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Security Control for Discrete-time Stochastic
Nonlinear Systems Subject to Deception Attacks
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Abstract—This paper is concerned with the security control
problem with quadratic cost criterion for a class of discrete-
time stochastic nonlinear systems subject to deception attacks.
A definition of security in probability is adopted to account
for the transient dynamics of controlled systems. The purpose
of the problem under consideration is to design a dynamic
output feedback controller such that the prescribed security in
probability is guaranteed while obtaining an upper bound of the
quadratic cost criterion. First of all, some sufficient conditions
with the form of matrix inequalities are established in the
framework of the input-to-state stability in probability ( ISSiP).
Then, an easy-solution version on above inequalities is proposed
by carrying out the well-known matrix inverse lemma to obtain
both the controller gain and the upper bound. Furthermore, the
main results are shown to be extendable to the case of discrete-
time stochastic linear systems. Finally, two simulation examples
are utilized to illustrate the usefulness of the proposed controller
design scheme.

Index Terms—Discrete-time stochastic nonlinear systems; De-
ception attacks; Security in probability; Security control.

I. I NTRODUCTION

In the past two decades, the networked control systems (NC-
Ss) have received an ever-increasing interest from researchers
due to their extensive applications in various practical areas,
such as traffic management, robot control, mobile sensor net-
works and remote control. In contrast with many distinct ad-
vantages, the limited bandwidth of the communication channel
inevitably leads to various network induced phenomena which
could seriously degrade the addressed system performances.
Some representative results have been published in [42] for
systems with transmission delays, [14], [32] for systems with
missing measurements, [16], [21] for systems with signal
quantization, and [10], [11] for systems with randomly oc-
curring uncertainties (ROUs). It should be pointed out that
the issues of network security are largely ignored despite its
frequent occurrence in networked systems.
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Network security is of utmost importance in modern society
and therefore receives ever-increasing attention in recent years
[6], [7], [24], [25], [33], [37], [40], [44]. In the networked
scenario, the exchanged data can be easily exploited by
adversaries due to the open network links among sensors,
controllers and actuators. A cyber-attack can be regarded as
methods, processes, or means used to maliciously attempt to
reduce network reliability. According to their implementation
types, the cyber-attacks can be generally classified into the
Denial-of-Service (DoS) attacks [22], the replay attacks [45]
and the deception attacks [5], [13]. Furthermore, via the
techniques of dynamic programming or Lyapunov stability
theory, some preliminary results concerning security control
problems have been reported in the literature, see [1], [12],
[22] for the case of DoS attacks and [2], [26], [34] for the
case of deception attacks. In addition, from the viewpoint
of defenders (for plants), the attacks possessrandom nature
since the successes of the attacks largely depends on the
detection ability of protection equipment or software, the
communication protocolsand thenetwork conditions(e.g. net-
work load, network congestion, network transmission rate)that
are typically randomly fluctuated. For instance, the secure
message in multipath routing protocol with a (T,N ) secret
sharing scheme can not be recovered if the number of shares
is less thanT [23]. Recently, some interesting results have
been reported in [1], [13] where the random nature of attacks
is governed by Bernoulli processes or Markov processes.
However, it is still an open and non-trivial work to investigate
the security in probability for more general networked control
systems. The main challenging could be how to develop an
appropriate methodology to analyze the transient dynamicsof
closed-loop systems subject to both the stochastic nature of
addressed systems and the interference signals transmitted by
adversaries.

On the other hand, nonlinearities are ubiquitous in prac-
tice and therefore the control problem for nonlinear systems
has attracted considerable research attention in the past two
decades, see [31] for more details. Unfortunately, when the
nonlinearities and deception attacks come together for NCSs,
the security control issue has become quite intractable due
primarily to lack of appropriate methodology. For instance,
although significant progress has been made for the input-
to-state stability (ISS) theory of continuous-time stochastic
nonlinear systems [15], [20], [35], the results for their discrete-
time counterparts have been very few. Furthermore, it is
desirable to design a controller which not only achieves the
security but also guarantees other performance requirements
such as the minimization of a quadratic cost function [28].
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Note that it is a challenge to determine the extremum of cost
functions for nonlinear systems even if the corresponding theo-
retical basis has been established via the Pontryagin maximum
principle or dynamic programming method [4], [43]. Instead,
a more realistic way is to seek a suboptimal controller to
achieve a bound or approximate value of the given quadratic
cost function via matrix inequalities [17] or neural-network-
based approaches [41]. It is worth pointing out that, in most
available literature concerning suboptimal control issues with a
quadratic cost index, the non-Gaussian exogenous disturbances
have been overlooked and therefore their effects cannot be
taken into adequate consideration. The main reason could be
that the desired conditions in the form of Hamilton-Jacobi
inequalities or general matrix inequalities cannot be easily
derived by exploiting developed approaches. Very recently, a
novel average quadratic cost function, which can be utilized to
evaluate the impact from disturbances on the cost index, has
been proposed in [27] to carry out the guaranteed cost control
issue for stochastic linear systems. Unfortunately, to thebest
of the authors’ knowledge, such a cost-guaranteed problem for
stochastic nonlinear systems has not been properly investigated
yet, not to mention the case where the security requirement
is also a major concern. It is, therefore, the purpose of this
paper to shorten such a gap.

