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1. Introduction 

One of the main lessons learned from the great 2004 Sumatra-Andaman earthquake was the 

fact that tsunami generation process due to large subduction earthquakes is rather 

complicated. Hence, modelling tsunamis by assuming a simple rupture on a megathrust 

may not account for actual variations of observed tsunami runups in the near field. From 

this viewpoint, the 2004 Indian Ocean tsunami was a milestone in tsunami research in that it 

clearly showed the effect of secondary tsunami sources on intensifying the near-field 

tsunami heights. The phenomena that are triggered by the main subduction earthquakes 

and locally contribute to tsunami in addition to the main slip on the subduction zone are 

known as secondary tsunami sources. The most important secondary sources are submarine 

landslides, whose effect was mainly evidenced during the 1992 Flores Island tsunami 

(Synolakis and Okal, 2005; Hidayat et al., 1995), and splay fault branching which was 

observed during some large subduction earthquakes such as the 1946 Nankai tsunami 

(Cummins and Kaneda, 2000), 1960 Chilean and 1964 Alaskan tsunamis (Plafker, 1972), and 

most recently during the 2004 Sumatra-Andaman earthquake and tsunami (Sibuet et al., 

2007).      

Here, in this chapter we focus on splay faults which are known as one of the important 

secondary tsunami sources and were responsible for a large part of tsunami deaths during 

past tsunamis. Splay faults, sometimes known as imbricate faults, are steeply-dipping thrust 

faults which branch upward from the subduction zone to the seafloor. As splay faults often 

have steep dip angles, they are capable of producing large seafloor deformation which can 

significantly increase tsunami runup heights in the near-field. Figure 1 schematically shows 

a splay fault which branches from the plate boundary. As shown, an abrupt increase in 

seafloor uplift happens at the location of the splay fault. It is clear that this enhanced 

seafloor uplift will cause larger tsunami wave heights in the near field. 

With this background, it is clear that tsunami hazard assessment without taking into 
account the effect of possible splay fault branching due to large subduction zone 
earthquakes may result in underestimating the actual existing tsunami hazards. Hence, in 
this chapter we study the consequences of splay faulting on tsunami waves in the near-field. 
First, we make a review of some actual splay faulting cases. Then, the characteristics of splay 
fault branching from the main plate boundary will be discussed. In the next section, 
numerical modeling of tsunami will be performed to investigate the effect of splay faulting 
on tsunami wave heights in the near-field. Finally, we make some practical 
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recommendations on how to take into account the effect of splay faulting for tsunami 
hazard assessment. 
 

 

Fig. 1. Sketch showing a splay fault branching upward from a subduction zone plate 
boundary (bottom) along with the variation of seafloor uplift due to the earthquake (top).   

2. Characteristics of splay fault branching  

Although we do not intend in this chapter to study the dynamics of splay fault branching 
from geological and seismological point of views, but basic information on splay faulting 
can be useful in view of tsunami hazard assessment.   
Many studies show that splay faults exist in most subduction zones in the world (Sykes and 
Menke, 2006; Ryan and Scholl, 1989). According to Sykes and Menke (2006), splay faults are 
common in most modern accretionary prisms, which grow as sediments are added from the 
upper plate. These thrust faults in accretionary prisms may rupture due to great subduction 
zone earthquakes. Fukao (1979) suggested that rupture propagation onto splay faults within 
accretionary wedges is one of the main mechanisms for generating large tsunamis. 
According to Park et al. (2002), as splay faults are relatively weak zones within accretionary 
prisms, it is likely that these weak zone to be repeatedly selected for rupture propagation of 
subduction earthquakes. 
In fact, different studies showed that the total slip during a large megathrust earthquake can 
be partitioned between the subduction-zone plate boundary and splay faults within the 
accretionary wedge (e.g., Baba et al., 2006). The amount of slip that transfers from the plate 
boundary onto splay faults during large subduction earthquakes and the pattern of slip 
partitioning between them can be an important issue in view of tsunami hazard assessment 
because the vertical seafloor uplift due to splay faults is relatively larger resulting in large 
tsunamis. However, the pattern of slip partitioning between subduction zone and splay 
faults seems casual (Park et al., 2002; Baba et al., 2006). In addition, it is not known if splay 
faults can rupture occasionally by themselves or not (Sykes and Menke, 2006).    
Despite this, some authors made efforts to study the complex phenomenon of splay fault 
branching during large subduction earthquakes. Cooke (1997) studied the effect of frictional 
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strength variations near fault tips on the pattern of splay fault branching. The result of his 
work is shown in Fig. 2 indicating that gradual changes in frictional strength may produce 
broad zones of splay fractures, whereas abrupt changes in frictional strength produce single 
splay fractures. Kame et al. (2003) studied the effects of pre-stress state, rupture velocity, 
and branch angle on dynamic fault branching. Their study showed that the pre-stress state 
has a significant effect on the most favored direction for dynamic branching. Kame et al. 
(2003) showed that the enhanced dynamic stressing of a rapidly propagating rupture could 
nucleate failure on a fault which would not necessarily be judged the most favorably 
oriented one based on the pre-stress state. In summary, Kame et al. ‘s (2003) study revealed 
that the tendency of a fault to branch depends on the orientation of the local pre-stress field 
relative to that of the main fault, the rupture velocity, and the angle between the main and 
the branching faults.  
Fliss et al. (2005) studied the relationship between fault branching and rupture directivity. 
Wang and Hu (2006) presented a new theory to explain accretionary prisms in subduction 
earthquake cycles. This theory provides a conceptual framework for investigating the 
evolution history of accretionary prisms and forearc basins and related phenomena like 
splay-faulting during great earthquakes and its role in accommodating deformation and 
generating tsunami. 
 

