
Materials Research Express

ACCEPTED MANUSCRIPT • OPEN ACCESS

A molecular dynamics study of heterogeneous nucleation in generic
liquid/substrate systems with positive lattice misfit
To cite this article before publication: Zhongyun Fan et al 2020 Mater. Res. Express in press https://doi.org/10.1088/2053-1591/abcc89

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

 

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted
Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is
specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 134.83.254.105 on 23/11/2020 at 16:08

https://doi.org/10.1088/2053-1591/abcc89
https://creativecommons.org/licences/by/3.0
https://doi.org/10.1088/2053-1591/abcc89


1 

 

A Molecular Dynamics Study of Heterogeneous nucleation in Generic 

Liquid/substrate Systems with Positive Lattice Misfit  
 

Z. Fan* and H. Men  

 

BCAST, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK. 

 

*Corresponding author. Tel.: +44 1895 266406; Fax: +44 1895 269758; E-mail address: 

Zhongyun.Fan@brunel.ac.uk 

 
Abstract 

Nucleation plays a critical role in many natural and technological processes, and nucleation control 

requires detailed understanding of nucleation process at atomic level. In this study, we investigate the 

atomistic mechanism of heterogeneous nucleation in generic systems of liquid/substrate with positive 

lattice misfit (the solid has larger atomic spacing than the substrate) using molecular dynamics (MD) 

simulations. We found that heterogeneous nucleation process in such systems can be best described 

by a 3-layer nucleation mechanism: formation of the completely ordered first layer with an epitaxial 

relationship with the top surface of the substrate; formation of vacancies in the second layer to 

accommodate lattice misfit; and creation of a nearly perfect crystal plane of the solid in the third layer 

that demarcates the end of nucleation and the start of crystal growth. This 3-layer nucleation process 

creates a 2D nucleus (a plane of the solid phase), which contrasts with the hemisphere of the solid (a 

3D nucleus) in the classical nucleation theory (CNT). It is expected that this 3-layer nucleation 

mechanism will provide new insight for nucleation control through effective manipulation of the 

liquid/substrate interface. 

 

Keywords: Heterogeneous nucleation; Solidification; Lattice misfit; MD simulation.   

 

1. Introduction 

Nucleation is the initial stage of any first order phase transformation and is a phenomenon widely 

spread in both natural and industrial processes [1,2]. Classical nucleation theory (CNT) [3-5] is 

commonly used to describe both homogeneous and heterogeneous nucleation processes despite a 

number of concerns about its validity [6,7,8]. While homogeneous nucleation is rarely observed in 

reality due to the presence of impurities in the liquid [1], so far we have little knowledge about the 

heterogeneous nucleation process at atomic level due to difficulties encountered by both computer 

simulations or direct experimental observations [9-11].  

 

The recent epitaxial nucleation model [12] represents an alternative atomistic mechanism for the 

heterogeneous nucleation. It proposes that heterogeneous nucleation proceeds layer-by-layer through 

structural templating at the liquid/substrate interface. This has been supported by the latest results from 

both computer simulations [13-18] and experimental observations [19-27]. It has been reported that 

the liquid adjacent to the substrate can have significant atomic ordering even above the liquidus [13-

28]. The liquid may become layered within a few atomic layers at the interface, where the in-plane 

atomic ordering may exist [14,15]. With high resolution transmission electron microscopy (HRTEM), 

Oh et al. found that the liquid Al exhibits the pronounced in-plane atomic ordering within 3 atomic 

layers adjacent to the α-Al2O3, where the atoms take hcp sequence of the substrate, not fcc sequence 

of the bulk solid Al [23,24]. The classical molecular dynamics (MD) simulation reveals that the 

“prefreezing” crystalline Pb of approximately 2-3 atomic layers in thickness forms at the interface in 

the liquid Pb adjacent to (111) surface of solid Cu at 625K [16]. In a recent MD study [18], we 
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identified a 2-dimensional (2D) ordered structure at the generic liquid/substrate interface, using the 

local bond-order analysis [29], and we refer this phenomenon as prenucleation. Prenucleation is 

attributed to a structural templating mechanism, where the solid atoms in the underneath layer provide 

low energy positions for the solid atoms in the new layer [18]. All these observations are consistent 

with the hypernucleation hypothesis [30] and the adsorption model [31].  