Towards this end, this paper focuses on the security con-
trol problem for a class of discrete-time stochastic nonlinear
systems subject to deception attacks. First of all, sufficient
conditions in form of matrix inequalities are established to
guarantee the prescribed security by employing the discrete-
time version of input-to-state stability in probability (ISSiP).
Furthermore, a desired upper bound for quadratic cost function
is proposed by implementing maximum operation and the
control gains can be simultaneously obtained in terms of the
solution of a set of matrix inequalities. The main contribution
of this paper is threefold:1) the paper deals with, for the
first time, the security control problem with quadratic cost
criterion for general stochastic nonlinear systems; 2) in view
of ISSiP theory combined with maximum operation, sufficient
conditions with the form of matrix inequalities are developed
to guarantee the predefined security in probability; 3) both
the desired controller gains and the upper bound on evalu-
ated quadratic cost are dependent on the solution of matrix
inequalities.

The rest of this paper is organized as follows. A class of
discrete-time stochastic nonlinear systems subject to deception
attacks is presented In Section II. By adopting the input-to-
state stability in probability, some sufficient conditionsare
established in Section III to guarantee the desired security
performance, while obtain an upper bound of the average
quadratic cost criterion. Based on that, controller gains can be
obtained successfully for the case of discrete-time stochastic
linear systems by solving a set of matrix inequalities with a
nonlinear inequality constraint. In Section IV, two examples
are presented to demonstrate the effectiveness of the main
results. Finally, conclusions are drawn in Section V.

Notation The notation used here is fairly standard except
where otherwise stated.Rn and R

n×m denote, respectively,
the n-dimensional Euclidean space and the set of alln × m
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Fig. 1. Attacks on networked control systems [3].

real matrices.I denotes the identity matrix of compatible
dimensions. The notationX ≥ Y (respectively,X > Y ),
whereX andY are symmetric matrices, means thatX − Y

is positive semi-definite (respectively, positive definite). AT

represents the transpose ofA. λmax(A) andλmin(A) denote
the maximum and minimum eigenvalue ofA, respectively. For
matricesA ∈ R

m×n andB ∈ R
p×q, their Kronecker product

is a matrix inRmp×nq denoted byA ⊗ B. E{x} stands for
the expectation of the stochastic variablex. ||x|| describes the
Euclidean norm of a vectorx. diag{· · · } stands for a block-
diagonal matrix.IA denotes the indicator function of setA .
γ−1 means the inverse function of the monotone functionγ.
A function γ : R+ → R

+ is said to be of classK , if it is a
continuous strictly increasing function withγ(0) = 0, and is
said to be of classK∞, if γ ∈ K with γ(r) → ∞ asr → ∞.
Finally, a functionσ : R+ × R

+ → R
+ is said to be of class

K L if the mappingσ(s, k) is of classK for each fixedk
and is decreasing to zero ask → ∞ for each fixeds.

II. PROBLEM DESCRIPTION AND SOME PRELIMINARIES

Consider the following discrete-time stochastic nonlinear
system subject to deception attacks



















xk+1 = f1(xk) + g(xk)uk + h1(xk)wk

ỹk = f2(xk) + h2(xk)wk

uk = ũk + αkrk

yk = ỹk + σkvk

(1)

where xk ∈ R
nx , ỹk ∈ R

ny , yk ∈ R
ny , ũk ∈ R

nu and
uk ∈ R

nu are, respectively, the state vectors, the sensor
measurements, thereceived signalsby the controller subject
to attacks, the controller outputs and the actuator inputs
subject to attacks.rk ∈ R

nu and vk ∈ R
ny stand for the

signals sent by adversaries, andwk is a one-dimensional, zero-
mean Gaussian white noise sequence withE{w2

k} = 1. The
stochastic variablesαk andσk are two mutually independent
Bernoulli-distributed white sequences taking values on0 or 1
with the following probabilities

Prob{αk = 0} = 1− ᾱ, Prob{αk = 1} = ᾱ

Prob{σk = 0} = 1− σ̄, Prob{σk = 1} = σ̄.

The nonlinear functionsf1 : Rnx → R
nx , f2 : Rnx → R

ny ,
h1 : Rnx → R

nx , h2 : Rnx → R
ny and g : Rnx → R

nu are
smooth matrix-valued functions.
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Remark 1:Generally speaking, network attacks can be di-
vided into the Denial-of-Service (DoS) attacks and the decep-
tion attacks which are shown in Fig. 1. For DoS attacks, the
adversary (A1 or A3) prevents the controller from receiving
sensor measurements or the actuators from receiving control
commands, that is,vk = −ỹk or rk = −ũk. For deception
attacks, the adversary (A2 or A4) sends false information
vk = −ỹk+ ζ2k or rk = −ũk+ ζ1k to controllers or actuators
whereζ1k and ζ2k are the arbitrary bounded energy signals
sent by the adversaries.

Remark 2:As discussed in the Introduction, the attack pos-
sesses therandom naturedue to the application ofprotection
equipment or software, the communication protocolsand the
network conditions(e.g. network load, network congestion,
network transmission rate). For instance, the false data sent
by deception attackers could be identified by using some
hardware, software tools, or algorithms (e.g.χ2 detectors)
which leads to a failing attack. In recent years, such a nature
for DoS attacks has been addressed by using a Bernoulli dis-
tributed process with known statistical information. However,
the random nature for deception is overlooked. As such, in
this paper, two independent stochastic variables obeying the
given Bernoulli distributions are utilized to govern this kind
of attack phenomenon.

