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System property fluctuations increasingly dominate a physical process as the sampling volume de-
creases. The purpose of this work is to explore how the fluctuation statistics of various thermodynamic
properties depend on the sampling volume, using molecular dynamics (MD) simulations. First an
examination of various expressions for calculating the bulk pressure of a bulk liquid is made, which
includes a decomposition of the virial expression into two terms, one of which is the Method of Planes
(MOP) applied to the faces of the cubic simulation cell. Then an analysis is made of the fluctuations
of local density, temperature, pressure, and shear stress as a function of sampling volume (SV). Cubic
and spherical shaped SVs were used within a spatially homogeneous LJ liquid at a state point along
the melting curve. It is shown that the MD-generated probability distribution functions (PDFs) of all
of these properties are to a good approximation Gaussian even for SV containing only a few molecules
(∼10), with the variances being inversely proportional to the SV volume, Ω. For small subvolumes
the shear stress PDF fits better to a Gaussian than the pressure PDF. A new stochastic sampling
technique to implement the volume averaging definition of the pressure tensor is presented, which is
employed for cubic, spherical, thin cubic, and spherical shell SV. This method is more efficient for
less symmetric SV shapes. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962165]

I. INTRODUCTION

Molecular Dynamics (MD) simulation has been a
standard tool of condensed matter physics since its invention
in the 1950s.1 One of the main growth areas of particle-
based computer simulations of liquids since the 1970s has
been the development of coarse-grained techniques such as
Brownian Dynamics (BD), Stokesian Dynamics (SD), and
Dissipative Particle Dynamics (DPD) for dispersed phase
systems.2 The characteristic units of distance and time used
in these techniques are much larger than those associated
with the individual molecule’s diameter and dynamical
time scale. There has been interest in developing coarse
graining techniques which operate at the boundary between
MD and these more continuum descriptions. For example,
in molecular-continuum coupling, a region of the physical
system which can be simulated by Molecular Dynamics (MD)
is positioned next to a region represented by Computational
Fluid Dynamics (CFD) with the same coupling cell size
for the two fluid descriptions.3–5 An overlap region is
used to exchange information between the CFD and MD
regions, which provides a smooth transition zone between
the two.

The properties of the molecular system need to be
averaged over time to give a sufficiently accurate value to
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pass on to the continuum description. The computer time
required for the averaging will depend on the size of the MD
cell. It is therefore of interest to explore how the fluctuations
in various key molecular derived quantities such as density,
kinetic energy (temperature), and pressure tensor depend on
the sampling volume (SV), which is the main theme of
this work. The required information to be passed could
be based on their probability distribution functions (PDFs)
and their lower moments. Fluctuating hydrodynamics has
been used to introduce stress fluctuations in the continuum
representation.5–7 The focus here is to explore the fluctuation
statistics on the molecular side of the boundary. The SV acts as
an open system, and is not in a well defined thermodynamic
ensemble even though the simulation cell as a whole may
be subject to imposed constraints to generate the properties
of a particular ensemble. How the SV property fluctuation
statistics depend on the simulation ensemble used is also
explored here.

Fluctuations in static (i.e., thermodynamic and mechan-
ical) properties have been studied by MD for many years, but
almost always taking the sampling volume to be the whole
MD or Monte Carlo (MC) simulation cell. For example,
the interaction parts of all thermodynamic properties can be
defined in terms of the probability function of the potential
energy.8,9 The shear stress fluctuations of block averages of
the whole system can yield the shear viscosity.10–13 System
property fluctuations are fundamental to our understanding of
nonequilibrium states,14,15 although in this study equilibrium
liquids are considered exclusively.
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As the sampling volume or scale of scrutiny decreases,
system property fluctuations increasingly dominate physical
processes. The purpose of this work is to explore the extent
to which the fluctuation statistics of various thermodynamic
properties, which are described for bulk systems in terms
of statistical mechanical formulas, apply to small sampling
volumes just a few molecules across. The average values are
independent of sampling volume size, but as will be shown,
some departures from the bulk formulas for the fluctuations
are observed when they are applied to small finite volumes,
especially for the local pressure. Nevertheless, it is shown
that for all the properties and definitions, even for sampling
volumes containing ∼10 molecules, Gaussian statistics still
hold reasonably well. The variances can be specified in terms
of effective thermomechanical constants which take account
of the “granularity” of the liquid. Trends in the molecular-level
fluctuations are presented which could be useful in developing
liquid system theories and computational methods valid on
these length scales.

In Section II pressure tensor definitions based on the
virial formula and derived for the entire domain are compared
numerically. Various local pressure tensor definitions are also
reviewed and explored. A new method for computing the
pressure by the Volume Averaging (VA) method is presented
and used, which involves a stochastic selection process to
obtain the fraction of the length of the line between two
molecules which falls within the SV. In Section III results are
presented for the PDF and its lower moments for the molecule
number density, temperature, pressure, and shear stress defined
in a subvolume of the whole domain. Conclusions are made
in Sec. IV.

II. THEORY

In this section various methods for calculating the local
pressure tensor are presented and compared. Consider a cubic
simulation cell of sidelength, s, volume, V , and containing N
molecules, which is subject to periodic boundary conditions
(PBCs) along the three Cartesian directions. A homogeneous
single component monatomic fluid is considered in which the
molecules interact through a radially symmetric pair potential,
φ(r), where r is the separation between the centers of the two
molecules.

