order factor structure in 32 

which the first order latent constructs of worry, private self-focus, public self-focus, somatic 33 

tension, autonomic hyperactivity and perceived control, were measured by reflective 34 

indicators. Each of these constructs had a unique theme common to all the items measuring it 35 

(Diamantopolous and Winklehofer, 2001). The first order constructs served as formative 36 

indicators for the second-order latent variables, the cognitive, physiological and regulatory 37 

dimensions. Jones et al. specified these models as formative “as the direction of causality 38 

flows from the first to the second order constructs” (Jones et al., p. 43). In a series of studies, 39 

Jones et al. provided initial support for a 25-item representation of their model. 40 

The work of Cheng and Jones and respective associates has significantly advanced the 41 

measurement of CSA. Despite these advances, the status of both reflective and formative 42 

measurement models is the source of much discussion, with most of the debate focused on 43 

the reasons for favouring one or other approach (Schmittmann et al., 2013). Amid this debate, 44 

others have sought alternative means of modelling psychological responses. Network analysis 45 

has emerged as an alternative to more traditional approaches to model development and 46 

measurement and sport psychologists could benefit from a consideration of the network 47 

structure of the phenomena they seek to understand. The network perspective views mental 48 

states as a complex system of interacting symptoms (Borsboom, 2017). From this 49 
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perspective, the causal interplay between symptoms constitutes the mental construct (Fried et 50 

al., 2017). This view stands in contrast to the more common approach in which the construct 51 

is considered to be the latent cause of the thoughts and feelings that reflect its presence. From 52 

the network standpoint, CSA can be viewed as the emergent consequence of the interactions 53 

among its constituent elements (Schmittmann et al., 2013) and latent constructs are not 54 

necessary to explain how the items in a questionnaire covary. These interactions are depicted 55 

in a network and studying the construct means studying the architecture of the network. As 56 

Schmittmann et al. note, ‘the relation between observables and the construct should not be 57 

interpreted as one of measurement, but as one of mereology: the observables do not measure 58 

the construct but are part of it’ (p. 5). Thus, a network constitutes a system wherein the 59 

constituent variables mutually influence each other without hypothesizing the existence of 60 

causal latent variables (Hevey, 2018; Schmittman et al., 2013). From this perspective, 61 

questionnaire items refer to the state of a set of personality components that are causally 62 

dependent upon one another and form a network. The state of the network is determined by 63 

the total activation of these components. High levels of CSA are portrayed when more 64 

components of the construct are activated, and the network is pushed toward an anxious state 65 

(Borsboom and Cramer, 2013). A network model of CSA would depict the observed 66 

variables as nodes connected by edges, which represent statistical relationships between 67 

nodes. In this way, the psychological network helps illuminate the morphology of the 68 

construct. 69 

A natural corollary of adopting a network approach is the shift in focus of therapeutic 70 

interventions. Instead of targeting a latent construct or disorder, interventions can focus upon 71 

symptoms and the relations between symptoms (Borsboom and Cramer, 2013). Sport 72 

psychologists can direct treatment at the problems faced by athletes, the symptoms 73 

themselves, or the causal relations that connect them. Network analysis can reveal how these 74 
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features interact, in contrast to the latent variable perspective, which explicitly prohibits such 75 

interactions. In addition, this approach can reveal how the features of CSA might manifest 76 

themselves differently in athletes with the same overall scores on state anxiety inventories. 77 

To date, researchers have applied network theory to several different psychological constructs 78 

(e.g., conscientiousness, Costantini and Perugini, 2016) and disorders (e.g., depression, 79 

Bringmann et al., 2015;  post-traumatic stress disorder, Ross et al., 2020; trait rumination, 80 

Bernstein et al., 2019, and for a review, Fried et al., 2017). This paper is the first to examine 81 

the dynamics of the CSA response from a network perspective. 82 

Network analysis also affords researchers the opportunity to examine individual 83 

differences in the CSA response. In the competitive state anxiety research, the examination of 84 

gender effects has been equivocal. Despite the suggestion that gender does moderate anxiety 85 

responses (Martens et al., 1990), subsequent research using the Competitive State Anxiety 86 

Inventory-2 (CSAI-2; Martens et al., 1990) has reported no differences (e.g., Perry and 87 

Williams, 1998) and others reporting a range of differences between males and females (e.g., 88 

Hagan et al., 2017). Research using Cheng et al.’s three-dimensional measure is more limited 89 

with only Cheng et al. (2011) examining gender differences and reporting no effect. 90 

Consequently, we aimed to explore potential differences between male and female CSA 91 

network structures. 92 

One of the challenges facing researchers constructing network models using self-report 93 

scales such as the TFAI stems from the design of such scales, which have been constructed to 94 

measure underlying dimensions or latent variables (Briganti and Linkowski, 2020; Fonseca-95 