 

The importance of structural templating can be further demonstrated by the facts that prenucleation 

facilitates heterogeneous nucleation while the 2D ordered structure is compatible with the new solid 

phase, or impedes heterogeneous nucleation while its structure is ‘wrong’. For example, segregated 

Au atoms at the interface between AuSi eutectic liquid and Si (111) substrate exhibit a pentagonal 

atomic arrangement, which acts as the main barrier of the heterogeneous nucleation [27]. On the 

other hand, a (112) Al3Ti 2-dimensional compound (2DC) on the (0001) TiB2 surface formed during 

grain refiner production makes TiB2 particles extremely potent for the nucleation of α-Al, by 

decreasing the lattice misfit from f = -4.2% to 0.09% [32]. However, the addition of a small amount 

of Zr in Al melts results in the dissolution of the Al3Ti 2DC and the formation of Ti2Zr 2DC on the 

TiB2 surface, which has a large misfit of -4.2% with α-Al, rendering TiB2 particles impotent [33]. In 

addition, the experimentally measured undercooling for heterogeneous nucleation reveals that the 

nucleation potency of a substrate is highly dependent on the lattice misfit between the substrate and 

the solid [34,35].  

 

Accommodating lattice misfit at the interface plays a critical role in the nucleation process and 

becomes an important step of heterogeneous nucleation [12]. The ab initio MD simulations reveals 

that the Al atoms exhibit a fcc-like ordering within 3 atomic layers at the interface between the liquid 

Al and Ti-terminated TiB2 substrate at an undercooling of 2K, and the growth of α-Al is frustrated 

due to the lattice misfit between solid Al and TiB2 [36]. Recently, we found that in the generic 

system with negative lattice misfit (the solid has smaller atomic spacing than the substrate) 

heterogeneous nucleation completes deterministically within three atomic layers by structural 

templating to create a 2D template from which the new phase can grow [37]. In this 3-layer 

nucleation mechanism, a partial edge dislocation network forms in the 1st layer to accommodate 

largely the lattice misfit; the 2nd layer twists an angle via the formation of a partial screw dislocation 

network to reduce lattice distortion; and the creation of a crystal plane of the solid in the 3rd layer to 

template further growth. This 3-layer nucleation mechanism delivers a 2D nucleus, which contrasts 

with the cap formation process (3D nucleus) delivered through stochastic structural fluctuation in the 

liquid. However, a logical question would be whether this 3-layer nucleation mechanism is 

applicable to the generic systems with positive lattice misfit. The stress status in the 2D ordered 

structure at the interface is tensile and compressive, respectively, for the systems with negative and 

positive lattice misfit, and this difference could produce significant effects on the heterogeneous 

nucleation process [16,38].  

 

The objective of this study is to study both prenucleation and nucleation processes in the generic 

systems with positive lattice misfit, using MD simulations.  

 

2. Simulation approach 

Similar to the case of the generic liquid/substrate systems with negative lattice misfit [37], here we 

have set up a generic liquid/substrate simulation system with positive misfit. The generic liquid 

consists of liquid Al, and generic substrates have a fcc lattice with a <111> surface orientation. We 

use Al atoms to construct the generic fcc substrates, which has an initial lattice parameter (a = 4.126Å) 

corresponding to the value obtained at the calculated melting point. The substrate atoms were fixed to 

a perfect fcc lattice configuration with a specified lattice parameter, a’, to achieve the desirable lattice 

misfit, f (0 ≤ f ≤ 8%). The definition of the lattice misfit can be found in Ref. [12]. This generic system 
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has a number of advantages: (1) elimination of the effect of chemical interaction on heterogeneous 

nucleation; (2) systematic variation in lattice misfit; and (3) the substrates can mimic dissimilar 

materials with much higher melting temperatures (Tl) (e.g., TiB2 with Tl = 3498K [39]). More details 

of such generic simulation system are given in Ref. [37]. 

