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Abstract

In pharmaceutical development, it is very useful to exploit the knowledge

of the causal relationship between product quality and critical material at-

tributes (CMA) in developing new formulations and products, and optimizing

manufacturing processes. With the big data captured in the pharmaceutical

industry, computational intelligence (CI) models could potentially be used

to identify critical quality attributes (CQA), CMA and critical process pa-

rameters (CPP). The objective of this study was to develop computational

intelligence models for pharmaceutical tabletting processes, for which bio-

inspired feature selection algorithms were developed and implemented for

optimisation while artificial neural network (ANN) was employed to pre-
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dict the tablet characteristics such as porosity and tensile strength. Various

pharmaceutical excipients (MCC PH 101, MCC PH 102, MCC DG, Mannitol

Pearlitol 200SD, Lactose, and binary mixtures) were considered. Granules

were also produced with dry granulation using roll compaction. The feed

powders and granules were then compressed at various compression pres-

sures to produce tablets with different porosities, and the corresponding ten-

sile strengths were measured. For the CI modelling, the efficiency of seven

bio-inspired optimization algorithms were explored: grey wolf optimization

(GWO), bat optimization (BAT), cuckoo search (CS), flower pollination al-

gorithm (FPA), genetic algorithm (GA), particle swarm optimization (PSO),

and social spider optimization (SSO). Two-thirds of the experimental dataset

was randomly chosen as the training set, and the remaining was used to val-

idate the model prediction. The model efficiency was evaluated in terms of

the average reduction (representing the fraction of selected input variables)

and the mean square error (MSE). It was found that the CI models can well

predict the tablet characteristics (i.e. porosity and tensile strength). It was

also shown that the GWO algorithm was the most accurate in predicting

porosity. While the most accurate prediction for the tensile strength was

achieved using the SSO algorithm. In terms of the average reduction, the
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GA algorithm resulted in the highest reduction of inputs (i.e. 60%) for pre-

dicting both the porosity and the tensile strength.

Keywords: Tabletting, Computational Intelligence; Critical Process

Parameters; Predictive modelling; Die Compaction; Bio-inspired

Optimization; Artificial Neutral Network.

1. Introduction

Over 70% pharmaceutical products are in the tablet form, which is man-

ufactured with die compaction of formulated blends. Most pharmaceutical

blends need to go through granulation processes to improve their processabil-

ities. Two types of granulation processes are generally used: wet granulation

and dry granulation. In recent years, dry granulation has become one of the

primary production processes for pharmaceutical tablets ([1], [2], [3]) due to

its distinct advantages for heat and moisture sensitive materials. Roll com-

paction is a widely used dry granulation technique that consists of two main

steps: 1) roll compaction of raw material to obtain ribbons and 2) milling

the ribbons into granules. The granules are then used to produce tablets.

It is well recognized that the variation in composition and the quality of

tablets are determined by material properties and process conditions during

3



die filling, compaction and ejection [4].

One of the grand challenges in pharmaceutical development is to identify

the causal relationship between material properties, intermediate properties,

process variables and final product properties[5]. For example, it is well

known that comparing tablets produced by direct compression, the tablets

made with granules produced using roll compaction generally have lower

tensile strengths, i.e. there is a loss in tabletability [6], [7]. Several attempts

were then made to explain this behavior. For example, Malkowska and Khan

[8] proposed the concept of work hardening that was defined as the increase

of resistance to permanent deformation of a material with the amount of

deformation and argued that work hardening led to the observed reduction in

tabletability of pharmaceutical excipients. Sun and Himmelspach [9] showed

that tabletability of MCC powders reduced with increasing granule size, and

suggested that granule size enlargement was primarily responsible for the

reduction in tabletability, because larger granules tend to pack less efficiently

due to smaller binding/contact areas, resulting in a reduced tensile strength

of the tablets. This illustrates that many factors (i.e. features) play a role in

determining the quality of final products. However, the contribution of each

feature varies from process to process, and from product to product. It is
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of practical and scientific importance to identify the dominant ones, i.e. to

select the dominant feature in formulation design and product development.

