
ar
X

iv
:1

80
2.

09
58

2v
1

 [
st

at
.M

E
]

 2
6

Fe
b

20
18

A graph-theoretic framework for algorithmic design of experiments

Ben M. Parker∗1, Steven G Gilmour2, and Vasiliki Koutra1

1Southampton Statistical Sciences Research Institute, University of Southampton, UK
2King’s College, London

October 15, 2018

Abstract

In this paper, we demonstrate that considering experiments in a graph-theoretic manner allows
us to exploit automorphisms of the graph to reduce the number of evaluations of candidate designs
for those experiments, and thus find optimal designs faster.

We show that the use of automorphisms for reducing the number of evaluations required of
an optimality criterion function is effective on designs where experimental units have a network
structure. Moreover, we show that we can take block designs with no apparent network structure,
such as one-way blocked experiments, row-column experiments, and crossover designs, and add
block nodes to induce a network structure. Considering automorphisms can thus reduce the amount
of time it takes to find optimal designs for a wide class of experiments.

Keywords: Linear Network Effects Model, Optimal Design of Experiments, Automorphisms,
Block Designs, Isomophic Designs

1 Introduction

In previous work [Parker et al., 2016], a method for designing experiments on social networks was in-
troduced. That paper presented a linear network effects model, which provided a framework for finding
the optimal design of experiments when experimental units were connected according to some relation-
ship, which was specified by an adjacency matrix, and treatment effects propagated to experimental
units connected to the experimental unit to which the treatments were applied.

Although in that paper the primary application was the design for experiments on social networks,
a variety of examples were given showing how these networks could be useful in many applications, for
example in agricultural experiments where experimental units were connected by some spatial rela-
tionship, and also in crossover trials, where experimental units were connected by temporal networks.

In that paper, some methods were introduced to exploit symmetries in the network in order to
improve the speed of finding an optimal design. In this current paper, we expand this argument,
and show that there is a wide class of experiments that can be reformulated into a problem of design
on the network, and that by presenting the problem in this networked form, we can suggest how to

∗

B.M.Parker@soton.ac.uk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362655291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1802.09582v1

modify existing algorithms to allow optimal designs on the original problems to be found more quickly
by exploiting automorphisms of the network. We recap the previous literature, and the paper we
base this work on ([Parker et al., 2016]) in what remains of this section. In Section 2 we give a brief
overview of algorithms used currently for design, and propose a new algorithm for social networks
based on the properties of the graph. We give examples of use of the new algorithm in Section 3,
before showing how this algorithm is useful in a wide variety of design problems, even when there is
no obvious network structure. We conclude briefly in Section 5.

1.1 Previous literature

Due to the increasing prevalence of (particularly) social networks, the general field of network science,
and statistical analysis of networks has shown growth over recent years. [Aral, 2016] provides a review
of the importance of statistical inference and design in social networks, describing that although
the literature on analysis of networks has increased rapidly in recent years, there is limited research
on experimental design on networks. Much of the research tends to relate to large-scale properties of
networks, for example [Basse and Airoldi, 2017] draw inspiration from model-assisted survey sampling
to provide a detailed view of how treatments might be chosen when there are structured relationships
represented as networks between experimental units, specifically under a normal-sum model where the
response of a node is governed by the sum of normally distributed random variables, determined by
the responses of the node’s neighbours.

There have been some attempts to make use of graphs as a tool for finding optimal designs,
mostly in the context of block designs. [Wit et al., 2005], for the application of designing efficient
experiments for dual-channel microarrays, presents a way of representing experiments with blocks of
size two, where when a direct comparison is made between two treatments in a block it is represented
as a link in a network. Designs (for the As-optimality criterion as we refer to it in this paper)
were found by simulated annealing for up to n = 20 nodes (treatments in the representation of
[Wit et al., 2005]). [Bailey, 2007] extends this work on microarrays, and presents optimal designs.
[Bailey and Cameron, 2009] generalise this concept to more general block designs by considering the
concurrence graph of a block design where nodes representing treatments are joined by a number
of edges equal to the number of blocks in which the treatments appear together. By considering
properties of the concurrence graph thus formed, they present some interesting combinatoric parallels,
and methods for finding optimal designs for these blocked experiments. [Bailey and Cameron, 2011]
present some parallels between optimal design criteria and well-known properties of graphs using
concurrence graphs, in the context of block designs.

The idea of considering isomorphisms of designs - where two or more designs are equivalent-
has been used to reduce the search space for finding optimal designs is established: for example
[Ma et al., 2001] provide an algorithm for fractional factorial designs which makes use of isomorphisms
to reduce the complexity of calculations; [Bulutoglu and Margot, 2008] provide a way of classifying
orthogonal arrays by isomorphisms. [Colbourn and Colbourn, 1981] show that the problem of finding
whether block designs are isomorphic is equivalent in complexity to the graph automorphism problem.
Perhaps surprisingly, this result does not seem to have been used in a constructive method to find
designs, as we do in this paper.