 

The dimension of the substrate is 96[112̅]66[1̅10]5[111] and the initial dimensions of the liquid is 

optimized to minimize the strain between the substrate and the liquid, with total numbers of atoms 

between 23550-26112. A vacuum region is inserted with periodic boundary conditions in the z 

([111])direction, and the extent of the vacuum region is 60Å. Periodic boundary conditions are also 

imposed in the x ([112̅]) and y ([1̅10]) directions. It has been confirmed that simulations will produce 

only minor differences in the degree of atomic ordering at the interface for the systems with relaxed 

and fixed substrates [40].  

 

The EAM potential for Al, developed by Zope and Mishin [41], was used to model the interatomic 

interactions. The predicted melting temperature is 870 ± 4K for pure Al with the EAM potential [41]. 

MD simulations are performed using the DL_POLY_4.08 MD package [42]. The equations of motion 

are integrated by means of the Verlet algorithm with a time step of 0.001 ps, and the Berendsen NVT 

ensemble is used for the temperature control. The liquid sample is prepared by heating the system to a 

temperature of 1400K with steps of 50K, each lasting 100,000 MD steps.  

 

The equilibrated configuration of the liquid was cooled from 1400K to the desired temperature with 

steps of 50K, 5K and then 1K, and at each temperature step the system was allowed to run for 1,000,000 

MD steps to equilibrate. The nucleation temperature, Tn, was determined by monitoring variation in 

total energy and trajectory of the system during the equilibration. Firstly, we determine the temperature, 

T1, at which nucleation occurred, with a temperature step of 50K. The configuration of the system 

equilibrated at T1 + 50K is used as initial configuration for the next simulation with a temperature step 

of 5K to determine the next temperature, T2, where the nucleation occurred. Similarly, the 

configuration of the system equilibrated at T2 + 5K with a temperature step of 5K is used as initial 

configuration for the next simulation with a temperature step of 1K, and this approach allows us to 

pinpoint Tn within ±1K.  

 

Atomic layering at the interface is quantified by the atomic density profile, ρ(z), where z is the 

distance along the z ([111]) direction of the simulation system [14]. The atomic ordering in each 

layer of the liquid at the interface is characterized by the z-dependent in-plane order parameter, S(z) 

[43]. The details for the calculations of ρ(z) and S(z) can be found in Ref. [18]. 

 

3. Results 

 

3.1.  Prenucleation 

 

Following our previous work on prenucleation in the generic liquid/substrate system with negative 

misfit [18, 37], we have investigated the prenucleation phenomenon in the liquid/substrate system with 

positive misfit. Here we use the system with 4% misfit as an example to demonstrate the prenucleation 

phenomenon in detail. Fig. 1(a) shows a snapshot of the simulation system with f = 4% equilibrated at 

T = 1000K, which is 130K above the liquidus determined by MD calculation. The liquid adjacent to 

the interface becomes layered within about 6 atomic layers, as shown by the quantified atomic density 

profile in Fig. 1(b). Figs. 1(c-e) shown the time-averaged atomic positions of the first layer (L1) on the 

top of those of the surface layer of the substrate (L0), the second layer (L2) and the third layer (L3) at 

the interface, respectively. Fig. 1(c) suggests that L1 has a completely ordered atomic arrangement and 

is in an epitaxial relationship with the substrate surface (L0). L2 has a mixed structure with ordered 
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and disordered regions, and the L3 is almost completely disordered. This suggests that there exists a 

2D ordered structure in the liquid adjacent to the interface, which is in qualitatively agreement with 

that in the system with negative misfit [18,37]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The prenucleation phenomenon demonstrated by the simulation system with 4% misfit 

equilibrated at T = 1000K. (a) A front view (snapshot) of the simulation system; (b) atomic density 

profile, ρ(z), across the liquid/substrate interface; and the time-averaged atomic positions for (c) the 

first layer (L1) on the top of the surface layer of the substrate (L0), (d) the second layer (L2) and (e) 

the third layer (L3) in the liquid adjacent to the liquid/substrate interface. 

