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Analysis of Friedreich’s ataxia patient clinical data reveals importance of 
accurate GAA repeat determination in disease prognosis and gender 
differences in cardiac measures 
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A B S T R A C T   

Friedreich’s ataxia (FRDA) is a rare autosomal recessive inherited neurodegenerative disease which is the result 
of a triplet repeat expansion in the intronic region of the frataxin FXN gene resulting in depleted frataxin protein 
expression. Disease onset is usually in childhood and causes progressive damage to the nervous system resulting 
in progressive disability. This work uses computer aided classification techniques to identify which measures of 
the disease progression, including accurate determination of the shortest allele repeat length, are the most 
informative when trying to predict likely disease progression and prognosis. Further we investigate the possi
bility of a gender difference in the progression of the disease. Our results highlight the importance of accurate 
determination GAA repeat length in any clinical predictions showing that the number of repeats is the best 
prognostic tool in FRDA and is strongly linked to the age at onset disease. Further that there are possible gender 
dependent differences in cardiac measurements recorded from patients of similar age of onset and GAA repeat 
length.   

1. Background 

Friedreich’s ataxia (FRDA) is a rare autosomal recessive inherited 
neurodegenerative disease with an onset usually in childhood. The 
disease causes progressive damage to the nervous system resulting in 
progressive disability. Patients present with initial symptoms of poor 
coordination such as gait disturbance. Other symptoms can include any 
of the following: muscle weakness in the arms and legs, visual impair
ment, hearing impairment, slurred speech, curvature of the spine 
(scoliosis), high plantar arches (pes cavus deformity of the foot), dia
betes and heart disorders (e.g., hypertrophic cardiomyopathy and 
associated arrhythmias). Onset of symptoms is usually between the ages 
of 5 and 15 years, but may occur above the age of 25 which is referred to 
as the late onset form [1–4]. The age of onset has a profound effect on 
the disease severity and progression with a faster deterioration associ
ated with a younger age of onset [5]. Most of the non neurological 

features are more common in the typical-onset patients compared to the 
late-onset [6]. 

The disease is typically caused by an expansion of an intronic GAA 
triplet repeat in the FXN gene leading to reduced expression of the 
mitochondrial protein frataxin [7]. The length of the expansion on the 
shorter allele of the FXN locus is associated with age of onset of disease, 
with a younger age being associated with a longer repeat [5]. Logistic 
regression models for the presence of symptoms have demonstrated that 
the value of GAA repeat length alone of the shorter allele is the best 
prognosis indicator of the disease and the age at onset, as well as severity 
of ataxia signs, sex, and presence of neonatal problems [6]. The disease 
is also associated with epigenetic changes including aberrant DNA 
methylation leading to downregulation of gene expression [8]. 

Disease progression is typically monitored by a variety of clinical 
bedside tests [9–12]. Disease progression, as measured by the Scale for 
the Assessment and Rating of Ataxia (SARA) base line scale, is more 
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rapid in patients with a longer GAA repeat on the shorter allele of the 
FXN locus. Other measurements that are commonly taken are the In
ventory of Non-Ataxia Signs (INAS), the Spinocerebellar Ataxia Func
tional Index (SCAFI), the quality of life measures activities of daily living 
(ADL) and EQ-5D-3L index [5]. All of these various tests along with the 
SARA test attempt to assess the degree of ataxia through measurements 
of the ability to walk and carry out other motor functions, show similar 
deterioration as the SARA scale as the disease progresses. To date 
however all the measures have been considered singlely and not in 
combination with each other or with other measures that may influence 
disease severity or progression. This study attempts to explore several 
possibilities within the data that can only be uncovered by complex 
computational techniques. Firstly we wished to explore if a given 
combination of measures taken together could more accurately predict 
severity or progression. Further, given that the SARA score has been 
shown to be a very accurate measure for disease progression, whether it 
could be used to predict the size of the repeat expansion of the shorter 
allele given that measurement of this expansion can be technically 
problematic and the expansion may change over a person’s life time. 
Also we wished to assign more accurate cutoff ranges for the classifi
cation of patients into groups which may assist the selection of patients 
for clinical trials and to identify the key features that could signify 
progression points of the disease. Lastly explore the suggestion that 
gender may exert an influence which to date has not been explored. Thus 
the overarching objective of this study was to assess which tests best 
capture disease severity and progression within a large prospective 
natural history study. 