Feature selection is very important in many engineering practices, due

to the abundance of noisy, irrelevant, or misleading features. In the devel-

opment of predictive models, the redundant and irrelevant features could

degrade the model performance during the learning process [10]. Feature

selection is particularly useful when the number of features is large and not

all of them are required for describing the data and for further exploring

the data features in experiments [11]. This process leads to reduction in the

dimensionality of feature space for a successful prediction task. Feature se-

lection also helps understanding data, reducing computation requirements,

and reducing the effect of the curse of dimensionality [12]. The selected fea-

tures will improve the prediction model performance and provide a faster and

more cost-effective prediction while maintaining the predictibility (i.e. accu-

racy) [13]. Identification and selection of the relevant features is, however,

a complex problem. Feature selection is considered as a multiobjective task

that minimizes both the selected features and the prediction error. These

two objectives are normally contradicted and the optimal solution needs to

be sought in the presence of a tradeoff between them [14]. Hence a robust
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optimisation technique becomes essential in feature selection.

For optimisation, various heuristic techniques mimicing the social be-

haviour of biological and physical systems of insects, birds, animals, fish in

nature were proposed [15]. For instance, genetic algorithm (GA) was the first

evolutionary algorithm introduced in the literature that mimics the natural

evolution process of a population of initial individuals [16]. Particle swarm

optimization (PSO) was one of the well-known swarm algorithms based on

the movement and the social behaviour of birds within a flock [17]. Arti-

ficial bee colony (ABC) was a numerical optimization algorithm based on

the foraging behavior of honeybees [18]. A virtual bee algorithm (VBA) was

developed to optimise the numerical function in 2-D using a swarm of virtual

bees, which move randomly in the search space and interact to find food

sources [19] [20]. Artificial fish swarm (AFS) algorithm was introduced to

mimic the stimulant reaction by controlling the tail and fin [21].

However, the application of these optimisation techniques in feature selec-

tion is still very limited for complex pharmaceutical development and manu-

facturing, where a feature is a measurable property contributing to the pro-

cess performance and product quality, and the number of features involved is

generally very large, even though the contributions of some features are very
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small. Therefore, the purpose of this study is to develop predictive CI models

for the tablet manufacturing process with pharmaceutical powders and roll-

compacted granules, for which various bio-inspired optimization algorithms

are employed for feature selection and an artificial neural network is applied

to predict tablet properties, such as porosity and tensile strength. The effi-

ciency of these bio-inspired optimization algorithms for feature selection will

be evaluated for maximising feature reduction (minimizing the number of se-

lected features, or identifying the most important features) while obtaining

comparable or even better prediction.

2. Bio-inspired optimization algorithms

In this study, seven bio-inspired optimisation algorithms are considered:

1) Grey Wolf Optimization (GWO), 2) Bat Algorithm (BAT), 3) Cuckoo

Search (CS), 4) Flower Pollination Algorithm (FPA), 5) Social Spider Opti-

mization (SSO), 6) Genetic Algorithm (GA), and 7) Particle Swarm Opti-

mization (PSO). For completeness, a brief introduction of these algorithms

is presented in this section, together with a brief description of the artificial

neural network.
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2.1. Grey Wolf Optimization (GWO)

Grey wolf optimization (GWO) is a new evolutionary computation tech-

nique that iss successfully applied in many optimization tasks but still suffers

from the lack of fast and global convergence. Grey wolves manifest a social

behaviour - living in groups or packs (of 5 to 12 on average) with a very rigid

hierarchy made of four different classes [22]:

1. The leaders (denoted as α wolves), consisting of one male and one

female wolves.They are responsible for making necessary decisions on-

all pack activities, such as hunting, resting, and travelling. All other

wolves in the pack obey their decisions.

2. Beta (β) wolves. They help the α wolves in decision-making and other

group actions, and are the best candidates to be elected as the next α

wolf if a α wolf dies or becomes too old.

3. Delta (δ) wolves. They are obeying the α and β wolves. There are

various types of delta wolves with different duties, such as hunters,

sentinels, Scouts, and caretakers.

4. Omega (ω) wolves. They are considered as the lowest ranked wolves

and have to obey the different dominant wolves.
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Each grey wolf decides its position and movement to better areas. GWO is

incorporated with a risk probability that mimics the events of wolves crashing

with their foes. Moreover, each grey wolf has a particular sensing (coverage)

range, indicated as the visual distance. In each iteration t, the new positions

X of the wolves are determined using equations (1) and (2) [53]. The best

fitted solution is assigned to α, the second-best solution to β, and the third-

best to γ. All other solutions are assigned to ω.

