
JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 1

Altruism and Selfishness in Believable Game
Agents: Deep Reinforcement Learning in Modified

Dictator Games
Damon Daylamani-Zad and Marios C. Angelides

Abstract—This paper focuses on using Deep Reinforcement
Learning, specifically Proximity Policy Optimization to train
agents in a social dilemma game, modified Dictator Game, in
order to investigate the effect of selfishness and altruism on
the believability of the game agents. We present the design
and implementation of the training environment, including the
reward functions which are based on the findings of established
empirical research, with three agent profiles mapped to the three
standard Constant Elasticity of Substitution (CES) utility func-
tions, i.e. selfish, perfect substitutes and Leontief which measure
different levels of selfishness/altruism. The trained models are
validated and then used in a sample game, which is used to
evaluate the believability of the three agent profiles using the
agent believability metrics. The results indicate that players find
altruistic behaviour more believable and consider selfishness less
so. Analysis of the results indicate that human-like behaviour
resulting from the application of AI evolves from perceived
human behaviour rather than the observed. The analysis also
indicates that selfishness/altruism may be considered as an extra
dimension to be included in the believability metrics.

Index Terms—Deep Reinforcement Learning, Dictator Game,
Proximity Policy Optimization (PPO), Agents, Believability.

I. INTRODUCTION

MOST video games would benefit from the application of
Artificial Intelligence (AI) either from personalisation

and management, to supporting progression through a game
or through serving as opponents implemented as individual
agents, groups of agents or central intelligence [1].

Believability and human-likeness of these agents has always
been a challenging area of research. Researchers have been
working on various aspects of the agent behaviour from
decision making and strategic planning to weapon selection
and pathfinding. Many approaches including Hierarchical Task
Network [2], Evolutionary [3] and Genetic Algorithms [4],
Fuzzy Clustering [5], and Neural Networks and Reinforce-
ment Learning (RL) [6] have been used to address various
aspects of this challenge.

RL has gained more popularity in recent years, especially
amongst game developers, due to its core principle of ”be-
haviour is reward-driven” [7], [8]. In RL, an agent learns
a behaviour through interacting with the environment which

D. Daylamani-Zad is with the College of Engineering, Design and Phys-
ical Sciences, Brunel University London, London, UK, UB8 3PH e-mail:
(damon.daylamani-zad@brunel.ac.uk).

M. C. Angelides is with the College of Engineering, Design and Physical
Sciences, Brunel University London, London, UK, UB8 3PH email: (mar-
ios.angelides@brunel.ac.uk).

Manuscript received ???? ??, 2019; revised ???? ??, 2019.

would reward the agent based on these interactions. Games
lend themselves well to RL approaches as most games already
have rewards systems in place, e.g. score, health, mana and
levelling [9].

The degree of human-like behaviour has always been con-
sidered a measure for successful AI [10], [11] which in
turn increases the believability of agents, hence increasing
immersion [12], [13], [14]. Producing human-like decision
making behaviour would allow for more enjoyable gameplay
experience. This would be achievable by using models gen-
erated through RL, especially when the reward function is
mapped to utility functions based on human observation.

Games such as Prisoner’s Dilemma and Dictator game
have been used to guide research in social dilemmas. These
games tend to be simple in terms of mechanics but yield
interesting results for human behaviour in social settings
[15], [16]. In recent years, there has been great interest in
experimenting with implementation of such games using RL
[17]. The observations gained from these experiments have
allowed researchers to have more control over the parameters
of their experiments [18], [19], [20], [21]. As state-of-the-
art seeks for a performance closer to that of humans, it is
becoming increasingly possible to consider integrating such
trained models into games, to increase agent believability. One
aspect that requires further research is altruistic behaviour and
decision making in game agents.

This research aims to investigate the use of RL to create
believable game agents by training them to exhibit human-like
altruistic behaviour. It further aims to establish an understand-
ing of the effect of selfish or altruistic behaviour on the agents’
believability. The research is ultimately motivated to create
agents that would naturally learn to exhibit different levels
of altruism and be able to respond in a meaningful way to
dynamic situations. For the purpose of showcasing the results
of our research, we have chosen a modified Dictator Game.
The agents’ brain would be trained using Proximal Policy
Optimization (PPO), a cutting-edge RL approach [22]. The
reward function is created based on utility functions that have
been evolved from human experiments [23]. Once trained, the
brains will be deployed in inference mode into a game. The
behaviour of the trained agent brains has been validated for
believability through empirical research.

This paper starts with presenting related works on Deep
Reinforcement Learning and PPO, and continues with the
social Dictator Game, and its modified version which form the
basis of the hypothesis underlying our work. The paper then

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362654977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 2

presents the design and implementation of the RL approach
that has been used to create altruistic agents, presenting the
setting, reward functions and hyper parameters used during
training. The results of training are then presented, and the
trained models are validated against the aim. The proceeding
section discusses the empirical research with which believ-
ability of the agents produced using our approach has been
evaluated. Section IV presents the design of the experiment,
methods used, the participants and materials. The results of the
experiment are presented in detail and analyzed for drawing
conclusions. Finally, the paper concludes with discussion of
the implications of the results and proposes future research
directions.

II. RELATED WORK

This section presents the related work and state-of-the art
in using machine learning in games. From there it will follow
to discuss the two main themes underlining this research:
Reinforcement Learning and the Dictator Games.

A. Machine Learning in Video Games

Using AI techniques in games is an established field of
research in both academia and industry. With the success and
increased popularity of deep learning, these methods have
also been widely applied in video games [24], [25], [26],
[9]. Whilst supervised learning is being used in games, they
still rely on large datasets of player behaviour and most
times require further training using methods such as RL [27].
Unsupervised learning is also being used in games however
the research in this area is in its early stages [9] and it shares
the challenge of requiring large sets of data.