The dynamic output feedback controller for plant (1) is
described by

{

x̂k+1 = fc(x̂k) + lc(x̂k)yk

ũk = uc(x̂k)
(2)

where x̂k with x̂0 = 0 is the state estimate, and the matrix-
valued functionsfc : Rnx → R

nx , lc : Rnx → R
ny anduc :

R
nx → R

nu are the controller parameters to be determined.
In this paper, the deception attacksrk and vk are, respec-

tively, −uc(x̂k)+ζ1k and−ỹk+ζ2k whereζ1k andζ1k are the
bounded energy signals satisfying||ζ1k|| + ||ζ2k|| ≤ ̺. Here,
̺ is a known positive scalar. By denotingηk = [ xT

k x̂T
k ]T ,

ζk = [ ζT
1k ζT

2k ]T and substituting (2) into (1), one has the
following closed-loop system

ηk+1 = F1(ηk) + (σ̄ − σk)F2(ηk)

+ (1− ᾱ)G1(ηk)uc(T ηk)

+ (ᾱ− αk)G1(ηk)uc(T ηk)

+H1(ηk)wk + (σ̄ − σk)H2(ηk)wk

+ ΛασG2(ηk)ζk + Λασ
k G2(ηk)ζk

(3)

where

F1(ηk) =

[

f1(xk)
fc(x̂k) + (1− σ̄)lc(x̂k)f2(xk)

]

F2(ηk) =
[

0 fT
2 (xk)l

T
c (x̂k)

]T

H1(ηk) =
[

hT
1 (xk) (1− σ̄)hT

2 (xk)l
T
c (x̂k)

]T

H2(ηk) =
[

0 hT
2 (xk)l

T
c (x̂k)

]T

G1(ηk) =
[

gT (xk) 0
]T

, G2(ηk) = diag{g(xk), 0}
T =

[

0 I
]

, Λασ = diag{ᾱ, σ̄} ⊗ I,

Λασ
k = diag{αk − ᾱ, σk − σ̄} ⊗ I.

Furthermore, associated with the above closed-loop system,
consider a quadratic cost functional of the form

J (uc) = lim sup
N→∞

1

2N

N
∑

k=0

E

{

ηTk Qηk+uT
c (T ηk)Ruc(T ηk)

∣

∣

∣
F0

}

(4)
where Q ∈ R

2nx×2nx and R ∈ R
nu×nu are two given

positive-definite weighting matrices.
Before proceeding further, we introduce the following def-

initions.
Definition 1: [8] Let the positive scalarε be given. The

system (3) is said to be input-to-state stable with probability
1− ε if there exist functionsϕ ∈ K L andγ ∈ K such that
the system dynamicηk satisfies

Prob
{

||ηk|| ≤ ϕ(||η0||, k) + γ(‖ζk‖∞)
}

≥ 1− ε (5)

for ∀k ≥ 0 and ∀η0 ∈ R
2nx\{0} where ‖ζk‖∞ :=

supk{||ζk||}.
Definition 2: Given a security parameterϑ > 0 and a

positive scalarε > 0, the system (1) subject to deception
attacks is secure with probability1− ε if the system dynamic
xk satisfies

Prob
{

||xk|| ≤ ϑ
}

≥ 1− ε, ∀k ≥ 0. (6)

Definition 3: Let the security parameterϑ > 0 be given.
The system (1) subject to deception attacks is said to beε-
securable if there exist three matrix-valued functionsfc, lc
and uc in the dynamic output feedback controller (2) such
that the security requirement||xk|| ≤ ϑ can be satisfied with
probability1− ε.

In this paper, we aim to design the controller parametersfc,
lc anduc for the dynamic output feedback controller (2) such
that the closed-loop system (3) is secure with probability1−ε

and an upper bounded is obtained for the given quadratic cost
functional (4).

III. M AIN RESULTS

In this section, by resorting to the stochastic analysis
approach, some sufficient conditions are provided to guarantee
the desired security while obtaining an upper bound of the
addressed quadratic cost criterion. Furthermore, the obtained
results are extended to the case of discrete-time stochastic
linear systems with state-dependent noises. The following
three lemmas will be used in deriving our main results.

Lemma 1: [8] Let the positive scalarε be given. The
closed-loop system (3) is input-to-state stable with probability
1 − ε if there exist a positive definite functionV : Rn → R

(called an ISSiP-Lyapunov function), twoK∞ class functions
ν and ν̄, and twoK class functions̃χ and ν̃ such that, for
all ηk ∈ R

2nx \ {0}, the following two inequalities hold

ν(||ηk||) ≤ V(ηk) ≤ ν̄(||ηk||) (7)

E{V(ηk+1)
∣

∣Fk} − V(ηk) ≤ χ̃(‖ζk‖∞)− ν̃(||ηk||). (8)

Furthermore, if (7) and (8) hold, then the functionsϕ andγ

in Definition 1 can be, respectively, selected as

ϕ(·, k) =
√

ν−1(ε−1φkν̄(·))
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and
γ(·) =

√

ν−1
(

ε−1
(

ν̄(ν̃−1(χ̃(·))) + χ̃(·)
))

whereφ is a suitable scalar satisfying0 < φ < 1.
Lemma 2: [38] Let F0 be aσ sub-field ofF1 andX be

an integrable random variable. The following is true

E{E{X |F0}|F1} = E{X |F0} = E{E{X |F1}|F0}.
Lemma 3: [36] (Matrix Inverse Lemma) LetX , Y , U and

V be given matrices with appropriate dimensions. IfX , Y and
Y −1 + V X−1U are invertible, then the following holds

(X + UY V )−1 = X−1 −X−1U(Y −1 + V X−1U)−1V X−1.

The following theorem provides a sufficient condition on
security control with predefined probability1− ε. In addition,
under the given parameters, an upper bound of quadratic cost
is obtained at the same time.