The relevant literature can be considered to start from the
Irving and Kirkwood (IK) equation for the pressure tensor at
point, r ,16

PIK(r) =
N
i=1

1
m

p
i
p
i
δ
�
r − r i

�
+

1
2

N
i=1

N
j,i

r i j f
i j

×
 1

0
δ
(
r − r i + λr i j

)
dλ, (1)

where the integral in the last term follows a straight line
contour between the two molecules, and δ is the Dirac
delta function. The momentum of molecule, i, of mass m,
is p

i
. The pair separation vector is r i j = r i − r j, where r i

and r j are the coordinates of the two molecules. The pair
force between the molecules is f

i j
= −(r i j/ri j)dφ(ri j)/dri j.

The kinetic contribution to the local pressure tensor is the
first term on the right hand side of Eq. (1), which can be
reduced for equilibrium systems to Pk = ρkBT I, where kB is
Boltzmann’s constant, ρ = N/V , and I is the unit tensor. This
formula involves an arbitrary interaction path between two
molecules,17,18 which means that in IK, and those methods
based on it, the spatially local pressure tensor is not uniquely
defined.19,20

The integral of Eq. (1) over a subvolume leads to the
Volume Average (VA) local pressure tensor definition,21
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j,i
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li j, (2)

where if Ω is the volume of the SV domain, ϑi

=

Ω
δ
�
r − r i

�
dV , ϑλ =


Ω
δ
(
r − r i + λr i j

)
dV , and li j

=
 1

0 ϑλdλ. The whole space can be divided into a
mesh of such subvolumes and the microscopic pressure
tensor evaluated as an average within each of these. The
configurational part of the pressure tensor is the focus of this
work, as the kinetic part is a straightforward extension of the
virial route.

The widely used virial formula (VIR),22–28 for bulk system
molecular simulations can be recovered from Eq. (2) by
making the subvolume the entire domain (i.e., the periodically
repeated cell),

PV =
N
i=1

1
m

p
i
p
i
+

1
2

N
i=1

N
j,i

r i j f
i j
, (3)

which could therefore be considered to be a special case of
VA. The configurational part of the pressure tensor, Pc, the
second term on the right hand side of Eq. (3), can be written
as

Pc =
1

2V

N
i=1

N
j,1

(r0, i j − si j) f
i j
, (4)

where r0, i j = r0, i − r0, j and r0, i and r0, j are the coordinates of
molecules i and j in the origin simulation cell. si j is the PBC
pair separation displacement. For each Cartesian direction, α,
sα, i j = ±s or 0, which enforces the nearest image convention
to ensure that ri j ≤ s/2 (we assume that there are no long
range Coulomb interactions here).

Note that the pair force term denoted by f
i j

is always
calculated using the nearest image convention applied to the
pair separations. The two terms in Eq. (4) separated are

Pi
c =

1
2V

N
i=1

N
j,i

r0, i j f
i j
, (5)

which we call the internal virial, IV, tensor and,

Pe
c = −

1
2V

N
i=1

N
j,i

si j f
i j
, (6)
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which we call the external virial (EV). The EV expression can
be considered to be a form of the Method of Planes (MOP)
definition,29 (see below) in which the pair forces cross the six
faces of the simulation cell. The EV term is the contribution
to Pc from those pair interactions that cross the (virtual)
boundaries of the central or origin simulation cell.

The IV expression of Eq. (5) for the whole domain can
be simplified further,

2V Pi
c =

N
i=1

N
j=1

r0, i j f
i j
= 2

N
i=1

r0, iF i, (7)

where the total force on molecule i is F i =


j,i f
i j

, and
f
ii
= 0 (see the supplementary material for further details

of the intermediate steps). Because the positions and forces
are bounded in magnitude, ⟨Pi

c⟩ (where ⟨· · · ⟩ represents a
time or ensemble average) will be zero after sufficient system
averaging on grounds of symmetry.

As originally derived,29 the MOP method involves
computing the forces across an infinite plane, for the
interaction part of the pressure tensor. A series of such planes
spaced parallel to one of the simulation cell faces (surface
normal, say, in the x–direction) is used here, and referred to
simply as the “MOP” construction. For the xα element of the
configurational part of the pressure tensor, Pxα is

Pxα(Xk) = 1
2A

N
i=1

N
j,i

fαi j
�
sgn(xi − Xk) − sgn(Xk − x j)� ,

(8)

where α is any of the Cartesian directions, A = s2 is the
cross-sectional area in the y z plane, Xk is the location of the
kth plane and sgn(x) = 1 for x > 0, sgn(x) = 0 for x = 0,
and sgn(x) = −1 for x < 0. The contributions from the i j
interactions which extend into a neighboring periodic image
cell need to be included using the usual periodic boundary
“wrap around” construction. MOP gives the tractions across
each plane; for example, for a plane whose perpendicular is
in the x direction, only the elements Pxx, Pxy, and Pxz can be
obtained from the MOP procedure. When summed over the
faces of a cube in the EV adaptation, the full 3 × 3 pressure
tensor is assembled.

The equivalence between MOP and VA for infinitely thin
slabs of infinite extent in the two other Cartesian directions in
the plane has been proved.30 The relative merits of using the
virial method and MOP for bulk systems have been discussed
by Heinz et al.31,32 By inserting a row of virtual planes
parallel to one of the faces of the simulation cell, the formal
equivalence between the VIR and MOP routes to the bulk
pressure tensor has also been proved.31

The Lennard-Jones (LJ) potential used in this study is

φLJ(r) = 4ϵ[(σ/r)12 − (σ/r)6], (9)

where ϵ and σ are the characteristic energy of interaction and
diameter of the molecule, respectively. For the LJ potential the
long range correction (LRC) to the pressure of an equilibrium
spatially homogeneous system calculated from the virial
formula for the bulk fluid is PLRC = (32πρ2/9)ϵ[(σ/rc)12

− (3/2)(σ/rc)6], where rc is the interaction truncation distance

(see page 67 in Ref. 33). The treatment of the long range
correction for the MOP halfspace geometry is given in
supplementary material.