Clinical and demographic data were collected by the clinical partners 
of the European Friedreich’s Ataxia Consortium for Translational 
Studies (EFACTS) from over 600 genetically confirmed FRDA patients. 
Ethical approval for the collection of the data was given as part of the 
separate clinical study and this study has been published previously [5]. 
In summary the measurements for 61 clinical features were collected 
with informed consent from the patients. The primary outcome measure 
was the Scale for the Assessment and Rating of Ataxia measurements 
(SARA). The secondary outcome measures were: the Inventory of 
Non-Ataxic Symptoms (INAS); the performance-based coordination test, 
the Spinocerebellar Ataxia Functional Index (SCAFI); the neurocognitive 
phonemic verbal fluency test; and two quality-of-life measures: the 
EQ-5D; and the activities of daily living (ADL), part of the Friedreich’s 
Ataxia Rating Scale (FARS). Further demographic, cardiac, family his
tory, genetic and personal data were collected from each patient. 

To date complex computational methods have not been employed to 
analyse ataxia patient data before with the challenge that this data has 
been collected from disparate sites across Europe by different clinical 
teams raising the possibility of inter-clinic variability of measurements. 
This work was therefore undertaken to not only discover new findings 
about the disease but also to valid the techniques for use on data with 
such potential uncontrolled variability. The experiments were run on 
data from single clinics first before using data from across all the clinics 
to test the consistency of the results when inter-clinic variation was 
possible in the data. The computational data analysis techniques where 
specifically used to identify which features are the most informative in 
classifying patients into subgroups commonly used to assist in prognosis 
by clinicians, identifying key stages in disease progression and predict
ing disease progression in patient subgroups. 

2. Methods 

The Hill Climbing algorithm was used to optimise the selection of the 
most informative features based on their ability to discriminate between 
the states you wish to explore in a given experiment. The algorithm is 
iterative and is a local search optimisation technique. It will start with an 
arbitrary solution to the problem (in this case finding the most infor
mative features) then by making an incremental change it attempts to 
find a better solution. If the algorithm is successful another change is 

made and so on until no further improvement to the solution can be 
found. Thus for each experiment a different set of optimum features 
were discovered based on the aim of experiment which were then used 
in the machine learning phase. The Hill Climbing algorithm used is given 
below. 

The computational analysis was then carried out using supervised 
machine learning [13]. We selected classification as the method of 
choice as it allowed us to predetermine how we would like the patients 
to be subdivided. These subdivisions being the most clinically useful 
based on current clinical practice. These classification techniques take 
raw data and determine which features (in this case features and mea
sures for each patient held in the EFACTS database) enable individuals 
to be classified into predetermined categories or groups. These methods 
also allow an assessment of how accurate the data analysis is at gener
ating the categories based on the items the computer selected. Accuracy 
of the generated model was determined by the percentage individuals 
correctly classified through a Kappa score [14]. Higher Kappa scores 
during a classification experiment indicate increased likelihood of 
identifying attributes which are predicted to categorise patients 
correctly. Kappa is a measure of the predictive performance of the 
classifiers, as it takes into account correct classifications that can happen 
by chance. The highest possible Kappa score that could be generated is 
1.0. 