−→
X (t+ 1) =

−→
X p(t) +

−→
A ·
−→
D, (1)

−→
D = |

−→
C ·
−→
X p(t)−

−→
X (t)|, (2)

where
−→
D is the fitness value of each hunt agent,

−→
A , and

−→
C demonstrate

coefficient vectors are calculated as equations (3) and (4),
−→
X p depicts a prey

position, and
−→
X represents a wolf position.

−→
A = 2

−→
A ·
−→
R1 −−→a , (3)

−→
C = 2

−→
R2, (4)
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where −→a is the updating parameter, R1 and R2 are the random vectors

with a value in [0, 1].

The α, β, and δ wolves are defined, imposing the other agents to upgrade

their positions accordingly. Thus, the wolves’ positions are updated as

−→
Dα = |

−→
C1.
−→
Xα −

−→
X |,

−→
Dβ = |

−→
C2.
−→
Xβ −

−→
X |,

−→
Dδ = |

−→
C3.
−→
Xδ −

−→
X |

(5)

−→
X1 = |

−→
Xα −

−→
A1.
−→
Dα|,

−→
X2 = |

−→
Xβ −

−→
A2.
−→
Dβ|,

−→
X3 = |

−→
Xδ −

−→
A3.
−→
Dδ|

(6)

−→
X (t+ 1) =

−→
X1 +

−→
X2 +

−→
X3

3
, (7)

where t is the iteration number. α, β and δ are assigned with random

numbers in [0, 1].
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2.2. Bat Algorithm (BAT)

BAT algorithm is a meta-heuristic technique for solving complex opti-

mization problems. Bats use echolocation behavior for seeking the prey and

detect/avoid the obstacles. The bats use time delay in the reflection of the

emitted loud sound pulse from the surrounding object for navigation in dark

[24]. And the magnitude of the emitted sound fluctuates from a high value

when looking at the prey and a low value when flying near their prey [25].

The bats’ positions can be determined from [26], [27]:

Fi = Fmin + (Fmax − Fmin)β, (8)

V t
i = V t−1

i + (X t
i −X∗)Fi, (9)

X t
i = X t−1

i + V t
i , (10)

where β indicates the random vector defined in the uniform distribution,

X∗ denotes the best position obtained so far, Fmin outlines the minimum

frequency, Fmax shows the maximum frequency, and Vi depicts the speed

vector. Moreover, a local exploration is performed by employing the random

movement as follows

11



Xnew = Xold + εAt, (11)

where ε is a random number in [-1, 1], and At represents a bat loudness

at the t time and is given as

At+1
i = αAt, (12)

where α is a constant that can be experimentally determined, Ri controls

the BAT local search and is determined by:

Rt+1
i = R0

i [1− exp(−γt)], (13)

where R0
i denotes the first pulse emission which has a value larger than

0.

2.3. Cuckoo Search (CS)

Cuckoo search (CS) is a heuristic search technique inspired by the cuckoos

reproduction strategy [28]. Cuckoos replace their eggs in the nests of other

host birds that may be of different kinds. Once the host bird notices that the

eggs are not its own, it will either crush the egg or leave the nest to another.

Various studies showed that the flight behavior of many animals and insects
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had the typical characteristics of Lèvy flights. Lèvy flights provide a random

walk while their random steps are drawn from a Lèvy distribution for large

steps [28]. In the CS optimisation, a new solution Xi is based on Lèvy flight

and given as

X t+1
i = X t

i + ϑ⊕ Lèvy(β), (14)

where ϑ represents the step size associated with the scale problem that

is set to 1 in most of the cases, ⊕ indicates entry wise multiplications.

Previous studies on the flight behaviour of different animals and insects

[29]. Lèvy flights for large moves could be defined as

Lèvy ∼ u = t−λ, (1 < λ ≤ 3). (15)

Hence, the successive jumps of the cuckoo form a random walk, and the

Lèvy walk should generate some new solutions close to the best solution,

which will advance the local search process [28]. The CS local search can be

formulated as

Xnew
i = Xold

i + 2 ∗ r ∗ (Xold
i −Xbest), (16)

This can be applied to obtain new cuckoo solutions based on Equation
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(14) [28]. In Equation (16), r indicates the random number picked from the

Lèvy distribution, Xbest denotes the current best solution, Xold
i represents an

old solution, and Xnew
i demonstrates a newly generated solution.

