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Abstract. This paper describes our approach to construct a scalable system for 

unsupervised information extraction from the behaviour change intervention 

literature. Due to the many different types of attribute to be extracted, we adopt a 
passage retrieval based framework that provides the most likely value for an 

attribute. Our proposed method is capable of addressing variable length passage 

sizes and different validation criteria for the extracted values corresponding to each 
attribute to be found. We evaluate our approach by constructing a manually 

annotated ground-truth from a set of 50 research papers with reported studies on 

smoking cessation. 
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1. Introduction 

Behavioural change interventions (BCIs) are policies, activities, services or products 

designed to cause people to act differently from how they would have done otherwise. 

They involve attempting to change either members of the target population (in terms of 

their knowledge, skills, feelings or habits), or their social or physical environment.  

Research findings have the potential to provide invaluable knowledge to help with 

developing or selecting BCIs but this evidence needs to be synthesised and interpreted 

[4]. Since the scientific literature on behaviour change is vast and accumulating at a 

rapidly accelerating rate, it is difficult to achieve this manually. This necessitates the 

development of automatic information extraction (IE) approaches to construct a 

knowledge base of behaviour change findings. An automated IE approach that extracts 

relevant pieces of information from BCI reports can act as a first step to design navigable 

interfaces that allow domain experts to easily find relevant pieces of information from 

previously reported studies. The extracted information can also be used as features to 

develop predictive models of outcomes for BCI thought experiments. 

IE approaches are typically supervised in nature. Sequence models, such as 

conditional random field, have been applied to extract information from unstructured text 

[2, 1]. Such supervised approaches mainly rely on the availability of manually annotated 

data to train the IE models. In contrast, this paper describes our work towards 

unsupervised information extraction (IE) from a collection of BCI evaluation studies. 

The main advantage of an unsupervised approach is that it does not rely on the 

availability of a labelled training data. The labelled data needed for an unsupervised 

method is for evaluation only. We make use of a manually annotated ground-truth from 

a set of 50 research papers with reported studies on smoking cessation. Our unsupervised 
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IE approach is based on a general passage retrieval framework for extracting a wide 

range of attribute values, ranging from characteristics of the study subjects to behaviour 

change techniques (BCTs). 

2. Passage Retrieval based IE Approach 

We approach the problem from an information retrieval (IR) point of view. We formulate 

a query for each information unit that we want to extract to obtain a list of passages 

ranked in descending order by their similarities with the query. To extract the answer 

value, we first make use of a validation criterion to filter out the likely answer candidates. 

We then score the candidate answers by a term proximity model that takes into account 

the differences in position between the query terms and the candidate answers.  

We now describe each component of our IE framework in more details. 

Indexing and Information Units. Text from each document is extracted and stored 

into separate fields such as ‘Introduction’, ‘Content’, ‘Table body’, ‘References’ etc. 

Such a field based representation of documents in the index allows application of field-

based retrieval models [5, 6]. Field-based representation provides the flexibility of 

incorporating prior beliefs in the passage scoring function. For example, the passage 

scoring function can consider the fact that a valid answer candidate found in the 

‘references’ section is less likely to be correct than those found in the ‘experiments’ 

section of a paper.  

For each attribute value to be extracted, we define an information unit (IU) 

comprised of: i) a type, ii) a query, iii) a validation criterion for the answer (e.g. the value 

of the average age attribute must be numerical) and iv) a threshold cosine similarity 

value between the query and retrieved passages. An IU can be either of type: i) value 
extraction (VE), where the system aims to extract a value of an attribute, e.g. the average 

age of the participants in the BCI study; or ii) detect presence (DP), where the system 

predicts whether there exists enough evidence in a reported study to suggest the presence 

of an attribute, e.g. the whether a study prescribed self monitoring of behaviour for the 

participants. The VE type IUs are associated with a validation criterion function, whereas 

the DP type ones are associated with a threshold similarity value.  