 

Fig. 2. The effect of frictional strength variations near fault tips on the pattern of splay fault 
branching. Uniform friction coefficient produces single fractures (top and middle graphs). 
Linear increases in friction coefficient can produce broad zones of splay fractures near the 
fault tip (bottom graph). Region of potential splay cracks is shaded (After Cooke, 1997). 
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Others who studied the mechanism of splay fault branching are: Bhat et al. (2007), Schulson 
et al. (1999), and Paliakov et al. (2002).  

3. Review of some splay faulting cases 

The pronounced effect of splay faulting on tsunami wave heights in the near-field was 
evidenced during some large tsunamis like 1946 Nankai earthquake and tsunami, 1960 
Chilean and 1964 Alaskan earthquakes and tsunamis, and most recently during the 2004 
great Sumatra-Andaman earthquake and tsunami.  
The seafloor deformation caused by the 1964 Alaskan earthquake along with the tectonic 
setting of the Aleutian subduction zone is shown in Fig. 3. As can be seen, the 1964 Alaskan 
earthquake with a moment magnitude of Mw 9.2 (Kanamori, 1977), was associated with a 
major splay faulting at the location of the Fatton Bay Fault which locally increased the 
seafloor uplift by a factor of 2. The seafloor uplift was around 12 m at the location of the 
splay fault branching (Fig. 3-top) whereas its maximum value was around 6 m at the 
adjacent regions. It is clear that such a large seafloor deformation can cause a catastrophic 
tsunami because the maximum near-filed tsunami runup is a direct function of the seafloor 
deformation at the earthquake source (Synolakis, 2003).  In other words, the larger the 
vertical seafloor deformation in the earthquake source, the larger the tsunami runup heights 
that is produced.  
The other well-known case of splay fault branching during a large subduction earthquake is 
the 1960 Chilean earthquake and tsunami which is the largest ever recorded earthquake 
with a moment magnitude of Mw 9.5 (Kanamori, 1977). The rupture mechanism of this 
earthquake was thoroughly studied by Plafker (1972). A summary of the seafloor vertical 
uplift caused by the earthquake and the tectonic setting of the Peru-Chile subduction zone is 
shown in Fig. 4. It is clear in Fig. 4 that the seafloor uplift is significantly larger in the 
vicinity of the splay fault compared to that of the adjacent regions.  
Other cases of splay fault branching are the 1946 Nankai (Mw 8.3) and 1944 Tonankai (Mw 
8.1) earthquakes both originated at the Nankai subduction zone, southwest Japan. Studies 
show that perhaps the Nankai subduction zone is susceptible to splay fault branching and 
many splay faults exist in this subduction zone (Cummins and Kaneda, 2000 ; Sunagawa 
and Hayashi, 2007;  Cummins et al., 2001). The presence of splay faults at the location of 
Nankai subduction zone was studied by Park et al. (2002) using seismic reflection data (Fig. 
5). The location of splay faults are shown in Fig. 5 by green arrows.  
We may point out the great 2004 Sumatra-Andaman earthquake and tsunami as another 
example. Plafker et al. (2007) and Sibuet et al., (2007) presented evidence that the 2004 
Indian Ocean tsunami was associated with a splay fault originating at the interplate fault 
plane which increased the tsunamigenic effects. 