We also have examined the effect of temperature and lattice misfit on the degree of prenucleation. Figs. 

2(a) and (b) show the quantified peak density, ρp(z), and in-plane order parameter, S(z), in the system 

with f = 8% as a function of temperature, respectively. With a nearly 500K decrease in temperature, 

both ρp(z) and S(z) increases only slightly, suggesting that temperature only have a moderate effect on 

atomic ordering in the liquid adjacent to the interface. Figs. 2(c) and (d) represent the quantified ρp(z) 

and S(z) in the liquid equilibrated at 1000K as a function of lattice misfit, respectively. These results 

(a) 

(b) 

(c) 

(d) 

(e) 
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suggest that lattice misfit has no effect on atomic layering, but has a strong influence on in-plane 

atomic ordering. In-plane atomic ordering increases sharply with decreasing lattice misfit (Fig. 2(d)), 

particularly in the first 2 atomic layers. This is consistent with the results for the simulation system 

with negative misfit [18, 37]. We can conclude that while temperature only have a moderate effect on 

prenucleation, lattice misfit has a strong influence on atomic ordering in the liquid adjacent to the 

interface regardless of the nature of the lattice misfit, positive or negative. 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 2. The effect of temperature and positive lattice misfit on prenucleation. (a) Peak density, ρp, and 

(b) in-plane order parameter, S(z), as a function of temperature and distance (represented by the 

atomic layers) from the interface for the system with 8% lattice misfit; (c) peak density and (d) in-

plane order parameter as a function of lattice misfit and distance from the interface for the systems 

equilibrated at 1000K. 

3.2.  Nucleation 

 

Now, we take the system with f = 8% as an example to investigate the atomistic mechanisms of 

heterogeneous nucleation in the generic systems with positive lattice misfit. Heterogeneous nucleation 

was observed by monitoring the total energy, Et, of the simulation system as a function of the lapsed 

time, t, with increasing the undercooling from Tl. Fig. 3 displays Et as a function of rescaled time, t 

(taking the start of nucleation as t = 0ps) for the system with f = 8% during the simulation at T = 739K. 

Et remains unchanged before t = 0ps, and drops dramatically from 0ps to 180ps, suggesting that the 

nucleation occurs at Tn = 739K for this simulation system. a and b in Fig. 3 marks the onset and the 

(a) (b) 

(d) (c) 
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end of the solidification process, respectively. Fig. 3 suggests that at the nucleation temperature 

heterogeneous nucleation is a spontaneous down-hill process without the need to overcome any energy 

barrier. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Total energy of the simulation system, Et, as a function of rescaled time, t (t = 0 marks the 

onset of nucleation), during solidification of the simulation system with 8% lattice misfit at T = 

739K. a and b mark the onset of nucleation and the end of solidification, respectively. 

To understand the atomistic mechanism of heterogeneous nucleation, we have examined the evolution 

of atomic ordering in the liquid adjacent to the interface at the nucleation temperature (Tn). Fig. 4 

shows the time-averaged atomic positions of the first 3 atomic layers (L1, L2 and L3) of the simulation 

system with f = 8% from t = -100ps to -10ps during the simulation at Tn = 739K. During this period, 

L1 remains completely ordered, and the L2 consists of the ordered and disordered regions, and the L3 

is largely disordered, with only a few ordered regions being visible. It is noted that the size and position 

of the ordered regions in L3 are dynamic and change from time to time, suggesting that the simulation 

system is still in the stage of the prenucleation before t = 0ps.  

