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Understanding the relationship between brain and upper limb function in 
children with unilateral motor impairments: A multi modal approach 

 

Abstract 

Atypical brain development and early brain injury have profound and long lasting 

impact on the development, skill acquisition, and subsequent independence of a child.  

Heterogeneity is present at the brain level and at the motor level; particularly with 

respect to phenomena of bilateral activation and mirrored movements (MMs).  In this 

multiple case study we consider the feasibility of using several modalities to explore 

the relationship between brain structure and/or activity and hand function: 

Electroencephalography (EEG), both structural and functional Magnetic Resonance 

Imaging (sMRI, fMRI), diffusion tensor imaging (DTI), transcranial magnetic 

stimulation (TMS), Electromyography (EMG) and hand function assessments. 

Methods: 15 children with unilateral CP (ages: 9.4±2.5 years) undertook hand 

function assessments and at least two additional neuroimaging and/or 

neurophysiological procedures: MRI/DTI/fMRI (n=13), TMS (n=11), and/or 

EEG/EMG (n=8). During the fMRI scans and EEG measurements, a motor task was 

performed to study cortical motor control activity during simple hand movements. 

DTI tractography analysis was used to study the corpus-callosum (CC) and cortico-

spinal tracts (CST). TMS was used to study cortico-spinal connectivity pattern.  

Results:  Type and range of severity of brain injury was evident across all levels of 

manual ability with the highest radiological scores corresponded to children poorer 

manual ability.  Evidence of MMs was found in 7 children, mostly detected when 

moving the affected hand, and not necessarily corresponding to bilateral brain 

activation. When moving the affected hand, bilateral brain activation was seen in 6/11 

children while 3/11 demonstrated unilateral activation in the contralateral hemisphere, 
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and one child demonstrated motor activation predominantly in the supplementary 

motor area (SMA). TMS revealed three types of connectivity patterns from the cortex 

to the affected hand: a contralateral (n=3), an ipsilateral (n=4) and a mixed (n=1) 

connectivity pattern; again without clear association with MMs. No differences were 

found between children with and without MMs in lesion scores, motor fMRI laterality 

indices, CST diffusivity values, and upper limb function.  In the genu, midbody, and 

splenium of the CC, higher fractional anisotropy values were found in children with 

MMs compared to children without MMs.  The EEG data indicated a stronger mu-

restoration above the contralateral hemisphere in 6/8 children and above the ipsilateral 

hemisphere in 2/8 children.   

Conclusion: The current results demonstrate benefits from the use of different 

modalities when studying upper-limb function in children with CP; not least to 

accommodate to the variations in tolerance and feasibility of implementation of the 

differing methods.  These exposed multiple individual brain-reorganization patterns 

corresponding to different functional motor abilities. Additional research is warranted 

to understand the transactional influences of early brain injury, neuroplasticity and 

developmental and environmental factors on  hand function in order to develop 

targeted interventions. 
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Introduction 

Brain injury during gestation or early childhood that leads to atypical brain 

development may have profound effects on motor development and subsequent 

independence.  Cerebral Palsy (CP) is the most common physical disorder in 

childhood, with unilateral motor impairments evident in 30 to 40%(1-3).  Pathogenesis 

of unilateral CP (UCP) is varied and may include brain malformation, unilateral bias 

of periventricular haemorrhage, peri-ventricular leukomalacia, post-haemorrhagic 

porencephaly, or middle cerebral artery infarct(4, 5).  Studies exploring the brain 

structure and function in early infancy through to adulthood have shown the brain’s 

remarkable capacity for reorganisation in response to injury or experience(6, 7). Such 

changes include brain structures working more intensively, undertaking different 

‘functional’ roles, re-routing of pathways, or establishing new connections between 

structures(6). Transcranial magnetic stimulation (TMS) studies reveal that some 

children with UCP show ipsilateral connectivity of corticospinal-tract projections 

(CST) from primary motor cortex (M1) in the contralesional hemisphere to the 

affected  hand while others demonstrate a mixed CST connectivity pattern, and some 

show a more typical contralateral motor projection from the lesioned hemisphere(8-10).  

Also reported are atypical branched CST axons from the lesioned hemisphere 

evidenced in early in utero damage(11).  Diverse patterns of re-organisation, occurring 

during different developmental periods, may influence the microstructure of other 

brain structures, notably the corpus callosum(9) and functional connectivity of neural 

circuits involved in motor control(12, 13). This may affect hand function and response to 

intervention(14-16). 

Different neuroimaging and physiological techniques have been implemented in 

attempts to understand the phenomenon of neuroplasticity and its implications for 
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intervention(14, 17, 18). Interpreting neuroplastic adaptations during infant and child 

development is confounded by variations in sample selection (natural and therapeutic 

environmental influences on development), tolerance of children to different 

procedures, and most likely also the choice of the techniques and methodologies 

employed.  For example, Reid et al(17) recently reported on the challenges of 

interpreting task-focused functional magnetic resonance imaging (fMRI). They stated 

that activation patterns may be influenced by a number of different parameters such as 

attention, anticipatory motor planning, as well as adherence to the task protocol.   