The strength of the CS lies in the procedure to discard the wrong solu-

tion, so a fraction pa of solutions are ignored, and the updated solutions are

obtained by

Xnew
i = Xold

i + rand1 ∗ (rand2 > pa) ∗ (Xa −Xb), (17)

where Xnew
i is the new nest (solution), Xold

i is the old nest to be neglected,

rand1 and rand2 represent two random numbers drawn from a uniform dis-

tribution, pa denote the probability of finding the nest, Xa and Xb are two

randomly selected of the current nests [28].

2.4. Flower Pollination Algorithm (FPA)

Flower pollination algorithm (FPA) is inspired from the flower pollination

process of plants that dictates the ultimate reproduction. FPA is typically

related to the pollen transfer by pollinators [30]. Pollination is normally

carried out in two modes: cross pollination (global search) and self pollination

(local search) , which are described in detail as follows [31]:
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1. Cross pollination is referred to as the transfer of the pollen of flowers

of different plants separated by a long distance by pollinators that can

fly a long distance (i.e. also known as global pollination) [31]. In

the cross pollination, it is the pollinators that assure the pollination

and proliferation of the optimal solution g∗. The initial rule may be

formulated as

X t+1
i = X t

i + L(X t
i − g∗), (18)

where X t
i represents the vector of a i solution at t iteration, g∗ demon-

strates the present best solution, and L describes the pollination strength

that randomly pulled from the Lèvy distribution.

2. Self pollination is defined as the implantation of one flower from the

pollen of the identical flower or different flowers of the identical plant,

which usually happens when there is no pollinator available. The local

pollination and flower constancy are expressed as

X t+1
i = X t

i + ε(X t
j −X t

k), (19)

where X t
j and X t

k demonstrate two random solutions, and ε denotes

the uniform distribution function.
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Since local pollination can be substantial, denoted by the fraction (p), in

the aggregate pollination actions (in this study, it is assumed that p = 0.5).

A switching probability pε[0, 1] controls the local and global pollination.

2.5. Social Spider Optimization (SSO)

Social spider optimization (SSO) is a population-based algorithm and one

of the swarm algorithms recently proposed by Cuevas et. al [33]. SSO algo-

rithm is extracted from the social behaviour of the spider’s colony in nature.

A SSO algorithm consists of two main components: social members and com-

munal web. Social members are divided into male and female spiders. The

social behaviour and cooperative interaction depend on the spider gender.

The number of female spiders accounts for at least 65% of the total colony

members. Female spiders present an attraction or dislike to other spiders

according to their vibrations that are circulated through the communal web.

More details on the SSO implementation can be found in references [34], [35],

[36]. The SSO algorithm consists of the following steps:

1. Population initialization. The most important property of the

SSO is the tendentious female population. The number of females Nf
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is randomly chosen within the range [65% - 90%], the number of male

spiders Nm is then calculated by

Nf = floor[(0.9− rand ∗ 0.25).N ], (20)

Nm = N −Nf , (21)

where floor[x] function gives the largest integer less than or equal to x.

Thence, the complete population S consists of N spiders, which is then

splitted into two categories female (F) and male (M). The F group

contains the female members (F = f1, f2, f3, ..., fNf
), whereas M group

contains the male members (M = m1,m2,m3, ...,mNm).

The female spider’s position fi and the male spider’s position mi are

randomly selected between the defined initial parameters (lower limit

plow and upper limit phigh) as follows

f ti,j = plowj + rand ∗ (phighj − plowj ), (22)

mt
i,j = plowj + rand ∗ (phighj − plowj ), (23)
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where i, and j are the parameter and individual indexes respectively,

rand is a random number generator between [0 and 1].

2. Fitness evaluation. In the SSO algorithm, every spider (individual)

has a weight wi that defines the solution goodness, a fitness value of

any spider i is calculated as

wi =
J(si)− sworst
sbest − sworst

, (24)

where J(si) represents the obtained fitness of the spider si position, the

values of sworst and sbest describe the worst and the best fitness values

(minimization problem) as defined by

sbest = maxiε[1,2,..,N ](J(si)), (25)

sworst = miniε[1,2,..,N ](J(si)), (26)

3. Vibration modelling in the communal web. Vibration modelling

is utilized to transfer the data between the colony members. The en-

coded waves rely on the weight and distance of each spider [35].
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4. Mating. It is a vital process to ensure the colony survival and allow the

information exchange between all the members. Social spider mating is

achieved between the dominant male and female members in the colony.