 

Fig. 5 shows the evolution of the 2D ordered structure in the liquid adjacent to the interface during 

heterogeneous nucleation for the simulation system with f = 8% at Tn = 739K. For each time, we show 

the front view (a snapshot) and top views (time averaged atomic positions) of L2 and L3. The onset of 

nucleation (t = 0ps) is symbolized by the stabilization and subsequent growth of a particular ordered 

region in L2 and L3, as marked by the circle in Fig. 5(a3). Fig. 5(a) (t = 0ps) represent the maximum 

degree of atomic ordering at the interface that can be achieved by prenucleation, and therefore is treated 

as a precursor for the heterogeneous nucleation process. Building on the precursor, this ordered 2D 

structure expands (in 2D) continuously with time (marked by the circles) and reaches 4.3nm at t = 40ps 

(Fig. 5(c3)), which matches the critical size of nuclei at Tn = 739K determined by the classical 

nucleation theory (CNT) and marks the end of the nucleation. It should be pointed out that for t < 40ps, 

the growth is in 2D, i.e., lateral growth of the precursor on the planes parallel to the interface. After 

nucleation, further growth of the nuclei will be 3D and leads to the formation of a hemisphere at t = 

70ps, as highlighted by the half circle in Fig. 5(d1). Beyond this point, growth enters spherical growth 

stage. In this paper we will confine our discussions to prenucleation and heterogeneous nucleation, 

and leave cap formation and spherical growth to other publications. 
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The atomic spacing, da, of the ordered regions within an individual layer at the interface is calculated 

by averaging the distances between all the nearest neighboring atoms. Fig. 6(a) shows the variation of 

da of the individual layer at the interface as a function of time for the system with f = 8% during the 

simulation at Tn = 739K. da of L1 is about 2.7Å, which is very close to 2.68Å of the substrate, and it 

is constant with the observation that the L1 is epitaxial to the surface layer of the substrate (Fig. 4). da 

is then increased to 2.83 Å in L2 and 2.92 Å in L3. Beyond L3 da becomes constant, being the atomic 

spacing on (111) of aluminum. The results in Fig. 6(a) suggest that L2 is a transitional layer between 

the highly compressed L1 and the stress-free L3 and beyond.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Time averaged atomic positions of the first 3 layers (L1, L2 and L3) in the liquid at the 

interface showing the evolution of atomic ordering during prenucleation in the simulation system 

with 8% lattice misfit at T = 739K. (a) t = -100ps, (b) -50ps and (c) -10ps. Before the onset of 

nucleation, the 2D order structure in the liquid at the interface is dynamic, with the size and location 

of the ordered regions changing from time to time. 

 

(a) 

L2 L3 

(c) 

(b) 

L1 
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Fig. 5. Front views (snapshot) and top views (time averaged atomic positions) of L2 and L3 showing 

the evolution of atomic ordering during heterogeneous nucleation in the simulation system with 8% 

lattice misfit at 739K. (a) onset of nucleation (t = 0ps); (b) during nucleation (t = 20ps), (c) 

completion of nucleation (t = 40ps); (d) during the cap formation (t = 70ps). The ordered 2D 

structure highlighted by a circle in L3 expands in 2D with time, reaches a disk diameter of 4.3nm at t 

= 40ps (c3), which corresponds to the critical cluster diameter defined by CNT at Tn = 131K. This 

is followed by isothermal cap formation ((d1)-(d3)). 

 

(a2) 

Front view Top view L2 

(a3) (a1) 

(b2) (b3) (b1) 

(d2) (d3) (d1) 

(c2) (c3) (c1) 

Top view L3 
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Fig. 6. Evolution of atomic ordering during heterogeneous nucleation in the simulation system with 

8% lattice misfit at 739K. (a) Average atomic spacing, da, in the ordered regions of each atomic layer 

as a function of time and (b) accommodated misfit in each atomic layer, fa, at t = 1ns. 