The VA method requires li j in Eq. (2) to be evaluated for
a given SV shape. This is analytic for a spherical SV,34 and
can be achieved exactly for a cubic SV with ray tracing over
the six surface planes of the cube.35 An alternative approach
proposed here is to choose a uniformly distributed random
number, λR, in the range 0 ≤ λR ≤ 1, and the new formula,
li j =


Ω
δ
(
r − r i + λRr i j

)
dV follows. The weighting factor,

li j, is either unity or zero depending on whether the random
point on the line between molecules i and j (i.e., at the position,
r ′ = r i − λRr i j) is within the SV or not (respectively). Only if
r ′ is contained within the SV does that i j interaction for the
current assembly configuration contribute to the VA pressure
accumulator. This “stochastic” variant implementation of
VA averaged over a simulation is statistically equivalent
to the formal evaluation of li j obtained by trigonometry
for each i j pair at each time step. The stochastic route
to li j is competitive with the trigonometric approach in
determining all geometric crossings, as the latter requires
additional code in the two particle forces calculation, which
is computationally demanding apart from in the sphere SV
case.

The size of the VA subvolume,Ω, is 4πR3/3 for the sphere
and 8R3 for the cube. The new implementation of VA can also
be applied to shell shaped SV, where, for example, the SV
is the zone between two concentric spheres of radius, δRR,
and R, where 0 ≤ δR < 1, and for two cubes with coincident
centers and orientations with sidelengths, 2δRR and 2R. The
δR → 0 limit of the shell VA implementation is the original
VA case defined in Eq. (2), while the other limit, δR → 1−

is the very thin spherical or cubic shell subvolume solution.
The shell version of the VA definition of the local pressure
is referred to as “VASH.” The value δR = 0.99 was used for
computational sampling efficiency. The term “VA” is reserved
for the volume averaging method of Eq. (2) where Ω is the
entire cube or sphere.

For a thin spherical shell subvolume of ≃4πR2∆R, with
∆R = (1 − δR)R, the thickness of the shell, and the mean
radius of the shell, is ≃R (>>∆R). Let R be the vector from
the center of the sphere to the surface. If PN is the normal
and, PT , the tangential component,36–40 of the pressure tensor
then,

P(R) = PN[êRêR] + PT[êθêθ + êφêφ], (10)

where êR, êθ, and êφ are the orthogonal vectors of the spherical
coordinate system. Also,

PN =

(
1

8πR2∆R

) N
i=1

N
j,i

ri jcos2(θ) f i jl ′i j,

PT =

(
1

16πR2∆R

) N
i=1

N
j,i

ri jsin2(θ) f i jl ′i j,

(11)

where l ′i j = 1 if the randomly chosen vector, r ′i j, falls within
the shell, and 0 otherwise. The extra factor of 2 in the
denominator in the two formulas of Eq. (11) is to avoid
double counting of the pair interactions. The second factor

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-011634
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-011634
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FIG. 1. The various variants of the Volume Averaging (VA) (see Eq. (2))
volumes used in this work, (a) Cubic volume, VA, (b) cubic shell volume,
VASH, (c) spherical volume, VA, and (d) spherical shell volume, VASH. The
black bars with pink circles at their ends indicate two molecules and the line
between their centers. The blue shaded areas are the subvolumes for each
case.

of 2 in the denominator in the formula for PT is because
there are two mutually orthogonal tangential directions and
terms for each i j pair. The trace of the pressure tensor for
the VA shell is (PN + 2PT)/3 in spherical polar coordinates,
or (Pxx + Py y + Pzz)/3, in Cartesian coordinates. Figure 1
illustrates the VA and VASH methods for a spherical and
cubic subvolume.

The atomic virial (AVIR) local pressure tensor definition
decomposes the virial form of Eq. (3) into single molecule
components within the SV,

PΩ =
N
i=1

1
m

p
i
p
i
ϑi +

1
2

N
i=1

ϑi

N
j,i

r i j f
i j
. (12)

The ϑi operator selects those molecules whose centers, r i,
are in the subvolume. AVIR has been widely used for bulk
liquids,41 and glasses,42 even though it appears not to be
derivable from the IK formula of Eq. (1) and gives rise to
spurious pressure oscillations if there are density oscillations
in the system.29,43 Nevertheless, it is computationally efficient
to implement and involves spatial averaging within the SV as
does the VA method of Eq. (2).

A local pressure tensor-like quantity can be defined as an
extension of the IV bulk pressure tensor definition of Eq. (7),

Piv
c Ω =

1
2

N
i=1

ϑi

N
j,i

r0, i j f
i j
. (13)

A molecule i in Eq. (13) only contributes if r i is within the
subvolume.