Theorem 1:Assume that scalarsε andϑ, matricesQ and
R, and the controller parametersfc, lc and uc are known.
The stochastic nonlinear system (1) with the dynamic output
feedback controller (2) is secure with probability1 − ε and
the quadratic cost functional (4) has the upper boundJ ∗ =
0.5(χ+λmax(W))̺2, if there are two positive definite matrices
P andW , and three positive scalarsν, χ andκ such that, for
all nonzeroη ∈ R

2nx , matrix inequalities


















Γ1(η) < −ν||η||2 (9a)

Γ2(η) < χI (9b)

Π0(η) < W (9c)

Π2(η) < 0 (9d)

and

||x0||
√

ε−1λ−1

min
(P)λmax(P)

+ ̺

√

ε−1χλ−1

min
(P)

(

ν−1λmax(P) + 1
)

≤ ϑ

(10)

hold, where

A(η) = F1(η) + (1 − ᾱ)G1(η)uc(T η)

M1 = diag{I, 0}, M2 := diag{0, I}
Γ0(η) = AT (η)PA(η) + σ̃FT

2 (η)PF2(η)− ηTPη

+ α̃uT
c (T η)GT

1 (η)PG1(η)uc(T η)

+HT
1 (η)PH1(η) + σ̃HT

2 (η)PH2(η)

Γ1(η) = Γ0(η) + σ̃κFT
2 (η)PF2(η) + κAT (η)PA(η)

+ α̃κuT
c (T η)GT

1 (η)PG1(η)uc(T η)

Γ2(η) = (1 + κ−1)GT
2 (η)

(

(Λασ)TPΛασ

+ α̃MT
1 PM1 + σ̃MT

2 PM2

)

G2(η)

Π0(η) = GT
2 (η)

(

(Λασ)TPΛασ

+ α̃MT
1 PM1 + σ̃MT

2 PM2

)

G2(η)

Π1(η) = AT (η)PΛασG2(η) − σ̃FT
2 (η)PM2G2(η)

− α̃uT
c (T η)GT

1 (η)PM1G2(η)

Π2(η) = Γ0(η) − ν||η||2 + ηTQη + uT
c (T η)Ruc(T η)

+ Π1(η)
(

W −Π0(η)
)−1

ΠT
1 (η).

Proof: First, it can be calculated that

E
{

(ᾱ− αk)PΛασ
k

}

= −α̃PM1

E
{

(σ̄ − σk)PΛασ
k

}

= −σ̃PM2.

In what follows, choose the Lyapunov functionV(ηk) =
ηTk Pηk. We can easily check that the condition (7) is true when
selecting functionsν(||ηk||) = λmin(P)||ηk||2 andν̄(||ηk||) =
λmax(P)||ηk||2. By calculating the difference ofV (ηk) along
the trajectory of the closed-loop system (3) and taking the
mathematical expectation, one has

E{V(ηk+1)− V(ηk)|Fk}
= E

{

ηTk+1Pηk+1 − ηTk Pηk|Fk

}

= FT
1 (ηk)PF1(ηk) + 2FT

1 (ηk)PΛασG2(ηk)ζk

+ 2(1− ᾱ)FT
1 (ηk)PG1(ηk)uc(T ηk)

+ σ̃FT
2 (ηk)PF2(ηk)− 2σ̃FT

2 (ηk)PM2G2(ηk)ζk

+ (1 − ᾱ)uT
c (T ηk)GT

1 (ηk)PG1(ηk)uc(T ηk)

+ 2(1− ᾱ)uT
c (T ηk)GT

1 (ηk)PΛασG2(ηk)ζk

− 2α̃uT
c (T ηk)GT

1 (ηk)PM1G2(ηk)ζk

+HT
1 (ηk)PH1(ηk) + σ̃HT

2 (ηk)PH2(ηk)

+ ζTk GT
2 (ηk)(Λ

ασ)TPΛασG2(ηk)ζk

+ α̃ζTk GT
2 (ηk)MT

1 PM1G2(ηk)ζk

+ σ̃ζTk GT
2 (ηk)MT

2 PM2G2(ηk)ζk − ηTk Pηk

= Γ0(ηk) + 2Π1(ηk)ζk + ζTk Π0(ηk)ζk.

(11)

Applying the element inequality2aT b ≤ κaTa + κ−1bT b

to the term2Π1(ηk)ζk yields

2Π1(ηk)ζk

= 2AT (ηk)PΛασG2(ηk)ζk − 2σ̃FT
2 (ηk)PM2G2(ηk)ζk

− 2α̃uT
c (T ηk)GT

1 (η)PM1G2(ηk)ζk

≤ κAT (ηk)PA(ηk) + α̃κuT
c (T ηk)GT

1 (ηk)PG1(ηk)uc(T ηk)

+ σ̃κFT
2 (ηk)PF2(ηk) + κ−1ζTk GT

2 (ηk)
(

(Λασ)TPΛασ

+ α̃MT
1 PM1 + σ̃MT

2 PM2

)

G2(ηk)ζk.

(12)
Furthermore, taking the above equality into consideration, (11)
results in

E{V(ηk+1)− V(ηk)|Fk}
≤ Γ1(ηk) + ζTk Γ2(ηk)ζk ≤ −ν||ηk||2 + χ||ζk||2∞

(13)

which means that the second condition (8) from Lemma 1 can
be also guaranteed. Therefore, the closed-loop system (3) is
input-to-state stable with probability1− ε.

Now, let us select

ϕ(||η0||, 0) =
√

ε−1λ−1

min
(P)λmax(P)||η0||

γ(||ζk||∞) =
√

ε−1χλ−1

min
(P)

(

ν−1λmax(P) + 1
)

||ζk||∞.

It can be found from (10) that

||xk|| ≤ ||ηk|| ≤ ϕ(||η0||, k) + γ(‖ζk‖∞)

≤ ϕ(||η0||, 0) + γ(‖ζk‖∞)

= ϕ(||x0||, 0) + γ(‖ζk‖∞) ≤ ϑ

(14)
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which means

Prob
{

||xk|| ≤ ϑ
}

≥ 1− ε, ∀k ≥ 0.

As such, it is easily concluded that the closed-loop system (3)
is secure with probability1− ε.