However, the dominant male spider determines the location of one or

several female members within a particularized range. Thereafter it

mates with them to produce offspring [35].

2.6. Genetic Algorithm (GA)

Genetic algorithm (GA) mimics the natural evolution process of a pop-

ulation of initial solutions (individuals) [37]. Some individuals undertake

crossover and mutation operations to produce better individuals (offsprings)

that become the next generation of the population. To determine which

individuals should participate in the crossover and mutation, a selection pro-

cess takes place to select the fittest individuals according to a predetermined

fitness function [37].

The crossover operation randomly chooses pairs of these selected indi-

viduals to breed. The mutation of some individuals keeps diversity among

the population. The larger the population size, the higher the probability

to reach a better solution. However, evaluating the fitness of all individu-

als in a large population is very computer-intensive and needs tremendous
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computational resources.

2.7. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is one of the well-known swarm tech-

nique based on the movement and the social behaviour of birds within a

flock. In PSO, each solution is considered as a particle with specific charac-

teristics (position, fitness, and a speed vector), which defines the motion of

the particle [17]. PSO is widely used for optimization and feature selection.

PSO uses a number of particles (N) that constitute a swarm moving in the

search space, looking for the optimal solution [38]. In the PSO algorithm,

the position of a particle is determined as [17]

X t+1
i,d = X t

i,d + V t+1
i,d , (27)

where X is the particle position vector, V is the particle velocity vector, i

is the index of a particle, t is the time or iteration counter, d is the dimension,

X t
i,d is the position of particle i at iteration t in the d dimension, X t+1

i,d is the

new position of particle i at iteration t + 1 in the d dimension, V t+1
i,d is the

velocity of particle i at iteration t+ 1 in the d dimension and is given as
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V t+1
i,d = w∗V t

i,d+c1∗randt1
(
pbestti,d −X t

i,d

)
+c2∗randt2

(
gbesttd −X t

i,d

)
, (28)

where w is the inertia weight factor, gbesttd is the most optimist position of

the swarm at time t along dimension d, c1 and c2 are parameters representing

loyalty and selfishness of particles. Normally, c1 = c2 =2, while randt1 and

randt2 are random numbers distributed uniformly over [0, 1].

2.8. Artificial Neural Network (ANN)

Artificial neural networks (ANN) are regarded as generalizations of math-

ematical models of biological nervous systems. In ANN, the effects of the

synapses are described by weighted connections that modulate the effect of

the associated input signals, and a transfer function that represents the non-

linear characteristic exhibited by neurons. The neuron impulse is then deter-

mined as the weighted sum of the input signals transformed by the transfer

function.

The learning ability of ANN is performed by adapting the weights using

the chosen learning algorithm. The behaviour of the neural network depends

mainly on the interaction between the different neurons. The basic architec-

ture consists of three types of neuron layers: input, hidden, and output [40].
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Various ANN architectures can be created according to the characteristics

and specification of the applications [41]. The feed-forward ANN is one of

the commonly used architectures, in which the signal flow is from input to

output units strictly in a feed-forward direction and the data is processed

over multiple units without feedback connections.

3. The computational intelligence model

In this study, the artificial neural network (ANN) is used as a regression

model to evaluate the final prediction performance, while seven bio-inspired

optimization algorithms (GWO, BAT, CS, FPA, SSO, GA, and PSO) de-

scribed above are incorporated in the ANN for feature selection, as illustrated

in Figure 1. The proposed optimization algorithms for feature selection work

in a wrapper-based manner. The central point of the wrapper methods is

the use of ANN as regression to ensure the quality of selected features during

the feature selection process.

Each optimization algorithm is run for 20 times to test the convergence

capability. The performance of the optimization algorithms are evaluated

using the following indicators:

1. Average feature reduction (R∗) defines the mean size of the reduced
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features to the aggregate amount of features as follows

R∗ =

(
1− size(gi∗)

Nt

)
× 100, (29)

where gi∗ is the best solution that obtained in the i − th application

of the algorithm, Nt represents the total number of features in a given

dataset. For example, the dataset used in this study has 3 features,

i.e. Nt = 3, and if the best solution selects 2 features, then R∗ =

(1− 2
3
) ∗ 100 = 33.3

2. Mean square error (MSE) measures the average of squared errors be-

tween the actual output and predicted ones and is given as

MSE =

∑n
i=1(Pi −Oi)

2

n
, (30)

where Oi and Pi are the observed and predicted values respectively,

n is the total number of samples, and i denotes the i − th number of

sample in dataset.