III. RESULTS AND DISCUSSION

Only the configurational part of the local pressure tensor
is considered as the kinetic component in each case follows
directly from the kinetic theory of gases. The computed

FIG. 2. Accumulated configurational part of the pressure as a function of
the distance between the planes, x in the MOP method of Eq. (8). “VIR” is
the virial method from Eq. (3), and EV is from Eq. (6). There were N = 256
and 500 molecules in the simulation cell of LJ molecules, and ρ = 0.8 and
T = 1.0. The maximum value of R is s/2. The truncation distance was
rc = 2.5 and the pair force used to generate the particle trajectories was
tapered to zero in the range 2.5 ≤ r ≤ 2.8. The long range correction based on
rc = 2.5 of −0.684 was included in the quoted values. The simulation length
was t = 100 for both system sizes. Note the log-lin scale.

quantities are given in LJ reduced units based on σ, ϵ , m.
The force truncation distance, rc, was 3.5σ, unless stated.
The Verlet leapfrog algorithm was used in the MD code
to integrate the equations of motion,33 with a time step of
0.005. Simulations were carried out using either velocity
rescaling44,45 or Nosé-Hoover46–48 thermostats applied to all
molecules in the system. Some simulations were conducted at
constant total energy (NVE). All the state points considered
were in the liquid part of the LJ phase diagram. Figures 2
and 3 are for ρ = 0.8 and T = 1.0, and the other figures were
for ρ = 0.9157 and T = 1.0 which is on the solid-fluid phase
boundary.49 The simulations were carried out with N = 2048

FIG. 3. The correlation functions defined in Eq. (14) of the MOP plane
pressure as a function of plane separation, x, for a simulation cell of 864
LJ molecules, and ρ = 0.8 and T = 1.0.
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and 4000 LJ particles to assess the system size dependence of
the calculated quantities.

This section starts by considering the pressure of the
entire domain, in Subsection III A. Next, the pressure of
subvolumes of variable size is discussed in Section III B.
The probability density functions are explored in Sub-
section III C.

A. The pressure of the entire domain

In this section the pressure associated with the entire
simulation cell calculated from the virial and routes is focused
on. Figure 2 shows the average configurational part of the
pressure, Pc, calculated by the MOP formula of Eq. (8) as
a function of x, the separation distance between adjacent
planes. The virial and EV cell averaged values are given as
horizontal lines. The fluctuations in the MOP pressure about
the virial pressure decrease with reducing x, as the number
of planes sampled per time step is s/x. In the x-direction
for N = 500 the mean separation between the molecules is
0.017 in a Cartesian direction parallel to one of the cell
sides. Figure 2 shows that in the vicinity of x = 0.017 the
MOP and virial routes are statistically indistinguishable, so
there is nothing to be gained statistically by using a finer
resolution.

The EV average pressure, Eq. (6), is seen in Fig. 2 to
be systematically higher than the virial and MOP values,
indicating that the IV term is negative in both cases. The
figure shows that the virial expression for the pressure from
Eq. (3) and MOP converges much faster to the correct
value. The difference between the virial and EV values is
smaller for N = 500 than N = 256. Both simulations were
for 100 reduced time units. Although the IV term from
Eq. (7) is zero after sufficient statistical averaging, this
can take an impractically long time, which is especially
significant for state points where the configurational part
of the pressure is small in magnitude. Small cell periodic
systems are known to exhibit long equilibration times.50–55

The relative importance of the IV component (see Eq. (5))
of the total virial decreases with increasing density as the
mean pressure increases. For example, for the melting line
state point the absolute value of this internal pressure term is
≤0.003 for 500 ≤ N ≤ 1024, while the average virial pressure
from Eq. (3) is 2.865 ± 0.001. Also for the purely repulsive
Weeks-Chandler-Andersen (WCA) potential,56 a simulation
at the same density and temperature, over a similar simulation
time, gave an internal pressure absolute error which was less
than 0.001 while the average pressure was 5.79, so EV and the
virial formulas give good agreement in that case. Although
the virial method is probably the most statistically efficient
and reliable pressure measurement, the EV route could also
be computationally advantageous because it only requires
those interactions that cross the cell boundaries, provided the
system sizes and mean configurational pressure are not too
small.

The degree to which the configurational part of the
instantaneous pressure value at a plane is correlated with its
value on neighboring planes is quantified by the following
two spatial pressure correlation functions, C1(x) and C2(x):

C1(x) = ⟨(P(0) − P)(P(x) − P)⟩
⟨(P(0) − P)2⟩ ,

C2(x) = ⟨P(0)P(x)⟩
⟨P(0)2⟩ ,

(14)

where C1 involves the difference in the instantaneous value
of the MOP pressure, Eq. (8), for a given plane from the
mean pressure, P. This function uses the fluctuation about
the mean. In contrast, the function C2 uses the absolute
MOP pressure value for each plane. Let x ′ be the coordinate
along the x-direction. These functions represent the spatial
autocorrelation function of the instantaneous pressure at a
plane at x ′ = 0 at time t multiplied by its value from the plane
at x ′ = x further away at the same time. The two functions are
calculated at each time step, k, and then are averaged over the
simulation of nt time steps (i.e., C1(x) = nt

k=1 C1(x, k)/nt, for
time step k, where 1 ≤ k ≤ nt).

Figure 3 shows that C1(x, t) decays monotonically and
initially almost linearly with increasing x until it is statistically
almost zero for ca. x ≥ 2. It is slightly negative for this system
size in the large x limit presumably because a large (say)
positive pressure fluctuation about the mean in one region of
the system associated with a higher than average local density
must be compensated for by a negative pressure fluctuation
about the mean in the rest of the system where the density is
lower than the average.