Heterogeneity of neuropathological profiles is also reflected at the motor level 

with varying severity of hand function impairments and type of movement disorder 

(e.g. spasticity, weakness, dyskinesis)(19, 20).  In addition to the functional deficits 

directly related to neuro-motor control,  mirrored movements (MMs), defined as 

simultaneous involuntary and homologous movements accompanying voluntary 

movements on the opposite side of the body(21), are evident in many children with 

UCP.   Aetiological mechanisms of MMs are as yet poorly defined with some 

evidence suggesting MMs appearing in the affected hand  indicative of one motor 

cortex controlling both hands via ipsilateral connectivity from the non-lesioned 

hemisphere to the affected hand(22).  Also, it is still under debate if it can generally be 

stated that MMs negatively influence bimanual hand function. It has been shown that 

a subgroup of children with UCP demonstrate non-symmetrical interference and/or 

strategic use of MMs under specific task constraints involving divergent motor 

actions(23, 24).  
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In this multiple case series, we aimed to improve our understanding of the 

relationship between brain structure and hand function, focusing on the phenomena of 

bilateral activation and MMs, using several modalities. We undertook detailed 

mapping of neurological processes utilizing both neuroimaging (including structural 

magnetic resonance imaging (MRI), fMRI, diffusion tensor imaging (DTI)) and 

neurophysiological techniques (transcranial magnetic stimulation (TMS), 

electroencephalography (EEG), and electromyography (EMG)) alongside 

experimental and functional tasks.  We hypothesize that different techniques and 

procedures will provide complementary if not alternative perspectives of 

neuroplasticity and bimanual control.   

We describe the challenges in administration and tolerance to procedures in 

children as well as comparisons between the results obtained through the different 

modalities.  The implications of these different techniques and tasks used to study 

neuroplasticity and hand function in childhood will be discussed. 

1. Materials and methods 

This study was approved by the National Research Ethics Committee 

(10/H0804/40/A1M01, 10/H0804/40/AM02).  Fully informed consent was obtained 

from parents along with assent from children. 

2.1 Participants 

Children with UCP (ages: 9.4±2.5 years) were recruited from Child Development 

Centres and Paediatric Neurology units in South East England consenting to 

participate in a 2-week bimanual intervention in 2012 or 2014.  Children were 

included if they had clinical signs of UCP, were attending regular education and were 

independently mobile. Exclusion criteria were uncontrolled seizure activity, treatment 

to improve upper limb movement in previous six months, and any contra-indications 
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to MRI.  The children in the current study were part of a larger cohort of children with 

UCP participating in prospective studies exploring experiences and effects of therapy. 

Only children who consented to neuroimaging and neurophysiology assessments, and 

for whom at least two of these procedures were free from major confounding 

artefacts, were included in this paper. Data were available for 15 of 20 children. See 

Table 1 for childrens’ clinical characteristics and baseline upper limb function. 

    2.2 Measures  

Identical measures were collected from 2012 and 2014 cohorts, with the 

exception of EEG and EMG which were only performed in 2014.  See supplementary 

file for specific details of each MRI, TMS and EEG procedures.   

Baseline clinical characteristics of severity of movement difficulties were 

assessed by a senior occupational therapist.  The Manual Ability Classification System 

(MACS) ranked ability to handle objects in important daily activities and need for any 

assistance or adaptation(25) and Gross Motor Classification System (GMCS) 

documented functional severity of motor disorder limiting mobility and posture(26, 27) 

with higher values reflecting greater difficulty or impairment.   

2.2.1 Upper limb motor behavior assessments: 

Jebsen Taylor Test of Hand Function (JTTHF), a standardized test of uni-manual 

dexterity(28), was used to quantify the capacity of each hand across 6 tasks.  Maximum 

time to complete each task was 180 seconds for a total maximum allowable of 1080 

seconds. In order to establish the difference in capacity between hands (AH= affected 

hand, LAH= less affected hand), a ratio score was calculated (AH-LAH)/(AH+LAH). 

Quotients around 0 reflect balanced capacity, values closer to +1 reflecting a 

disproportionate dominance of the LAH and values between 0 and -1 a dominance of 

the AH (unlikely).   
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The Children’s Hand Experience Questionnaire (CHEQ) is a 29-item questionnaire of 

affected hand use and experience in daily bimanual activities(29, 30). The number of 

activities performed independently was calculated. A CHEQ ratio was calculated 

reflecting proportion of independent activities performed with both hands 

(2hand/(2hand+1 hand)).   

Squeezing task – A small sphygmomanometer pressure bulb (sphyg-bulb) held in each 

hand was used to verify actual motor actions and adherence to fMRI protocol (see 

below) as well as to document MMs. Pressure from the sphyg-bulb was recorded at a 

frequency of 20Hz during the motor fMRI task. Maximum pressure, sum of pressure 

and change of pressure were extracted for each block of the sequence and hand.   

A similar Squeezing task was used, with the child seated, during EEG and 

simultaneous EMG recordings.  The child’s forearms were supported by the table 

with the child holding a soft plastic sponge ball (of the same dimensions as sphyg-

bulb). EMG was recorded from the Extensor Digitorum Communis (EDC) muscle of 

each arm using self-adhesive electrodes.1    

2.3. Transcranial Magnetic Stimulation (TMS) was used to identify the pattern of 

corticospinal organisation in each child (ipsilateral, contralateral or bilateral 

innervation). Eight suprathreshold (1.5 times AMT) motor evoked potentials (MEPs) 

were recorded during bilateral  flexor digitorum interosseous (FDI) activation and 

superimposed in order to identify the earliest onset latency. Absence of a MEP was 

defined as no response to 5 stimuli at 100% stimulator output (if tolerated), in 

contracting muscle.   