In order to understand the mechanism for accommodation of lattice misfit at the interface we have 

calculated fa, which is the lattice misfit accommodated by a given layer relative to the previous layer. 

fa as a function of the atomic layers away from the interface for the systems with f = 8% at 739K and 

t = 1ns is plotted in Fig. 6(b). fa is negligible between L1 and the surface layer of the substrate (L0), 

and about 8.5% between the L2 and L1, and approaches 0% beyond L2. Fig. 6(b) indicates that all 

the apparent lattice misfit of the simulation system is accommodated by L2. Further analysis 

suggests that the accommodation of lattice misfit in L2 is attributed to the formation of vacancies in 

L2 during the nucleation process. Fig. 7(a) shows the snapshots of L1, L2 and L3 for the systems 

with f = 8% at 739K at t = 1ns. Examination of atomic arrangements in Fig. 7(a) revealed a three-

layer process for heterogenous nucleation: (1) L1 is a nearly perfect crystalline plane that is in 

epitaxial relationship with L0; (2) L2 contains 17.3% vacancies; and (3) L3 is a nearly perfect 

crystalline plane of the solid phase with some equilibrium vacancies.  

 

We have investigated the applicability of this three-layer process to systems with different lattice 

misfit. Fig. 7 shows the snapshots of L1, L2 and L3 for the systems with f = 2-8% at t = 1ns and at 

their corresponding nucleation temperatures. It is interesting to note that independent of lattice misfit 

of the system L1 is always in epitaxy with L0 and L3 is always a nearly perfect (111) plane of the 

solid containing a small amount of vacancies (assuming equilibrium vacancies). The only observable 

change with lattice misfit is the level of vacancies in L2, which increases with increasing apparent 

lattice misfit (Fig. 7). This is confirmed by the quantified levels of vacancies in L2 as a function of 

the apparent lattice misfit (Fig. 8). 

 

Nucleation undercooling, ΔTn, is calculated as ΔTn = Tl - Tn, and ΔTn as a function of f for all the 

systems under the same simulation conditions is plotted in Fig. 9. The data for the systems with 

negative misfit [39] are also included for comparison. ΔTn increases significantly with increasing 

apparent lattice misfit in the studied range of lattice misfit (0 ≤ f ≤ 8%), regardless of the sign of the 

misfit being negative or positive. If ΔTn is used as a quantitative measure of nucleation potency of a 

substrate (the smaller the ΔTn, the higher the nucleation potency), the nucleation potency decreases 

significantly with the increase of lattice misfit. This suggests that the lattice misfit is an important 

factor in determining the potency of the nucleating substrates.  

(b) 
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Fig. 7. Snapshots of the first layer (L1), the second layer (L2) and the third layer (L3) showing the 

atomic arrangement after completion of solidification of the system with (a) 8% misfit equilibrated at 

739K; (b) 6% misfit equilibrated at 772K; (c) 4% misfit equilibrated at 784K; and (d) 2% misfit 

equilibrated at 850K. 
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Fig. 8. The quantified vacancy fraction, fv, in the second layer (L2) as a function of apparent lattice 

misfit (f) in comparison with the theoretically calculated lattice misfit accommodated by vacancies in 

L2, fa, from Eq. (3).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Nucleation undercooling, ΔTn, as a function of apparent lattice misfit (f) for systems with both 

positive (this work) and negative [37] lattice misfit. 

 

4. Discussion 
 

In a recent study [37], we defined heterogeneous nucleation from an atomistic point of view. 