B. Mean pressure in a subvolume smaller
than the entire domain

The local pressure associated with a subvolume of
magnitude less than or equal to that of the whole domain
(i.e., simulation cell) is considered in this section. Figure 4
shows the average value of the configurational part of the
pressure, Pc, as a function of R calculated by the atomic virial
(AVIR) (see Eq. (12)) and internal pressure (see Eq. (13)) virial
based routes. To minimize correlations between successive
time steps the molecules in the cell were uniformly shifted
by variable extents and the periodic boundary conditions
applied, to ensure the center of the subvolume enclosed
substantially different configurations at each time step. The
radial distribution function is shown in the figure to help
gauge the lengthscales. Figure 4 shows that AVIR datasets
give the virial pressure from all R values down from R = s/2,
whereas the subvolume extension of this quantity, IV(R),
defined in Eq. (13), only agrees with the bulk virial value up
to ca. R = 5. In the R → s/2 limit the local internal pressure
formula for the cube has a small maximum before decreasing
rapidly towards the internal pressure value of the whole cell
(which is very close to zero on the scale of the figure), as
expected in that limit. There is also a small maximum close
to R → s/2 for the spherical IV(R) case of Eq. (13), but
which still appears to terminate close to the bulk virial value
at R = s/2. In the R = s/2 cube case the subvolume fills the
entire cell volume, whereas for the sphere with R = s/2, the
subvolume is only an inscribed sphere, and there is in effect a
buffer region of molecules not in the subvolume close to the
cell boundary which mitigates to a certain extent the effect
of the PBC. Figure 5 shows the average pressure for cubic
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FIG. 4. The average configurational part of the pressure as a function of R
for cubic and spherical subvolumes given according to the virial based local
pressure tensor definitions. The state point is ρ = 0.9157 and T = 1.0,49 with
N = 2048. The interaction truncation distance is s/2= 6.5. In each case the
configurational part of the pressure is shown without including the long range
correction to the pressure (PLRC =−0.328). Key: The annotation, “SPHERE
AVIR” is the atomic virial trace of the pressure tensor for the spherical
subvolume using the definition of the pressure tensor given in Eq. (12),
and “CUBE AVIR” denotes the same quantity for a cubic subvolume. The
annotation “SPHERE IV(R)” is the internal virial component of the cubic
subvolume from Eq. (13), and “CUBE IV(R)” is the same quantity for the
cubic subvolume. The virial pressure including the long range correction
is 2.865. “Bulk Virial” is the virial pressure of the whole system using the
formula in Eq. (3).

and spherical subvolume geometries for the VA of Eq. (2) and
VASH form, showing that there are no anomalous features
for R close to s/2. Note that those interactions that cross
the boundary of the periodic cell pass through the subvolume
twice, and have to be counted two times in the averaging
process.

C. Probability distribution functions for subvolumes

The mean pressure shown in Figs. 4 and 5 is the first
moment of a (normalized) probability distribution function
(PDF) of pressure values, W (Pc). In the thermodynamic limit

FIG. 5. As for Fig. 4 except that local pressure definitions based on the
volume averaging (VA) approach are considered. Key: “VASH” is the trace
of the pressure tensor from the shell VA definition, with δR = 0.99; “VA” is
the trace of the volume averaging method of Eq. (2); “Bulk Virial” is the
virial pressure of the whole system using the formula in Eq. (3). The radial
distribution function, g (r ), is also shown.

the PDF of a property, X , is given by the Gaussian or normal
distribution form57

W (X) = 1
(2πσ2)1/2 exp(−(δX)2/2σ2), (15)

where δX = X − X and X ≡ σ1 is the average value of
X , according to the central limit theorem limit. The first
moment of the distribution is X and σ2 is the second moment
or variance of the distribution (the standard deviation is
(σ2)1/2). The PDF of the dimensionless quantity, X ′ = X/X ,
is W (X ′) = XW (X). For example, for the local mean density
ρ/ρ, where ρ is the average number density in the subvolume,
Ω, and ρ = N/V . The dimensionless temperature distribution
is T/T , where T =

M
i=1 miv

2
i/3kB is the average temperature

of the molecules in the subvolume. The reduced pressure,
X ′ ≡ P/P, probability distribution is also considered.

The variance of each property in Eq. (15) is conveniently
expressed in terms of the thermodynamic limit formula. For
example, if the average number of molecules in subvolume Ω
is M , then for the reduced number density,

σ2(ρ/ρ) = σ2(Ω/Ω) =
(

1
M

) (
βT
βT ,0

)
=

Qρ

M
, (16)

taken from Ref. 9, p. 54, Eq. (2.88), Ref. 58, p. 60
Eqs. (3.23) and (3.24), and also Refs. 59 and 60. The variance,
σ2(Ω/Ω), is for the distribution of Ω containing exactly M
molecules. The isothermal compressibility of the liquid is
βT = (∂ρ/∂P)T/ρ, and βT ,0 = P−1 is the ideal gas form. The
isothermal thermodynamic bulk compressional modulus KT

is β−1
T . A “softness” parameter, Qρ = βT/βT ,0, is defined

in Eq. (16) which has a maximum value of 1 for an ideal
gas. Equation (16) substituted in Eq. (15) reveals that the
reduced density PDF becomes narrower with an increasing
number of molecules in the SV, i.e., the liquid becomes less
compressible on that scale as the system becomes more coarse
grained.