                                                           
1 The squeezing task during EEG followed a previous squeezing task in which children were 
required to initiate movements to activate  a windmill via connected transducer by exerting 
force beyond 1.5 kg; loosening grip to approximately 1kg and repeatedly squeezing between 
these upper and lower thresholds within 1000ms.  This task is not reported here as data output 
was only available for only 4 children due to technical failures. 
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Central Motor Conduction Times (CMCT)  were calculated for contralateral and 

ipsilateral pathways using the F wave method.  Distal motor (M) and F wave latencies 

were measured in the ulnar nerves bilaterally. The CMCT was calculated by 

subtracting the Peripheral Motor Conduction Time from the latency of the Motor 

Evoked Potential(31) : [CMCT=MEP–(F+M-1)/2]. Connectivity patterns were 

determined by the presence of MEP response to ipsi- and or contra- stimulated 

hemisphere. 

2.4 Electroencephalography (EEG) was used to compare the mean mu-rhythm 

between unimanual movements and rest during the squeezing task. The amount of 

mu-restoration after active hand movement reflects top-down control processes to 

focus and prepare functional neural circuits for movement execution(32). Signals were 

recorded with a 32-channel actiCap (MedCaT B.V. NL ) (33, 34).  

The individual mean EEG mu-rhythm (2Hz surrounding the individual mu-

peak  within the mu frequency of 7-13.5Hz) was extracted from the EEG over the 

sensorimotor cortex during rest and movement of each hand for further analysis. The 

percentage of mu during rest following active movement in contrast to the amount of 

mu during movement was calculated; reflecting the amount of total mu-restoration 

after voluntary hand movements for both hands (affected vs. less-affected) and above 

both hemispheres (contralateral vs. ipsilateral). 
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Table 1: Clinical Characteristics  

MR 
Child # 

Gender 
Age 
(year) 

Affected 
hand MACS GMFCS 

Gestational age 
(weeks) 

Gestational 
weight 

Type of injury 
Radiology 
score 

1 M 7.1 L II I 38 3856 HIE*  12 

2 M 7.0 R I I 40 3629 IVH 7 

3 M 7.5 R II I 42 3447 
Cystic 
Encephalomalacia 

9 

4 F 8.7 R II I 31 1860 IVH 9 

5 M 11.0 R I I 42 4082 
Congenital 
malformation 

4 

6 M 7.3 L III I 41.5 4491 
MCA, mild diffuse 
HIE 

15 

7 M 10.6 R II II 38 4600 PWM 11 

8 M 7.8 R II II 35 1700 IVH 11 

9 M 8.1 L III I 36 2500 PWM 11 

10 F 9.9 L II II 40 3524 
Congenital 
malformation 

7 

11 M 7.8 R III II 41 4190 Infarct 17 

12 M 15.8 L II II 40 3000 
Congenital 
malformation 

7 

13 F 10.8 R I I 41 2980 PWM+focal infarct 4 

14 F 13.2 L II II 42 3020 
Congenital 
malformation 

9 

15 M 8.3 R III I 40 3970 
PWM+multifocal 
WM changes 

12 

* Increased T2 signal and volume loss in basal ganglia in right hemisphere with moderate peri-regional WM changes possibly associated with HIE/ infection. 

GMFCS = Gross Motor Function Classification System; HIE = Hypoxic ischaemic encephalopathy; MACS = Manual Ability Classification Scale; MCA Middle cerebral 
artery infarct; PWM = periventricular white matter injury; WM=white matter 
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The presence of MMs was determined via corresponding methods; sphyg-bulb data 

obtained during the fMRI task and EMG data during the EEG squeezing task.  

Presence of MMs was determined for each child and hand in the fMRI task by 

dividing the baseline pressure score of the AH during rest by the average change of 

pressure of the AH during the LAH’s active condition and vice versa to determine a 

ratio (see below).  Presence of MMs was calculated from the squeezing task (EMG) 

by dividing the EMG activity of the contralateral EDC during rest epochs by that 

during movement epochs(35) reflecting mirrored recruitment of homologous muscles. 

The EMG data was full-wave rectified, band-pass filtered (20-250Hz) and segmented 

for movement and rest epochs and root mean square (RMS) of the contralateral 

muscle activity was calculated. Ratio scores that are <1 demonstrate an increased 

activity in the hand when the opposite hand is moving as compared to both at rest and 

thus indicating MMs. MM-AH represents a mirroring in the affected-hand of the 

activity in the less-affected hand and MM-LAH reflects the activity of the LAH 

mirroring the AH.  

2.5 MRI 

2.5.1 Scanning parameters 

Images were acquired on a 3T GE HDx scanner (General Electric Healthcare, 

Chicago, USA), using child friendly techniques (including access to a ‘mock scanner’  

for acclimatization and presentation of a video throughout scanning (except during the 

fMRI). Total scanning time approximately one hour.  (Detailed protocol in 

supplementary file). 

 2.5.2 MRI injury coding 

An MRI based radiological scoring system for measurement of the extent of brain 

injury was performed by a senior pediatric neuroradiologist according to the scoring 

criteria in Shiran et al.(36) .This scoring system is based on several parameters: lobes 
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involved, white matter (WM) injury, cortical grey matter (GM) pathology, deep GM 

pathology and WM tracts disrupted(36). The result of the scoring system is a single 

total radiological score (RS). 