Several algorithms exist for the classification of data [13] 37 
different machine learning algorithms were tried including Bayes Net
works, Naive Bayes, Random Forest, LAD, Tree LMT as part of these 
experiments. In this study the three most common (Support Vector 
Machine (SVM), logistical and J48) were the most informative when 
assessed. Within supervised machine learning paradigms, it is usual to 
trial more than one algorithm on each data set, as different algorithms 
have been shown to work better on different data sets [15]. The best 
method was determined empirically by experimentation. In this study, 
the Decision Tree inferred using C4.5 [16] was found to give more 
informative insight when evaluated using 10-fold cross-validation. The 
algorithms implemented using the WEKA software suite [17], which is 
an open source package written in Java. Before uploading the data into 
the software, any individuals with missing values were excluded. All 
results were presented as the percentages that correctly classified along 
with the Kappa score. To aid understanding for those unfamiliar with the 
analytic technique, the decision tree was visualised. The decision tree 
graphically illustrates the attributes the computer identified as impor
tant in correctly classifying the individuals and how they interrelate. 
WEKA has been used to assist the diagnosis and prognosis of many 
diseases and disorders since its development in 2009 [18]. Examples 
include Leukaemia [19], Breast Cancer [20], and Type 2 Diabetes [21]. 
Thus the C4.5 algorithm was used to identify which attributes are the 
most important to classify the patients into subgroups such as age at 
onset groups, male and female, and GAA repeat length groups. 

3. Results 

In the first experiment we sought to classify the patients in to 3 
subgroups according to their age of onset a) 0–25 years old, b) 26–39 
years old and c) 40 years and over. These subgroups are what have been 
traditionally used to classify patients by clinicians in practice and used 
to determined probable prognosis. We determined that the strongest 
classifier of age at onset disease subgroups is the GAA repeat number 
(the number of GAA repeats present in a patient’s genome at the FRDA 
locus). This is shown in Fig. 1 where nearly 89% were correctly classified 
with a kappa of 0.61 (Fig. 1). Furthermore, in any analysis removing this 
feature decreased the value of kappa (a measure of the accuracy of 
classification) very significantly. Since the results showed that the GAA 
repeat length was such a strong classifier we sought to classify patients 
into groups based on GAA repeat length alone with the algorithm 
determining which features are the best to predict GAA repeat length. 
We found an age at onset is almost the only feature needed to determine 
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the GAA repeat length. With an age of onset below 18 predicting the 
repeat length with high accuracy if the GAA repeat is more than 500bp 
(Fig. 2). This indicates the importance of accurate measurement of the 
number of repeats as a prognosis tool above any other measure including 
the SARA measurements, and confirms that the number of repeats is the 
best prognostic tool in FRDA and is strongly linked to the age at onset 
disease. 

For the next experiment we sought to identify the key features that 
could signify progression points of the disease. The patients were 
manually subdivided into 4 groups according to age of onset: a. 0–5, b. 
6–25, c. 26–39, d. Over 40 years. The features that were important as 
markers of disease progression were then identified by classifying which 
features were most informative at particular time points after the onset 
of the disease (disease duration). These time points were set at i. 0–20, ii. 
20–30, ii. >30 years after onset. This was done by executing multiple 
classification experiments using data from patients in each age of onset 
group to attempt to classify them into one of disease duration groups, 
thereby identifying which parameters are better classifiers. There was 
not enough data points to carry out the analyses using the over 40 age of 
onset group. The other groups’ data identified features with average of 
76% accuracy (Kappa 0.4217) that could subdivide these groups into the 
three disease duration groupings. These were elements of the SARA 
score, the cardiac ejection fraction and activities of daily living, with less 
importance on INAS. Interestingly, cardiac features are not informative 
as indicators in patients with an age at onset above 26 years indicating 
that these features do not change significantly with time in these 

patients. The converse was true for patients with an onset of 5 years or 
younger. 

To establish if there is a difference in severity of male and female 
patients with similar ages of onset and repeat expansions, and when 
taking into account all the features, we attempted to classify patients 
according to gender. This experiment was suggested after a preliminary 
examination of a subset of the data: All the features were examined for 
their difference in male and female patients using regression analysis 
and classification methodologies. The subset of data consisted of 80 
patients based in the UK and all seen at the same London clinic. We 
found no significant difference in any of the features between male and 
females using statistical analysis except ejection fraction with a p value 
of 0.002 and possibly left ventricular posterior wall thickness at diastole 
(LVPWd) with a p value of 0.054. On regression analysis the data also 
showed that female patients retain a higher ejection fraction as the 
disease progresses than males. These results are shown in Table 1 and 
Fig. 3a and b and c. 