RL has been a popular and suitable approach in games due
to its reward-based nature. Games can easily be mapped to
environments which the agent can interact with and receive
reward based on the agent’s actions and decisions. However
the challenge of RL lies in the type of environment and
sparsity or availability of reward signals. The algorithm needs
to trace back the reward gained, such as winning the game,
and propagate it back to the chain of actions that led to a
successful or unsuccessful reward signal. The research in [17],
[18], [19] demonstrates that RL has been successfully used to
map social dilemma scenarios into environments with suitable
reward signals. This shows that RL is a promising method to
tackle the aim of this research.

Evolutionary approaches, including Neuroevolution [28]
and Evolution strategy [29], [30] have been widely used in
training neural networks for games. These approaches are
derivative-free optimizations as opposed to gradient-descent
based approaches previously mentioned. These approaches are
population based and they maintain a distribution over network
weight values and employ a large number of agents acting
in parallel using samples from the distribution. The paral-
lelisation allows for faster computation compared to methods
such as RL. However this performance comes at a cost. These
approaches treat the neural network optimisation as a black-
box. This black-box approach means the inner workings of
the network are not considered during the training and only

the overall outcome is used in deciding the fittest networks
weights that are passed on to the next generation [30]. whilst
this is acceptable in scenarios with sparse reward signal, in
scenarios with richer reward signals these approaches do not
perform with the desired behaviour.

This research aims to train game agents to exhibit be-
lievable altruistic behaviour, the goal environment would be
reward-rich and multi-agent. The agents would be receiving
a multitude of reward signals based on their actions. The
aim is to train these agent to exhibit different levels of self-
ishness/altruism based on a partially observable environment.
The amalgamation of these decisions in the long run would
lead to a win/lose result, however the reward signals would
be plenty. The most important point in this research is that
altruism is based on expectation of future results which may
be achieved long in the future. Yet, during an episode there
are always unpredictable results from the environment which
can be problematic for Evolutionary approaches as they do not
consider the inner workings of neural networks. Yet, RL shows
clear advantage in allowing emergent behaviour in multi-agent
environment with rich reward signals and seemingly random
environmental rewards [31], [32], [33].

Hence, to allow for the further development of this research,
RL has been adopted as the approach in this research. This
choice allows for further development of the research towards
its ultimate goal. The next subsection will describe RL in
further detail.

B. Reinforcement Learning

RL is formed of agents that interact with an environment
over time. Through these interactions, the agent receives a
reward and the aim of the agents is to maximize their rewards
through repeating various interactions available for each state.
At each time step t an agent is at state st where st ∈ S.
In this state the agent can take an action at where at ∈ A.
This action would result in agent receiving a reward rt and
moving to st+1. The probability of transition from one state
to another is represented with a transition probability function
P (st+1|st, at). The state-actions reside in a policy matrix Π
which holds state-action sets that define the actions available in
each given state. Hence, each state st and action at set creates
a policy π(st, at). The reward of each policy is defined through
a reward function R(s, a) which is based on the dynamics of
the environment. The agent will continue interacting until it
reaches a final state, at which point it will calculate the total
reward and then reset itself [34].

Most RL algorithms use Q-Value for estimating the ex-
pected future rewards of state-action pairs. Most popular
model-free RL approach include Q-Learning[35], which finds
an optimal policy for any Finite Markov Decision Process
(FMDP) by creating a Q-Table consisting of optimal Q-values.
Deep Q-Networks (DQN) [36] combines Q-Learning with
Convolutional Neural Networks (CNN), allowing the CNN
to learn from high-dimensional sensory inputs. Trust Region
Policy Optimization (TRPO) [37] is an effective algorithm
for optimizing large non-linear policies, especially neural
networks. Proximal Policy Optimization (PPO) [22] is also

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 3

a policy gradient optimisation approach that has the benefits
of TRPO but is simpler to implement, more general, and has
better sample complexity.

RL aims to maximize the expected value of total reward for
all consecutive steps starting from the current state. In other
words it identifies the most optimal state-action policy starting
from the current state, where future steps would lead into even
higher rewards. For each state st we define the weight of ∆t
steps in the future as γ∆t. γ, which is known as the discount
factor, defines how much the agent care about future reward.
γ is defined as 0 < γ ≤ 1 and is typically assigned a value
between 0.7 and 0.99.

For state-action Q-function is defined as Q(s, a) which
corresponds to the expected future rewards of action a in state
s. The true optimal function is defined using Bellman equation
presented in equation 1. Considering that a sub-optimal value
of Q-function in a state would be a step in the correct direction
and these values would update as the learning progresses, the
values within the Q-Table for step t are updated based on
equation 2 where α is the learning rate.

Q∗(s, a) = r + γmax
a

Q∗(s′, a′) (1)

Q′(st, at) = (1−α)Q(st, at)+α(rt+γmax
a

Q(st+1, a)) (2)

Deep RL [36], [38] uses deep artificial neural networks as
estimators. Most popularly convoluted neural networks (CNN)
or recurrent neural network (RNN), mainly Long short-term
memory (LSTM) [39] are used in deep RL. In order to use Q-
value in deep RL, equation 1 is updated to include the network
parameters as presented in equation 3, where Φ is the pre-
processed equivalent to state st and θ stands for the parameters
in the neural network (weights).

Q(st, at) = rt + γmax
a′

Q(Φt, a
′; θ−) (3)

The Q-values for some of the actions in a state can have such
small differences that algorithms may not be able to have real
preferences between them. Therefore, an advantage function
has been devised which defines how good an action at is
compared to the average action of the specific state. Equation
4 presents how the advantage is calculated. In the equation
V (s) is the average Q-value of state s.