2.6 fMRI 

 2.6.1 Task description 

A block-design fMRI motor task was used in which children clenched and extended 

all fingers of one hand in synchrony with 2-Hz paced tones, while a sphyg-bulb was 

placed in their palms to measure maximum pressure, sum of pressure and change of 

pressure (37-39). Total task duration was 4 minutes, 45 seconds; alternative hands 

clenching with resting epochs in between. In cases where the sphyg-bulb 

measurement indicated discrepancies from the fMRI motor task protocol, the child's 

fMRI protocol was adjusted based on his actual hand movements. (Details in 

supplementary file) 

 2.6.2 Motor fMRI task data analysis 

The fMRI signal in the various conditions was compared using BrainVoyager QX 

(Version 2.4, Brain Innovation, Maastricht, Netherlands). The functional data were 

analyzed using a multiple regression model (General Linear Model; GLM) consisting 

of predictors, which corresponded to the particular experimental conditions of each 

child: movement of affected hand condition, movement of less-affected hand 

condition, movement of both hands and rest (no hand movement).  

2.7 DTI 

DTI tractography analysis was used to study the corpus-callosum (CC) and cortico-

spinal tracts (CST).  DTI was performed using DTIStudio software (Johns Hopkins 

University, Baltimore, MD, USA) which uses a streamline fibre tracking method with 

Fibre Assignment by Continuous Tracking (FACT) algorithm(40). The CC  and CSTs 
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were extracted using a region of interest approach. Mean values of axial diffusion 

(AD), radial diffusion (RD), mean diffusivity (MD) and FA were calculated for each 

fibre tract.  

2.8 Statistical analyses of non MRI data 

Descriptive data are presented across cases.  Group data are presented using 

parametric and non-parametric analyses of variance where appropriate. Comparisons 

of ordinal data were conducted using Kruskal Wallis. Pearson or Spearman rho 

correlations were calculated to consider trends.  In view of the small sample, 

statistical inference is limited. 

3. Results 

3.1 Hand function 

Table 2 outlines the characteristics of hand function across unimanual and bimanual 

skills and behaviours. Significant differences were seen between impairment in 

manual ability and capacity of the affected-hand (JTTHF-AH total, F (2,14)=5.65, p = 

.019); post hoc comparisons (using Scheffe for unequal samples) show children at 

MACS level III performing more poorly than those at MACS I (mean difference -

667.7, p = .021).   

Eight children, across all MACS levels, showed deficits in performance of the 

less-affected hand (> 2SD) compared to age and gender matched typically developing 

children.   However, affected-hand performance did not correlate with performance of 

the less-affected (JTTHF rho.132, p =.638). 

 For bimanual tasks, there was a non-significant difference between MACS 

levels for number of independent tasks (CHEQ: H (2 14).263, p=.877) and percentage 

of use (CHEQ: F (2, 14) 1.11, p =.380). Significant correlations were evident between 
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the ratio of capacity between the affected and less affected hands on the JTTHF and 

ratio of use of the AH during bimanual tasks (CHEQ ratio) (r =-.550, p=.034).     
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Table 2: Hand Function  

Child # MACS 
JTTHF 
affected 
hand 

JTTHF  
less 
affected 
hand 

JTTHF 
ratio 

CHEQ # 
Indepen-
dent 

 EMG task MM 

 

Sphyg-bulb 
Pressure change 
ratio 

          AH  LAH  AH LAH  

1 II 382 34 .84 21 .62 - -   

2 I 108 52** .35 15 .93 1.07 1.1 1.00 0.63‡ 

3 II 394 53** .76 17 .76 0.65‡ 0.67‡ 1.07 1.38 
4 II 363 45** .78 16 .88 0.59‡ 1.06 0.97 0.52‡ 

5 I 50 36** .16 25 1.00 1.19 2.41a 1.03 0.80 
6 III 1015 59** .89 10 .60 1.04 1.04   

7 II 795 33 .92 18 1.00 0.67‡ 0.69‡ 0.97 1 
8 II 461 62*** .76 22 1.00 0.94 0.56‡ 0.97 1.20 
9 III 395 48* .78 22 .64 1.09 1.06 0.96 0.9 
10 II 735.2 22.2 .94 15 .93 - - 0.83‡ 0.96 
11 III 1080 38.5 .93 17 .47 - - 1 1.06 
12 II 596.9 36** .89 20 .85 - - 0.12‡ 0.8‡ 

13 I 63.9 26.2 .42 20 .90 - - 1 1.95 
14 II 270.9 38.9** .75 20 .85 - - 0.89 0.92 

15 III 301.7 32.4 .81 16 .94 - -   

*Score outside 1 SD of age-gender mean; **score outside 2 SD of age-gender mean; ***score outside 3 SD of age-gender mean 
‡ = Mirror Movements evident; a= more movement evident at rest; EEG=electroencephalogram; MACS = Manual Ability Classification Scale; 
JTTHF = Jebsen Taylor Test of Hand Function; CHEQ=Children’s Hand Experience Questionnaire; MM = Mirror movement 
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3.2 MRI- radiological scores 

Type and range of severity of brain injury was evident across MACS levels:  MACS level I 

(least severe hand function impairment) RS scores ranged from 4 to 11, MACS II, RS ranged 

from 4 to 12 and MACS III, 9 to 17.  These differences did not reach significance (H 5.3, p = 

.70).   

Children with MCA infarct were all at MACS III; those with cystic-

encephalomalacia, hypoxic ischaemic encephalopathy (HIE) or periventricular white 

matter injury (PWM) were at MACS level II; children with congenital malformation 

were represented in MACS levels I and II; and children with IVH were represented 

across MACS levels.   