4. Modelling the effect of splay fault branching on tsunami waves  

In this section, the effect of splay faulting in a subduction zone on tsunami waves will be 
studied using numerical modelling of tsunami waves. As a case study, the Makran 
subduction zone (MSZ) at the north-western Indian Ocean will be considered for our 
modelling efforts.  
As shown in Fig. 6, the MSZ is formed by the northward subduction of the Arabian plate 
beneath the Eurasian one. This zone extends east from the Strait of Hormoz in Iran to near  
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Fig. 3. Seafloor deformation caused by the 1964 Alaskan earthquake (top), and branching of 
a splay fault at the Patton Bay Fault location (bottom). (After Plafker, 1972). 

 

 

Fig. 4. Seafloor deformation caused by the 1960 Chilean earthquake (top), and branching of a 
splay fault (bottom). (After Plafker, 1972). 
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Fig. 5. Multichannel seismic profiles obtained at the location of Nankai subduction zone 
showing the splay faults (A). Green and black arrows show motions of the splay fault slip 
and the décollement or normal fault, respectively. Locations of both the splay fault's initial 
branching and the décollement stepdown to the top of the oceanic basement are marked in 
red dotted circles. Note active normal faults (inset B) cutting the well-stratified, landward 
tilting cover sequence and reverse polarity reflection (inset C) of the splay fault at ~7km 
depth around shot point (SP) 2365. (After Park et al., 2002).  
 

 

Fig. 6. General map of the Makran subduction zone and its tectonic setting.  

Karachi in Pakistan with a length of about 900 km. The reasons that we have chosen the 
MSZ for our case study are twofold: firstly, Heidarzadeh et al. (2008) presented evidence 
that a splay fault may have been responsible for the huge runup heights observed in the 
near field during the Makran earthquake and tsunami of November 27, 1945, and secondly, 
Mokhtari et al. (2008) showed that many splay faults are present in the MSZ using 2D 
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seismic reflection profiles. Figure 7 is an example of the 2D seismic reflection profiles 
presented by Mokhtari et al. (2008). In addition, the Makran region has one of the largest 
accretionary wedges on the earth with an extreme sediment thickness of about 7 km 
indicating a high probability for splay fault branching due to large subduction earthquakes. 
Therefore, it can be seen that splay fault branching is a matter of concern in the MSZ and it 
is likely that this phenomenon occur during large subduction earthquakes in this region. As 
a result, the possible effect of splay fault branching on tsunami waves should be taken into 
account for any tsunami hazard assessment in this region. 
Here, to quantitatively evaluate the effect of splay faulting on tsunami waves, we numerically 
model a large earthquake and the consequent tsunami in the MSZ twice: with and without 
considering a splay fault branching. In the following subsections, the details of our modellings 
will be presented. 
 

 

Fig. 7. An example of 2D seismic reflection profiles obtained at the Makran subduction zone 
(MSZ). The thick lines show the locations of splay faults. The inset at the bottom-right shows 
the location of the profile in the MSZ (After Mokhtari et al., 2008).  

4.1 The earthquake scenario and tsunami source modelling   
To realistically choose the scenario earthquake for our tsunami simulations, we first review 
the history of large earthquake occurrence in the MSZ. This will help understand which 
parts of the MSZ are susceptible to fail into large-size earthquakes. 
Historical earthquakes in the MSZ were studied by some authors including Quittmeyer and 
Jacob (1979), Page et al. (1979), Ambraseys and Melville (1982), and Byrne et al. (1992). A 
review of these studies indicates that the Makran region experienced at least seven large 
earthquakes (M>7) in the past 500 years rupturing the plate boundary in four different 
segments as shown in Fig. 8. Also, the information of these large earthquakes is summarized 
in Table 1. As indicated in Fig. 8 by a question mark, the event of 1483 in the western 
Makran is uncertain, and some authors believe that the western Makran is entirely aseismic. 
As the earthquake scenario in this study, we suppose that the blocks A, B, and C shown in 

Fig. 8 are ruptured simultaneously. This scenario was previously used by Okal and 

www.intechopen.com



 The Tsunami Threat - Research and Technology 

 

74 

Synolakis (2008). The reason behind this is the study by Stein and Okal (2007) who proposed 

that the maximum earthquake size expected from a subduction zone depends on the length 

of a continuous fault system along a convergent plate boundary. This continuous segment is 

about 500 km (blocks A, B, and C in Fig. 8) for the MSZ as the segmentation of this 

subduction zone was confirmed by Byrne et al. (1992). 
The tsunami modeling process can be divided into three parts: generation, propagation, and 
runup (Synolakis, 2003). Generation modeling forms the first stage in the modeling of 
tsunami, and includes the calculation of the initial disturbance of ocean surface due to the 
earthquake–triggered deformation of the seafloor using seismic parameters. 
 