For the temperature, (see, for example, Ref. 58, p. 62
Eq. (3.27), Refs. 61 and 62),

σ2(T/T) =
(

2
3M

) (
c0, v

cv

)
=

2QT

3M
, (17)

where cv is the heat capacity at constant volume and c0, v = 1.5
is its ideal monatomic gas value, QT = c0, v/cv, and for an open
system,63 QT = 1. The normalized temperature PDF becomes
narrower with increasing SV. For the pressure,64 after some
rearrangement,

σ2(P/P) =
(

2
3M

) (
P0

P

)2 (
K∞ − K0

K∞,0 − K0,0

)
=

(
2

3MQP

) (
P0

P

)2

, (18)

where P0 is the pressure of the ideal gas, K∞ is the
infinite frequency compressional modulus, and K0 is the
zero frequency adiabatic compressional modulus.65 The
quantities, K∞,0 and K0,0 are those for the ideal gas, where
K∞,0 − K0,0 = 2ρkBT/3. The softness parameter in this case
is QP = (K∞,0 − K0,0)/(K∞ − K0). Equation (18) indicates that
the normalized local pressure PDF becomes narrower as the
number of molecules in the subvolume increases. The variance
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increases with K∞ − K0, and is infinite for inverse power fluids
in the hard sphere limit.66

The Gaussian distribution form of the PDF will eventually
break down for very small SV because the more general
skewed Poisson statistics will apply, and excluded volume
effects will become increasingly important. The local number
density PDF where the subvolume, Ω, can be a cube,
sphere, or a shell with the same shape but with a thickness
(1 − δR)R. In the δR → 1− limit the volume of the (thin) shell
is Ωsh = 3(1 − δR)Ω, where Ω is the volume of the cube
or sphere. The normalized local density PDFs for the full
geometry volume and its thin shell counterpart on the outer
boundary are in the large system limit,

W
(
ρ

ρ
,Ω

)
=

(
ρΩ

2πQρ

)1/2

exp *
,
−

ρ

ρ
− 1

2

ρΩ/2Qρ
+
-

(19)

and

W
(
ρ

ρ
,Ωsh

)
=

(
ρΩ

2πQρ

)1/2

[(3(1 − δR)]1/2

× exp *
,
−3


ρ

ρ
− 1

2

ρΩ[1 − δR]/2Qρ
+
-
, (20)

respectively. The parameter Qρ can be set to 1, being the
ideal gas approximation, which is the upper limit, giving
the broadest PDF whereas Qρ = ρkBT βT < 1 for the actual
simulated liquid. As the subvolume decreases in size the
normalized PDF becomes more spread out and (hence)
because of the normalization, shallower and tends towards
the baseline for all ρ/ρ. This trend is accentuated for the shell
or Ωsh case.

Figure 6 shows the MD-generated PDFs of the normalized
local density for the cube with R = 1.5 and 4, which are
compared with the prediction of the Gaussian formulas of
Eq. (19) for the cube. The PDFs of Eq. (20) for the cube
thin shell case (not shown) are much broader. The cubic
subvolume contains on average 25 and 469 molecules for

FIG. 6. The normalized local density probability distribution function,
W (ρ/ρ). The simulation is for a cubic subvolume for R = 1.5 (lower frame)
and 4.0 (upper shifted frame). The state point is ρ = 0.9157 and T = 1.0.
There were N = 2048 molecules in the simulation cell and rc = 3.5. A
Nosé-Hoover thermostat with a time constant of 3 was used. The MD cube
PDF (annotated, “MD”) is compared with Eq. (19) using Qρ = 0.07 (where
βT = 0.077) and the ideal gas limit, Qρ = 1.

FIG. 7. The standard deviation, σ1/2
2 , skew, and kurtosis of the probability

distribution function of the local density, ρ/ρ of the subvolume as a function
of R. Data for cubic and spherical subvolumes are shown. The state point is
ρ = 0.9157 and T = 1.0 for N = 2048. The volume of the cube is 8R3 and the
(inscribed) sphere is 4πR3/3. Note the lin-log scale.

R = 1.5 and 4, respectively. The Gaussian functional form
given in Eq. (20) matches the MD data well. The Kolafa
and Nezbeda LJ equation of state,67 of the Benedict-Webb-
Rubin (MBWR) analytic form, gives βT = 0.0314, which
is equivalent to an isothermal bulk modulus of 31.8, and
therefore Qρ = ρkBT βT = 0.0288. This proves to be too
“stiff” in Eq. (19) to reproduce the R = 4 MD PDF, and
good agreement is obtained using a smaller compressional
modulus, of 13.0, which corresponds to QP = 0.070, as
may be seen in Fig. 6. The figure also shows that the
ideal gas limit, βT = 0.916, gives a PDF which is much
broader than the MD generated function. In the MD case
for R = 4 the large occupancy effects restrict the extent
of density fluctuation within the given volume, so the
density distribution is narrower. For R = 1.5 the best fit
QP = 0.17 or the bulk modulus is 5.4 which is therefore
tending to the ideal gas limit. Too much physical significance
should not be given to the “effective” thermodynamic
functions derived from the observed fluctuations in the
limit Ω → 0, as their use is to represent the effects of
small SV and excluded volume interactions between the
molecules.

The shape of a PDF can be described by the second to
fourth moments, σ2, σ3, and σ4, respectively. The breadth,
degree of slant to the right, and “peakiness” of the PDF,
respectively, increase when the variance, σ2, skew, σ3/σ

3/2
2 ,

and kurtosis, σ4/σ
2
2 − 3 become more positive.57 Figure 7

shows these statistical measures for the PDF of the local
density plotted on a lin-log scale. They all decrease in
magnitude with increasing subvolume. For ca. R > 1, the skew
and kurtosis are statistically very small, ∼0.01, indicating a
near Gaussian PDF. Although the statistics deteriorate for R
smaller than 1, it is clear that all three statistical measures
become more positive as R → 0, indicating a PDF more
peaked than Gaussian, with a long tail for ρ/ρ > 1 (skew).