A(s, a) = Q(s, a)− V (s) : V (s) =

∑N
i Q(s, ai)

N
(4)

Proximal Policy Optimization (PPO) is based on TRPO’s
approach which adopts the actor-critic architecture and belongs
to the policy gradient category [22], [37]. These approaches
use Temporal Difference (TD) error to determine the update
step size in a continuous space. They define η as expected
discounted long-term reward which should be always increas-
ing. The expected discounter long-term reward for policy π is
defined in 5. Hence, for a new policy π̃, the expected return
can be viewed in terms of its advantage over previous policy
π as η(π̃) as presented in equation 6.

η(π) = Es0,a0,...[

inf∑
t=0

γtr(st)] (5)

η(π̃) = η(π) + Es0,a0,...∼[

inf∑
t=0

γtA(st, at)] (6)

The value of η(π̃) can be approximated to Lπ(π̃) presented
in equation 8 where ρ is the discounted visitation frequencies
presented in equation 7. Hence the objective function of TRPO
is defined as equation 9 where rt(θ) is the ratio between the
new and the old policies, Ât is the estimated advantage at
time t and Êt is the empirical expectation over timesteps.The
idea of TRPO has constraints that disallow too much policy
change. This can be both constraining and resource intensive.
Therefore, PPO modifies TRPO’s objective function with a
penalty for having policy update that are too large, instead of
constraints. The Clipped TRPO objective function is presented
in equation 10. Finally, PPO’s objective function is presented
in 11, which is a lower bound of equation 10 and removes
the KL divergence constraint. Therefore, the computation for
PPO is much less resource intensive.

ρπ(s) =

∞∑
i=0

γiP (si = s) (7)

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(s, a)Aπ(s, a) (8)

LCPI(θ) = Êt[
πθ(st, at)

πθold(st, at)
Ât] = Êt[rt(θ)Ât] (9)

LCLIP (θ) = Êt[min(rt(θ)Ât), clip(rt(θ), 1− ε, 1 + ε)Ât]
(10)

LCLIP+V F+S(θ) = Êt[LCLIP (θ)+c1L
V F (θ)+C2S[πθ](st)]

(11)
PPO has gained much popularity due to its simple imple-

mentation and good performance. Open AI use PPO as their
baseline RL algorithm [40] and Unity has also incorporated it
into their machine learning toolkit [41]. In our implementation
we will be using PPO, the specific setup parameters are
presented in section III.

C. Dictator Game

The Dictator game, also known as giving game, is a well-
known game in the social-psychology and economics and it
is used to examine altruism and selfishness in human beings.
The original game [42] is defined as a game in which subjects
(dictators) decide how much, if any, of an endowment to give
to another player. Whilst the game is typically performed as
a one-shot [16], there have been many successful implemen-
tations of iterated dictator game [43]. The game is typically
performed in an anonymous setting and it is common for over
50% of subjects to give some money away.

Andreoni and Miller [23] present a thought-provoking setup
for the dictator game to examine the consistency of preference
for altruism. Their results showed that over 98% of their sub-
jects exhibited behaviour that is consistent with maximizing
utility. They have mapped the results to the three standard
Constant Elasticity of Substitution (CES) utility functions:
selfish, perfect substitutes, or Leontief.

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 4

• Selfish: Those who prefer to keep everything.
• Perfect Substitutes: Those that give everything away

when the price of giving is less than one, yet keep
everything when the price of giving is greater than one.

• Leontief: Those that always divide the surplus equally,
For their experiment, they used a modified dictator game
where each subject is given a menu of choices with different
endowments and prices for payoffs which the subjects had
to make a decision for each one. Assuming that the total
endowment in a choice is m and the payoff for person i is
defined as pi ∈ P , payoff to self is defined as ps and payoff
to other as po. In their experiment m = ps +λpo , where λ is
the price of payoffs. The utility of each player is defined as
Us = us(ps, po).

The allocation choices provided to the subjects is presented
in table I. The allocation choices were designed so that each
one presents a convex budget set. Whilst budgets 7, 8 and 9
are choices like the standard dictator game, the other choices
present scenarios where the endowment is an income variable.
For example in budget one the price of payoff to self is 0.33
which means that giving one token raises the other subject’s
payoff by 1 point, and reduces subject’s own payoff by 3.

TABLE I
ALLOCATION CHOICES [23]

Budget Token
Endowment

Hold
Value

Give
Value

Relative
Price of Giving

1 40 3 1 3
2 40 1 3 0.33
3 60 2 1 2
4 60 1 2 0.5
5 75 2 1 2
6 75 1 2 0.5
7 60 1 1 1
8 100 1 1 1
9 80 1 1 1
10 40 4 1 4
11 40 1 4 0.25

According to their results each of the three CES utility
functions can be defined as:
• Selfish : U(ps, po) = ps
• Perfect Substitutes : U(ps, po) = min(ps, po)
• Leontief : U(ps, po) = ps + po

The three utility functions and the setup of the experiment
creates the basis of the RL environment presented in this paper.

III. PROPOSED DESIGN AND IMPLEMENTATION, TRAINING
AND VALIDATION

This section discusses the implementation of the training
environment and the setup used to train the agents. We discuss
how we deploy the three profiles presented in the previous
section, define reward functions for each based on their utility
functions, design the training environment and implement
PPO. We aim at creating agents that learn to behave as their
assigned profile based on their respective reward function.

A. Profiles
As presented in the previous section, this paper presents

research on training several agents with each having their own

profile. In the case discussed in the previous section, each
profile is based on one of the three CES utility functions. The
training is setup in a way that the agents are unaware of each
other’s decisions. In order to achieve homogeny amongst the
agents and ensure compatibility, the agents share the exact
implementation, environment and training variables. The only
parameter in their profile that is unique to each one is their
reward function. Therefore, each agent will receive rewards
based on their profile. Section III-C discusses these rewards
and their implementations based on CES utility functions.