Correlations between RS scores and affected-hand (AH) function were evident (Spearman 

rho) with more neurological impairment associated with slower performance on the JTTHF 

(rho=.599), a higher AH:LAH ratio (rho =.562) and less use of the affected-hand during 

bimanual tasks on the CHEQ (rho=-.553).  RS was not associated with the number of overall 

bimanual activities that were performed independently, CHEQ # independent (rho=-.174). 

3.3 TMS- CST reorganization and aetiology 

Children 5, 10, 11, 12 did not undergo TMS due to epilepsy risk. Three children 

showed a pattern of contralateral connectivity (children 1, 2 and 4); one of whom was 

born prematurely.  These children showed HIE and IVH with motor severity ranging 

from MACS I to II.  

Four children showed a pattern of ipsilateral connectivity from dominant hemisphere to 

affected hand with no evidence for contralateral connectivity (participants 3,13,14 and 15). These 

children were all born at term but showed a range of brain injury patterns PWM injury with 
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multifocal WM changes and congenital malformation; motor severity ranging from MACS levels 

I to III and RS. 

Child 7 showed a pattern of mixed connectivity from both hemispheres to affected hand. He was 

born at term and showed PWM and MACS II. In three children no motor evoked potentials could 

be recorded in the affected hand from either contralateral or ipsilateral stimulation (children 6,8 

and 9). Two were born prematurely with IVH or PWM and MACS levels ranging from II to III. 

See Tables 1, 2 and 4. For CMCTs see TMS MEPs and connectivity subtypes table in 

supplementary file. MMs seem to be more common in children with ipsilateral & bilateral 

projections (3/3) than with contralateral projections (1/3) 

3.4. EEG results 

3.4.1 Mu restoration: Table 3 shows the amount of mu restoration after active hand movements 

(squeezing task) for the affected and less-affected hand separately. The EEG data indicated a 

stronger mu-restoration over the contralateral hemisphere when moving the affected hand in 6/7 

children. One child showed a stronger mu-restoration over the ipsilateral hemisphere after 

actively moving the AH.  

Table 3: Neuroimaging and Neurophysiology Data 
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  Child # AH MACS TMS 
EEG 

fMRI 
(active hand) 

        
Pattern to 
AH 

% increase in mu during rest compared with 
during activity 

AH moving 

2014 

        AH ipsi 
AH 

contra 
LAH ipsi 

LAH 
contra 

LI Pattern 

1 L II Contra - - - - - - 

2 R I Contra 138.7 151.7* 104.82 143.6* 0.6 Bilateral 

3 R III Ipsi - - - - -0.42 Bilateral 

4 R II Contra 113.4 149.6* 99.43 123.9* - - 

5 R II - 34.5 42.0* 26.61 29.4* 1 Unilateral 

6 L III 
None 

recorded 
140 221.9* 68.95 87.0* - - 

7 R II Mixed 29.0* 14.94 50.23 54.1* - - 

8 R III 
None 

recorded 
354.1 432.1* 166.2 259.2* 1 Unilateral 

9 L II 
None 

recorded 
82.3 221.9* 31.7 43.4* - - 

2012 

10 L II - - - - - -0.06 Bilateral 

11 R III - - - - - - 
Mainly 
SMA 

12 L II - - - - - -0.21 Bilateral 

13 R I Ipsi - - - - 0.34 Bilateral 

14 L II Ipsi - - - - -0.02 Bilateral 

15 R III Ipsi - - - - 0.55 Bilateral 

Legend: *=significant difference between hands. AH=affected hand; LAH=less affected hand; 
MACS=, RS=radiology score; TMS= transcranial magnetic stimulation; 
EEG=electroencephalogram; Ipsi=ipsilateral; contra=contralateral; fMRI= functional magnetic 
resonance. 
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3.5 Motor analysis of squeezing task: sphyg-bulb and EMG  

3.5.1 Analysis of the motor task during fMRI showed evidence of MMs (from 

pressure changes) in the less-affected hand (when AH was active) in three children 

(#2, 4, 12) with child #12 also showing MMs in the AH (see supplementary file for 

table of sum of pressure and change of pressure values per child).  Overall, squeezing 

actions were stronger in the LAH for most of the children with the exception of the 

children #2 and #5 in whom no apparent difference could be seen.  Child #5 also 

showed an atypical MM profile on EMG with more movement at rest.  Figure 1 

illustrates exemplary patterns of actions per child reflecting inconsistencies in timing 

and frequency as well as difficulty detecting mirror movements in cases with limited 

capacity to perform simple clenching action. Child #9 was unable to exert sufficient 

pressure to perform the task with the AH and, notably, the LAH pressure was 

considerably less in the both hands condition than in the unimanual.   

The MM calculated from the squeezing task using EMG mirrored recruitment of 

homologous muscles identified four additional children with MMs from the 2014 

cohort (#3,5,7,8) than those identified using the sphyg- bulb; but did not identify 

MMs in one child who had shown these in the LAH during the fMRI task (#2) and in 

the AH as opposed to the LAH in another child (#4). Only one of the six children 

whose less-affected hand showed good capacity (within 1 SD of age-matched norms 

on the JTTHF) was identified as having MMs by either technique. 
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Figure 1 Exemplars of motor analyses during fMRI; sphyg-bulb pressure data

Legend: Illustrative epochs demonstrating sum of pressure when moving affected 
hand, less affected hand and both hands simultaneously. Taken from second tertile of 
first block. Solid line=less-affected hand, dotted line=affected hand. 