Figure 8 gives the variance σ2(ρ/ρ) as a function of Ω−1.
The three lines show kBT βTΩ

−1 for β−1
T = 0.916 (ideal gas

limit), 13.0, and 31.8 (the bulk liquid value). The MD data
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FIG. 8. The variance σ2(ρ/ρ) as a function of Ω−1 for cubic and spherical
subvolumes. The MD data are taken from simulations carried out under
constant temperature by Velocity Rescaling (“VS”) and Nosé-Hoover (NH)
methods, and constant total energy (NVE) constraints. The three lines show
T βTΩ

−1 for β−1
T = 0.916 (ideal gas), 13.0, and 31.8 (the bulk value). The

state point details are the same as for Fig. 7. Note the log-log scale.

are from simulations carried out with constant temperature
using the velocity rescaling and Nosé-Hoover thermostats,
and constant total energy (NVE) dynamics. In the low Ω limit
the value of the (“effective”) compressibility which fits the
simulation data for cubes and spheres approaches the ideal
gas value, and tends to the bulk liquid value as Ω approaches
the volume of the simulation cell. When R = s/2 the variance
drops sharply to zero for a cubic subvolume, as the number of
molecules in the simulation cell is exactly N in that limit.

Figure 9 presents the local temperature probability
distribution function, W (T/T), for a cubic subvolume with
R = 1 and 4. The symbols are for NVE MD data, and the
continuous curve is the Gaussian analytic form taking the ideal
gas heat capacity, i.e., the variance in Eq. (17) has QT = 1.

FIG. 9. The normalized local temperature probability distribution function,
W (T /T ), using the same system parameters as for Fig. 6. Data for R = 1 and
R = 4 are given on the figure. The symbols are for NVE MD data. The two red
curves are the Gaussian PDF forms from Eq. (15) with a variance taken from
Eq. (17), using thermal softness parameter, QT = 1 (ideal gas). The green
lines are the exact solutions in the thermodynamic limit, from Eq. (21) for
R = 1 and ((22)) for R = 4 on the figure (“Exact”). For R = 4 the red and
green lines are hardly distinguishable.

The distribution is not quite Gaussian, especially visible for
R = 1. The exact PDF for the mean temperature of the SV
taken from the average of the M molecule values is, in fact, if
x = T/T ,63

W (x) = 1
xΓ(3M/2)

�
3M xe−x/2

�3M/2
, (21)

where Γ(x) is the gamma function of x. The temperature PDF,
W (x), in Eq. (21) is the ratio of two large numbers for large,
M . An expansion of the gamma function,68 in Eq. (21) gives
after some rearrangement,

W (x) ≃
(

3M
4π

)1/2 1
x
�
xe1−x�3M/2

, (22)

which proves more computationally robust in the large M
limit, and it is this quantity that is plotted in Fig. 9 for
R = 4. The two red curves are the Gaussian PDF form from
Eq. (15) with a variance taken from Eq. (17), using thermal
softness parameter, QT = 1 (ideal gas). The green lines are
the exact solutions in the thermodynamic limit, from Eq. (21)
for R = 1 and (see (22)) for R = 4 on the figure (“Exact”). For
R = 4 the red and green lines are hardly distinguishable, and
the Gaussian approximation is sufficient, whereas for R = 1
the formula in Eq. (22) gives a slightly better match to the
simulation data. Departures from Gaussian statistics become
evident for R values smaller than about 1, but there is a gradual
deviation (small at first) from Gaussian form as evident in the
skew and kurtosis as R decreases from s/2.

The local pressure fluctuation formula for a large system
on the molecular scale is K∞ − K0 = (V/kBT)⟨(∆P)2⟩.64,69 This
relates the infinite frequency bulk modulus, K∞, and the zero
frequency adiabatic bulk modulus, K0,70 to the volume of the
system, V , and the mean square difference in the pressure from
the mean value, i.e., ∆P = P − P. This formula is derived for
the whole domain (i.e., where V is the volume of the simulation
cell) and the microcanonical ensemble.65,71,72 The pressure
fluctuation consists of three terms, a purely kinetic (“kk”),
a purely configurational (“cc”), and a cross term (“2kc”),
which means that the fluctuations in the total pressure can be
separated additively into these components, as the variance
of the pressure fluctuations defined in Eq. (18) is, apart from
known constants or averages of the simulation, proportional
to K∞ − K0. For the ρ = 0.9157 and T = 1 state point used in
the simulations, the kk value is 0.26, the 2kc term is −4.27, the
cc term is 18.48 from NVE dynamics, and the total K∞ − K0
value is 14.48.

Figure 10 shows the configurational part of the pressure
variance, ⟨(∆Pc)2⟩, as a function of Ω−1 on a log-log scale for
the cubic and spherical subvolumes (there is no statistically
significant difference between the two or for the ensemble).
Figure 10 and Table I indicate that the variance of the VA
pressure is larger than that of the AVIR method for small
subvolumes, indicating a greater deviation from Gaussian
form in the VA case. Supplementary material Figs. S1 and S2
show representative examples of the AVIR and VA pressure
PDFs, indicating that the VA distribution is typically more
skewed than the AVIR case for R ≃ 1 and smaller. They are
both essentially Gaussian for R ≃ 2 and larger. Supplementary
material Fig. S3 presents the variance, skew, and kurtosis

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-011634
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-011634
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-011634
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FIG. 10. ⟨(∆P)2⟩ as a function of Ω−1 on a log-log scale. Data for the
cubic and spherical subvolumes are given in the figure. The blue line is
⟨(∆P)2⟩= A/Ω (where A is an effective “kBT (K∞−K0)”) for the AVIR
definition of the pressure, and the red line is for the VA definition of the
pressure). The linear regression fit is applied to the MD data forΩ ≤ 1.0. Note
on the log-log plot the difference in A is marked by a shift upwards in the two
lines with the same slope. The effective moduli values obtained are given in
Table I. The state point is ρ = 0.9157 and T = 1.0 for N = 2048 carried out
in the microcanonical ensemble (see Ref. 65 p. 92). Key: The square symbols
are for cubic subvolumes, and the circles are for the spherical subvolumes.
The black, red, and brown symbols are for the NH thermostat, VS thermostat,
and NVE ensemble, respectively. The small symbols are for N = 2048 and
the larger ones are for N = 4000.

statistical of the PDFs as a function of R which supports these
conclusions.