This led us to hypothesis that male and female patients could be 
classified successfully if a subset of cardiac features were used. Using the 
full cohort of patients in the EFACTS study we found that males and 
females can be correctly classified by gender 69.4% of the time, indi
cating a possible difference in how the disease affects males and females 
however the kappa score is only 0.3. It was indeed the cardiac features 
which classified the patients most accurately (Fig. 4). As a consequence 
of our analysis we can show that cardiac features are less severe in fe
males than males with a classification accuracy of 65.3%, with left 
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ventricular posterior wall thickness at diastole (LVPWd) the best clas
sifier, usually being less than 10.3 mm in females. The classification 
results also showed that female patients are more likely to retain sinus 

rhythm and a larger ejection fraction. 

Fig. 1. Decision tree showing which features 
correctly classifying patients into the following “age 
at onset” groups: early, middle and late (88.7% 
correctly classified, kappa ¼ 0.61). When considering 
ejection fraction as a discriminator a result of be
tween 60 and 65% is considered normal clinically 
however the algorithm considers 65% to be a good 
classifier of the groups with fewer GAA repeats. 
However it should be noted that altered left ventric
ular ejection fraction is of worse prognosis and can 
occur in patients with smaller GAA; the impact of 
which may more important for group b.   

Fig. 2. Decision tree showing which features suc
cessfully classify patients into groups of similar GAA 
repeat size (82.2% correctly classified, kappa ¼ 0.56). 
This affirms the results of the previous experiment in 
that age of onset can be used as the strongest indi
cator of GAA repeat length. Other features indicated 
on the decision tree whilst useful are far less infor
mative and are only secondary classifiers. Syncope is 
recorded as a binary integer with relatively few pa
tients reporting this symptom, likewise gynae or 
urological problems, and neither is further described 
in the data set so for those patients who have suffered 
these, the cause is unknown and it may not be related 
to the FRDA. Pes cavus however is noted to be a 
symptom of FRDA and therefore is more notable as a 
classifier in this experiment.   
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4. Discussion 

It is known that the expansion of the intronic GAA triplet repeat on 
the shorter allele of the FXN locus is associated with age of onset of 
disease, with a younger age being associated with a longer repeat and 
greater disease severity. Further the disease progression rate of patients 
has long been linked to age at onset which, until accurate GAA repeat 
length could be determined, was left to clinical observations. The ability 
to show a more exacting correlation between these has been shown 
using regression and statistical analyses [5]. Thus our analysis agrees 
with these previous results. What has not been shown before is just how 
much more informative the GAA repeat length measure is than any other 
measurement taken by clinicians to determine the prognosis of a patient. 
Our results stress the importance of very accurately determining GAA 
repeat length in patients on diagnosis to more precisely determine 
possible age of onset, disease severity and prognosis, the other measures 
being subsidiary to this. GAA repeat length may in the future also be 
important in identifying which patients are more likely to respond to a 
treatment and determine when treatments should begin so as to halt the 
neurodegeneration. The results also suggest that some of the huge 

battery of tests that patients undergo, are less informative when trying to 
predict progression, with only some elements of the SARA test, activities 
of daily living and some cardiac measures affording any discriminatory 
value for classifying patients from a computational analysis point of 
view. Thus we suggest that some tests which we have been shown to be 
of lesser value could be omitted from the monitoring process. This agrees 
strongly with the work of the EFACTs consortium who considered each 
measure individually [5]. We considered in our analyses that some 
measures, particularly those that are patient self-reported could be less 
informative in part due to the subjective nature of some of these mea
sures and inter-rater variation, however the data in this study was 
carefully cross controlled for this. We acknowledge however that such 
subjective data is not as reliable as the objective measures due to its 
subjectiveness rather than its ability to inform. 