Pedrero et al., 2016). Specifically, the items contained in the scales are often similar and 96 

might measure the same construct. Consequently, rather than representing the mutualism 97 

inherent in paired connections between nodes within a network, any interaction between 98 

items might represent shared variance as the items were designed to measure the same thing 99 
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(Fried and Cramer, 2017). Researchers have adopted several approaches to overcome this 100 

issue. For example, Briganti and associates (Briganti et al., 2019; Briganti and Linkowski, 101 

2020) and Fonseca-Pedrero et al. (2016) chose to estimate a network for the scale items and a 102 

separate network for the latent variables the items reflected. Others (Bernstein et al., 2019; 103 

Levinson et al., 2018) have addressed this issue of topological overlap in the items using a 104 

data-driven approach to reduce the number of items, based upon their similarity, to the extent 105 

that they were more confident that the items were not measuring the same symptoms. In this 106 

paper, we adopted the latter approach with the TFAI. 107 

The aim of this study is to extend the use of network modelling techniques to the construct 108 

of CSA as represented by Jones et al.’s adaptation of the TFAI in a sample of athletes 109 

competing in a range of sports. We first checked that there were no differences between the 110 

networks of male and female athletes and then explored the connectivity of CSA as a network 111 

composed of its items. We assessed the accuracy of the networks using bootstrapped 112 

confidence intervals on the edge weights and used estimates of predictability to interpret the 113 

network structures. Finally, we examined the TFAI items to see whether the network items 114 

formed distinct communities or sub-networks that corresponded to Cheng et al.’s (2009) 115 

three-factor structure or Jones et al.’s (2019) fully differentiated 6-factor first-order structure.  116 

We used a community detection algorithm to identify potential communities, which are 117 

groups of nodes that are highly interconnected but connected weakly with other nodes or 118 

groups of nodes. Importantly, these communities are not formed because of a common cause, 119 

instead they “emerge from densely connected sets of nodes that form coherent sub-networks 120 

within the overall network” (Christensen et al., 2020, p.6). If the presence of communities of 121 

items was confirmed, we also set out to examine if there were any items that acted as 122 

“bridges”, that is processes that are shared by or connect communities. Overall, this 123 
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examination of CSA is novel and exploratory and is intended to provide a new perspective on 124 

the structure of the CSA response. 125 

Method 126 

Participants 127 

The de-identified archival data came from a research programme that previously 128 

investigated the competitive state anxiety response (Jones et al., 2019). The sample of 485 129 

British participants comprised 162 male athletes (mean age = 21, SD = 4) and 323 female 130 

athletes (mean age = 21, SD = 3.7) who competed in a range of individual and team sports 131 

(males: archery = 24, badminton = 13, basketball = 36, soccer = 39, field hockey = 4, karate 132 

= 3, rugby union = 27, volleyball = 15; females: archery = 14, badminton = 7, cheerleading = 133 

5, hockey = 26, karate = 5, netball = 227, rugby union = 30, touch rugby = 9). The 134 

competitive level of the participants ranged from club to international. Athletes had an 135 

average of 9.79 (SD = 5.59) and 9.21 (SD = 4.24) years of competitive experience, for males 136 

and females, respectively. All participants were English speaking and informed consent was 137 

obtained before beginning data collection. Ethical approval for the study was granted by the 138 

university ethics committee. 139 

Measure 140 

The Three Factor Anxiety Inventory (TFAI) modified by Jones et al. (2019) was used in 141 

this investigation. The measure comprises 25 items (see Table S1), with 11 items 142 

representing the cognitive dimension (worry, 5 items; private self-focus, 3 items; public self-143 

focus, 3 items), 10 items representing physiological anxiety (5 for both somatic tension and 144 

autonomic hyperactivity), and 4 items reflecting the regulatory dimension of perceived 145 

control. Participants were instructed to complete the measure based on how they felt at that 146 

moment, reminded that their data was confidential and that they should answer as openly and 147 
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honestly as possible. The prospective data were collected approximately 1 hour before a 148 

competitive performance. A 5-point Likert scale was used (1 = totally disagree; 5 = totally 149 

agree). 150 

INSERT TABLE 1 ABOUT HERE 151 

Item selection 152 

To deal with the issue of which items from the TFAI to include in the network we used a 153 

data driven approach and compared correlations between all items using the goldbricker 154 

function in R. Goldbricker compares dependent overlapping correlations and if the 155 

correlations are significantly different then the symptoms being compared capture unique 156 

aspects of the CSA response (see Levinson et al., 2018). The data driven approach involved 157 

researcher guided judgement to determine (a) the method chosen to compare correlations, (b) 158 

the appropriate level of alpha to determine significance, and (c) which proportion of unique 159 

correlations was considered necessary to differentiate items (Levinson et al., 2018). The 160 

goldbricker output is interpreted in a similar way to a scree plot in principal components 161 

analysis: decisions are data driven but combined with theoretical judgements regarding the 162 

exact cut off points. In the present study, goldbricker was set to search for pairs of items that 163 

were correlated at r > .50, with 0.25 as the significant proportion for inclusion and .01 as the 164 

p-value for determining statistical significance (Bernstein et al., 2019; Hittner et al., 2003; 165 