Most of the results in this present paper extend [Parker et al., 2016], where we present a linear
network effects model which describes the response of each node as depending on the treatment given

2

directly to that node, and also depends on the treatments given to the neighbours of that node. This
is summarised in Section 1.2 below. Further recent work in this area follows in [Koutra, 2017].

1.2 Recap of design for networks and notation

[Parker et al., 2016] considers networks of experimental units; a network G = (N,E) is an undirected
graph, a collection of nodes N and edges E ⊆ (N×N) where the nodes represent experimental units on
each of which we apply some treatment. The edges represent relationships between the experimental
units.

We assume that if a relationship exists between two experimental units, the response of each
experimental unit is dependent on the treatment applied to the other according to a linear network
effects model which we specify below.

We have |N | = n experimental units, and m treatments. The relationship between experimental
units is specified by the n×n adjacency matrix A where Aik = 1 if and only if i and k are related and
Aik = 0 otherwise. By convention, Aii = 0.

We assume there is a “subject effect” on the response from experimental unit i of τj when treatment
j is given to that subject, and a “network effect” of γl if treatment l is given to a connected experimental
unit k (if Aik = 1). We assume that each experimental unit receives exactly one treatment.

We measure the response Yi for each of our experimental units. Let t(i) be the treatment applied
to experimental unit i; then our response is modelled as

Yi = µ+ τt(i) +

n
∑

k=1

Aikγt(k) + ǫi. (1)

We call this model the “Linear Network Effects Model” (LNEM). We assume that errors ǫi are inde-
pendent and identically distributed with mean 0 and constant variance σ2. We assume that we wish
to estimate the subject and/or network effects, or some contrast of them.

We let uj be the indicator vector with i-th element equal to 1 when treatment j is applied to
subject i, and otherwise 0. In matrix form,

E (Y) =
(

1 u1 u2 . . . um Au1 Au2 . . . Aum

)

µ
τ

γ

 = Fβ, (2)

where F is our design matrix, and our vector of parameters is

β =
(

µ τT γT
)T

= (µ τ1 . . . τm γ1 . . . γm)T . (3)

We calculate the Fisher information matrix as I = F TF , and choose an optimality criterion: we
seek to minimise the average variance of all pairwise differences of treatment effects,

2

m(m− 1)

m−1
∑

j=1

m
∑

l=j+1

Var(τ̂j − τl).

This is defined to be As-optimality for estimating the differences in the treatment effects. To ensure
estimability, without loss of generality we set τm = 0.

3

2 Algorithm

We recap briefly some general properties of design algorithms, which allow us to put our algorithm in
context. Let the design space, the set of all possible assignments of treatments to experimental units for
our experiment, be X . To assess how good a design x ∈ X is we calculate the value of some optimality
criterion f(x), and seek to find the design(s) which maximise f(x); if our optimality criterion is such
that we wish to minimise f(x) without loss of generality we maximise −f(x) instead. That is, we
wish to find x∗ = argmax f(x), which we call an optimal design. Typically f() will be some function
of the Fisher information matrix, I(x) ; for example A-optimality, a popular criterion, involves taking
the average variance of all unknown parameters, which corresponds to f(x) = Tr(I−1(x)), the trace
of the inverse of the information matrix. D-optimality, which minimises the joint confidence region for
the unknown parameters, can be expressed as f(x) = det(I−1(x)). Computationally, f(x) is normally
hard to evaluate. For example, in A-optimality both the calculation of this information matrix and
the resulting inversion of it will be computationally hard.

Typically when finding optimal designs, the design space X which we must search over to find a
design may be large. For example, if we have n experimental units which each take values in some set
F then the size of the design space will be |F|n, and we suffer from the “curse of dimensionality”. Even
if F is the binary set {0, 1} such that each experimental unit may be assigned one of two treatments,
then the size of the design space may be 2n. If F is a continuous set (e.g. R or, a set of equivalent
size, the interval [0, 1], the design space is (infinitely) bigger.

Ideally, we would evaluate the optimality criterion f(x) at all possible designs x ∈ X to find the
optimal design x∗ = argmaxx∈X f(x), but for large design spaces and/or criteria that are difficult to
calculate, computational restrictions may mean we can not do this or at least not compute this in
a reasonable time. In some cases, analytic results will enable designs to be found exactly without a
search algorithm. However, in general we seek some algorithm that enables us to find the optimal
design (or a design which is near optimal). In overview, existing algorithms for design seek to do one
or both of the following:

• reduce the complexity of the calculation of the optimality criterion f(.)

• evaluate a subset of X such that the overall number of calculations of f(.) is smaller.

Many algorithms exist within these categories. The first category includes emulation, used exten-
sively within computer designs, where instead of evaluating a complicated function f(), we evaluate
an emulator g() , a function which is simpler to evaluate but we believe has similar properties such
that f(x) ≈ g(x) for all x ∈ X . Updating formula can also be used in some problems, where we know
that f(x+ z) = f(x) + h(z) for some easy-to-calculate function h.