In attempting to discover what features best distinguished progres
sion points of the disease we identified that SARA score, the cardiac 
ejection fraction and activities of daily living when combined were the 
most informative features to monitor progression, with less importance 
on INAS. This agrees strongly with the work of Reetz et al. which looked 
at each of these measures singly [5]. Interestingly we additionally found 
that cardiac features are not informative as indicators in patients with an 
age at onset above 26 years indicating that these features do not change 
significantly with time in these patients mirroring the less severe disease 
phenotype seen in these patients. The converse was true for patients 
with an onset of 5 years or younger who suffer a more severe prognosis. 
Since the GAA repeat length can change over time in a patient we sug
gest that a study monitoring changes in the features which best monitor 
progression should be conducted alongside ongoing monitoring of the 
repeat length, to establish if any changes in repeat length have a sig
nificant effect on progression or not, or if it is only the length at a very 
early age that is important. 

Since there is a suggestion that male and female patients react 
differently to carrying a similar length deleterious GAA repeat expansion 
(personal communication from the clinicians of the EFACTS con
sortium), with women showing less severe symptoms, we sought to 
determine if male and female patients could be successfully classified 

Table 1 
Statistical analysis of ejection fraction and LVPWd by gender.   

Male Female p-value 

Ejection fraction mean 58.48065 66.72632 0.002 
Ejection fraction SD 12.40368 9.089129 
LVPWd mean 10.5625 9.47381 0.054 
LVPWd SD 2.450306 2.536471  

Fig. 3a. Ejection fraction by gender showing the mean for each.  

Fig. 3b. LVPWd by gender showing the mean for each.  

Fig. 3c. Correlation between Ejection Fraction and disease duration showing 
that ejection fraction decreases with length of time the patient has suffered with 
the disease. This has been observed previously in previous studies [1]. The 
novel finding is that this decrease is less pronounced in female patients 
compared to males. The regression correlation for each gender is shown along 
with the intersect with the y axis. (The slope for males is � 0.3575 compared to 
� 0.1974 for famles and the intersect is 65.676 for males and 71.075 for females 
(also shown in the figure)). Pearson Correlation Coefficient was calculated to be 
very weak for the genders: Female R ¼ � 0.2694, P ¼ 0.09 and for males R ¼
� 0.2632, P ¼ 0.15. 
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with any accuracy and using which classifiers. It was interesting that we 
were able to show that they could be correctly classified using cardiac 
measures, most notably left ventricular thickness, sinus rhythm and 
ejection fraction all be it with a kappa score of 0.30. 

Of the cardiac features included by the computational analysis in the 
decision tree, three are known to have a prognostic value namely a) 
sinus rhythm, b) hypertrophy and c) ejection fraction.  

a) Sinus rhythm (no sinus rhythm meaning atrial fibrillation) which is 
used to indicate disease severity.  

b) Hypertrophy (cardiac wall thickness) which is highly dependent on 
the size of the shorter GAA repeat. It has been shown that most FRDA 
patients are known to have a moderate cardiac concentric hyper
trophy (increased intraventricular septal and posterior wall thick
ness). Moreover in a study by Pousset [22] there was a good 
correlation between septal wall thickness assessed by echo and MRI 
where hypertrophy was defined according to the value of septal wall 
thickness or of left ventricular mass. Further it was been shown that 
posterior wall thickness tended to decrease over time [22], the 
evolution of septal wall thickness however remains unclear.  

c) Left ventricular ejection fraction (contractility) which in FRDA, 
cardiac involvement may progress to LV systolic dysfunction and 

heart failure. In FRDA cardiac function deteriorates slightly with 
time, but only some patients develop significant alterations of LVEF. 
The discrimination of the groups at 43% is a significant alteration of 
LV ejection fraction. When a patient had “no sinus rhythm” the LVEF 
could decrease however why the hypertrophy (intraventricular 
septal thickness) is a classifier in the decision tree we cannot explain 
at this time. 