Having obtained the analysis results about the security,
we are now in a position to investigate the quadratic cost
functional (4). For this purpose, denote

ζ∗k =
(

W −Π0(ηk)
)−1

ΠT
1 (ηk),

Ξ1(ηk) = Γ0(ηk) + ηTk Qηk + uT
c (T ηk)Ruc(T ηk)− ν||ηk||2.

By utilizing the properties of the conditional expectation,
one can show that

E

{

2V(ηk+1)− 2V(ηk)

+ ηTk Qηk + uT
c (T ηk)Ruc(T ηk)

∣

∣

∣
Fk

}

= E

{[

2V(ηk+1)− 2V(ηk) + ηTk Qηk

+ uT
c (T ηk)Ruc(T ηk)

]

I||ζk||≤̺

∣

∣

∣
Fk

}

≤ E

{[

V(ηk+1)− V(ηk)− ν||ηk||2 + χ||ζk||2∞
+ ηTk Qηk + uT

c (T ηk)RuT
c (T ηk)

]

I||ζk||≤̺

∣

∣

∣
Fk

}

= E

{[

Γ0(ηk)− ν||ηk||2 + 2Π1(ηk)ζk

+ ζTk
(

Π0(ηk)−W
)

ζk + uT
c (T ηk)Ruc(T ηk)

+ ηTk Qηk + ζTk Wζk + χ||ζk||2∞
]

I||ζk||≤̺

∣

∣

∣
Fk

}

≤ max
||ζk||≤̺

{

Γ0(ηk)− ν||ηk||2 + 2Π1(ηk)ζk

+ ζTk
(

Π0(ηk)−W
)

ζk + ηTk Qηk

+ uT
c (T ηk)Ruc(T ηk) + ζTk Wζk + χ||ζk||2∞

}

≤ max
||ζk||≤̺

{

Ξ1(ηk) + 2Π1(ηk)ζk − ζTk
(

W −Π0(ηk))

× ζk

}

+ (χ+ λmax(W))̺2

≤ max
ζk

{

Π2(ηk)− (ζk − ζ∗k )
T
(

W −Π0(ηk)
)

× (ζk − ζ∗k )
}

+ (χ+ λmax(W))̺2

≤ Π2(ηk) + (χ+ λmax(W))̺2.

(15)

Furthermore, it follows from (15) and Lemma 2 that

sup

N
∑

k=0

E

{

ηTk Qηk + uT
c (T ηk)Ruc(T ηk)

∣

∣

∣
F0

}

≤ sup
N
∑

k=0

E

{

Π2(ηk) + (χ+ λmax(W))̺2

− 2E
{

V(ηk+1)− V(ηk)|Fk

}

∣

∣

∣
F0

}

≤ 2V(η0) + (N + 1)(χ+ λmax(W))̺2

− inf
{

2E
{

V(ηN+1)|F0

}

}

≤ 2V(η0) + (N + 1)(χ+ λmax(W))̺2

(16)

which implies

J (uc) ≤ lim sup
N→∞

1

2N

(

2V(η0) + (N + 1)(χ+ λmax(W))̺2
)

=
(χ+ λmax(W))̺2

2
.

The proof is complete.

Remark 3:The developed result in Theorem 1 includes a
nonlinear constraint dependent on initial state, which intuitive-
ly describes the security bound. In addition, by exploitingthe
difference2V(ηk+1)−2V(ηk) to (15), the condition of security
(9a) is skillfully embedded into the analysis of the quadratic
cost functional index (4). Such an approach is of importance
to gain an upper bound ofJ (uc).

From the purpose of implementation, a linear time-invariant
controller is usually employed in real-world systems. There-
fore, we are interested to expose that the above developed
result can be specialized to the systems with the linear output
feedback controller which is of the form

{

x̂k+1 = Fcx̂k + Lcyk

ũk = Kx̂k

(17)

where controller parametersFc, Lc andK need to be deter-
mined. By replacingfc(x̂k), lc(x̂k) anduc(x̂k) with Fcx̂k, Lc

andKx̂k, respectively, one has the following theorem.

Theorem 2:Assume that scalarsε andϑ, matricesQ and
R, and parametersFc, Lc andK are known. The stochastic
nonlinear system (1) with the dynamic output feedback con-
troller (17) is secure with probability1− ε and the quadratic
cost functional (4) has the upper boundJ ∗ = 0.5(χ +
λmax(W))̺2, if there exist two positive definite matricesP
andW , and three positive scalarsν, χ andκ such that, for all
nonzeroη = [ xT , x̂T ]T ∈ R

2nx , matrix inequalities































Γ̄1(η) < −ν||η||2 (18a)

Γ̄2(η) < χI (18b)

Π̄0(η) < W (18c)

Π̄2(η) < 0 (18d)

I ⊗ P−1 − G2(η)W−1
G

T
2 (η) > 0 (18e)

and

||x0||
√

ε−1λ−1

min
(P)λmax(P)

+ ̺

√

ε−1χλ−1

min
(P)

(

ν−1λmax(P) + 1
)

≤ ϑ

(19)
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hold, where

Ā(η) =

[

f1(x) + (1− ᾱ)g(x)Kx̂

Fcx̂+ (1− σ̄)Lcf2(x)

]

Ḡ1(η) =
[

gT (x) 0
]T

, Ḡ2(η) = diag{g(x), Lc}
F̄2(η) =

[

0 fT
2 (x)LT

c

]T
, H̄2(η) =

[

0 hT
2 (x)L

T
c

]T

H̄1(η) =
[

hT
1 (x) (1− σ̄)hT

2 (x)L
T
c

]T
,

A (η) =
[

ĀT (η)
√
α̃ηT T TKTGT

1 (η)
√
σ̃F̄T

2 (η)
]T

G (η) =
[

ḠT
2 (η)(Λ

ασ)T −
√
α̃ḠT

2 (η)MT
1 −

√
σ̃ḠT

2 (η)MT
2

]T

Γ̄1(η) =(1 + κ)A T (η)(I ⊗ P)A (η)− ηTPη

+ H̄T
1 (η)PH̄1(η) + σ̃H̄T

2 (η)PH̄2(η)