Equation 1 represents answer validation criterion function associated with a VE-type 

IU which assigns a value of 1 to a candidate answer term  (  being the vocabulary) 

if  satisfies some constraint, e.g.  is numerical. 

 (1) 

Equation 2 denotes the similarity threshold function associated with a DP-type IU, 

indicating that the function evaluates to 1 if the similarity between a retrieved passage 

and a query, denoted by , is higher than a threshold .  

 (2) 

Proximity-based Ranking Function. Each query in an IU can range from simple 

factoid seeking type, e.g. ‘the minimum age of the participants’ to more complex types, 

where the information resides in an arbitrarily long passage, e.g. ‘the follow up treatment 
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after intervention’. The queries are structured in nature with Boolean operators 

connecting the constituent terms. As a particular example, the query for extracting the 

‘age’ attribute is ‘participant AND (age OR year OR old)’, i.e. we are interested to 

retrieve passages that must contain the word ‘participant’ and should also have one or 

more of the words - ‘age’, ‘year’ or ‘old’. 

Given a query, the retrievable units comprise arbitrary passages of text. The system 

constructs an in-memory transient index of passages of text while processing each 

document in turn. A passage in this case is comprised of a fixed length window of w 

words. To account for different granularity in the range of contextual evidences, we use 

different values of w to define different retrievable units. In our experiments, we set w to 

5, 10, 20 and 30 words. The intention of retrieving passages is to restrict extraction of 

factoid answers to potentially relevant small semantic units of text rather than the text of 

the whole document. This passage based retrieval also ensures that the proximity of the 

answer terms to the query terms is taken into account. 

The position of the candidate answer term with respect to the query terms can 

potentially be useful to predict the relevance of a retrieved passage. Consequently, the 

ranking function needs to consider the relative distances between the positions of the 

query terms and the candidate answer terms. Equation 3 formally describes the proximity 

based ranking function between a passage  and a query , denoted by . 

 (3) 

The set A denotes the set of candidate answer terms, i.e. those terms for which the 

validation criterion function  returns 1. Practically, for each word in the passage that 

matches the query terms (q), the similarity function increases the score for passage by an 

amount that depends on the distance between that word and the candidate answer (

) . Specifically, we use a Gaussian function centered at each query term to determine 

the increase in similarity score. The parameter  controls the bandwidth of the Gaussians 

and is set to 1 in our experiments. Such term proximity based language models for 

ranking documents have been proposed in [7, 3]. The main difference between these 

approaches and our work is that our similarity function aggregates the positional 

differences for only the candidate answer terms instead of aggregating this over each 

term as in [7, 3]. 

To illustrate how the similarity function of Equation 3 works in practice, we consider 

the following four passages retrieved from a document in our dataset with the query 

defined for the ‘age’ attribute, i.e. the query ‘participant AND (age OR year OR old)’. 
Passage-1: ...avoided by smokers quitting before age 30 years... 

Passage-2: We enrolled participants aged 18 years and older... 

Passage-3: Age of smoking initiation (years)... 

Passage-4: ...3 additional years of life for every 100 40-year-old smokers... 

It can be seen that there are multiple places in the text where query terms occur 

(shown in bold). Passage-2 contains the relevant piece of information that needs to be 

extracted, suggesting that the age of the participants was 18 and over. The key 

observation is to note the number of query terms found in a passage and the differences 

in positions between the candidate answer term (which in this case is an integer number 

shown in italics) and those of the query terms. The lower this number is, the better is the 

likelihood of the passage to be relevant as modeled by Equation 3. For example, in 

passage-2, we can find 4 query terms at positions -2, -1, 1 and 3 relative to the candidate 
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answer term (the number 18). Passage-4, on the other hand, has 3 candidate answer terms 

and 3 query terms. The query terms ‘years’, ‘year’ and ‘old’ are placed -6, 1 and 2 

positions apart relative to the candidate answer term 40. It is easy to see that the sum of 

Gaussians, centered at the positions of the candidate answer terms (Equation 3), assigns 

a higher score to passage-2 as compared to passage-4. 