Levinson et al., 2018). 166 

Network estimation and visualization 167 

A network consists of nodes and edges. Nodes represent the individual item scores and the 168 

edges are connections between nodes. Node placement was achieved using the Fruchterman 169 

and Reingold algorithm (1991), which places more important nodes at the centre of the model 170 

in terms of connections to other nodes. An undirected weighted network was estimated a 171 
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Gaussian Graphical Model (GGM) using qgraph and regularized using the Least Absolute 172 

Shrinkage and Selection Operator (LASSO). The LASSO regularization returns a sparse 173 

network structure as it reduces small connections (partial correlation coefficients) between 174 

pairs of nodes to zero. The LASSO penalty is typically implemented to overcome the 175 

limitation of relatively small datasets used in psychological research to estimate networks 176 

(Epskamp et al., 2017). More specifically, we used qgraph to implement a graphical LASSO 177 

regularization (glasso, Friedman et al., 2008), which is tuned using the hyperparameter 178 

gamma (γ) in combination with the Extended Bayesian Information Criterion (EBIC; Chen 179 

and Chen, 2008). The hyperparameter controls the trade-off between the inclusion of possible 180 

false-positive edges (high specificity, γ values close to 0) and the removal of true edges (high 181 

sensitivity, γ values close to.5) in the final network (Heeren et al., 2018). We selected a 182 

conservative value of γ = .5, guiding the EBIC to favour a sparse network structure with few 183 

edges. Epskamp’s bootnet package automatically estimates this procedure in qgraph using 184 

the “EBICglasso” default. In the resulting network, edges between nodes signify conditional 185 

independence relationships among the nodes, or more specifically, partial correlations 186 

between pairs of nodes controlling for the influence of all other nodes (Epskamp et al., 2017). 187 

In other words, the relationships between symptoms account for all other relationships in the 188 

model, functioning as a large multiple regression. As our data was ordinal, we specified a 189 

Spearman’s correlation matrix as the input for network estimation. We also conducted a form 190 

of sensitivity analysis to address concerns that specificity in EBICglasso networks can be 191 

lower when the network is dense with many small edges, which can lead to false positive 192 

identification of the smaller edges (Williams and Rast, 2020). Although our main EBICglasso 193 

analysis used a conservative level of the hyperparameter γ, 0.5, to control for potential false 194 

positives, we also constructed a more conservative thresholded network that set edge weights 195 

to zero when those edge weights were not larger than the set threshold (see supplementary 196 
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materials; Epskamp, 2018). The network structures were visualized using the R-package 197 

qgraph (Epskamp et al., 2012). Blue lines indicate positive partial correlations and red lines 198 

negative partial correlations. More saturated, thicker edges represent stronger relationships. 199 

To assess the accuracy of the networks, we first estimated confidence intervals on the edge 200 

weights using bootstrapping routines (1000 iterations) in bootnet. Smaller confidence 201 

intervals indicate greater accuracy. We then conducted difference tests between all pairs of 202 

edge weights. 203 

Network Comparison 204 

Male and female networks were compared using the Network Comparison Test (NCT; van 205 

Borkulo, 2019). Comparison of networks requires groups of equal sizes, otherwise 206 

regularization becomes problematic. To overcome the imbalance between males and females 207 

in the sample, we reduced the larger female dataset to match the male dataset using random 208 

sampling. We then estimated two networks as described for the overall sample. Implemented 209 

in R, the NCT, which combines advanced network inference with permutation testing, then 210 

evaluated two hypotheses. The first that network strength was invariant across the two sub-211 

networks tested the extent to which the network structures were identical. The second 212 

compared invariant global network strength, which examined whether overall sub-network 213 

connectivity was equal between the male and female sub-networks. The NCT is a two-tailed 214 

permutation test in which the difference between males and females is calculated repeatedly 215 

(1000 times) for randomly regrouped individuals, with the assumption that both groups are 216 

equal. The distribution can be used to test the observed difference between the male and 217 

female networks, with a .05 significance threshold (van Borkulo et al., 2015). As Stockert et 218 

al. (2018) noted, the NCT was validated for networks based on Pearson correlations. As we 219 

used Spearman correlations to construct our network, we followed the same procedure as 220 