The second category of algorithms include space-filling designs, where a representative sample of
designs that “fill” the space X are evaluated. There are also many optimisation algorithms, which use
the t previously evaluated designs x0, x1, . . . xt−1 and their optimality criterion function evaluations
f(x0), f(x1), . . . , f(xt−1), to choose which design xt should be evaluated next. Fedorov exchange
algorithms, coordinate exchange algorithms, simulated annealing, particle swarm optimisation, many
stochastic search algorithms such as Nelder-Mead, are the subject of research. Some of these algorithms
are deterministic, in that the choice of xt is mandated, others are stochastic in that xt is chosen

4

randomly. To guard against designs which are local maxima, the initial x0 is often chosen randomly,
even if the rest of the algorithm is deterministic, and the algorithm repeated with many random x0
chosen as starting designs.

Much of the literature in experimental design revolves around trying to find better algorithms for
particular problems. In this work, we do not seek to find new algorithms, but to know how mapping
the optimisation problem to a network domain allows us to vastly reduce the number of designs
evaluated in order to allow us to find better designs. We can use many existing algorithms with small
modifications in this new network framework.

2.1 Using networks for reducing the state space

We show in this section how we can use the network representation of the problem as an advantage
when we consider algorithms for design. [Parker et al., 2016] introduced some ideas of how we might
improve our algorithms, and we recap these here briefly before expanding these ideas and presenting
a new algorithm.

2.1.1 Symmetry of labels

For many optimality criteria we are only interested in differences between treatments, the treatment
effects themselves are irrelevant, and treatments are equivalent up to relabelling. For example, designs
{1, 2, 2, 3, 1} and {1, 3, 3, 2, 1} are equivalent. We can thus reorder any design so that we only evaluate
designs where the first occurrence of label j must come before the first occurrence of label j + 1.
Without loss of generality, we can assign treatment 1 to experimental unit 1.

2.1.2 Symmetry of networks

In Figure 1, subgraphs 1 and 2 are exchangeable; i.e. if we consider subdesign A on subgraph 1, and
subdesign B on subgraph 2 (call this [A1,B2]), we need not also consider [A2,B1] as by symmetry this
design has the same criterion function value.

We can thus reduce our design space greatly if we can identify subgraphs where the designs are
exchangeable. This is equivalent to finding an automorphism of our network, a relabelling or permu-
tation of the set N such that the edges E are preserved. This is known as the Graph Automorphism
Problem, and finding efficient algorithms to solve this problem has been the topic of much research
[Conte et al., 2004]. Until recently, the general case of this problem was thought to be not solvable
in polynomial time, that is no algorithm existed that could find a solution for a graph with n nodes
in O(nk) time for some constant k. (Recently, an algorithm has been found that claims a solution
exists in quasi-polynomial (exp((log n)O(1))) time ([Babai, 2015], although this result has not yet been
peer-reviewed.).

Whatever the theoretical complexity, in practice fast algorithms exist already that can effectively
and quickly find automorphisms in most cases, for example the VF2 algorithm[Cordella et al., 2001],
which in the general case finds isomorphisms between two graphs G1 and G2. This algorithm is based
on a tree search, where a set of nodes corresponding to a partial match between subgraphs of G1

and G2 is maintained, and then nodes connected to these subgraphs are considered to see if they
can extend the matching subgraphs. This algorithm is fast, and implemented by the popular igraph

5

Subgraph 1 Subgraph 2

1

2

3

4

5 1 0

6 9 1 1 1 2

7 8 1 3 1 4

Figure 1: Example of an automorphism. Subgraphs 1 and 2 can be exchanged, so an automoporphism
exists.

6

package (http://igraph.org/) available in many programming languages, including R. Here, we find
automorphisms by setting G1 = G2. Many algorithms exist, but we chose VF2 as it was fast enough
for our purposes, and was readily incorporated in the software made available with tis paper.

2.2 New framework for design algorithm

We present below a general algorithm:

1. Rewrite original problem in graph form.

2. Find the automorphisms isos of the graph using the VF2 algorithm. This is a set such that for
any labelling of the graph corresponding to design x, all designs isos(x) will be automorphisms
of x.

3. Set k = 1, numeval = 0 and pick an initial candidate design x1.

(a) Check whether xk = minlex isos(xk), i.e. if xk is the first design in the lexicographical
order of automorphisms of xk. If so,

• evaluate the optimality criterion dk = f(xk)

• increment numeval by 1.

(b) Set k = k + 1. Pick next candidate design xk according to algorithm of choice next based
on x1, . . . , xk−1 and d1, . . . , dk−1, so that xk = next[(x1, . . . , xk−1), (d1, . . . , dk−1)].

(c) If we have reached a stopping criterion, i.e if (stop)[(x1, . . . , xk), (d1, . . . , dk), numeval] = 1
for some stopping criterion stop, then stop, otherwise repeat from 3a.