3. Standard deviation (Std) measures how much the sets differ from the

mean value. Std represents the optimizer convergence to the same

optimal and ensures repeatability of the results [42].
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A generic representation of the fitness function assessing both regression

performance and feature reduction is also introduced as

fθ = α ∗ E + (1− α)

∑
i θi
N

, (31)

where fθ is the fitness function of a vector θ with N elements of value 0 or

1, representing unselected or selected features, E is the prediction error, and

α is a constant controlling the importance of regression performance to the

number of features selected and balancing the trade-off between exploration

and exploitation. Normally, at the beginning of optimization (α) has its

maximum value to allow for maximum exploration, while, at the end of

optimization, it has the minimum value for more exploitation of search space.

Each bio-inspired algorithm is initialized using n random agents (solu-

tions) with each agent representing a given selected feature combination.

Then each algorithm is iteratively applied for a number of iterations aiming

to converge to a good solution. The individual solution is represented as

a continuously valued vector with the same dimension as a number of at-

tributes in the given dataset. The solution vector values are normalised so

that their values are in the range [0, 1]. For the solution fitness function

evaluation, these solutions are converted to their binary representations by
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yij =


0 (xij < 0.5)

1 (xij >= 0.5)

(32)

where xij is the continuous value of the solution number i in dimension

j, and yij is the discrete representation of solution vector x.

4. Experimental

This study focuses on powder compaction, a typical manufacturing pro-

cess used for a wide range of products, such as pharmaceutical tablets and

catalyst pellets. A variety of widely used pharmaceutical excipients [43] are

considered, including micro-crystalline cellulose of different grades: Avicel

PH-101, Avicel PH-102 and DG (FMC, Biopolymer, USA)); (Pearlitol 200

SD, Roquette, UK), and Lactose (Granulac 140, Meggle GmbH, Germany).

Moreover, binary mixtures of MCC 102 and lactose with various mass frac-

tions are also produced using a mixer (TURBULA T2F, Wab, UK). In total,

three binary mixtures (see Table 1), named mixture 1, 2 and 3, based on

their compositions are considered, for which the mass fractions of MCC 102

are 25%, 50% and 75%, respectively. The samples were mixed for 15 minutes
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at a consistent speed of 34 min-1.

Furthermore, dry granulation using roll compaction is performed to pro-

duce granules from feed powders and their mixtures. Ribbons are produced

using a custom-made gravity fed roll compactor with a roll gap of 1.2 mm

and roll speed of 1 rpm (for which, two smooth rolls of 200 mm in diameter

and 46 mm in width are used), and are then milled using a cutting mill (SM

100, Retsch, Germany) at a speed of 1,500 rpm, for which a screen size of

4 mm is used. The produced granules are then sieved using a sieving tower

into different granule size classes (0-90, 90-250, 250-500, 500-1000, 1000-1400,

1400-2360 m), for which the upper size limit is used to represent the granular

size.

The feed powders, their mixture and granules are then compressed at

various compression pressures to produce tablets of various porosities, for

which the corresponding tensile strengths are measured. Cylindrical tablets

are produced with an Instron universal testing machine equiped with a 30

kN load cell. A die of 11.28 mm of diameter is used. A powder mass of 300

5 mg is manually poured into the die and compressed to different maximum

pressures at the room temperature (23◦C, 45±2% RH) and a compaction

speed of 5 mm/min. Diametrical compression tests on the produced tablets
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are performed using a diametric strength tester (Erweka TBH30, Erweka

Gmbh, Germany), in which the the crushing load is determined. The tablet

tensile strength (σt) is then calculated according to [44]

σt =
2 ∗ F

π ∗D ∗H
, (33)

where F is the maximum load required to break the tablet, D and H

are the tablet diameter and height, respectively. All experiments are run in

triplicate.