3.6 fMRI Active motor task 
 

fMRI active motor task data were available for 9 children (five were excluded due to 

head movements and one did not undergo the MRI scan). Bilateral activation when 

moving the affected hand was seen in the area around the central sulcus in seven 

children (# 2, 3, 10, 12-15); four of whom (# 3, 13,14, 15) had ipsilateral CST 

connectivity based on TMS (see Table 3).  Of note for these seven children showing 

bilateral activation, all were born at term, with MACS levels I-III and RS from 7-12 

and a range of pathologies (including IVH, PVWM, malformation).  While two of 

these children showing bilateral activation (#2, #12) with evidence of MMs, an 

additional child (#4) without usable fMRI data due to signal noise, but with clear 

contralateral CST pathway on TMS, also showed MMs which differed in presentation 
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in the AH or LAH depending on task demands.  Figure 2 reflects patterns of 

activation when moving AH and LAH.  With the techniques we used we were not 

able to ascertain whether atypical branched CST axons from the ipsilesional 

hemisphere may also have contributed to MMs(11).   

 

Figure 2: fMRI activation when moving AH and LAH 

 

Legend: Axial slices demonstrating fMRI pattern of activation when moving affected 
hand (AH) and less affected hand (LAH). 

3.7 DTI  

DTI data were available for 11 participants; three participants were excluded due to 

head movements. In 8 participants axial diffusivity (AD) was seen to be slightly higher 

in the affected CST compared to the less affected CST. This trend was not observed in 

participant 5, with congenital malformation, where a slightly higher AD value was 

detected in the less affected CST. Radial diffusivity (RD) was slightly higher in the 

affected CST compared to the less affected CST in three participants (3,4,7) while 

slightly higher in the less affected CST in participants 2 and 5 (See Table 2 Supp. For 
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diffusivity values per child and see Figure 1 Supp. For tractography results of the CC 

and CST). 

In the CC, RD was higher (reflecting greater diffusivity) in the midbody 

compared to the genu and splenium and AD was higher in the splenium compared to 

the genu and midbody in four participants (2,3,4,7) while child 5 demonstrated a 

different trend (see Table 2 Supp.). 

3.7.1  Correlations between DTI and manual function 

Significant positive correlations (Spearman) were found between AD and MD in the 

midbody and splenium of the CC with total time when using the affected hand in the 

JTTHF (n=11; Midbody: AD r=0.76, p=0.006; MD r=0.66, p=0.03; Splenium: AD 

r=0.64, p=0.04). Note JTTHF scores reflect reaction time therefore the higher the score 

the more impaired the hand function. For correlation graphs see supplementary files. 

3.7.2 Comparison between children with and without MMs 

No significant differences in radiological score or unilateral hand function were 

observed between children with and without MMs  (Radiological score F(1,14)=0.89 

p=0.36; JTTHF AH F(1,14)= 0.08, p=0.78; JTHHF LAH F(1,14)=1.04, p=0.33).  

There was marginally higher percent use of two hands in children with MMs (M=0.91) 

compared to those who didn't show MMs (M=0.75); (CHEQ percent use F(1,14)=3.81, 

p=0.07). 

Higher FA was found in the genu, midbody and splenium of children  with MMs 

compared to those without (Genu: F(1,10)=15.48, p=0.003; midbody: F(1,10)=6.04, 

p=0.036; splenium: F(1,10)=8.08, p=0.019. No significant differences were detected 

between other diffusivity values in the CC and CST. 
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Discussion 

The use of a multi-model approach to study brain structure and hand function in 

children with hemiplegia demonstrates the complexity of brain plasticity following 

early brain injury with regards to hand function. Using a multiple case series 

analyses, our results suggest that for every child, there is a different pattern of 

reorganization of neural architecture subserving hand function. This is consistent 

with studies that have examined the association between hand function, brain lesions 

and CST projection types  with wide variations in hand function evidenced across all 

motor-projection patterns(14, 41, 42).   While the extent of deep grey matter lesions has 

been associated with severity of upper limb movement impairments, other 

parameters may also influence hand functionality in children with preterm births and 

PWM injury.  Similarly, children in our group with more extensive lesions (RS 

values >12) showed the most severe limitations in manual ability (MACS III) and 

poorest capacity of the AH on the JTTHF. Yet, overall lesion severity was not 

associated with use of the AH in tasks typically requiring two-hands, suggesting a 

number of children may use alternative strategies to achieve functionality. 

In this study several modalities have been used in order to obtain 

comprehensive and converging information regarding brain plasticity following 

early brain injury.  It is important to note that each method yields different 

information so the comparison between techniques is not straightforward and several 

.factors should be taken into account when choosing a method: the information it 

provides, risk, tolerability, feasibility and financial costs. MRI provides broad 

information regarding brain structure and function, without using ionized radiation, 

thus considered safe also for children. In this study we had a moderate success rate 
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in obtaining good fMRI data quality- 9/14 (64% success), however in previous 

studies using this method we had higher success rate. When using a child friendly 

environment MRI is both tolerable and feasible in children with CP while financial 

costs are relatively high. In our study TMS was used to probe motor function, 

specifically to characterize the cortico-spinal connectivity pattern. While TMS is 

considered non-invasive it entails neuro-stimulation which is a contra-indication to 

some pathologies such as epilepsy (which is common in children with CP; in our 

cohort 3 children had epilepsy). In our study, the majority of children tolerated the 

TMS well, but some had high thresholds and found the stimulus uncomfortable, 

(One child could not tolerate it at all and so we had to abandon the TMS for him). 