Typical choices of the next algorithm might be the Fedorov exchange algorithm, an exhaustive
search, etc. Typical choices of the stop criterion might be that k = k1 or numeval = k2 representing
some fixed budget on the number of design points examined or function evaluations made, or that
max(dk−t, . . . , dk) = dk−t, i.e. we have not seen an improvement in the last t steps.

2.2.1 Treatment Structure

In this paper we restrict ourselves to designs on m unstructured treatments; that is our design space
is X = {(x1, x2, . . . , xn|xi ∈ {1, . . . ,m}∀i} such that |X | = nm. We do this for clarity of exposition of
our method, but the general ideas extend to factorial and other treatment structures.

2.2.2 Illustrative example

Consider the network represented by 3-1-2, where we have three nodes such that nodes 3 and 2 are each
connected to node 1 and there are no other connections. It is clear that the network is automorphic
to 2-1-3. Let T = {A,B}, and let a design be represented by x1x2x3 where xi ∈ T is the treatment
given to node i. In other words ABB means we give treatment A to node 1, B to node 2, and B to
node 3. Note that X = {AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB} where the elements of the
design space are clearly in lexicographical order. Let, X1 = AAA, and we let next be the next design
lexicographically, and let our stopping criterion be stop if xk = BBB. Then the automorphisms allow

7

us to show that two pairs of designs are equivalent (AAB = ABA, BAB = BBA); thus in step 3a,
we do not evaluate f(x) for designs ABA or BBA. We have therefore reduced the number of designs
we must consider from 8 to 6..

2.2.3 Rationale

For many designs, evaluating the optimality criterion function f() requires (sometimes substantial)
computational time, and by reducing the number of evaluations required, we can reduce the compu-
tational time required. Alternatively, for the same computational time, we can search more of the
design space and hope to find a better design.

There is some computational overhead in the new algorithm; evaluating the automorphisms initially
can be slow, however this needs to be done just once for each network, so for large designs this time
is not a large proportion of the total computation time. There is also some overhead in step 3(a), as
checking whether a design is lowest in lexicographical ordering of all automorphisms of that design
requires some computation. However, we show that this overhead is substantially lower than the cost
of evaluating f() in some simple examples, so our algorithm can lead to substantial improvements in
finding designs. For particular networks, for example networks with a large number of automorphisms
relative to the size of the network, the overhead may be prohibitive. This may be the case for dense
or highly regular networks. We investigate the computational complexity of the algorithm in 4.3.

3 Examples of use of automorphisms in finding designs

We return to a small example which was Example 1 in [Parker et al., 2016] and represents a social
network. This is shown in Figure 2, together with the optimal design for estimating with minimal
variance the difference between the m = 2 treatment effects, τ1− τ2, under the LNEM (1). The list of
edges is shown in the Appendix.

The optimal design was evaluated using exhaustive search. For each candidate design in our design
space (there are |X | = 210 designs), the information matrix must be calculated (this a 4 by 4 matrix
with columns representing µ, τ1, γ1, γ2, recalling we can omit the column corresponding to τ2 = 0).
This matrix must be inverted, and the inversion is responsible for much of the computational effort
in finding the optimal design. In practice, we can note that as we are only interested in differences
between subject effects, we can appeal to symmetry of labels to fix the treatment for experimental
unit 1 as the first treatment.

In [Parker et al., 2016] we did not use the symmetries of the network, but found the design under
exhaustive search; here we use an exhaustive search (so that our next design calculates the lexico-
graphically subsequent design), but will only evaluate designs which are first lexicographically amongst
all designs which are automorphisms of the current considered design. We will thus evaluate fewer
designs, and stop when one design from each automorphism class has been evaluated.

We naturally find the same optimal design, but evaluate the information matrix 236 times as
opposed to 507 times, and use a processing time of 0.02 seconds as opposed to 0.04 seconds.

We can repeat this evaluation for all the networks in [Parker et al., 2016], the edge list for each
of which is shown in the Appendix. We chose these networks as they represent a variety of different
types of network structures, which relate to a variety of different applications. The results are shown

8

1
(1)

7
(2)

2
(1)

3
(2)

4
(2)

5
(2)

6
(1)

8
(1)

9
(1)

1 0
(1)

Figure 2: A social network (Example 1 in [Parker et al., 2016]. Top nodes are node numbers and
bottom nodes are optimal design for m = 2 treatments for estimating difference in treatment effects
allowing for network effects under Linear Network effects model.

Example n Number of
automor-
phisms

Evaluations
without au-
tomorphisms

Evaluations
with auto-
morphisms

Time with-
out auto-
morphisms

Time with
automor-
phisms

1. Small social network 10 8 507 236 0.04 0.02
2. Small social network 10 1 511 511 0.04 0.04
3. Larger social network 20 8 524287 221183 58.58 31.56
4. Block design with
neighbour effects

12 384 535008 18766 108.52 33.68

5. Non-rectangular field
trial

15 2 2368741 1581572 279.6 197.58

6. Crossover trial with
dropouts

15 6 2262800 904555 283.86 134.26

Table 1: Comparison of exhaustive search algorithms with and without automorphisms

9

in Table 1, and indicate that the number of function evaluations is greatly reduced for all the networks
(except network 2, where there are no non-trivial automorphisms) and that the time taken to perform
the exhaustive search is greatly reduced, even when taking into account the time needed for calculating
automorphisms and lexicographical ordering checking as described above.