Γ̄2(η) =(1 + κ−1)G T (η)(I ⊗ P)G (η)

Π̄0(η) =G
T (η)(I ⊗ P)G (η), α̃ = ᾱ(1− ᾱ)

Π̄1(η) =A
T (η)(I ⊗ P)G (η), β̃ = β̄(1− β̄)

Π̄2(η) =A
T (η)

(

(I ⊗ P)−1 − G (η)W−1
G

T (η)
)−1

× A (η)− ηTPη − νηT η + H̄T
1 (η)PH̄1(η)

+ σ̃H̄T
2 (η)PH̄2(η) + ηT T TKRKT η + ηTQη.

Proof: Based on Theorem 1, it suffices to show that (9a)-
(9d) are satisfied for the stochastic nonlinear system (1) with
the dynamic output feedback controller (17).

First, taking (17) into consideration, one has

Γ0(η) = ĀT (η)PĀ(η) + σ̃F̄T
2 (η)PF̄2(η)− ηTPη

+ α̃ηT T TKT ḠT
1 (η)PḠ1(η)KT η

+ H̄T
1 (η)PH̄1(η) + σ̃H̄T

2 (η)PH̄2(η)

= A
T (η)(I ⊗ P)A (η)− ηTPη

+ H̄T
1 (η)PH̄1(η) + σ̃H̄T

2 (η)PH̄2(η),

Γ1(η) = Γ0(η) + σ̃κF̄T
2 (η)PF̄2(η) + κĀT (η)PĀ(η)

+ α̃κηT T TKT ḠT
1 (η)PḠ1(η)KT η,

Γ2(η) = (1 + κ−1)ḠT
2 (η)

(

(Λασ)TPΛασ

+ α̃MT
1 PM1 + σ̃MT

2 PM2

)

Ḡ2(η)

= (1 + κ−1)G T (η)(I ⊗ P)G (η).

(20)

Obviously, the inequalities (9a) and (9b) in Theorem 1 follow
directly from (18a) and (18b), respectively.

Similarly, it can be found that

Π0(η) = G
T (η)(I ⊗ P)G (η),

Π1(η) = ĀT (η)PΛασḠ2(η)− σ̃F̄T
2 (η)PM2Ḡ2(η)

− α̃ηTT TKT ḠT
1 (η)PM1Ḡ2(η)

= A
T (η)(I ⊗ P)G (η).

(21)

On the other hand, it follows that

Π4(η) = Π1(η)
(

W −Π0(η)
)−1

ΠT
1 (η)

= A
T (η)(I ⊗ P)G (η)

(

W − G
T (η)

× (I ⊗ P)G (η)
)−1

G
T (η)(I ⊗ P)A (η).

(22)

In light of (18e), based on Lemma 3,Π4(η) is equivalent to

Π4(η) = A
T (η)

(

(I ⊗ P)−1 − G (η)W−1
G

T (η)
)−1

× A (η)− A
T (η)(I ⊗ P)A (η),

(23)

and therefore, it follows from (20) and (23) that

Π2(η) = A
T (η)

(

(I ⊗ P)−1 − G (η)W−1
G

T (η)
)−1

× A (η)− ηTPη − νηT η

+ H̄T
1 (η)PH̄1(η) + σ̃H̄T

2 (η)PH̄2(η)

+ ηT T TKRKT η + ηTQη.

(24)

It is not difficult to see from (21) and (24) that the
inequalities (9c) and (9d) in Theorem 1 follow directly from
(18c) and (18d). As such, it can be concluded from Theo-
rem 1 that the desired security for the closed-loop system
(3) are achieved and the cost functional (4) has the bound
J ∗ = 0.5(χ+ λmax(W))̺2, which completes the proof.

Now, we are in a position to extend the developed results to
the case of discrete-time stochastic linear systems with state-
dependent noises

{

xk+1 = Axk +Buk +Dxkwk

ỹk = Cxk + Exkwk

(25)

whereA, B, C, D andE are constant matrices with appro-
priate dimensions. It is assumed thatB is of column full rank.

Subsequently, by selectingχ = (1 + κ−1)λmax(W), one
has that (18b) holds if (18c) is true. Furthermore, by replacing
f1(xk), g(xk), f2(xk), h1(xk) andh2(xk) with Axk, B, Cxk,
Dxk and Exk, respectively, the following theorem can be
obtained immediately from Theorem 2.

Theorem 3:Assume that scalarsε andϑ, matricesQ and
R, and parametersFc, Lc and K are known. The discrete-
time stochastic linear system (25) with the dynamic output
feedback controller (17) is secure with probability1 − ε

and the quadratic cost functional (4) has the upper bound
J ∗ = 0.5(χ+λmax(W))̺2, if there exist two positive definite
matricesP andW , and two positive scalarsν andκ such that
matrix inequalities



















Υ1 < 0 (26a)

Υ2 < 0 (26b)

Υ3 < 0 (26c)

Υ4 > 0 (26d)

with the nonlinear constraint

||x0||
√

ε−1λ−1

min
(P)λmax(P)

+ ̺

√

ε−1χλ−1

min
(P)

(

ν−1λmax(P) + 1
)

≤ ϑ

(27)
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hold, where

S1 =

[

A (1− ᾱ)BK

(1 − σ̄)LcC Fc

]

, S6 =

[

B 0
0 Lc

]

