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Abstract. Tube channel pressing (TCP), which is one of the severe plastic deformation (SPD) 

technologies to refine grain size into submicron size for tubular materials, have been applied to 

ferritic stainless steel tubes for one pass, in order to alleviate ridging and enhance the hydro-

formability. It was found that grain-scale shear bands were introduced by one-pass TCP, and 

texture and microstructure was successfully modified by promoting recrystallization of 

deformation microstructure, which is otherwise hard-to-recrystallize, in the post-TCP annealing. 

Elongation to failure, strain-hardening exponent (n-value) and Lankford values of both 

longitudinal and circumferential directions increased in comparison to with the tube fabricated 

by conventional process. 

Keywords: ridging, formability, recrystallization, randomize, tube channel pressing 

1. Introduction 

Ferritic stainless steels (FSS) have high corrosion resistance, heat resistance and press workability. 

Therefore, they have been applied to various industrial applications, mostly as sheets or tubes. For 

example, tubes of FSS has been applied to exhaust tubes of automobile, which is frequently deformed 

into complicated shapes by hydro-forming. However, FSS exhibit ridging when they are subjected to 

tensile plastic strain in the rolling direction leading to reduction of the formability and the early fracture 

[1]. The ridging is a kind of rumple and it is caused by plastic anisotropy of the so-called colony with 

similar crystallographic orientations and is a feature of ferritic stainless steel. Therefore, it is important 

to promote recrystallization and randomize the texture to alleviate ridging.  

In our previous study, we demonstrated that the ridging can be alleviated and the formability is enhanced 

in FSS sheets by equal-channel angular pressing (ECAP) [2], which is one of severe plastic deformation 

(SPD) methods. It was found that <100>//ND grains effectively recrystallized and changed into other 

orientations leading to randomization of texture in the post-ECAP annealing. Dense grain-scale shear 

bands were introduced by ECAP in large grains of <100>//ND which is otherwise hard-to-recrystallize, 

and promote recrystallization. There are some processes of SPD about tube materials, for examples, tube 

twisting is effective to impart strains [3]. Recently, modified ECAP was invented for tube materials and 

called tube channel pressing [4] and TCP which have been successfully applied to aluminium alloys 

tube to obtain ultra-fine grain (UFG) structure [4]. In the present study, we applied one-pass TCP to FSS 

tube in order to control texture and alleviate ridging and enhance the formability.  
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2. Experimental Procedure 

2.1. Entire Process 

Figure 1 shows entire flow of conventional process and TCP process. FSS (AISI409L) tubes of 42.7 

mm in diameter and 1.0 mm in thickness, 25 mm in length were deformed by TCP process for one pass. 

Before and after TCP process, tubes were annealed. For comparison, the tubes were annealed before 

TCP as conventional process in order to relieve the plastic strain of as-received state. Tensile test was 

carried out to evaluate r-value, n-value and ridging. An optical microscope was used to see 

microstructure and a laser microscope was used to measure the surface roughness. 

 

  
Fig.1 Entire flows of both conventional and TCP process. 

2.2. TCP process  

TCP is one of SPD process developed by Iranian researchers in order to refine grain size of tube 

materials [5]. TCP is a modified SPD of ECAP, and intensive shear deformation is given at the bended 

part of the circular channel. As shown in Figure 2, tube sample is pressed into the die by a tube plunger. 

In this way, the sample can be pressed for several times until UFG formation. Although, the sample is 

commonly deformed by simple shear in both ECAP and TCP, there are two important different points. 

First, there are three to four bended parts where the material is subjected to shear strain in TCP, whereas 

the typical ECAP has only one, so that billets are subjected to shear strain for several times according 

to die design in one pass. 

 

 
Fig.2 Schematic diagram showing repetitive process of TCP. 