We include the computational time as a guide; this will vary greatly between implementations in
different software for these small networks, but gives an idea of how effective computationally the use
of automorphisms is for finding designs on network problems, even for small networks.

3.1 Implementing a simple coordinate exchange algorithm

We demonstrate how the framework can be combined with a non-trivial design algorithm by showing
as an example the cyclic coordinate descent algorithm described fully in[Meyer and Nachtsheim, 1995].

We pick a random starting design. Each node is considered in turn, and for each node we cycle
through all possible treatments for that node to see if changing the treatment allocated to that node
can improve the design. If we find an improvement, we fix that design, and start again. If after
checking all treatments we find that changing the treatment on this node does not improve the design,
we move to the next node. When we have cycled through all nodes without improvement, we stop.

In the language of our general algorithm above, we pick

xk = next[(x1, . . . , xk−1), (d1, . . . , dk−1)]

= [x∗i + uk−i,m] mod m

where uk,m is the unit vector with all elements zero except the floor(k/m)-th, which is 1, and x∗i is the
maximum design so far discovered such that x∗i = argmax1≤i≤k−1 f(xi). for design i. The stopping
criterion is chosen such that

stop[(x1, . . . , xk), (d1, . . . , dk), numeval] = 1 if k > nm and dk = dk−nm,

i.e. if we have evaluated all designs resulting from changing one coordinate and not seen an improve-
ment.

We perform 100 random starts to mitigate the algorithm finding local maxima. To demonstrate
how this algorithm can work with automorphisms, we apply this algorithm to the same 6 networks
as in Table 1 above. We present the results as Table 2. We can see that even this simple algorithm
is compatible with the network framework of taking automophisms into account, and a very small
number of function evaluations are made, with generally highly efficient designs being found.

4 Block designs as networks

We seek to generalise the framework developed to include a wider class of models. We start with a
simple example.

Suppose we have four blocks, each of four experimental units. Let us suppose we wish to allocate
treatments labelled {1, . . . ,m} with corresponding unknown effects {τ1, . . . , τm} to the experimental

10

Example n Number of
automor-
phisms

Evaluations
(CD)

Evaluations (ES) Efficiency of design
found with CD

1. Small social network 10 8 77 236 1
2. Small social network 10 1 145 511 0.944
3. Larger social network 20 8 127 221183 0.989
4. Block design with
neighbour effects

12 384 14 18766 0.873

5. Non-rectangular field
trial

15 2 82 1581572 0.931

6. Crosover trial with
dropouts

15 6 93 90455 1

Table 2: Comparison of coordinate descent (CD) and exhaustive search (ES) algorithms, both methods
using automorphisms.

units to maximise some optimality criterion; for example we may wish to estimate

2

m(m− 1)

m−1
∑

j=1

m
∑

l=j+1

Var(τ̂j − τl).

This is defined to be As-optimality for estimating the differences in the treatment effects. We call this
criterion function φ1.

A typical schematic for the structure of the experiment might be written down as in the left of
Figure 3. It is clear that experimental units 1,2,3, and 4 are contained within block 1, and so on. We
might choose to represent the experiment pictorially as in the right of Figure 3.

Why is this useful? Let us now imagine that the 20 nodes {1, . . . , 16, B1, B2, B3, B4} are experi-
mental units that are connected according to the relationship shown in Figure 3. We forget that the
nodes have any special meaning now, save that we may assign treatments 1, . . . ,m only to the first 16
nodes, and that node B1 is assigned treatment m+1, node B2 assigned treatment m+2, B3 assigned
m+ 3 and finally B4 assigned m+ 4.

In order to find the A-optimal design, we can write the model for our blocked experiment as

Yi = µ+ τt(i) +
∑

k={1,...,16,B1,B2,B3,B4}

Aikγt(k) + ǫi, i = 1, . . . , 16 (4)

where A is the adjacency matrix where Aij = 1 whenever there is a link as shown in the Figure (e.g.
A14,B4 = 1, and Aij = 0 otherwise).

By writing bj(i) as
∑

k={1,...,16,B1,B2,B3,B4} Aikγt(k), we can see immediately that this is equivalent
to

Yi = µ+ τt(i) + bj(i) + ǫi,

a more familiar representation of a blocked experiment, where bj(i) is block effect of experimental unit i
in block j. As Aij = 1 if and only if node i is linked to node j, and this only happens when experimental
unit i is in block j for j = {B1, B2, B3, B4}, we can replace γt(B1) = γm+1 = b1, γt(B2) = γm+2 = b2,
and so on.