This method has lower financial cost than MRI. EEG was used to measure and 

record the electrical activity of the brain, specifically to measure the amount of mu-

restoration after active hand movement. This signal reflects top-down control 

processes to focus and prepare functional neural circuits for movement execution. 

There are no counter-indications to using this method and it is in most cases 

tolerable and feasible (in our cohort we obtained 7/9 (77%) success rate) and 

relatively lower in cost.  

More impaired hand function associated with ipsilateral motor-projection from 

the non-lesioned hemisphere has been suggested (43, 44), yet some children with this 

projection type in our study had fairly good hand function. In an earlier paper(45), it 

was reported that the timing of brain injury also affects hand function; verified by 

Klingels et al.(22) with respect to MMs. Specifically, those with earlier brain injury 

with ipsilateral CST projections from the relatively non-lesioned hemisphere showed 

better unilateral hand function(45) but yet stronger MMs(22). In our cohort, the 
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severity of impairment on one parameter (TMS, EEG, MRI) did not necessarily 

correspond with hand function or MMs. Nor did identification of atypical patterns of 

connectivity (ipsi- or bilateral or unidentified) correspond to greater or lesser degree 

of hand function impairment. Of interest was a potential relationship between MMs 

and capacity of the less-affected (dominant) hand; five of the six children with more 

typical capacity of the less-affected hand were not identified with MMs by either 

method.  Notably, of these six children, TMS studies showed two with ipsilateral 

connectivity from the less affected hemisphere and one with mixed connectivity to 

AH; one of whom showed bilateral activation on fMRI.   

Brain imaging, TMS and EEG showed different profiles for each child; 

reflecting different aetiologies, onsets of brain injury, and developmental 

trajectories.  This is particularly notable with respect to atypical bilateral motor 

activation patterns, a phenomenon consistently observed in a fraction of children 

with unilateral CP. Several hypotheses have been postulated to explain this 

phenomenon: 1) Motor brain activation as a result of ipsilateral cortico-spinal 

connections; 2) Lack of inhibition through the corpus callosum; 3) Atypical 

branched CST axons from the ipsilesional hemisphere, and, 4) Associated 

movements from overflow of effort.   

Clear bilateral motor brain activation was observed when moving the affected 

hand in seven children. Four children that demonstrated this atypical motor 

activation pattern and had TMS data (child 3,13,14,15), showed ipsilateral CST 

connectivity; the other (child 2) showed contralateral innervation on TMS yet some 

bilateral activation on fMRI. MMs were detected in only one of these children (#12) 

using the sphyg-bulb which measured the actual hand movements during the fMRI 

motor task.  Notably, DTI tractography reconstruction of the corpus callosum in 
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these children indicated no significant injury of the CC fibres. These findings 

suggest that the motor activation detected in the less-affected hemisphere may stem 

from ipsilateral motor connections or from simultaneous brain activation or lack of 

inhibition through the corpus callosum.     

In typically developing children, the contralateral pathway becomes the 

predominant pathway and the ipsilateral pathway, although present at birth, is 

largely withdrawn during development and is - if retained - weaker(46) .The various 

types of CST connectivity found in our cohort may represent different types of brain 

reorganization following perinatal injury and are consistent with previous reports of 

different connectivity patterns in children with hemiplegia(10, 47). In three children 

CST connectivity was not determined.  There are several possible explanations for 

this.  Firstly, in this age group, consistent MEPs can only be evoked in contracting 

muscle(48) and these children had particular difficulty in sustaining activation of their 

FDI muscle, which may have affected our ability to evoke a response.  Another 

possible explanation is that some of these children may have a high threshold 

ipsilateral (or contralateral) pathway to the AH.  Indeed in some cases, several 

possible responses in were recorded in the AH when stimulating the less affected 

hemisphere at 100% TMS output, but these were present for less than 50% of 

stimuli, so did not reach the criteria for threshold.  Finally, TMS activates only the 

fastest conducting CST fibres, so a genuinely absent MEP cannot be assumed to 

reflect no connection, but rather that the cortico-motor-neuronal pathway mediated 

by the fastest fibres is disrupted.   It is interesting that these three children showed 

particularly high values of Mu restoration in their resting EEG data potentially 

reflecting more cognitive effort required to control movement.  Mu suppression data 

provide evidence supporting this hypothesis with excessively high values shown in 
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the contralateral hemisphere when the AH hand was moving for these three children, 

reflecting contralesional hemispheric dominance.    

 fMRI studies of motor related brain activation in children with hemiplegia 

are often based on simple motor tasks(49). In the current study, hand movements 

during the fMRI tasks were measured using a pressure bulb allowing for 

measurement of actual hand movements rather than assuming the children moved 

their hands according to the protocol. This demonstrated some discrepancies, 

sometimes major ones, between what the children were supposed to do and what 

they actually did even in a simple motor task. Subsequently we designed individual 

protocols according to the children's actual hand movements thus avoiding 

misleading interpretations of brain activation which may stem from errors in task 

execution rather than abnormal brain activation patterns. The current study suggests 

that analyzing fMRI data according to a general protocol in children with disabilities 

is problematic and may lead to errors in attribution of associations between fMRI 

data and hand function and subsequent interpretation of imaging findings. 