 

 

3. Results and discussion 

3.1. Microstructure 

Figure 3 shows optical micrographs before and after TCP. Equiaxial grains before TCP was deformed 

to elongated shape by shear deformation by one-pass TCP. After TCP, small shear bands are visible 

inside some grains as shown in Figure 3 (b) and (d). As discussed previous study, such small shear bands 

are observed in BCC metals such as stainless steels[6], carbon steels[7-10] and IF steels[7,8,11,12], and 

FCC metals with high stacking fault energy such as aluminum alloys[13-15]. This small shear bands are 

alternatively called in-grain shear bands [7-9, 11], grain-scale shear bands [13] or micro shear bands 

[15] by different researchers, and in this paper they are called grain-scale shear bands. It can be 

confirmed there are shear bands in two directions. This is because there are several shearing points 

through 1 pass TCP. The tube is squeezed in the radial direction accompanied by thickening of tube 
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wall. Thus, shear strain is given in not only through-thickness direction as in ECAP, but also 

circumferential direction as shown in Figure 3 (e). Vickers hardness and microstructures of neck zone 

after TCP are shown in Figure 4. They have three shear parts. It is confirmed that Vickers hardness 

increase as much as every shear part and shear bands increase gradually. 

 

 

 

 

 

 

Fig.3 Microstructures of (a) before TCP, (b) after TCP, (c) after final heat treatment and (d) Magnified 

photo of (b). Arrows in (d) indicate grain scale shear bands and geometry (e) of shear bands A and B 

formed by shear strain by channel angle and squeezing (reduction of diameter), respectively. 

 

 

 
Fig.4 Vickers hardness and microstructures of neck zone after TCP. 

 

3.2. Tensile test 

Figure 5 shows the stress-strain curves of axial and circumferential directions. The latter data were 

obtained by tensile test of ring specimens. Higher elongation to failure in TCP process is evident as 

shown in stress-strain curve and the photos (Figure 6). Figure 7 shows the relationship between work 

hardening ratio and true strain of the axial direction, it is evident that the strain hardening rate is higher 

in TCP process throughout the strain. The strain-hardening exponent (n-value) of conventional and 

TCP processes are 0.22 and 0.26, respectively. Thus, the tube in TCP process is expected to have 

higher hydro-formability. Considerable effect is manifest in Lankford value both in axial and 

circumferential directions as shown in Table 1. Ridging evaluated by tensile test of 15% as shown in 

Figure 8. Ridging is clearly visible in the conventional process whereas it is mostly alleviated in TCP 

process. Figure 9 shows {100}-pole figures after the final annealing. Since the tubes are fabricated by 

electric resistance welding (ERW) of cold-rolled sheets, typical cold-rolled and annealed texture can 

be recognized in the conventional processing with main components of {111}<112> and {322}<236> 

orientation. It is known that {111}<112> orientations tends to split into these {322}<236> orientations 

after cold rolling with very high rolling reduction. In contrast, texture is randomly oriented with no 

clear peak orientations as shown in TCP process. Thus, TCP and the final annealing randomized 

texture leading to alleviation of ridging and enhanced formability. 

(e) 
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Fig. 5 Stress-strain curves of ring specimens to evaluate tensile behavior of axial (left) and 

circumferential (right) direction of conventional process and TCP process.   

 

 
Fig.6 Ring specimen after tensile tests. 

 

 
Fig. 7 Relationship between the work hardening rate and true stress of as annealed and 1 Pass of TCP 

annealed 

 

Table 1 Lankford values of axial and circumferential directions 

 
 

axial circumferential

AS+HT 1.14 0.90

TCP+HT 1.73 1.64
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Fig.8 Ridging after 15% tensile elongation of (a) conventional and (b) TCP processing  

 

 
Fig.9 {100} pole-figures after the final heat treatment of conventional and TCP process 

 

 

4. Conclusions 

Tube channel pressing was applied to ferritic stainless steel (Fe-10%Cr) tubes for one pass to examine 

the effect of TCP on recrystallization microstructure and texture and formability. After one pass TCP, 

grain-scale shear bands were visible in several grains. These shear bands facilitate recrystallization and 

randomize the texture. Ridging was alleviated, and both strain-hardening capability and r-value was 

enhanced by one-pass TCP. It can be expected that the hydro-fomability is also enhanced.  
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