11

Block Experimental Units

1 1 2 3 4
2 5 6 7 8
3 9 10 11 12
4 13 14 15 16 12

3 4

56

7 8

910

11 12

1314

15 16

B1

B2

B3

B4

Figure 3: Left: A traditional representation of a simple block design with 16 units in four blocks.
Right: A representation of a blocked experiment as a network design. Experimental units numbered
1 to 16 are in black circles, and blocks are indicated by B1, B2, B3, B4 with red circles.

12

Original Problem Network Problem

No of Treatments m m+ 4

Experimental Units {1, 2, . . . 16} {1, 2, . . . , 16, B1, B2, B3, B4}

Wish to estimate Average pairwise variance of τi − τj
for all 1 ≤ i < j ≤ m

Average pairwise variance of τi − τj
for all 1 ≤ i < j ≤ m

Optimality criterion A As

Restrictions Can apply any treatment to any
unit.

Can apply treatments 1,. . . ,m to
units {1, 2, . . . , 16}, and treatments
3,4,5,6 to units B1-B4.

Table 3: Comparison of original and augmented network design for m = 2 treatments.

Perhaps more simply, the network effects of the special nodes representing blocks in the linear
network effects model are replaced by the block effects. We can think of the block effects as propagating
like network effects from the special nodes B1, B2, B3, B4. We will normally wish to estimate some
function of the treatment effects only (block effects are often not of interest but it is important to
account for them in the design), and as the treatment effects for nodes B1, B2, B3, B4 are irrelevant
(we cannot measure the experiment units B1, B2, B3, B4 directly as they are not real units!), we
ignore them and use the same optimality criterion as before. As we are not estimating all effects,
strictly this is now AS optimality rather than A optimality.

The properties of the two designs can be summarised in Table 3 .
We have thus shown (at least for this simple example) an equivalence between a traditional design

(in this case a block design) and a network design as found in the paper [Parker et al., 2016]. A major
advantage of writing a block design in this way is that we can now find optimal designs for block
designs in the same way as for network designs, and that we can use the automorphisms found from
the network representation of the experimental framework in order to find optimal designs faster. The
network setting allows us to develop one set of effective algorithms, rather than regarding blocked
experiments as a special class with its own method for finding optimal designs.

4.1 Other block designs as networks

In a similar method to the one-way block design, it is possible to represent a variety of block designs
as networks. For all blocking factors each block can be written as a new network node, linked to
all experimental units within that block. We present examples for a double-blocked experiment (a
row-column design) as Figure 4. This is readily extendable to more than two blocking factors.

In a crossover design, subjects receive treatments sequentially over several time periods, and an
experimenter wishes to account for the treatment possibly still having some effect in a later time period
than that for which it is applied. We can represent a crossover-design similarly to a row-column design
as Figure 5. Experimental units are subject-period combinations, and we assume that subjects behave
similarly, so subject is a blocking factor, and periods may be a blocking factor, so we add extra block
nodes as we did for the row-column designs. In addition, we assume a treatment applied to a subject
may affect the subject in the next time period, so there may be a carryover effect from experimental
unit 1 to 2, 2 to 3, 4 to 5, etc. We represent this carryover effect by the network effect of the treatment

13

C1 C2 C3

R1 1 2 3
R2 4 5 6
R3 7 8 9

1

2
3

4

5
6

7

8

9

R1

R2

R3

C1

C2
C3

Figure 4: A Row Column Design in (left) a traditional representation and (right) a network diagram.

Period
P1 P2 P3

Subject

a 1 2 3
b 4 5 6
c 7 8 9

1

2

3

4

5

6

7

8

9

a b cP1

P2

P3

Figure 5: A Crossover Design in (left) a traditional representation and (right) a network diagram.

14

Example n m Number of
automor-
phisms

Evaluations
without au-
tomorphisms

Evaluations
with auto-
morphisms

Time with-
out auto-
morphisms

Time with
automor-
phisms

1. 3x3 Blocks 9 3 1296 2925 94 2.52 1.54
2i. 4x3 Blocks 12 3 82944 86126 379 55.44 310.02
2ii. 4x3 Blocks 12 4 82944 605960 1808 378.82 1051.54
3. 3x3 Row Column 9 3 241 72 2807 1.9 0.48
4i. 4x4 Row Column 16 3 1152 7123656 34873 6051.12 493.32
4ii. 4x4 Row Column 16 4 1152 170863644 1610909 141456.6 14123.94

Table 4: Designs for various block designs. Number of evaluations of optimality criterion and com-
putational time with and without automorphisms

given to the experimental unit preceding in time, but note this carryover effect only extends to the next
time period, so links in the network are directed. This is similar to Example 6 in [Parker et al., 2016].

4.2 Advantages of changing design space

The argument explained in 2.2.3 applies: by evaluating only one design from each class of automorphic
designs, we can make significant savings in the amount of time to evaluate candidate design.

We evaluate several experimental structures to demonstrate this in practice, for which the experi-
mental designs are well-known:

1. 3 blocks of size 3 (n = 9), with 3 treatments. (The optimal designs are randomised complete
block designs.)