Heterogeneous nucleation process starts with a precursor (a 2D ordered structure) at the 

liquid/substrate interface created by prenucleation [18], proceeds layer-by-layer through structural 
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templating and finishes by creating a crystal plane of the solid, from which further growth can be 

templated. In the same study [37], we demonstrated a three-layer mechanism for heterogeneous 

nucleation in a generic system with negative lattice misfit (the solid has smaller atomic spacing than 

the substrate): L1 reduces lattice misfit by forming a set of edge dislocations; L2 twists an angle to 

reduce the lattice distortion by forming a set of screw dislocations; and L3 is a perfect plane of the 

solid, which will template further growth of the solid. This three-layer nucleation process can be also 

described as a transformation from a liquid/substrate interface to two new interfaces: a substrate/solid 

interface and a liquid/solid interface. 

 

In this study we revealed an atomistic nucleation mechanism in the generic systems with positive 

lattice misfit (the solid has larger atomic spacing than the substrate), which is schematically illustrated 

in Fig. 10. At the prenucleation stage (T > Tn), the lattice of the substrate induces the prenucleation in 

the liquid at the interface by structural templating, resulting in a 2D ordered structure (Fig. 5(a)) in 

which the first layer (L1) is completely ordered with an epitaxial relationship with the surface plane 

of the substrate (Fig. 4). During heterogeneous nucleation at nucleation temperature, L2 is templated 

by L1 and accommodates all the lattice misfit by formation of vacancies randomly populated in L2 

(Fig. 7), and this is followed by the formation of L3 that is a crystal plane of the solid. L3 templates 

the growth of further layers by advancing the liquid/solid interface into the liquid, and solidification 

enters growth stage. Compared with the nucleation mechanism in the systems with negative lattice 

misfit [37], the nucleation mechanism in the systems with positive misfit can be also described as a 

three-layer nucleation mechanism.  

 

The major difference between the two systems is how the lattice misfit is accommodated: negative 

lattice misfit is accommodated by the formation of edge dislocations in L1 followed by screw 

dislocations in L2, while positive lattice misfit by epitaxy in L1 followed by the formation of vacancies 

in L2. Although further investigation is required to understand the exact cause of this difference 

between systems with positive and negative misfit, it is possible that the nature of the local stress 

distribution across the interface may play an important role in determining the mechanisms for misfit 

accommodation. In the system with a negative lattice misfit, the ordered atoms induced by the substrate 

is under tensile stress with a possible maximum stress being vertical to the <011> directions. This 

suggests that it is easier to introduce extra rows of atoms along the <011> directions, leading to the 

formation of <011> edge dislocations. However, in the case of systems with positive lattice misfit, the 

ordered atom induced by the substrate are under compression stress along all the directions due to their 

epitaxy relationship with the substrate lattice. In this case, it would be easier to take randomly 

individual atoms out (forming vacancies) to release the tensile stresses.  

 

This study suggests that the fraction of vacancies in the second layer of the solid increases with 

increasing apparent lattice misfit in the system (Fig. 8). Here we derive the relationship between the 

apparent lattice misfit (f, or accommodated lattice misfit, fa) and vacancy fraction (fv) in L2. 

 

According to the definition of lattice misfit in Eq. (2) of Ref. [12], lattice misfit is a function of dm and 

dsub: f = (dm-dsub)/dm, where dm and dsub are the atomic spacing of the solid metal and substrate, 

respectively. In more generic terms of lattice misfit between two atomic planes and the concept of 

structural templating, “sub” denotes the underneath layer and “m” denote the layer above the “sub”. If 

the two atomic planes have a perfect size match, to a good approximation one has 
 
  𝑛𝑚𝑑𝑚

2 = 𝑛𝑠𝑢𝑏𝑑𝑠𝑢𝑏
2        (1) 

where nm and nsub are the numbers of atoms in the planes of the solid and the substrate, respectively. 