5. Results and discussion

5.1. Dataset generation

A large dataset (see supplement) is then created using the material, par-

ticle/granule size and compaction pressure as the inputs (i.e. 3 inputs), while

the porosity and the tensile strength of the produced tablets as independent

outputs (i.e. 2 outputs), as exemplified in Table 1. It is worth noting that the

tensile strength and tablet porosity are generally inter-related (e.g. the lower

the porosity, the higher the tensile strength) for tablets made of feed powders

and their mixtures. However, this inter-relationship does not necessarily hold

for roll-compacted granules, as discussed in the Introduction section. Hence
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these two tablet properties are treated as independent outputs in this study

in order to explore if the CI models can identify these behaviours from the

data produced with both feed powders and granules.

The legend used to identify the different materials for the CI model is

specified as follows:

• Material 1 = MCC PH 101 powder.

• Material 2 = MCC PH 102 powder.

• Material 3 = MCC DG powder.

• Material 4 = Mannitol Pearlitol 200 SD powder.

• Material 5 = MCC PH 101 Granules.

• Material 6 = Binary mixture: 75% MCC102 + 25% Lactose.

• Material 7 = Granules binary mixture 75% MCC102 + 25% Lactose.

• Material 8 = Binary mixture: 50% MCC102 + 50% Lactose.

• Material 9 = Granules binary mixture 50% MCC102 + 50% Lactose.

• Material 10 = Binary mixture: 25% MCC102 + 75% Lactose.

• Material 11 = Granules binary mixture 25% MCC102 + 75% Lactose.
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5.2. Model construction

Two-thirds of the dataset are randomly chosen to train the models (train-

ing set) and the remaining part (testing set) is used to test the model pre-

diction. The training set is used to evaluate the ANN throughout the opti-

mization process with the bio-inspired algorithms and used in the prediction

model. The testing data is kept hidden from the optimization and only used

during the prediction process. The optimisation process is run 20 times with

each algorithm in order to get an average performance for the prediction er-

ror and accurately assess statistical evaluation indicators. The bio-inspired

optimization algorithms are used for feature selection, so that only the most

significant features are fed into the ANN.

In the CI model, ANN is used for the regression purpose (prediction of a

continuous output), and two approaches are created:

1. A model is used to evaluate all the possible solutions during the bio-

inspired feature selection process (i.e. this ANN regression model is

used to ensure the goodness of the selected features). At this stage,

ANN is utilised for the bio-inspired optimization algorithm to reach

the optimal solution (best-selected features).

2. A predictive model is established for the testing data using the selected
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features. At this stage, the model is built using the inputs selected by

the bio-inspired optimization algorithm as the train set.

5.3. Model prediction

The results presented in Figures 2 and 3 show the MSE values using

each optimizer for 20 different runs, while Figure 6 shows the average feature

reduction of the two outputs. It can be seen that the GWO algorithm was

the most accurate in predicting porosity, while the SSO algorithm achieved

the most accurate prediction for the tensile strength.In addition, the GA

algorithm led to the highest reduction of features - 60% - with an average

MSE of 7.2 for predicting porosity and 5.1 for predicting tensile strength.

Figures 4 and 5 show the standard deviation values obtained by all the

bio-inspired algorithms. The minimum value of the std measure is obtained

by GWO for the porosity as shown in Figure 4 and obtained by SSO for

the tensile strength as shown in Figure 5. Furthermore, it is clear that

the GWO and SSO algorithms have in general standard deviation (std) less

than the ones obtained from the GA and PSO algorithms, which indicates

the capability of GWO and SSO to converge to optimal or near-optimal

solutions. In Figures 7 and 8, the majority (9 from 14) of the seven bio-

inspired algorithms identify the compaction pressure as the most importance
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input for both porosity and tensile strength as shown in Figures 7 and 8.

Overall, it can be concluded that the GWO algorithm obtains the best

compromise between MSE, the standard deviation, and feature reduction for

predicting both the porosity and the tensile strength. Each optimizer is run

for 20 different runs to ensure convergence capability.

The leader selection for a given swarm has a very great impact on the

explorative/exploitative ability of each optimizer. The GWO optimizer keeps

track of the best three solutions found, but the SSO optimizer has track of

the N best solutions found. Therefore, the GWO and SSO bio-inspired

algorithms perform differently on the same dataset. GWO performs better

in predicting porosity in some runs and SSO performs better in predicting

porosity in other runs. But over the 20 runs, the average performance of the

GWO algorithm was the most accurate in predicting porosity and the average

performance of the SSO algorithm achieved the most accurate prediction for

the tensile strength. The different performances of the various bio-inspired

optimization algorithms are primarily due to the intrisic nature in modelling,

as detailed in the recent publications [45], [46], [47] [48], [49], [50], [51], [52],

[53], [54].
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5.4. Model Prediction

Figure 7 shows the comparison between the experimental results and pre-

dicted results from the SSO model. This model was chosen here for demon-

stration because it is the most accurate algorithm for prediction of tensile

strength with an average MSE (1.375) and average reduction (20%). More

specifically, Figure 7 presents the tensile strength of the tablets as a function

of compaction pressure for pure powder (a), Granules (b) and mixtures (c).