Stockert et al. and investigated the similarity between the data’s Pearson and Spearman 221 
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correlation matrices. The resulting correlation coefficient was r = 0.89 and on that basis, we 222 

used Pearson correlations to compare the networks of the male and female athletes. The result 223 

of the NCT was used to determine whether subsequent network inference would proceed 224 

independently for male and female athletes, or whether the sample could be examined as a 225 

whole. 226 

Network structure and inference 227 

We estimated node predictability (Haslbeck and Waldorp, 2018) using Haslbeck’s (2020) 228 

mgm package. Predictability is ‘the degree to which a given node can be predicted by all the 229 

other nodes in a network’ (Haslbeck and Fried, 2017, p. 1) and is an absolute measure of 230 

interconnectedness as it provides us with the variance of a node that is explained by all its 231 

neighbours. It can be interpreted as being analogous to R2, or the percentage of variance 232 

explained. Other measures of network structure and inference are often used in the network 233 

literature, for example strength centrality (Boccaletti et al., 2006) and expected influence 234 

(Robinaugh et al., 2016), but these only address the relative importance of nodes. As a result, 235 

in line with Briganti et al. (2019) we relied upon node predictability to address the issue of 236 

node interconnectedness. 237 

Community detection 238 

To test whether the 15 items formed a single or multiple communities within the network, 239 

we used Exploratory Graph Analysis (EGA; Golino and Christensen, 2020) estimated using 240 

the EGAnet package within the R environment. EGAnet uses the Louvain community 241 

detection algorithm, which Christensen et al. (in press) have demonstrated performs 242 

comparably or better than the Walktrap or spinglass algorithms that have typically been 243 

adopted in the network literature. The structure of detected communities was further explored 244 

using standardized node strength and structural consistency was examined using the R 245 
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package Bootstrap EGA (bootEGA; Golino and Christensen, 2020). Standardized node 246 

strength can be interpreted in the same way as an exploratory factor analysis load matrix; 247 

however, the community loadings are much smaller than the loadings of a traditional factor 248 

analysis matrix as they represent partial correlations (Christensen et al., 2020). To interpret 249 

these loadings Christensen et al. recommend using effect sizes of .10, .30, and .50, which 250 

correspond to small, moderate, and large effects, respectively, however, these 251 

recommendations should be used with caution as no norms have yet been established. 252 

Structural consistency is the extent to which causally coupled components form a coherent 253 

sub-network (community) within a network. To calculate structural consistency, we used the 254 

nonparametric bootEGA procedure, which computed the proportion of times each community 255 

is exactly recovered from the replicate bootstrap samples generated by bootEGA (Christensen 256 

et al., 2020).  257 

Bridge nodes 258 

Using the bridge function from the R package networktools (Jones, 2020) , we used one-259 

step bridge expected influence, which is the sum of the edge weights connecting a given node 260 

to all nodes in the other community or communities, to identify important nodes that serve as 261 

bridges between communities. Two-step expected influence extends this measure by taking 262 

into account the secondary influence of a node via the influence of those nodes with which it 263 

shares an edge. For ease of interpretation, we plotted z-scores rather than raw values. 264 

Results 265 

Item selection 266 

The dependent correlation analysis run in goldbricker revealed twenty-one pairs of items 267 

that were overlapping. One item from each of these pairs was then removed, resulting in the 268 

removal of 10 items from the network. The final 15 items are highlighted in Table 2. 269 
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INSERT TABLE 2 ABOUT HERE 270 

Graphical LASSO network 271 

We produced two networks, a graphical LASSO network, tuned using γ = 0.5 in 272 

combination with the EBIC and a thresholded network, which could account for the 273 

possibility of detecting a large number of false positives in the EBIC graphical LASSO 274 

model. The conservative thresholded method produced a network that produced very few 275 

edges that likely misrepresented the true sparsity of the network structure (see supplementary 276 

material). We used the non-thresholded EBIC graphical LASSO network for subsequent 277 

analyses. Figure 1 shows the graphical LASSO network representing the regularized partial 278 

correlations among the 15 items of the TFAI. The strongest edges identified were between 279 

the 2 nodes representing perceived control (regularized partial correlation: 0.34), between 280 

feeling physically nervous and my heart is racing (0.32), feeling tense and having clammy 281 

hands (0.29), and worrying about making mistakes and being conscious that others would 282 

judge performance (0.26). There were also several negative edges that linked the two 283 

perceived control nodes with other nodes across the network. These edges were smaller in 284 

magnitude, for example, the largest was between being confident of reaching one’s target and 285 

worrying about making mistakes (-0.08), followed by a series of six relationships where the 286 

regularized partial correlation coefficient was -0.05.  287 

INSERT FIGURE 1 ABOUT HERE 288 

Edge weight accuracy 289 

The results of the accuracy analysis (Figure S2) indicated that some of the 95% confidence 290 

intervals for the edge weights overlapped; however, many of the strongest edges had intervals 291 

that did not overlap, suggesting that they were significantly stronger. This interpretation was 292 

supported by the bootstrapped edge-weight difference tests (Figure S3). 293 

In review



NETWORK ANALYSIS AND ANXIETY 
 

 
 