B. Training Environment Setup

An agent training environment was created. The environ-
ment is partially observable and consists of agents in training.
The agents are unaware of each other and will be indepen-
dently trained. Each agent is presented with the eleven budgets
presented by [23], illustrated in table I, in each round. The
agent would make a decision for each budget on the menu,
receiving a reward for each decision. As mentioned before,
the decision is to distribute the total endowment of m between
itself and another agent who is non-observable. We can define
the payoffs in terms of the distribution decision. If we consider
a hold decision of d, where 0 ≤ d ≤ 1, the hold payoff (payoff
to self) would be ps = d × m and give payoff (payoff to
other) would be po = λ(1 − d) ×m. This can be defined as
a single continuous decision in RL. Once all eleven decisions
required are made, a round terminates, and the agent resets
and continues with a new round of decisions.

In order for the agent to form a policy, an observation vector
~O is defined. The observation vector includes the parameters of
the current budget and the distribution proportion, dis, which
is defined as ps/po. The distribution proportion represents
the proportion of hold over give of each decision. Hence the
observation vector for decision i can be defined in equation
12 where Ti is the Token Endowment, hi is the Hold Value,
gi is the Give Value. In this equation, for each decision di the
value of psi is computed in 13 and the value of p0i can be
calculated in 14.

~Oi = {Ti, hi, gi, disi, psi , poi} (12)

psi = di × Ti × hi (13)

poi = (1− di)× Ti × gi (14)

C. Rewards based on profiles

Each decision dj in round i would receive reward rij
where the sum of all rewards in the round, ri is designed
to be normalized as 0 ≤ (ri =

∑
j rij) ≤ 1. The reward

functions are defined based on the three standard utility
functions presented in the previous section. As mentioned
before, we define three profiles for three different agents:
Selfish (Sel), Perfect Substitute (Sub) and Leontief (Leo).
Based on the utility function of each profile, we have defined
their respective reward function in equation 15. The Selfish
will always hold and therefore its reward is calculated as
the proportion of hold choice divided by the the payoff of

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 5

Fig. 1. Plots presenting the mean cumulative episodic reward (Y-axis) over timesteps of simulation (X-axis) during training and evaluation for Selfish (left)
Perfect Substitute (middle) Leontief (right)

Fig. 2. Plots presenting the decision, di, (Y-axis) over timesteps of simulation (X-axis) during training and evaluation for Selfish (left) Perfect Substitute
(middle) Leontief (right) for budget 1.

choosing to hold all. The behaviour of the Perfect Substitute
should be based on the price of giving, PG. As can be seen
from table I, for each budget i, PGi is defined as hi/gi.
Finally, Leontief behaviour requires a fair distribution of the
endowment between hold and give. Considering equations 13
and 14, to meet the Leontief behaviour we must ensure that
ps = po therefore di × Ti × hi = (1 − di) × Ti × gi, from
which we can deduce di × hi = (1 − di) × gi. Considering
the condition di × hi + (1 − di) × gi = 1, we can deduce
that in this scenario to meet the Leontief behaviour we must
ensure di × hi = (1 − di) × gi = 1/2. Hence to meet the
Leontief behaviour we need to promote a reward value as
presented below. Equation 15 presents the reward functions
for each profile.

rSeli =
psi = di × Ti × hi

Ti × hi
= di

rSubi =


di if PGi > 0

1− di if PGi < 0
min(di,(1−di))
max(di,(1−di)) if PGi = 0

rLeoi = 1− |(di × hi)− ((1− di)× gi)|

(15)

D. PPO hyper parameters and training
As mentioned earlier, we have implemented PPO with

Clipped Objective as presented in equation 11. In the algo-
rithm, ~Di represents the partial trajectory for policy πi and

rt(θ) is the ratio between the new and the old policies. The
implementation is based on [41]’s communication with Unity
which has been used as the game simulation environment.

Algorithm 1 PPO with Clipped Objective
procedure PPO(~Π, ~Θ, ε, S)

. INPUT: policies, policy parameters, clipping threshold, maximum steps
for i = 0→ S do

. Collect partial trajectories
πi ← Π(θi)
~Di ← Di(πi)

. Estimate advantages
Âπi ←

∑S
j
~Dj(πi)/S

. take k steps of minibatch

LCLIPθk
(θ)← Êπk [

T∑
t=0

[min(rt(θ)Â
πk
t), clip(rt(θ), 1−ε, 1+ε)Â

πk
t]]

. Policy update
θi+1 ← argmaxθL

CLIP
θi(

~Θ)

end for
end procedure

The hyper-parameters for training are summarized in table
II. Adam optimizer [44] has been used as stochastic gradient
descent (SGD) optimization algorithm. The hyper-parameters
were tuned through a Random Search approach and testing
multiple combinations of hyper-parameters based on estima-
tions and empirical results. Figure 3 demonstrates the distribu-
tions of the Cumulative Rewards per step of the Leontief agent
training for four different networks. As illustrated increasing
the complexity, the model is increasingly more stable in its
learning and has less instances of forgetting/resetting.

Training and evaluation were performed for each agent
separately. All three profiles managed to arrive at the max-

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 6

TABLE II
HYPER-PARAMETERS FOR TRAINING

optimizer Adam
learning rate 0.0003

batch size 100
gamma 0.99
epsilon 0.2

maximum steps 50,000
number of layers 2

hidden units 128

Fig. 3. Tuning the hyper-parameters: comparing four different networks of
1x64, 1x128, 2x64 and 2x128. The 2x128 has the most stable results as well
as the highest rewards. Plot presents the mean cumulative episodic reward
(Y-axis) over timesteps of simulation (X-axis) during training and evaluation
of Leontief agent.

imum mean cumulative episodic reward of r = 1. The mean
cumulative episodic rewards for each profile are presented in
figure 1. Figure 2 presents decision distributions for budget 1
from table I during training for each profile.