Rearrange Eq. (1) and insert it into f = (dm-dsub)/dm, one has  
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  𝑓𝑎 = 1 − √
𝑛𝑚

𝑛𝑠𝑢𝑏
       (2) 

Insert the definition of vacancy fraction (fv = (nsub-nm)/nsub) into Eq. (2) we obtain the following 

relationship between fa and fv: 
 

  𝑓𝑎 = 1 − √1 − 𝑓𝑣       (3) 

Predictions by Eq. (3) agrees well with the results from MD simulations, as show in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Schematic illustration of the 3-layer atomistic mechanism for heterogeneous nucleation in 

the systems with positive lattice misfit. The 1st layer (L1) formed during prenucleation is completely 

ordered and is epitaxial to the surface layer of the substrate; at the nucleation temperature, the 

epitaxial L1 templates the 2nd ordered layer (L2) which contain certain amount of vacancies to 

accommodate lattice misfit; and L2 templates a nearly perfect crystalline plane of the solid in L3, the 

2D nucleus, to template further growth. 

 

In addition, formation of vacancies as an mechanism to accommodate positive lattice misfit was 

reported in our previous ab initio study of the liquid Mg/MgO system with {111}MgO surface 

termination, where the ordered Mg atoms in the liquid induced by the {111} MgO substrate containing 

significant amount of vacancies [44]. 

 

Finally, we should point out that in this study nucleation is defined as a process to form a crystal plane 

of the solid (a 2D nucleus) which can template further crystal growth. This is obviously different from 

Page 13 of 16 AUTHOR SUBMITTED MANUSCRIPT - MRX-122566.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



14 

 

the formation of a spherical cap (a 3D nucleus) as defined by CNT. In CNT, the nucleation potency 

(ΔTn) of a substrate is described as a function of contact angle (). , as a function of the relevant 

interfacial energies, is the outcome of a continuum analysis of heterogeneous nucleation process. Due 

to the lack of reliable data for interfacial energies,  can not provide further insight for nucleation 

control. In contrast to CNT, the new definition of nucleation (2D nucleus) suggest that nucleation 

potency of a given substrate is closely related to lattice misfit [37], chemical interaction between the 

liquid and the substrate [40,44] and the atomic level surface roughness [33,45]. This knowledge 

provides further insight for nucleation control, in particularly through manipulation of the 

liquid/substrate interface via chemical segregation. For instance, TiB2 has a hexagonal crystal structure 

and a hexagonal platelet morphology with the (0001) planes as its major surface termination. The 

misfit between (0001) TiB2 surface and {111} Al is -4.2% at 660ºC [32], suggesting that TiB2 is not 

potent for the nucleation of Al. Segregation of Ti at the TiB2/liquid Al interface leads to the formation 

of a mono atomic layer of (112) Al3Ti 2DC, which reduces the |f| from 4.2% to 0.09% and increases 

significantly the nucleation potency of TiB2[32]. However, addition of 500ppm Zr into Al melt results 

in the formation of (0001) Ti2Zr 2DC on (0001) TiB2 surface, which replaces the original (112) Al3Ti 

2DC [33]. The (0001) Ti2Zr 2DC has not only a large misfit with Al but also an atomically rough 

surface, making such TiB2 particles impotent for the nucleation of solid Al.  

 

5. Summary 
 

In this work, we used MD simulation approach to investigate the effect of positive lattice misfit on 

both prenucleation and heterogeneous nucleation processes. We found that similar to the systems with 

negative lattice misfit, prenucleation in the systems with positive lattice misfit is promoted by reducing 

both temperature and lattice misfit. More importantly, our study also revealed that heterogenous 

nucleation process is complete with 3 atomic layers (the 3-layer mechanism): complete ordering of the 

first layer in epitaxy with the substrate; formation of vacancies in the second layer to accommodate 

lattice misfit; and formation of a nearly perfect crystal plane of the solid (the 2D nucleus) to complete 

nucleation. This 3-layer nucleation mechanism for the systems with positive misfit is qualitatively 

similar to that for the systems with negative misfit, but differ in the detailed mechanisms for 

accommodating lattice misfit; the former accommodates misfit through formation of vacancies while 

the latter through formation of dislocations. Such detailed atomistic mechanisms may provide insight 

for nucleation control through manipulation of the liquid/substrate interface. 
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