Furthermore, the data suggests female patients show less severe 
cardiac features as their disease progresses. The majority (53%) of all 
patients studied in the EFACTs study showed a decrease in ejection 
fraction over time, however the women less so than the men. It is 
therefore possible that female patients maintain their near normal car
diac function for longer as the disease progresses due to the possible 
protective effect of oestrogen [23]. FRDA patients are known to have 
oxidative stress [24] and there is evidence that oestrogen exerts a pro
tective effect in FRDA patients by reducing oxidative stress in mito
chondria. In so doing the mitochondria in females are more able to 
generate the required amounts of ATP to sustain muscle function [25]. 
Thus this may go some way to explain a possible gender difference in 
FRDA patients. 

Studies have shown that there are gender differences in cardiac 

Fig. 4. Decision tree showing which features classify patients according to gender (65.3% correctly classified, kappa ¼ 0.30).  
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features e.g. Sandstede et al. [26] and so our data may just reflect 
maintenance of this difference. Additionally with increased age, males 
in the healthy population show a significant decrease in volume and 
mass indices for both heart ventricles, while female values remained 
unchanged [27]. Ventricular thickness is a well know measure of the risk 
of heart failure as identified in a study by Spirito et al. [28]. However in 
FRDA the thickening of the wall of the ventricle does not compensate the 
alteration of the contractility. We rather observed a thinning of the wall, 
when the size of the heart increases and the ejection fraction decreases 
(Pousset, personal communication). 

Cardiomyopathy, usually in its moderate hypertrophic form may 
progress to LV systolic dysfunction and heart failure in FRDA patients. In 
FRDA cardiac function deteriorates slightly with time, but only some 
patients develop significant alterations of LVEF. Its presence decreases 
life expectancy explicitly despite moderate clinical symptoms. The 
neurological deficit (such as ataxia or muscle weakness) shows no clear 
relationship with the degree of cardiac involvement [29 and references 
therein]. Further it has be shown that the extent of left ventricular hy
pertrophy increases correspondingly with the size of the GAA expansion 
in 20% of patients in an earlier study [30]. A more recent study by 
Peverill et al. [31] investigated the effects of FRDA on regional long axis 
function of the left and right ventricles, and also the relationship of long 
axis systolic (s’) and early diastolic (e’) peak velocities with GAA repeat 
number of the FXN alleles finding all the regional LV s’ and e’, and both 
RV s’ and RV e’, were lower in individuals with FRDA compared to 
controls. Also the LV septal wall thickness (SWT), RV s’ and RV e’ were 
both inversely correlated with the shorter allele repeat, but not with the 
longer one. Whereas for anterior and lateral s’ were the reverse re
lationships with the allele lengths. Additionally age correlated inversely 
with e’ but not s’. Longer repeat expansion has also been correlated with 
lower cardiomyocyte counts in patients further linking the disease with 
cardiac abnormalities [32]. In frataxin conditional knockout mice, car
diac hypertrophy is always followed by dilated cardiomyopathy and 
heart failure [33]. Recently the presence of cardiovascular disease has 
been shown to be predicted by sex (male odds ratio ¼ 1.688, CI: 
1.280–2.423) by Reetz et al. [6]. Thus the finding that females in our 
study suffer less hypertrophy than the males is notable. 

Some echocardiographic studies show a higher LVEF (left ventricular 
ejection fraction) in women than in men, but some magnetic resonance 
imaging (MRI) studies have found comparable LVEFs between genders. 
[34 and references therein]. It is interesting that these differences are 
maintained during disease progression in our data. The larger ejection 
fraction in women therefore could offer some protective effect to those 
with the disease and prevent thickening of the ventricles seen more 
prominently in men, which are developed to compensate for cardiac 
insufficiency. This is a particularly important finding since cardiac 
complications are a significant cause of mortality in these patients [35]. 

In summary we believe that computational techniques that perform 
complex analyses can provide insights into large medical data sets such 
has been collected in this study. Here we have shown that some data 
features (shown in the results) are more informative than others in 
aiding the prognosis and charting the progression of FRDA. We have also 
shown that there is possibly a difference in the way male and female 
suffers react to the disease. In the future we hope to employ further 
techniques to provide additional insights into this data set. 
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