E. Validating trained models

In order to test the validity of the trained model, they were
then added to a test environment in inference mode. They
would each iterate 50 times through the 11 budgets within the
menu and their decisions were recorded. A ”Random” agent
was added as a control baseline. The random agent’s decision
is a random value for hold where drandom = U(0, 1). As
can be observed in figure 4, the Random (Control) decision
tends to stay around the 50% hold decision as on a normal
distribution. In contrast the Selfish is behaving as expected and
consistently holds all endowments (keeps all). The Leontief
is also acting as expected, reducing the hold decision, as
the price of giving goes up, in order to maintain an equal
balance of distribution. Finally, the Perfect Substitutes are
giving everything away when price of giving is less than
one and keeping everything when the price of giving is
greater than one. Figure 5 illustrates the mean hold and give
payoffs for each agent profile per budget number, which
allows for a closer confirmation of the intended behaviour. A
Wilcoxon matched pairs signed-rank test [45] was performed
to determine whether there is a significant difference in the

decision making of the agents over 50 iterations. The test
showed that the differences are significant (p = 0.000) as
summarized in table III. Therefore it is possible to deduce
that the agent’s behaviour are unique and this uniqueness is
statistically significant.

Fig. 4. Plot presenting the mean hold decisions for each agent profile
(including Random) per the price of giving for each budget (scatter points).
The dotted lines depict the trendline of hold decision per price of giving.

TABLE III
STATISTICAL SIGNIFICANCE TEST 95% CONFIDENCE INTERVAL

p
Selfish - Leontief 0.000
Selfish - Perfect Substitute 0.000
Selfish - Random 0.000
Leontief - Perfect Substitute 0.000
Leontief - Random 0.000
Perfect Substitute - Random 0.000

IV. BELIEVABILITY EXPERIMENT

This section presents a test game that was developed in order
to use the trained models in inference mode, where it can be
evaluated against human behaviour. The experiment involves
30 users who play with the agents and rate the agents using
the Agent Believability metrics proposed by [12].

A. The Game: Shield Raid

In order to evaluate the performance of the agents a test
game is developed, ’Shield Raid’, presented in figure 6. The
game was implemented using Unity Engine and C#. In ’Shield
Raid’, players would need to charge towards turrets that are
shooting at them, only using their shields. Each player can
choose how much of its limited power charge to use for
themselves or share between their comrades. Upon either
player reaching the tower both players would win. If the player
shield reaches zero, the player loses. The game uses the trained
agents from the previous stage in inference mode. They use

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 7

Fig. 5. Plot presenting the mean value of hold and give payoffs for each agent profile (including Random) per each budget.

the same observation vector and make a decision based on the
observation.

The participants (Blue character) receive the amount of
shield energy given to them by the agent (Green character)
and would need to charge the turrets based on what they have
received. It is important to note that the bullets from the turrets
do not reach the player’s starting point hence the player would
need to charge in order for the game to progress.

Fig. 6. A screenshot of ’Shield Raid’ game which uses the trained agents in
inference mode for believability testing.

B. Believability Questionnaire

The experiment uses the Agent Believability metrics pro-
posed by [12]. This metric defines eight dimensions to the
believability of an agent which the audience can identify.
These dimensions are: awareness, behaviour understandability,
personality, visual impact, predictability, behaviour coherence,
change with experience, and social. As the agents in this
experiment visually look the same as the player character,
the visual impact dimension has been excluded. The seven
remaining dimensions were composed into a questionnaire
were each dimension is presented as a question on a Likert
scale of five answers that range from 1=strongly disagree to
5=strongly agree.

C. Participants

In total 30 participants (11 female and 19 male) aged
between 19 and 30 (Mean=22.9, SD=2.81) are recruited. The
participants are recruited from current undergraduate students
of Computer Science, Games Development and Digital Media
at a UK university. All participants regularly play games.

D. Procedure

At the start of the experiment, the participants are briefed
on how to play the game. Each participant is then moved to
an individual cubical with a laptop with the game pre-loaded.
Each participant then charges ten times with each of the
three agent profiles called agent A (Selfish), agent B (Perfect
Substitute) and agent C (Leontief). The order of playing the
agents are selected at random. The ten charges are chosen
randomly from the eleven budgets presented on table I.

At the end of each set of ten charges, players are asked
to complete the believability metric questionnaire for the
respective agent. The complete experiment lasts 20 minutes
on average. The participants are encouraged to discuss their
responses as they fill out the questionnaire. Their discussion
comments are then used for qualitative analysis.

E. Results and analysis

Overall, the participants find the three agents believable
and were able to detect personalities in them. All three agent
profiles score a mean believability of above 3.5/5 which is
considerably high. Figure 7 illustrates the mean believability
for each agent profile. The Selfish agent scores a mean
believability of M=3.84 (SD=0.28) across all categories, Per-
fect Substitute scores M=4.19 (SD=0.21) and Leontief scores
M=4.5 (SD=0.23). Hence the Leontif was considered the most
believable and the selfish the least believable. This is an
interesting conclusion of the results that shows the increased
level of altruism leads to an increased believability of the
agents. A Wilcoxon matched pairs signed-rank test is per-
formed to determine whether there is a significant difference
in the believability of agents. The results of the test are
summarized in Table IV, which illustrates that the differences
are statistically significant.