 In our cohort, based on the motor analysis during the fMRI hand task, MMs 

were independent of CST connectivity pattern. In consideration of the impact of 

MMs on brain activation patterns, it is interesting to note the differences between 

MM identification during the squeezing task outside the scanner which identified 

different children, or differences in representation of AH or LAH, from the fMRI 

task.   The task protocol for timing of squeezing was the same yet the resistance of 

the ball and sphyg-bulb differed.  Importantly, the MM EMG data were derived from 

a squeezing task that came after another task in which the children had been required 

to squeeze to approximately 1.5 kg.  It is unclear whether any motor memory or 

prior conditioning may have therefore influenced movement behavior in that 
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particular squeezing task. This has implications for testing procedures and task 

conditions and potential task specific nature of MMs. 

There were 5 children in whom we had no clear CST connectivity data and 

fMRI data. Children 3,13,14 and 15 all had ipsilateral connectivity on TMS but the 

fMRI for all of these cases shows bilateral activation on moving the AH.  This could 

be in keeping with ipsilateral activation of motor pathway and activation due to 

simultaneous sensory feedback to the contra-lesional hemisphere.   

Decreased fractional anisotropy (FA) and increased AD and RD have been 

reported in the anterior midbody of the CC (where transcallosal motor fibers cross) 

in children with congenital hemiparesis with ipsilateral connectivity compared to 

those with contralateral connectivity(9) . For the children who had DTI data with 

good quality in the current study we were able to track both the affected and less 

affected CST and the CC. As expected, the affected CST showed higher diffusivity 

values/lower FA compared to the less affected CST except than in participant 5 who 

showed the reversed trend. This may be as a result of different type of brain damage 

(polymicrogryria). Bearing in mind difficulties in interpreting DTI data, caution is 

needed(50) particularly when tracking CST projections in view of crossing fibres.  

Whereas DTI tractography shows promise in mapping CSTs in children with 

unilateral CP(51) , larger studies are required to consider the interactions of intra- and 

inter- hemispheric connectivity in relation to hand function.  

Overall, our results suggest multiple adaptations to early brain injury impact on 

brain structures and pathways as well as hand function and behaviours.  Each 

measure and procedure provides information and mechanisms  informing on 

different elements (e.g. anamnesis), albeit the transactional nature of these 

interactions remains elusive as do the clinical implications. Consistent with adult 
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studies in acquired CVA(52),  it is unclear which neurological biomarkers are best 

predictors of function and a combination of techniques should be considered in the 

absence of higher quality studies. The different examinations used in our study 

varied not only in their acceptability and utility, but also suggest that under different 

contexts of performance, patterns of brain activation may also vary.  Understanding 

of context specific neuroplasticity may best be explored using multiple modalities.    

Merging of data across studies may allow for better comparisons of differing 

techniques for defining current hand function and estimations of response to 

intervention.  

There are a number of limitations to our study, not least the lack of available data 

across all procedures and measures for all children despite the relatively good 

overall sample size for this type of study.  In 2012, we set a low tolerance for 

undertaking TMS and thus did not include any child who had had post-natal 

seizures.   Additionally, we only used TMS to assess the pattern of CST organisation 

in this cohort. In future studies it would be informative to include additional TMS 

assessments of motor cortex excitability and/or intra-cortical inhibition, for both the 

lesioned and contra-lesional hemisphere (44) or to investigate connectivity using 

TMS-Evoked Potentials(53). Reasons for lack of tolerance of MRI included presence 

of metal (n=1); intolerance to noise (n=2); anxiety (fear) (n=3)2.  Additionally, 

movement artefacts were pronounced for a further 4 children, two of whom data 

were irretrievable.   In contrast, all children who undertook EEG, tolerated the 

procedure albeit one child’s heightened level of anxiety may have confounded 

                                                           
2 At a one month follow-up the child stated that he felt he could do the MR now stating how 
overwhelmed he had felt. 
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interpretation (this child did not complete TMS or MRI and data were excluded from 

this paper).     

Conclusion 

The main conclusions of this study are that 1) each child shows a different 

neuroanatomical and neurophysiological profile and 2) assessments of motor 

parameters are not always consistent for a given individual across different 

techniques.  These findings reflect a number of factors: a) the challenges of studying 

this group of children, such that a different technique may be more appropriate in a 

given child; b) we are not always studying what we think we are studying (eg the 

non-adherence to task within the MRI scanner) and c) there are many different 

patterns of pathophysiology, depending on the nature, extent and timing of the brain 

injury, the individual child’s specific genetic make-up and on subsequent 

environmental and developmental factors and how these interact with the effects of 

the early brain injury.   It is evident from our findings that a simplistic 

conceptualization of neuroplastic adaptation in the form of ipsi- and contra-lateral 

CST pathways, is insufficient to explain performance or predict outcomes.  As 

further larger studies are required to accumulate more data, we envisage that a multi-

modal analysis with triangulation of data, such as introduced here, is likely to 

become important in determining the most appropriate therapeutic path for a given 

individual.  
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Highlights 

• Different modalities exposed multiple individual brain-reorganization patterns. 

• Assessments of motor parameters are not consistent for individuals across 

different techniques. 

• Simplistic conceptualization of neuroplasticity, ipsi- vs. contra- lateral CST, 

do not explain function. 