 

Fig. 8. Large historical earthquakes in the Makran subduction zone (stars) showing the 
different segments of the plate boundary which ruptured due to large earthquakes 
(modified from Byrne et al., 1992 and Okal and Synolakis, 2008).  
 

No. 
Date 

(yyyy-mm-dd)
Latitude 

(oN) 
Longitude

(oE) 
Ms Mw 

Intensity 
(MM) 

Focal depth 
(km) 

1 1483-??-?? 24.90 57.90   10  

2 1765-??-?? 25.40 65.80   8–9  

3 1851-04-19 25.10 62.30   8–9  

4 1864-??-?? 25.12 62.33   6–8  

5 1914-??-?? 29.70 63.80 7.0    

6 1945-11-27 24.50 63.00  8.1  25.0 

7 1947-08-05 25.10 63.40  7.6  35.0 

Table 1. Summary of the information of the past large earthquakes in the MSZ. 
Abbreviations are: MM, Modified Mercalli; Ms, Surface wave magnitude; Mw, earthquake 
moment magnitude; oN, degree North; and oE, degree East.  
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The algorithm of Mansinha and Smylie (1971) was used to calculate the seafloor 
deformation. This algorithm is based on seismic parameters that include the strike, dip, and 
slip angles, the amount of slip, the dimensions of the ruptured area (length and width), and 
the earthquake depth. Empirical equations of Wells and Coppersmith (1994) were used to 
estimate the corresponding earthquake magnitude of the fault rupture followed by 
calculation of the rupture width and surface displacement. We validated the predictions of 
the empirical equations using the available seismic parameters of the 1945 event. The only 
instrumentally recorded large earthquake at Makran is the event of 1945 (Mw 8.1) rupturing 
approximately one–fifth of the plate boundary and causing about 7 m of slip (Byrne et al., 
1992). Table 2 (first row) presents the source parameters for the scenario earthquake that we 
evaluate in this study. As shown in Table 2, the scenario earthquake features a seismic 
moment of about 1.95 × 10 22 N m (1.95× 10 29 dyne × cm). 
For the case that the earthquake is associated with splay fault branching, a hypothetical 
splay fault inspired by the 1946 Nankai and 1960 Chilean earthquakes was assumed to 
branch during the scenario earthquake. Table 2 (rows 2 and 3) presents the seismic 
parameters of the splay fault and the main plate boundary slips for this new earthquake. We 
note that the seismic moment of this earthquake was kept unchanged and was the same as 
that of the first scenario (Table 2- last column). Therefore, due to the slip on the splay fault, 
the maximum slip on the main plate boundary was reduced. 
Using the seismic parameters presented in Table 2 for the two cases of with and without 
splay fault branching, tsunami source modelling is performed whose results are shown in 
Fig. 9. The maximum seafloor uplift due to the scenario earthquake was about 4.5 m without 
splay fault branching (solid line– Fig. 9-top) which was raised to 7.2 m due to the presence 
of the splay fault. However, it should be noted that Fig. 9 shows that the increase in the 
amount of the seafloor uplift is limited to the areas close to the splay fault. 
 

Case Mw
Slip 
type 

L W D H δ λ φ 
Earthquake 

moment 
(N.m) ┼ 

Without 
SF 

8.6 PB slip 500 100 13 25 7 90 265 1.95× 10 22 

PB slip 500 100 12 25 7 90 265 
With SF 8.6 

SF slip 100 50 10 15 30 90 265 
1.95× 10 22 

Table 2. Source parameters of the scenario earthquake with and without splay faulting in the 
MSZ. Abbreviations are: SF, Splay Fault; Mw, earthquake moment magnitude; PB, Plate 
Boundary; L, rupture Length in km; W, rupture Width in km; D, fault Displacement in m; H, 
earthquake depth in km; δ, dip angle in degrees; λ, slip angle in degrees; and φ, strike angle 
in degrees. The rigidity of the earth is considered to be 3 × 10 10 N m–2.  