15 

Network structure: gender differences 294 

The NCT test produced global connectivity values for males and female networks of 5.70 295 

and 5.40, respectively. This difference in connectivity was not significant, p = 0.69. 296 

Similarly, the test for network structure invariance also failed to reach significance, M = 0.24, 297 

p = 0.32. The networks and edge weight bootstrap results for males and females can be found 298 

in the supplementary material. The edge weight bootstraps indicated that both the male and 299 

female networks were less stable than the main network. As the network structures did not 300 

differ for male and female athletes, no further between-gender analyses were conducted. 301 

Node predictability 302 

Estimates of node predictability can be found in Table 2. I feel physically nervous scored 303 

highest on predictability, R2 = 0.54, indicating that over 50% of variance in this item could be 304 

explained by the nodes with which it is connected. Over 40% of the variance in I am worried 305 

I might make a mistake, R2 = 0.47; My body feels tense, R2 = 0.46; and My heart is racing, R2 306 

= 0.40, could also be explained by their respective connected nodes. Mean predictability 307 

across all of the nodes in the network was R2 = 0.34 (SD = 0.10). 308 

Community detection 309 

The EGA detected three communities of nodes that are depicted using the different colour 310 

schemes in Figure 1. Community 1 contained 3 items relating to worry (mistakes, 311 

uncertainty, consequences), 3 relating to private self-focus (shortcomings, scrutinize, 312 

conscious) and the single item representing public self-focus (others). Community 2 included 313 

the 4 somatic tension items (nervous, headache, lethargic, tense) and the 2 autonomic 314 

hyperactivity items (heart racing, hands clammy), while the final community comprised the 2 315 

perceived control items (capacity, confident). Standardized node strength, see Table 3, was 316 

used to investigate the contribution of each node to the coherence of each community. Using 317 
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Christensen et al.’s (2020) guidelines, the loadings for items on each of their respective 318 

communities are in the moderate range, with only lethargic registering a value of less than 319 

.20 in its primary community. There are some small cross loadings; mistakes with community 320 

3, 0.13; being worried about uncertainty with community 2, 0.16; feeling physically nervous 321 

with community 1, 0.17; and lethargic with community 3, -0.11. Most of the cross-loadings 322 

are small not only by traditional factor analysis standards but also by partial correlation 323 

standards. This is because of the LASSO penalty imposed during the estimation of the 324 

network, leaving many nodes unconnected, which results in most of the cross-community 325 

connections being small, producing the lower loadings (Christensen et al., 2020). The 326 

structural consistency values were high and ranged from 0.81 to 0.88 and 1.00 for community 327 

1, 2 and 3, respectively. Communities 1 and 2 are less consistent that community 3. The small 328 

structural inconsistencies in community 1 and 2 are explored in more detail in the 329 

supplementary materials. 330 

INSERT TABLE 3 ABOUT HERE 331 

Bridge Expected Influence 332 

Estimates of one-step (bridge EI1) and two-step (bridge EI2) bridge expected influence 333 

are plotted in Figure 2. The values reported are standardized expected influence values. 334 

Across the 3 communities identified, I feel physically nervous from community 2 was the 335 

most influential node for both one-step (bridge EI1 = 0.40) and two-step (bridge EI2 = 0.65) 336 

estimates. From community 1, I am worried about the uncertainty of what might happen had 337 

the highest bridge EI1 and EI2 scores; 0.30 and 0.59, respectively. I feel I have the capacity 338 

to be able to cope with this performance had the highest negative bridge EI1, -0.28, and EI2, 339 

-0.55, values. Consistent with expected influence metrics, a Bayesian Pearson’s correlation 340 

produced extreme evidence in support of the hypothesis that bridge EI1 and EI2 scores were 341 
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positively related, r = 0.97, BF+0 = 6.75e +6, 95% CI: [0.88, 0.99], see supplementary 342 

material for further detail. 343 

INSERT FIGURE 2 ABOUT HERE 344 

Discussion 345 

To the best of our knowledge, this is the first study to examine the network structure of the 346 

competitive state anxiety response. To this end, our study was exploratory in nature. In terms 347 

of network estimation, one of the most notable features of the results was the observation that 348 

not all of the items were equally important in determining the network structure of CSA, a 349 

feature that highlights the value of viewing nodes as processes that can interrelate without 350 

reflecting an underlying latent factor (van der Maas et al., 2006). Looking more closely at the 351 

relative importance of nodes using node predictability, the high scores recorded for I feel 352 

physically nervous and I am worried that I might make mistakes, indicate that a considerable 353 

amount of variation in these symptoms can be explained by connections to other nodes in the 354 

network. The interpretation of node predictability must be conducted with the caveat that 355 

edges are non-directional (Haslbeck and Waldorp, 2018). In calculating predictability, we 356 

assume that all adjacent edges are directed towards that node, but not vice versa. 357 