 

Table 1. Information extraction effectiveness of different IUs in our experiments 

Information to Seek Type Query Representation  Criteria/ 
Threshold 

Accuracy 

Minimum Age VE Participant AND (age OR year 

OR old) 

Integer 0.31 

Maximum Age VE Participant AND (age OR year 

OR old) 

Integer 0.12 

Average Age VE Average OR mean) AND (age 
OR year OR old) 

Numerical 0.46 

Gender VE Male OR female OR gender ‘male’,’female’ 0.32 

     

Average Accuracy for  Value Extraction Information Units 0.30  

Goal Setting(Behaviour) DP (goal OR target) AND (quit OR 

plan) 

0.25 0.74 

Problem Solving DP cope overcome identify 

problem relapse 

0.25 0.62 

Action Planning DP action plan intention quit 0.25 0.64 
Feedback on behaviour DP patient feedback 0.25 0.50 

Self-monitoring of 

behaviour 

DP self monitor diary track 0.25 0.88 

Social support 

(unspecified) 

DP quit instruction advice training 0.25 0.50 

Information about health 
consequences 

DP hazard smoking 0.25 0.60 

Information about social 

and environmental 
consequences 

DP harmful chemical 

environmental consequences 

0.25 0.82 

Pharmacological support DP nicotine gum patch NRT 

transdermal 

0.25 0.86 

Reduce negative 

emotions 

DP negative emotion stress 0.25 0.82 

Average Accuracy for Detect Presence Information nits 0.698 

3. Evaluation 

Dataset. The dataset used for evaluation is composed of a set of 50 published papers on 

BCI studies. The papers were selected by a team of 4 domain experts. Annotation 

corresponding to each IU for a particular document was performed by two human 

annotators using the EPPI tool 1 . Conflicts were resolved through discussions. The 

annotation process involved highlighting relevant pieces of text. For VE-type attributes, 

the highlighted text comprises the answer value, e.g. the value of average age. For DP-

type attributes, the highlighted text comprises evidence in the text which supports a given 

claim, e.g., the highlighted text ‘set a target quit date’ provides evidence to the DP 

attribute ‘Goal setting (behaviour)’.  

                                                           
1 http://eppi.ioe.ac.uk/CMS/Default.aspx?alias=eppi.ioe.ac.uk/cms/er4& 
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Results. Table 1 shows the average accuracy values measured per IU across the 

collection of 50 documents. For VE-type IUs, we consider the extracted answer to be 

correct if it matches exactly the ground-truth answer among papers with an annotation. 

In other words, the accuracy for VE type is measured as the ratio of the number of papers 

with correct prediction divided by the number of papers annotated with the attribute. For 

DP-type IUs, the system prediction is a Boolean value based on the similarity threshold 

(see Equation 2). The predicted answer is considered to be correct if the ground-truth 

contains an annotation for this attribute. We see that the overall accuracy is satisfactory 

for DP-types. While average accuracy for VE-type is around 30%, this should be 

understood as the baseline performance of our system. 

4. Conclusions and Future Work 

This paper presents initial research direction towards development of an 

unsupervised IE system for extraction of relevant features from BCI reports. We 

proposed a passage retrieval based approach that uses a combination of a term-proximity 

based model, answer validation criterion and a similarity threshold for extracting 

attribute values from relevant passages in BCI reports. Experiments conducted on a set 

of 50 documents show that the proposed approach yields adequate baseline effectiveness, 

with average accuracy of about 58%. In future, we would like to explore ways of 

dynamically setting the similarity threshold values for different DP-type attributes to 

further improve results. We also intend to explore ways of automatically formulating 

queries for the IUs based on the context of manually highlighted text from the documents. 
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