Figure 11 shows the variance of the configurational part of
shear stress PDF, ⟨(∆Pxy)2⟩ as a function of Ω−1. The data for
the cubic and spherical subvolumes follow the linear behavior
expected from ⟨(∆Pxy)2⟩ = kBTG∞/Ω.64,73 The slopes of the
lines on the figure in the Ω → 0 limit indicate in Table I
effective G∞which are different to the bulk Green-Kubo value
of 36.1 for the cc component. Supplementary material Fig. S4
shows some representative shear stress PDFs, and Fig. S5
presents the variance, skew, and kurtosis statistical measures
of the shear stress PDFs as a function of R, which indicates
that generally the shear stress PDFs are more Gaussian than
the corresponding pressure PDFs.

TABLE I. The effective static properties obtained by plotting the variance of
the property against Ω−1. The state point is ρ = 0.9157 and T = 1.0, with N

equal to 2048 and 4000. For ρ see Fig. 8, for P see Fig. 10, and for Px y

(shear) see Fig. 11. The subscripts V A and AV IR stand for the VA and
AVIR definitions of the pressure and shear stress. The static constants in the
third column are obtained by least square fitting to the MD data for Ω ≤ 1.0.
The static constants in the fourth column are for the thermodynamic limit.
Note that the equilibrium bulk modulus KT = β

−1
T , where βT is the isothermal

compressibility.

Fluctuation property Static constant Ω→ 0 Ω→ ∞

ρ KT 0.92a 31.8
T Cv 1.5a 1.5
PVA K∞−K0 78.3 14.5
PAVIR K∞−K0 39.7 14.5
Px y,VA G∞ 47.4 36.1
Px y,AVIR G∞ 19.3 36.1

aIdeal gas value.

FIG. 11. The variance of the configurational part of the shear stress,
⟨(∆Px y)2⟩ as a function of Ω−1 on a log-log scale. Data for the cubic and
spherical subvolumes are given in the figure. The lines are ⟨(∆Px y)2⟩= B/Ω
(where B is an effective “kBTG∞,c”) using the VA (upper line) and AVIR
(lower line) definitions of the shear stress. The least square fits are applied to
the MD data for Ω ≤ 1.0, where G∞,c = 38.7. Note the log-log scale.

Table I lists the effective thermomechanical properties
obtained from the variance of the static property in the
Ω−1 → 0 limit for the density, temperature, pressure, and
shear stress, for ρ = 0.9157 and T = 1.0. The linear regression
treatment of the variances shown in Figs. 8, 10, and 11 were
used to determine these values. The table shows that for
the ρ and T PDFs the relevant second order thermodynamic
property in the small SV limit is the ideal gas value. TheΩ → 0
apparent elastic moduli obtained from the regression fit are
generally higher than their actual values in the thermodynamic
limit, meaning that the fluctuations are larger than one would
expect based on simple volume scaling of the macroscopic
limit formulas.

IV. CONCLUSIONS

The virial expression for the bulk pressure tensor can be
written in part as the sum of an “internal virial” term which
should average to zero over a long simulation, but can be
slow to converge. The other component (“external virial”) is
the Method of Planes (MOP) definition applied to the faces
of a simulation cell. It is shown that the latter method can be
used instead of the full virial formula in certain circumstances
where the relative contribution of the internal virial term to
the total is small. This reduces the number of interactions that
need to be considered, which could be useful for large scale
simulations involving multiterm force fields.

The equilibrium probability distribution function (PDF)
of the local volume averaged density, temperature, pressure,
and shear stress were found to be insensitive to the constant
temperature states using velocity scaling or Nosé-Hoover
thermostats. Also the PDFs were independent of whether
constant temperature or microcanonical (NVE) dynamics
were used, in both cases for sampling volumes not too
close to the volume of the whole simulation cell. The PDFs
are Gaussian in the thermodynamic limit, and it is shown
that this behavior continues to a good approximation down

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-011634
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to subvolumes containing as few as about ten molecules.
The variance of the property is inversely proportional to the
subvolume, Ω, in each case, using the same expression for the
variance of the distribution. The effective moduli tend to be
larger than the bulk values if data from the small subvolume
limit are included in the fitting process. Below this volume
the variance increases more rapidly than Ω−1, reflecting an
increasing departure from a Gaussian PDF form. This is
especially the case for the VA definition of the pressure. An
atomic virial definition of the local pressure tensor results in
a distribution which is closer to Gaussian than obtained from
volume averaging. Also in the small SV limit the shear stress
PDF for all definitions considered is more Gaussian than
the pressure at the same subvolume. Some discussion on the
relevance of the present results to MD-Continuum coupling is
given in the supplementary material.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details of
Eq. (7), the long range correction for MOP, more on local
density fluctuations, and examples of the local pressure and
shear stress PDFs. Figures showing the R–dependence of the
variance, skew, and kurtosis of the pressure and shear stress
PDFs are also presented.
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