4.2 Tsunami modelling   
The numerical model TUNAMI–N2 was used for modelling tsunami propagation and 
coastal amplifications. The model was developed by Nobuo Shuto and Fumihiko Imamura 
of the Disaster Control Research Center in Tohoku University (Japan) through the Tsunami 
Inundation Modeling Exchange (TIME) program (Goto et al., 1997). TUNAMI–N2 is one of 
the key tools for numerical modeling of wave propagation and coastal amplification of  
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Fig. 9. Results of tsunami source modelling for the cases of without (right panel) and with 
(left panel) splay fault branching.  

tsunami in relation to different initial conditions (Yalciner et al., 2004). A similar 
methodology is used in the numerical model MOST (Method Of Splitting Tsunami) 
developed by Titov and Synolakis (1997). TUNAMI–N2 and MOST are nonlinear shallow 
water codes that have yielded satisfactory agreement with laboratory and field data (Yeh et 
al., 1996). 
We used a 833 × 444 grid and 369852 grid points in our computational domain. The time 
step was 1.0 s to satisfy the stability condition. The duration of tsunami propagation was 3 
h. Bathymetry data provided through the GEBCO digital atlas (General Bathymetric Chart 
of the Oceans) was applied in this study (IOC et al., 2003). As runup modeling is not 
applicable to large computational domains, we calculated the maximum positive tsunami 
heights along the coast which give a reasonable approximation of the runup heights (Tinti et 
al., 2006). 
Snapshots of tsunami propagation for both cases are shown in Fig. 10 at different times of 
10, 30, and 60 minutes after the earthquake. Also, to evaluate the effect of splay faulting on 
tsunami wave heights, the distribution of tsunami wave heights along the north coast of the 
MSZ (i.e., the southern coast of Iran and Pakistan) are shown in Fig. 11 for the both cases. 
Results of tsunami modeling (Fig. 11) reveal that possible splay faulting during large mega–
thrust earthquakes in the MSZ can locally increase the maximum tsunami wave height by 
nearly a factor of 2. Based on Fig. 11, the maximum simulated wave height is about 12 m in 
the vicinity of the splay fault while it was about 6 m at the same location in the previous 
simulation. Similar to the seafloor uplift pattern, the effect of splay fault branching on the 
distribution of tsunami wave height is localized to the vicinity of the splay fault. In other 
words, the effect of possible splay fault branching on tsunami is limited to the near field. As 
shown in Fig. 10, no significant difference can be observed in tsunami snapshots for the two 
cases of with and without splay faulting in the far field. 
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Fig. 10. Snapshots of tsunami simulations due to the two cases of without (right columns) 
and with (left columns) splay fault branching at different times. 

 

 

Fig. 11. Distribution of tsunami wave heights along the north coast of the MSZ (i.e., the 
southern coasts of Iran and Pakistan) due to the two cases of with and without tsunami. 
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The above results are consistent with the observations of tsunami runup during some actual 
large tsunami. For example, Plafker et al. (2007) reported that the peak runup was as high as 
39 m west of Banda Aceh during the 2004 Indian Ocean tsunami while they were about 5 to 
12 m along the north coast and 7 to 20 m along the west coast of Indonesia. Plafker et al. 
(2007) attributed the huge runup height observed in west of Banda Aceh to splay faulting.  

5. Indications for tsunami hazard assessment and recommendations 

We showed that the branching of a hypothetical splay fault from the plate boundary during 
large subduction earthquakes can locally increase the maximum wave height by nearly a 
factor of 2. In our modeling, a slip of 10 m was supposed on the splay fault. It is evident that 
the larger the slip on the splay fault, the larger the runup height that is produced. The 
increase of local runup by a factor of about 2 or more due to a splay fault branching was 
previously documented by field surveys, e.g., the 2004 Indian Ocean tsunami (Plafker et al., 
2007), the 1960 Chilean and 1964 Alaskan tsunami (Plafker, 1972). Therefore, for planning 
purposes, it seems reasonable and conservative to consider that local runup may be at least 
twice the amount estimated from modeling studies. 
As discussed by some authors previously, tsunami sources due to large subduction 
earthquakes can be more complicated than a simple slip on the plate boundaries as other 
phenomena like splay fault branching are likely to occur. Therefore, it is essential that these 
effects to be taken into account for tsunami modelling.  
Furthermore, the pronounced effect of splay faulting on the local runup height may 
highlight the need for future research to investigate which parts of a particular subduction 
zone are more likely to experience this phenomenon during large earthquakes.     

6. Conclusions 

To quantitatively investigate the effect of possible splay faulting on intensifying tsunami 
wave heights, a large earthquake and tsunami (Mw 8.6) was numerically modelled in the 
Makran subduction zone for two cases of with and without splay fault branching. In this 
study, a hypothetical splay fault was used whose seismic parameters were inspired by the 
1946 Nankai and 1960 Chilean earthquakes. Modelling of a hypothetical splay fault showed 
that it can locally increase the maximum wave height by nearly a factor of 2. Hence, for 
planning purposes, we propose a safety factor of 2 for the tsunami wave heights obtained 
from regular tsunami simulations.     
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