Consequently, Haslbeck and Waldorp note that the predictability of a node acts as an upper 358 

boundary for how much it is determined by the nodes connected to it. The two relatively high 359 

predictability scores identify symptoms that afford potential opportunities for controllability 360 

in the CSA response (Haslbeck and Fried, 2017). If predictability is high, practitioners might 361 

control symptoms via adjacent symptoms in the network. For example, feeling physically 362 

nervous might be addressed using traditional somatically oriented interventions that target the 363 

two symptoms strongly connected to that node: My heart is racing, and My body feels tense. 364 

Feeling physically nervous was also connected to being worried about uncertainty, a 365 

In review



NETWORK ANALYSIS AND ANXIETY 
 

 
 

18 

cognitive anxiety symptom, so practitioners might also use techniques designed to manage 366 

this cognitive symptom in order to help athletes control their physiological anxiety. While 367 

other conceptualizations of CSA also feature interactions between cognitive and 368 

physiological symptoms, for example, catastrophe models (Hardy, 1996), the interactions 369 

described occur at the latent variable level. Network models allow us to see how symptoms 370 

interact directly with one another within the overall network structure. The potential to target 371 

specific nodes with an intervention, which in turn has a cascading effect to other nodes, might 372 

enable researchers to explain how specific interventions prescribed to treat cognitive and 373 

physiological anxiety separately according to the matching hypothesis (Morris et al., 1981), 374 

can have cross-over effects on different types of symptom. The cross over effects can be 375 

more easily explained using network models without recourse to explanations grounded in 376 

the shared variance of cognitive and physiological anxiety. In a similar vein, network models 377 

also offer a means of highlighting how multimodal treatment packages (Burton, 1990) may 378 

help to control cognitive and physiological aspects of anxiety. Feeling physically nervous 379 

was also connected to one of the perceived control items, I feel I have the capacity to be able 380 

to cope with this performance, so strategies to increase athletes’ coping capacity might also 381 

prove helpful. One of the lowest predictability scores was for I feel lethargic, 0.23. While 382 

some intervention via its neighbours might prove marginally fruitful in managing this 383 

symptom, one might also search for additional variables outside the network or try to 384 

intervene on the node directly. It would, of course, be unwise to make any firm 385 

recommendations based on this single study.  386 

Mean predictability across the whole network was 34%, which is a moderate level of 387 

predictability compared to values reported in the clinical literature. For example, Fonseca et 388 

al. reported that mean predictability in their network of schizotypal traits was 27.8%, while 389 

Haslbeck and Fried reported values of 40% for networks of depression and anxiety disorders. 390 
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High overall predictability can be interpreted as evidence for a network that is self-391 

determined, that is to say, the symptoms are generated by one another. Low predictability is 392 

indicative of symptoms that are largely influenced by variables outside the network, for 393 

example, biological and environmental variables or additional symptoms (Haslbeck and 394 

Fried, 2017).  Thus, our results indicate that variables contributing to the CSA response might 395 

be missing in the estimated model. Some of this unaccounted for variance might be attributed 396 

to the symptoms deleted during the initial item selection procedure, used to ensure that our 397 

network contained items that captured unique variance rather than the shared variance 398 

inherent in the structure of Jones et al.’s (2019) modified TFAI. The mean predictability 399 

score for the network comprised of the original 25-items of the TFAI was 0.42, which 400 

indicates that we potentially lost 8% of the network’s overall predictability by reducing the 401 

number of items we used in our final 15-item network. We would prefer not to sacrifice the 402 

parsimony of the 15-item network for increases in node predictability. 403 

Looking at the overall network structure, the thresholded EBICglasso method produced a 404 

very sparse network (see supplementary materials). We conducted the thresholded analysis to 405 

guard against the possibility that specificity can be lower in dense networks with many small 406 

edges, which could lead to a large number of false positive edges (Williams and Rast, 2020). 407 

The sparse network produced by the thresholded analysis probably misrepresented the true 408 

nature of the network. This is perhaps unsurprising as the thresholded method is much more 409 

conservative than the regular EBICglasso, often resulting in low sensitivity, which appears to 410 

be the case with the present data. Thus, our choice of the non-thresholded EBICglasso 411 

estimation was guided by the very sparse threshold network estimated (Figure S1) and by 412 