S2 =

[

0 0√
σ̃LcC 0

]

, S3 =

[

0
√
α̃BK

0 0

]

S4 =

[

D 0
(1 − σ̄)LcE 0

]

, S5 =

[

0 0√
σ̃LcE 0

]

Ā =
[

ST
1 ST

3 ST
2

]T
, χ = (1 + κ−1)λmax(W)

Ḡ =
[

(Λασ)T −
√
α̃MT

1 −
√
σ̃MT

2

]TS6

Υ1 = (1 + κ)Ā T (I ⊗ P)Ā − P + ST
4 PS4 + ST

5 PS5 + νI

Υ2 = Ḡ
T (I ⊗ P)Ḡ −W , Υ4 = (I ⊗ P)−1 − ḠW−1

Ḡ
T

Υ3 = Ā
T (I ⊗ P)Ā − P − νI + ST

4 PS4

+ ST
5 PS5 + T TKRKT +Q.

Finally, for the discrete-time stochastic linear systems with
state-dependent noises, the desired controller gains can be
obtained via the following corollary.

Theorem 4:Let the positive scalarsε andϑ, and the pos-
itive definite matricesQ andR be given. Assume that there
exist two positive definite matricesP andW , seven matrices
F̃c, L̃c, K̃, Θ11, Θ12, Θ22 and Λ, and two positive scalars
ν andκ satisfying the following parameter-dependent matrix
inequalities



































































[

−P ∗
Ξ1 −PN

]

< 0, (28a)
[

−W ∗
Ξ2 −PN

]

< 0 (28b)








Ξ0 ∗ ∗ ∗
Ξ3 −PN ∗ ∗
0 Ξ4 −W ∗

K̄T 0 0 R−Θ11 −ΘT
11









< 0(28c)

[

−PN ∗
ΞT
2 −W

]

< 0 (28d)

and

||x0||
√

ε−1λ−1

min
(P)λmax(P)

+ ̺

√

ε−1χλ−1

min
(P)

(

ν−1λmax(P) + 1
)

≤ ϑ

(29)

where
PN = I ⊗ (N +N ′ − P), κ̃ = 1 + κ

S̄1 =

[

ΘMA+ (1 − σ̄)L̃cC (1− ᾱ)K̃ + F̃c

(1 − σ̄)L̃cC F̃c

]

S̄2 =

[
√
σ̃L̃cC 0√
σ̃L̃cC 0

]

, S̄3 =

[

0
√
α̃K̃

0 0

]

S̄4 =

[

ΘMD + (1− σ̄)L̃cE 0

(1− σ̄)L̃cE 0

]

, Θ =

[

Θ11 Θ12

0 Θ22

]

S̄5 =

[
√
σ̃L̃cE 0√
σ̃L̃cE 0

]

, S̄6 =

[

ΘMB L̃c

0 L̃c

]

N =

[

ΘM Λ
0 Λ

]

, M =

[

(BTB)−1BT

(B⊥)T

]

Ξ0 = P + νI −Q, χ = (1 + κ−1)λmax(W)

Ξ1 =
[

κ̃S̄T
1 κ̃S̄T

3 κ̃S̄T
2 S̄T

4 S̄T
5

]T

Ξ2 =
[

(Λασ)T −
√
α̃MT

1 −
√
σ̃MT

2

]T S̄6

Ξ3 =
[

S̄T
1 S̄T

2 S̄T
3 S̄T

4 S̄T
5

]T

Ξ4 =
[

Ξ2 0 0
]T

, K̃ = [K̄T 0]T .

In this case, by designing controller gainsFc = Λ−1F̃c,
Lc = Λ−1L̃c and K = Θ−1

11 K̄, the discrete-time stochastic
linear system (25) with the dynamic output feedback controller
(17) is secure with probability1−ε. Furthermore, the quadratic
cost functional (4) has the upper boundJ ∗ = 0.5(χ +
λmax(W))̺2.

Proof: First, with the help of the Schur Complement
Lemma, the inequalities (26a) and (26c) are, respectively,
equivalent to

[ −P ∗
Ξ̃1 −I ⊗ P−1

]

< 0 (30)

and








Ξ0 ∗ ∗ ∗
Ξ̃3 −I ⊗ P−1 ∗ ∗
0 Ξ̃4 −W ∗

KT 0 0 −R−1









< 0 (31)

where

Ξ̃1 =
[

(1 + κ)ST
1 (1 + κ)ST

3 (1 + κ)ST
2 ST

4 ST
5

]T

Ξ̃2 =
[

(Λασ)T −
√
α̃MT

1 −
√
σ̃MT

2

]TS6

Ξ̃3 =
[

S̄T
1 ST

3 ST
2 ST

4 ST
5

]T
, Ξ̃4 =

[

Ξ̃2 0 0
]T

.

DenoteF̃c = ΛFc, L̃c = ΛLc, andK̄ = Θ11K. It follows
from (28c) thatN andΘ11 are invertible. Furthermore, pre-
and post-multiplying the inequality (30) by diag{I, I ⊗ N}
and diag{I, I ⊗N T }, and the inequality (31) by diag{I, I ⊗
N , I,Θ11} and diag{I, I ⊗ N T , I,ΘT

11}, respectively, result
in

[

−P ∗
Ξ1 −I ⊗ (NP−1N T )

]

< 0 (32)

and








Ξ0 ∗ ∗ ∗
Ξ3 −I ⊗ (NP−1N T ) ∗ ∗
0 Ξ4 −W ∗

KT 0 0 −Θ11R−1ΘT
11









< 0.