It is shown that there is an increase in tensile strength with the increase

of compaction pressure for all the materials and granules sizes investigated.

Moreover, the prediction for pure powders as MCC PH 101 (Figure 9-a) and

mixtures (Figure 9-c) are generally more accurate than the granule tensile

strength predictions (Figure 9-b) where more scattered results were observed.

Similarly, Figures 10, 11, and 12 show the comparison between compaction

experimental results and prediction using the GWO due to its highest ac-

curacy (MSE of 4.832) for porosity prediction as discussed in the previous

section (5.2). There is an almost exponential decrease of porosity with the

increase of compaction pressure. Interestingly, the GWO gives almost iden-

tical values to the measured ones for all the materials with no distinction

between pure powders (Figure 10), mixtures (Figure 11) or granules (Figure
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12). This proves that the GWO model can predict the tablet porosity during

powder compaction for a wide range of materials with high accuracy.

6. Conclusions

The robustness of CI models that integrate artificial neural network (ANN)

with bio-inspired feature selection algorithms for predicting tablet manufac-

turing processes was evaluated. In particular, tablet properties such as poros-

ity and tensile strength were predicted based upon powder characteristics.

Seven bio-inspired optimization algorithms for feature selection were applied.

The modelling efficiency was evaluated in terms of the average feature reduc-

tion and mean square error. It was found that the GWO algorithm was the

most accurate in predicting porosity with equal accuracy for pure powders,

mixtures, and granules, while the most accurate prediction of the tensile

strength can be achieved using the SSO algorithm, in particular, the val-

ues for pure powders and mixtures were more accurately predicted than the

granule tensile strength. Regarding the average feature reduction, GA ob-

tained the highest reduction for predicting both the porosity and the tensile

strength outputs, and could be more useful for identification of key features

or the critical material attributes. Moreover, it was shown from the results
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obtained with various optimisation algorithms that the most significant fea-

ture is the compaction pressure for both tensile strength and porosity, which

is in broad agreement with the experimental observations reported in the

literature.
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Table 1: Example of dataset generated for the model

Inputs Outputs

Material Granule size (m) Compaction

pressure (MPa)

Porosity (%) Tensile Strength

(MPa)

1 59 412.500 7.199 15.786

1 59 406.100 7.333 15.354

1 59 384.800 8.547 15.266

1 59 355.600 8.551 15.100

.. .. .. .. ..

5 500 268.679 8.095 11.081

5 500 159.511 12.582 7.803

5 500 78.139 23.237 3.133

.. .. .. .. ..

7 500 140 18.336 3.728

7 500 140 18.515 3.810

7 800 20 42.772 0.203
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Figure 1: An overview of the proposed model

Figure 2: Average MSE for porosity
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Figure 3: Average MSE for tensile strength

Figure 4: Average Std for porosity
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Figure 5: Average Std for tensile strength

Figure 6: Average feature reduction for both tensile strength and porosity
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a) BAT predictor b) CS predictor

c) FPA predictor d) GA predictor

e) GWO predictor f) PSO predictor

g) SSO predictor

Figure 7: Feature importance for porosity
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(a) BAT predictor (b) CS predictor

(c) FPA predictor (d) GA predictor

(e) GWO predictor (f) PSO predictor

(g) SSO predictor

Figure 8: Feature importance for tensile strength
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(a) Pure Mcc 101 powder (b) MCC 101 Granules

(c) Mixtures of 75% Mcc and 25% lactose

Figure 9: Comparison of experimental and predicted data obtained with the SSO algorithm

for different materials
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Figure 10: Comparison of experimental and predicted tensile strength obtained with the

GWO algorithm for all materials considered

Figure 11: Comparison of experimental and predicted porosity obtained with the GWO

algorithm for all materials considered
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Figure 12: Comparison of experimental and predicted data on the variation of tensile

strength with porosity obtained with the GWO algorithm for all materials considered
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