Epskamp (2018), who suggested that for exploratory investigations such as the present study, 413 

the original EBICglassso is likely to be preferred, while for higher sample sizes and with a 414 

focus on identifying small edges, the conservative threshold method may be preferred. 415 
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The absence of any male-female differences in the network supported the only research 416 

conducted with the TFAI that has examined this individual difference (Cheng et al., 2011). In 417 

a wider context, research conducted with the CSAI-2 over the last 40 years has also failed to 418 

find any consistent differences between male and female athletes. A limitation of our analysis 419 

in this respect is the relatively small sample size used to compare the male and female 420 

networks. As our sample only included 162 male athletes, we reduced the size of the female 421 

sub-sample to the same number as the Network Comparison Test is currently limited to 422 

comparisons between equivalent groups (van Borkulo, 2019). Further research examining 423 

potential differences between male and female athletes that also includes other moderating 424 

variables such as skill level and sport type is needed to provide some clarity as to how 425 

networks might differ as a function of individual differences. 426 

Community detection analyses revealed three distinct subnetworks. An advantage of our 427 

method of community detection, exploratory graph analysis, is the ability of the bootEGA 428 

function to estimate and evaluate the stability of the identified communities. While previous 429 

research has relied upon more traditional walktrap and spinglass algorithms for community 430 

detection, these methods are limited to placing items in a single community. For 431 

psychological data, where items might be expected to cross load between communities, this 432 

might be problematic. bootEGA produced structural consistency values of 1.00 for the 433 

regulatory community and .81 and .82 for the cognitive and physiological anxiety 434 

communities, respectively. As Christensen et al. (2020) note, there is insufficient research to 435 

allow us to make judgements of how high or low the lower levels of structural consistency for 436 

cognitive and physiological anxiety are, but we can explore why these communities are more 437 

structurally inconsistent. The results of this analysis are presented in the supplementary 438 

materials. The three communities identified by EGA corresponded to the second-order 439 

dimensions of cognitive and physiological anxiety and the regulatory dimension originally 440 
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proposed by Cheng et al. (2009) and supported by Jones et al. (2019). There was no evidence 441 

to suggest that the network could be classified into the six first-order factors that formed part 442 

of Jones et al.’s hierarchical model. Although no previous research has explored state anxiety 443 

from a network perspective, Heeren et al. (2018) have examined trait anxiety, noting that the 444 

trait response did not decompose into communities or subnetworks and was best represented 445 

as a unidimensional construct. Direct comparisons are difficult to make as Heeren et al. 446 

focused upon anxiety as a disposition rather than a state and they also chose to measure trait 447 

anxiety using the STAI-T (Spielberger et al., 1983), which is a scale designed to measure 448 

anxiety as a unidimensional construct. One of the criticisms of the work conducted using 449 

network analysis is the use of existing self-report measures and in this respect the estimation 450 

of networks can only be as good as the items included in the measure adopted by researchers. 451 

Future research might focus on developing a more comprehensive measure by engaging in a 452 

rigorous process of identifying self-report, environmental and behavioural factors that can 453 

influence competitive state anxiety. 454 

In terms of bridge expected influence, which highlights nodes that have the greatest effect 455 

on nodes outside their own community, several symptoms stood out. Feeling physically 456 

nervous from the physiological anxiety community was the bridge node with largest 457 

influence throughout the network, sharing large edge weights with I am worried about the 458 

uncertainty of what might happen, which was the most influential bridging node in the 459 

cognitive community, and I am worried that I might make mistakes, also from the cognitive 460 

anxiety community. I feel I have the capacity to be able to cope with this performance had a 461 

bridge expected influence value of -0.53 and Figure 1 illustrates how this node links with 462 

other nodes outside of the perceived control community. Although the edge weights are 463 

small, the negative associations identify how perceived control might have the potential to 464 

exert a dampening effect on both physiological and cognitive anxiety symptoms. 465 
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While the present study makes a unique contribution to the large body of literature on 466 

CSA and provides a novel insight into the dynamics of the construct, there are several 467 

limitations to consider that are in addition to the caveat regarding the interpretation of node 468 

predictability and small sub-sample size for the Network Comparison Test, noted above. 469 

First, participants were from a community sample of athletes experiencing a range of CSA 470 

responses. The network might look different if the study was replicated on sample of athletes 471 

who experience high levels of CSA. Second, it is important not to draw conclusions about the 472 

CSA response and its relationship with performance from this data. The data are also cross 473 

sectional and collected at one point in time. To more fully examine the anxiety-performance 474 

relationship, further work is needed to examine how CSA responds dynamically as a result of 475 

increased stress, for example by comparing training and competition responses or by tracking 476 