2. 4 blocks of size 3 (n = 12), with i) 3 and ii) 4 treatments. (The optimal designs are i) randomised
complete block designs and ii) balanced incomplete block designs.)

3. A row-column structure with 3 rows and 3 columns, each row-column intersection containing a
single experimental unit, with 3 treatments. (The optimal designs are Latin Squares of size 3.)

4. A row-column structure with 4 rows and 4 columns, each row-column intersection containing
a single experimental unit, with i)3 and ii)4 treatments. (The optimal designs in ii) are Latin
Squares of size 4.)

We do not claim that these designs would be sensibly found via this method, as the solutions
are known analytically, but we seek to demonstrate the benefits of using automorphisms in reducing
computational time.

The results are presented as Table 4. Clearly the number of optimality function evaluations is
vastly reduced for networks a large number of automorphisms. However, for some networks, such as 2i
and 2ii, the overhead in the implementation caused by searching for automorphisms and then checking
the lexicographical order of the candidate designs might make the use of automorphisms inefficient.

For larger designs, such as 4i, with a moderate number of automorphisms, we see a more than
tenfold reduction in processing time and a hundred-fold reduction in number of evaluations, suggesting
that this method works better for networks with a moderate number of automorphisms.

15

In practice, by taking into account network structure, practitioners may be able to make a very
large saving in time to find optimal designs with very little modification to existing algorithms, meaning
designs found using stochastic algorithms in fixed computing time may be better.

4.3 Computational Justification

Recall that |X | = nm for unstructured treatments. For our As optimality criterion, and indeed most
common optimality criteria, when calculating f(x) we must calculate the Fisher information matrix
and invert it to find a variance-covariance matrix, then make some calculation of this final matrix. We
assess the typical computational complexity for each design we consider.

• The complexity for calculation of the Fisher information matrix from F TF whereX is an n×(2m)
matrix is typically O(n2m).

• The Fisher information matrix in our model (1) is of size 2m×2m. Inverting the matrix depends
on the algorithm used, but is O(mk) where 2 < k ≤ 3.

• Calculating the optimality criterion from the 2m × 2m variance-covariance matrix depends on
what criterion is used; the trace (A-optimality) is O(m), taking the determinant (D-optimality)
will typically be O(mk) where 2 < k ≤ 3.

Thus for each design evaluated, and assuming a simple optimality criterion, as n >> m (in general
we have many more experimental units than treatments) the limiting step is the first step above and
therefore calculating f(x) has computational complexity of O(n2m).

The complexity of the overhead in the new framework algorithm involves i) the initial time to
calculate automorphisms originally, and ii) the computational cost of checking whether each design is
lowest lexicographically amongst all possible automorphic designs.

Let us assume the size of isos is z. i.e. there are z automorphisms for our network. We map each
design of length n to an automorphism of itself which reorders the design, each time this operation
is O(n). We must do this z times (once for each automorphism), and then sort the resulting list of
automorphic designs to find the smallest, which can be done in O(z log z) for a good sorting algorithm.
Thus the overall computational complexity of checking whether a design is first lexicographically is
O(nz + z log z).

Thus the computational complexity involved in the proposed algorithm where we first check that
a design is valid, and if it is calculate the design, is O(nz + z log z + n2m/z), where the z in the
denominator in the second term arises because we must calculate f(x) for one design in every z.

Evaluating one design for the algorithm without automorphisms is O(n2m); for the new method
is O(nz + z log z + n2m/z]). The ratio of the new to the old is

O

(

z

nm
+

z log z

nm
+

1

z

)

≈ O

(

z log z

nm
+

1

z

)

Thus the effectiveness of our new algorithm depends on the relative sizes of n, z, and m. We find z
must be small compared to nm but not too small. This is supported by the results in Table 4, which
show the computational time to be reduced significantly for moderate z, but actually increased for
very large z, as the overhead in finding and ordering automorphisms is high here.

16

5 Conclusions

We have shown that the use of automorphisms for reducing the number of evaluations required of an
optimality criterion function is effective on designs where experimental units have a network structure.
Moreover, we have shown that we can take block designs with no apparent network structure, such as
one-way blocked experiments, row-column experiments, and crossover designs, and add block nodes
to induce a network structure. Using automorphisms on these experiments with induced networks is
also effective at reducing the complexity of experimental design algorithms.

From a practical point of view, many algorithms for design exist in isolation; we must program
an algorithm for split-plot designs differently, perhaps, to how we program row-column designs. We
argue that a framework such as we suggest with this paper may promote general purpose algorithms,
neggating the need to maintain different algorithms for particular designs. Although algorithms for
design can take into account automorphic designs to avoid recalculation of f(x) for an automorphic
design, in general they do not, and this network representation allows automorphisms to be found
readily by algorithms that are quick and available in existing software. We believe that this work may
lead to standardisation of algorithms across seemingly different classes of experiment.

References

[Aral, 2016] Aral, S. (2016). Networked experiments. The Oxford Handbook of the Economics of
Networks.