TABLE IV
STATISTICAL SIGNIFICANCE TEST 95% CONFIDENCE INTERVAL

p Z
Selfish - Perfect Substitute 0.000 -4.090
Selfish - Leontief 0.000 -4.690
Leontief - Perfect Substitute 0.000 -4.355

Table V presents the detailed summary of the results for
each metric in the questionnaire. The Selfish agent is regarded
as the least social and the least to change with experience. This
is a thought-provoking observation from the participants, as
this is the most common behaviour in human as observed by

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 8

Fig. 7. Box-plot of the mean believability score for each agent profile,
illustrating high believability for all agents. This also highlights Leontief as
the most believable and Selfish as the least believable.

[23]. The Selfish agent will always hold the full endowment
(Shield energy) and would not give any to the other player.
Whilst this is regarded as a popular behaviour in humans,
the participants are expecting some share of the energy in
the iterations of the charges in the game. They report that
Selfish is not learning from previous instances of the game
and is not social. Despite this, the participants consider the
Selfish agent’s behaviour understandable, coherent and highly
predictable. They report that it is aware of its surroundings
(budget changes and charges) and conclude that it exhibits a
clear personality.

The Perfect Substitute agent is regarded as the most unpre-
dictable and incoherent. This is a reasonable conclusion by
the participants, as ten charges might not be enough for them
to recognize the decision pattern of this agent. However, the
participants find this agent profile much more aware of its
surroundings (it acknowledges the other player by sharing the
energy), understandable, social and dynamic towards change.

Leontief agent is considered as the most believable agent
profile. The participants find it the most aware and most co-
herent of the three. The Leontief behaviour leads to equal gains
for both players during a charge. This is a behaviour that the
participants identify clearly and value as being intelligent and
the most believable behaviour. They can predict its behaviour
as they find it coherent. Due to the equal sharing, they also
identify Leontief as the most social of the three agents. It is
significant that some participants mention that the Leontief
agent behaves as they would. This might suggest a degree
of resonance with the participants’ own image of altruism
and selfishness which in turn might affect this opinion. This
suggests further research into the effect of players’ self-image
on the perceived believability of AI agents.

V. CONCLUDING DISCUSSIONS

This paper presented an approach to create agents that
exhibit different levels of selfishness and altruism in their
behaviour. The agents are trained using deep reinforcement
learning with PPO. Reward functions are defined based on
the findings in [23]. The trained agents are validated against

TABLE V
BELIEVABILITY METRIC QUESTIONNAIRE RESULTS

Metric Selfish Perfect Substitute Leontief
Mean SD Mean SD Mean SD

Awareness 4.43 0.91 4.66 0.47 4.76 0.42
Understandability 4.46 0.56 4.5 0.5 4.6 0.55
Personality 4.3 0.52 4.33 0.47 4.6 0.48
Predictability 4.23 0.71 3.6 0.71 4.26 0.77
Coherence 4.4 0.55 3.8 0.7 4.4 0.55
Change with Exp. 3.06 1.36 4.2 0.74 4.36 0.61
Social 2 0.81 4.26 0.62 4.5 0.56

the aims and then incorporated into a test game in inference
mode. The game was played by 30 participants who then
rated the believability of the resulting agents using the agent
believability metrics [12].

The experiment results provide thought-provoking observa-
tions in relation to the believability of the different agents
based on their level of selfishness/altruism, as well as, signifi-
cant implications for believability metrics especially in relation
to the players’ self-perception. The two main implications of
this research are:

1) The definition of human-like behaviour should not be
solely based on human observation but, rather, it should
also include perception of human behaviour

2) Altruism/Selfishness could be considered as a dimen-
sion of believability metrics. It effects and is effected
by behaviour understandability, predictability, behaviour
coherence, change with experience, and social metrics.

These implications are discussed below, in detail, as the
concluding discussions of this research.

The participants rated the three agents in terms of believ-
ability. Whilst all three were high on the believability scale,
the Leontief (M=4.5/5 SD=0.23) was the most believable,
followed by the Perfect Substitute (M=4.19/5 SD=0.21), and
Selfish (M=3.84/5 SD=0.28) was the least believable. The
Leontief behaviour, which aims to distribute the endowment
equally, has been rated as the most believable whilst the Selfish
behaviour, which keeps all the endowment for the agent,
has been rated the least believable. The Perfect Substitute
behaviour, which tends to give everything away when the price
of giving is less than one but keeps everything otherwise,
is rated more believable than Selfish but less believable than
Leontief.

TABLE VI
HUMAN DISTRIBUTION[23] VS AGENT BELIEVABILITY

Selfish Perfect Substitute Leontief
Human distribution 47.2% 22.4% 30.4%
Agent believablity 3.84 4.19 4.5

This observation is not in characteristic of observed human
behaviour. As presented in table VI and [23], the majority of
their participants, behave Selfishly, and the least number of
their participants behave as Perfect Substitutes with Leontief
somewhere in the middle. As such, the expected result should
have matched this distribution, however the selfish agent is
rated the least believable, and Perfect Substitute as the second
most believable. The contrast depicted in figure 8 shows that

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 9

Fig. 8. Bar chart presenting the agent believability compared to the human
distribution for each profile type. For clarity of comparison the value for
believability is calculated as the percentage in which each believability score
was above mid-point believability (2.5).

players consider altruism as a more believable trait compared
to selfishness. It is noteworthy to consider that both ’Shield
Raid’ and the Dictator Game have a cooperative nature which
promotes altruism. The player perception might be different
in an adversarial scenario, which warrants further research.

The above results allow us to consider more closely the
definition of human-like behaviour in the statement: ”a more
human-like behaviour is considered a measure for successful
AI” [10], [11]. Our results indicate that the definition of
human-like behaviour might not be always based on human
observation rather, in some cases, it should be based on the
human perception of human behaviour. The difference between
human behaviour and the perception of human behaviour has
been an ongoing discussion in various communities [46], [47],
[48].