(33)
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Because of

N +N T −NP−1N T − P
=− (P −N )P−1(P −N )T ≤ 0

Θ11 +ΘT
11 −Θ11R−1ΘT

11 −R
=− (R−Θ11)R−1(R−Θ11)

T ≤ 0

it can be shown that the inequalities (32) and (33) (equivalent
to (26a) and (26c)) can be satisfied if (28a) and (28c) hold.
Similarly, we can obtain that (26b) and (26d)) can be satisfied
if (28b) and (28d) are true. As such, it can be concluded
from Theorem 3 that the desired security is achieved and
the quadratic cost functional (4) has the upper boundJ ∗ =
0.5(χ + λmax(W))̺2 for the addressed system (25), which
completes the proof.

Remark 4: In Theorem 4, the system parameters, the de-
sired security probabilityε and the weighting matricesQ
andR in the quadratic cost function (4) are all reflected in
a set of parameter-dependent matrix inequalities. Obviously,
the inequality (28a) with fixed parameterκ̃ will reduce to a
linear matrix inequality, and therefore this parameter offers
additional flexibility with possibility to improve the security
performance.

Remark 5: In this paper, the impact on both the security
performance and the average cost of the state and control
input is examined from the statistical information of deception
attacks. This paper considerably enlarges the scope of our
earlier result [9]. In comparison, the developed results have
the following two distinguishing features: 1) more general
dynamic output feedback controllers are deigned to match up
with the corresponding stochastic nonlinear systems; and 2)
a quadratic cost is further investigated while guaranteeing the
security in probability.

IV. SIMULATION EXAMPLES

To illustrate the effectiveness of the proposed results, two
numerical examples are given in this section.

Example 1:The first example concerns the following
discrete-time stochastic nonlinear system:











xk+1 =
1

3
xk sin(xk) +

1

2
uk +

1

15
xk cos(xk)wk,

ỹk =
1

2
xk +

1

15
xk sin(xk)wk,

with the initial condition x0 = 0.4. Give the probability
ᾱ = σ̄ = 0.05 and ε = 0.25, the security parameterϑ = 14,
the bound of disturbance input̺= 0.05, and the weighting
matricesQ = 0.05I andR = 0.05I. According to Theorem
2, it can be seen that the controller (17) with parameters
Fc = −0.4, Lc = 0.25 andK = 0.8 is a suitable dynamic
output feedback controller for the above stochastic nonlinear
system. Here, the other parameters satisfying the conditions
in Theorem 2 can be selected asP = diag{0.9, 0.9}, W = 1,
ν = 0.31, Λ = 0.77 andκ = 0.45. Furthermore, the permitted
upper boundJ ∗ is 0.0355.

Example 2:The second example considers the discrete-
time stochastic linear system (25) with

A =

[

−1.00 2.00
−0.20 −0.65

]

, D =

[

0.007 −0.005
0.010 0.006

]

B =
[

2.00 0
]T

, C =
[

0.50 −0.50
]

E =
[

0.025 −0.025
]

and the initial conditionx0 = [ 0.40 − 0.20 ]. Then, the
other corresponding parameters are the same with the above
example. By using the Matlab software (with the YALMIP
3.0), a set of solutions to matrix inequalities (28a)-(28d)in
Theorem 4 is obtained as follows:

P =









0.7259 −0.0931 0.4192 −0.0209
−0.0931 4.3751 −0.2098 1.5271
0.4192 −0.2098 0.4163 0.0446

−0.0209 1.5271 0.0446 0.9762









W =

[

1.6361 0.0264
0.0264 1.6569

]

, Θ =

[

1.0401 −0.0741
0 7.9006

]

Λ =

[

0.4483 0.0413
−0.1545 1.8515

]

, L̃c =

[

0.7331
−0.1372

]

F̃c =

[

0.3026 0.0386
−0.4109 −0.7702

]

, K̃ =

[

−0.4253
0.3224

]T

ν = 0.0405, κ = 0.05.

It can be checked that the condition (27) is satisfied. Further-
more, the permitted upper boundJ ∗ is 0.7370 and the desired
control parameters are

Fc =

[

0.6901 0.1234
−0.1643 −0.4057

]

, Lc =

[

1.6300
0.0618

]

K =
[

−0.4089 0.3100
]

.

In the simulations, the exogenous disturbance inputs are
selected asζ1,k = 0.2 cos(k) and ζ2,k = 0.2 sin(k). The
simulation results for Example 1 and Example 2 are shown in
Figs. 2∼4. Specially, Fig. 2 plots the dynamic trajectories of
||xk|| for 100 independent simulation trials, which effectively
checks thesecurity in probabilityfor the employed examples.
In addition, Fig. 3 and Fig. 4 depict both the dynamic
trajectory of ||xk|| and attack times for a simulation trial,
which vividly reflects the impact from deception attacks. The
simulation results have confirmed that the designed controller
performs very well.

V. CONCLUSIONS

In this paper, we have dealt with the security control
problem with a predefined quadratic cost for discrete-time
stochastic nonlinear systems subject to deception attacks. A
definition of security in probability has been employed to
reasonably account for the transient dynamics of the closed-
loop systems. Sufficient conditions with the form of matrix
inequalities have been established by means of the input-to-
state stability in probability (ISSiP). Furthermore, an easy-
solution version on above inequalities has been developed by
carrying out the well-known matrix inverse lemma. Specially,
the controller parameters and the desired upper bound have
been characterized via the solution of matrix inequalitieswith
a nonlinear inequality constraint. Further research topics can
be focused on security issues for general time-delayed systems
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(a) The dynamic trajectory of||xk|| (Example1).
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(b) The dynamic trajectory of||xk|| (Example2).
Fig. 2. The dynamic trajectories (100 independent simulation trials).

or switched systems [29], [30] subject to various cyber attacks
with/without event-triggered communication protocols [18],
[19], [39].
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