CSA across time to an important event and investigating the impact of any change in CSA on 477 

athletic performance. Finally, we do not suggest that the network model presented here 478 

definitively captures the CSA construct. The aim of our study was to highlight how network 479 

analysis can give us a new perspective on how the component processes of the CSA response 480 

cluster and interact, suggesting new approaches to intervention by practitioners. 481 

In conclusion, this study is the first to provide evidence that competitive state anxiety can 482 

be conceptualized as a network system. Our findings add to the growing body of literature 483 

that has shown that personality dimensions can be conceptualized in network terms. Further 484 

research is needed not only to replicate the present data but also to investigate network 485 

dynamics as a function of high and low levels of competitive stress and, crucially, how these 486 

dynamics relate to performance. Without the constraint that items reflect one or more latent 487 

constructs, we have highlighted some of the implications of adopting a network approach for 488 

practitioners; however, much more work is needed before any concrete recommendations can 489 

be made. Given the extensive literature on competitive state anxiety, our findings set the 490 
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scene for novel research directions focused upon model conceptualization and the 491 

development of more effective interventions. 492 

 493 
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Table 1. Items from the Three-Factor Anxiety Inventory (TFAI) 638 
   

Cognitive Dimension  

     I am worried that I might make mistakes 
     I am worried about the uncertainty of what might happen 
     I am worried about the outcome of my performance 
     I am worried that I might not perform to the best of my ability 
     I am worried about the consequences of failure 
     I tend to dwell on shortcomings in my performance 
     I am aware that I will scrutinise my performance 
     I am aware that I will be conscious of every movement I make 
     I am conscious that others will be judging my performance 
     I am conscious about the way I will look to others 
     I am worried that I might not meet the expectations of important others 
Physiological Dimension  

     I feel physically nervous 
     I find myself trembling 
     I have a slight tension headache 
     I feel lethargic 
     My body feels tense 
     My heart is racing 
     My chest feels tight 
     I feel tense in my stomach 
     I feel a lump in my throat 
     My hands are clammy 
Regulatory Dimension  

     I feel I have the capacity to be able to cope with this performance 
     I believe in my ability to perform 
     I am prepared for my upcoming performance 
     I am confident that I will be able to reach my target 

  639 
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Table 2. Items from the TFAI included in the network analysis following data reduction, 640 

including node predictability 641 

   

Node Label Item Node 
Pred. 

   

Cognitive Dimension  

mistakes I am worried that I might make mistakes 0.47 

uncertainty I am worried about the uncertainty of what might happen 0.39 

consequences I am worried about the consequences of failure 0.38 

shortcomings I tend to dwell on shortcomings in my performance 0.30 

scrutinize I am aware that I will scrutinise my performance 0.27 

conscious I am aware that I will be conscious of every movement I make 0.23 

judging I am conscious that others will be judging my performance 0.33 

Physiological Dimension  

nervous I feel physically nervous 0.55 

headache I have a slight tension headache 0.28 

lethargic I feel lethargic 0.23 

tense My body feels tense 0.46 

racing My heart is racing 0.40 

clammy My hands are clammy 0.31 

Regulatory Dimension  

capacity I feel I have the capacity to be able to cope with this 

performance 

0.24 

confidence I am confident that I will be able to reach my target 0.19 

 642 

Note. Node Pred. = Node Predictability  643 
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Table 3. EGA community allocation and standardized node strength for each node 644 

     

  Node Strength 

 Community   1   2   3 

mistakes 

uncertain 

consequences 

shortcomings 

scrutinize 

movement 

judging 

nervous 

headache 

lethargic 

tense 

racing 

clammy 

capacity 

confident 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

3 

3 

0.37 

0.21 

0.32 

0.24 

0.28 

0.20 

0.28 

0.17 

0.09 

0.07 

0.01 

0.04 

0.02 

-0.07 

-0.04 

0.06 

0.16 

0.05 

0.07 

0.00 

0.06 

0.02 

0.33 

0.25 

0.19 

0.45 

0.25 

0.30 

-0.09 

-0.03 

-0.13 

-0.01 

0.00 

-0.04 

0.02 

0.00 

0.03 

-0.01 

-0.07 

-0.11 

0.00 

0.05 

0.00 

0.33 

0.33 

 645 
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List of Figures 647 

 648 

Figure 1. Gaussian graphical model of the final 15 TFAI items 649 

 650 

Note. Colour groupings correspond to Jones et al.’s (2019) higher order dimensions of 651 

cognitive and physiological anxiety and the regulatory dimension. Node labels represent 652 

abbreviations for items in Jones et al.’s model (see Table 2). 653 

 654 

 655 

Figure 2. One-step and two-step bridge expected influence 656 

 657 
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