The results also indicate that the level of altruism/selfishness
exhibited by the agents had a clear effect on their believability.
The agents were similar in every other way except for their
altruistic behaviour. In order to validate this observation, a
Multinomial Logistic Regression (MLR) [49] was performed
to investigate the effect of each dimension of the believability
metrics on altruism. The Likelihood Ratio tests show that all
coefficients of the model are zero and therefore statistically
significant (p = 0.000). Both Pearson and Deviance χ2

statistics are statistically insignificant (p = 1.00 for both),
illustrating that the model fits the data well. Table VII illus-
trates the detailed results of the MLR. Based on these results,
we can deduce that altruism is effected by Behaviour Un-
derstandability, Predictability, Behaviour Coherence, Change
with Experience, and Social metrics as these have statistically
significant effects.

The identified effect of altruism on believability suggests
that the believablity metrics could benefit from an extra
dimension on selfishness/altruism which would allow further
insight into the perception of believability of agents. There is
also evidence for further research into possible quantification

TABLE VII
MULTINOMINAL LOGISTIC REGRESSION FOR BELIEVABILITY METRICS

Metric χ2 p
Awareness 9.003 1.000
Understandability 478.377 0.000
Personality 24.329 0.330
Predictability 68.743 0.000
Coherence 37.208 0.022
Change with Exp. 69.419 0.009
Social 122.155 0.000

of selfishness/altruism in agents which could lead to the
development of more believable and immersive agents within
games and other AI industries.

REFERENCES

[1] D. Daylamani-Zad, L. B. Graham, and I. T. Paraskevopoulos, “Chain
of command in autonomous cooperative agents for battles in real-time
strategy games,” Journal of Computers in Education, pp. 1–32, 2018.

[2] H. Hoang, S. Lee-Urban, and H. Muñoz-Avila, “Hierarchical plan
representations for encoding strategic game ai.” in AIIDE, 2005, pp.
63–68.

[3] C. A. Overholtzer and S. D. Levy, “Evolving ai opponents in a first-
person-shooter video game,” in Proceedings of the National Conference
on Artificial Intelligence, vol. 20, no. 4. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2005, p. 1620.

[4] N. Cole, S. J. Louis, and C. Miles, “Using a genetic algorithm to
tune first-person shooter bots,” in Evolutionary Computation, 2004.
CEC2004. Congress on, vol. 1. IEEE, 2004, pp. 139–145.

[5] B. Gorman and M. Humphrys, “Imitative learning of combat behaviours
in first-person computer games,” Proceedings of CGAMES, 2007.

[6] I. Borovikov, Y. Zhao, A. Beirami, J. Harder, J. Kolen, J. Pestrak,
J. Pinto, R. Pourabolghasem, H. Chaput, M. Sardari et al., “Winning
isn’t everything: Training agents to playtest modern games,” in AAAI-
19 Conference on Artificial Intelligence, vol. 1. AAAI Press, 2019, pp.
1–9.

[7] H. Wang, Y. Gao, and X. Chen, “Rl-dot: A reinforcement learning npc
team for playing domination games,” IEEE Transactions on Computa-
tional intelligence and AI in Games, vol. 2, no. 1, pp. 17–26, 2009.

[8] F. G. Glavin and M. G. Madden, “Adaptive shooting for bots in first
person shooter games using reinforcement learning,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 7, no. 2, pp. 180–
192, 2014.

[9] N. Justesen, P. Bontrager, J. Togelius, and S. Risi, “Deep learning for
video game playing,” IEEE Transactions on Games, 2019.

[10] R. Kurzweil, R. Richter, R. Kurzweil, and M. L. Schneider, The age of
intelligent machines. MIT press Cambridge, MA, 1990, vol. 579.

[11] E. Rich and K. Knight, “Learning in neural network,” McGraw-Hill,
New York, 1991.

[12] P. Gomes, A. Paiva, C. Martinho, and A. Jhala, “Metrics for character
believability in interactive narrative,” in International Conference on
Interactive Digital Storytelling. Springer, 2013, pp. 223–228.

[13] C. Pacheco, L. Tokarchuk, and D. Pérez-Liébana, “Studying believability
assessment in racing games,” in Proceedings of the 13th International
Conference on the Foundations of Digital Games. ACM, 2018, p. 20.

[14] M. Mateas, “An oz-centric review of interactive drama and believable
agents,” in Artificial intelligence today. Springer, 1999, pp. 297–328.

[15] T. N. Cason and V.-L. Mui, “Social influence in the sequential dictator
game,” Journal of mathematical psychology, vol. 42, no. 2-3, pp. 248–
265, 1998.

[16] N. Bardsley, “Dictator game giving: altruism or artefact?” Experimental
Economics, vol. 11, no. 2, pp. 122–133, 2008.

[17] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel,
“Multi-agent reinforcement learning in sequential social dilemmas,”
in Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems. International Foundation for Autonomous Agents
and Multiagent Systems, 2017, pp. 464–473.

[18] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in Neural Information Processing Systems, 2017,
pp. 6379–6390.

JOURNAL OF LATEX CLASS FILES, VOL. ??, NO. ?, ??? 2019 10

[19] T. W. Sandholm and R. H. Crites, “Multiagent reinforcement learning
in the iterated prisoner’s dilemma,” Biosystems, vol. 37, no. 1-2, pp.
147–166, 1996.

[20] W. Wang, J. Hao, Y. Wang, and M. Taylor, “Towards cooperation
in sequential prisoner’s dilemmas: a deep multiagent reinforcement
learning approach,” arXiv preprint arXiv:1803.00162, 2018.