[Babai, 2015] Babai, L. (2015). Graph isomorphism in quasipolynomial time. CoRR, abs/1512.03547.

[Bailey, 2007] Bailey, R. (2007). Designs for two-colour microarray experiments. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 56(4):365–394.

[Bailey and Cameron, 2011] Bailey, R. and Cameron, P. J. (2011). Using graphs to find the best block
designs. arXiv preprint arXiv:1111.3768.

[Bailey and Cameron, 2009] Bailey, R. A. and Cameron, P. J. (2009). Combinatorics of optimal de-
signs. Surveys in Combinatorics, 365(19-73):3.

[Basse and Airoldi, 2017] Basse, G. W. and Airoldi, E. M. (2017). Preprint: Model-assisted design of
experiments in the presence of network correlated outcomes. ArXiv e-prints.

[Bulutoglu and Margot, 2008] Bulutoglu, D. A. and Margot, F. (2008). Classification of orthogonal
arrays by integer programming. Journal of Statistical Planning and Inference, 138(3):654–666.

[Colbourn and Colbourn, 1981] Colbourn, M. J. and Colbourn, C. J. (1981). Concerning the com-
plexity of deciding isomorphism of block designs. Discrete Applied Mathematics, 3(3):155–162.

[Conte et al., 2004] Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004). Thirty years of graph
matching in pattern recognition. International journal of pattern recognition and artificial intelli-
gence, 18(03):265–298.

17

[Cordella et al., 2001] Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. (2001). An improved
algorithm for matching large graphs. In 3rd IAPR-TC15 workshop on graph-based representations
in pattern recognition, pages 149–159.

[Koutra, 2017] Koutra, V. (2017). Designing Experiments on Networks. PhD thesis, University of
Southampton.

[Ma et al., 2001] Ma, C.-X., Fang, K.-T., and Lin, D. K. (2001). On the isomorphism of fractional
factorial designs. journal of complexity, 17(1):86–97.

[Meyer and Nachtsheim, 1995] Meyer, R. K. and Nachtsheim, C. J. (1995). The coordinate-exchange
algorithm for constructing exact optimal experimental designs. Technometrics, 37(1):60–69.

[Parker et al., 2016] Parker, B. M., Gilmour, S. G., and Schormans, J. (2016). Optimal design of
experiments on connected units with application to social networks. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 66(3):455–480.

[Wit et al., 2005] Wit, E., Nobile, A., and Khanin, R. (2005). Near-optimal designs for dual channel
microarray studies. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(5):817–
830.

Appendix

The following lists the edges for the six examples shown in this paper. These are also shown visually in
examples in [Parker et al., 2016]. “i-j” means an edge exists between i and j, and the corresponding
entry in the adjacency matrix A(i, j) = A(j, i) = 1. If no edge it shown then A(i, j) = A(j, i) = 0.
Examples 1 to 5 are undirected networks. In Examples 6, the network is directed, such that “i->j”
means that A(i, j) = 1, but note that A(j, i) 6= 1.

Example 1: 1-7, 2-7, 3-6, 4-5, 6-9, 9-10

Example 2: 1-5, 1-8, 1-10, 2-3, 2-4, 2-7, 2-8, 2-9, 2-10, 3-4, 3-7, 3-9,

4-6, 4-7, 4-8, 4-9, 4-10, 5-9, 6-7, 7-10, 8-10, 9-10

Example 3: 1-2, 1-4, 2-3, 2-5, 2-9, 2-14, 2-17, 3-4, 3-8, 3-12, 3-13, 3-16,

4-6, 4-7, 4-9, 4-10, 4-11, 4-15, 4-20, 5-6, 5-7, 5-10, 5-14, 6-18, 7-19,

9-11, 9-13, 9-16, 9-20, 10-15, 10-17, 10-18, 15-19

Example 4: 1-2, 2-3, 4-5, 5-6, 7-8, 8-9, 10-11, 11-12

Example 5: 1-2, 1-4, 2-3, 2-4, 2-5, 3-5, 4-7, 4-8, 4-9, 5-9, 5-10,

6-7, 6-11, 6-12, 7-8, 7-11, 7-12, 7-13, 8-9, 8-12, 8-13, 8-14,

9-10, 9-13, 9-14, 9-15, 10-14, 10-15, 11-12, 12-13, 13-14, 14-15,

Example 6: 2->1, 3->2, 4->3, 6->5, 9->8, 10->9, 11->10, 13->12,

14->13, 15->14

18

Software

A draft package to find designs for networks, including the augmented networks for block designs, is
available at https://www.dropbox.com/s/fgfn2f2my4yqlzr/networkDesign_0.0.0.9001.tar.gz?
dl=0. Scripts are provided to allow the reader to reproduce many of the results in this paper, as well
as those in [Parker et al., 2016].

19

1

2

3

4

5

6

7

8

V1

V2

H1

H2

H3

H4
E1

E2

E3

E4

E5

E7

E8