[21] N. Anastassacos and M. Musolesi, “Learning through probing: a decen-
tralized reinforcement learning architecture for social dilemmas,” arXiv
preprint arXiv:1809.10007, 2018.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[23] J. Andreoni and J. Miller, “Giving according to garp: An experimental
test of the consistency of preferences for altruism,” Econometrica,
vol. 70, no. 2, pp. 737–753, 2002.

[24] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O. Stanley,
and C. H. Yong, “Computational intelligence in games,” Computational
Intelligence: Principles and Practice, pp. 155–191, 2006.

[25] L. Galway, D. Charles, and M. Black, “Machine learning in digital
games: a survey,” Artificial Intelligence Review, vol. 29, no. 2, pp. 123–
161, 2008.

[26] G. N. Yannakakis and J. Togelius, “A panorama of artificial and com-
putational intelligence in games,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 7, no. 4, pp. 317–335, 2014.

[27] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[28] S. Risi and J. Togelius, “Neuroevolution in games: State of the art and
open challenges,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 9, no. 1, pp. 25–41, 2015.

[29] I. Rechenberg and M. Eigen, “Evolutionsstrategie: Optimierung tech-
nischer systeme nach prinzipien der biologischen evolution, frommann–
holzboog,” 1973.

[30] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, 2017.

[31] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent tool use from multi-agent autocurricula,”
arXiv preprint arXiv:1909.07528, 2019.

[32] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G.
Castaneda, C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruder-
man et al., “Human-level performance in 3d multiplayer games with
population-based reinforcement learning,” Science, vol. 364, no. 6443,
pp. 859–865, 2019.

[33] J. Z. Leibo, J. Perolat, E. Hughes, S. Wheelwright, A. H. Marblestone,
E. Duéñez-Guzmán, P. Sunehag, I. Dunning, and T. Graepel, “Malthu-
sian reinforcement learning,” in Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2019, pp. 1099–1107.

[34] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[35] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[37] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889–1897.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[39] F. Liu, S. Li, L. Zhang, C. Zhou, R. Ye, Y. Wang, and J. Lu, “3dcnn-
dqn-rnn: A deep reinforcement learning framework for semantic parsing
of large-scale 3d point clouds,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 5678–5687.

[40] OpenAI. (2017) Proximal policy optimization. [Online]. Available:
https://openai.com/blog/openai-baselines-ppo/

[41] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and
D. Lange, “Unity: A general platform for intelligent agents,” arXiv
preprint arXiv:1809.02627, 2018.

[42] R. Forsythe, J. L. Horowitz, N. E. Savin, and M. Sefton, “Fairness in
simple bargaining experiments,” Games and Economic behavior, vol. 6,
no. 3, pp. 347–369, 1994.

[43] V. Capraro and J. Kuilder, “To know or not to know? looking at payoffs
signals selfish behavior, but it does not actually mean so,” Journal of
Behavioral and Experimental Economics, vol. 65, pp. 79–84, 2016.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[45] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[46] D. Haski-Leventhal, “Altruism and volunteerism: The perceptions of al-
truism in four disciplines and their impact on the study of volunteerism,”
Journal for the Theory of Social Behaviour, vol. 39, no. 3, pp. 271–299,
2009.

[47] M. Blow, K. Dautenhahn, A. Appleby, C. L. Nehaniv, and D. C. Lee,
“Perception of robot smiles and dimensions for human-robot interaction
design,” in ROMAN 2006-The 15th IEEE International Symposium on
Robot and Human Interactive Communication. IEEE, 2006, pp. 469–
474.

[48] R. Binns, M. Van Kleek, M. Veale, U. Lyngs, J. Zhao, and N. Shadbolt,
“’it’s reducing a human being to a percentage’: Perceptions of justice
in algorithmic decisions,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, 2018, p. 377.

[49] W. H. Greene, Econometric Analysis, 7th ed. Boston, MA: Pearson
Education, 2012.

Dr. Damon Daylamani-Zad is a Senior Lecturer in
AI and Games in the Digital Media Division in the
Department of Electronic and Computer Engineering
at Brunel University London. He is a Fellow of
the British Computing Society and holds a BSc in
Software Engineering from University of Tehran,
an MSc in Multimedia Computing and a PhD in
Electronic and Computer Engineering both from
Brunel University London where he has also been an
EPSRC Research Fellow. Damon’s research interests
focus on applications of Artificial Intelligence and

Machine Learning in Games, Collaborative Games, Serious Gaming, and
Player Modelling and Personalisation especially in MMOGs (Massively
Multiplayer Online Games) as well as application of Evolutionary algorithms
in Creative Computing. He has published his research findings widely in
journals, edited books and presented his work at several conferences including
those hosted by the IEEE.

Professor Marios C. Angelides is Professor of
Creative Computing and Head of the Digital Me-
dia Division in the Department of Electronic and
Computer Engineering at Brunel University London.
He is a Chartered Engineer (CEng) and a Char-
tered Fellow of the British Computer Society (FBCS
CITP). He holds a BSc and a PhD both from the
London School of Economics (LSE) where he also
began his academic career as a lecturer more than
30 years ago. For over two decades, he has been
researching the application of creative computing,

techniques such as machine learning, serious gaming and cognitive modelling
in media communications and recently in wearable technology. In 1995,
Kluwer published his first book in this area, entitled Multimedia Information
Systems. In 2011, Wiley published his edited book on MPEG Applications
and in 2014 IEEE/Wiley published his edited book on Digital Games. He has
published over 200 articles in journals, conference proceedings and Edited
Books. He is Associate Editor and Editorial Board Member of the Computer
Journal (Oxford University Press) and Editorial Board Member of Multimedia
Tools and Applications (Springer).

