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Abstract
It is widely considered that approximately 10% of the
population suffers from type 2 diabetes. Unfortunately,
the impact of this disease is underestimated. Patient's
mortality often occurs due to complications caused by
the disease and not the disease itself. Many techniques
utilized in modeling diseases are often in the form of
a “black box” where the internal workings and com-
plexities are extremely difficult to understand, both
from practitioners' and patients' perspective. In this
work, we address this issue and present an informative
model/pattern, known as a “latent phenotype,” with an
aim to capture the complexities of the associated compli-
cations' over time. We further extend this idea by using
a combination of temporal association rule mining and
unsupervised learning in order to find explainable sub-
groups of patients with more personalized prediction.
Our extensive findings show how uncovering the latent
phenotype aids in distinguishing the disparities among
subgroups of patients based on their complications pat-
terns. We gain insight into how best to enhance the
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prediction performance and reduce bias in the models
applied using uncertainty in the patients' data.
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1 INTRODUCTION

Predicting complications associated with the disease is challenging. They can be numerous and
can interact in complex nonlinear ways throughout the disease process. However, if we can
better predict the onset of different complications in individual patients, then we can inter-
vene more effectively. In addition, to gain patients trust and satisfaction, it is mandatory to
understand/explain influencing factors of disease that guides decisions. Black box AI models in
the clinical decision-making process are models that attempt to predict/diagnose/forecast/group
patients using complex parameters that are not easily understood. For example, the complex-
ity of countless hidden layers in a deep neural network and their interconnections makes it
challenging to determine precisely how predictions are being made. Compare this to decision
trees or graphical models where inference is more transparent and therefore explainable. Pre-
viously, we have explored the use of probabilistic graphical models to build more transparent
methods of modeling disease progression. In particular, we used dynamic Bayesian networks to
model clinical data and predict the onset of type 2 diabetes mellitus (T2DM) complications.1
We developed methods to infer the location of hidden variables within these models in order to
improve prediction.2 The behavior of these hidden variables over the course of the disease process
can be thought of as a “temporal phenotype” for an individual patient,3 which is considered as a
“latent phenotype.”

Preliminary experiments obtained in Reference 4 showed that it is possible to find subgroups
of patients only based on their latent phenotype. Nevertheless, the techniques used in these
investigations were not validated for interpreting each subgroup to enhance the prediction of
the associated complications. Therefore, this study facilitates a hybrid type approach that uti-
lizes a variety of patients subgroups in which the prediction of the associated complications is
improved for optimal performance. These techniques can also be combined for a better under-
standing of the latent variable as well as an underlying pattern of complications for the type
of patients. In this article, temporal association rules (TARs) are utilized to identify the fre-
quent co-occurrence of complications over time. An integration of TARs and pattern clustering
attempts to build meaningful subgroups. The obtained clusters of the rules are compared with
clusters of the latent phenotypes that are extracted from the hidden variable by using dissimilar-
ities and dynamic time warping (DTW) distance among patients.3 In Section 3, we discuss the
data used to explore our approach along with details of the methods introduced. In Section 4,
we document the results of these methods. The prediction accuracy of the complications is
also validated the contribution of this study in terms of obtaining a higher performance by
using the discovered subgroup comparing to the raw dataset which did not consider the pres-
ence of the latent phenotype and the proposed hybrid methodology. Section 5 discusses the
challenges and our solution in more detail when tested on the diabetes data before concluding
in Section 6.
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1.1 Related work

The World Health Organization (WHO) reported that T2DM accounts for at least 90% of all dia-
betes types. Another study in WHO revealed that T2DM patients are at increased risk of long-term
vascular comorbidities, which is known as “underlying cause of death” and severe phenotype of
the disease.5 It has previously been observed that patients with T2DM are also at an increased
risk of microvascular comorbidities, including nephropathy, neuropathy, and retinopathy.5 Simi-
lar to diabetic type 1 patients, although genetic factors impact on developing T2DM, it is believed
ignorance of developing complications harms patients' life because it may develop a different
profile of complications and features, which changes over time per follow-up visit. However,
these life-threatening complications remain undiagnosed for a long time because of the hidden
patterns of their associated risk factors.6 The underlying pattern of the complications is known
as the major source of mortality and morbidity in T2DM and how their co-occurrence is fol-
lowed/caused by other complications associated with the disease.7 That is because predicting a
target complication can be challenging without the consideration of the effects of its associated
complications.

Understanding the associated pattern of complications has been used significantly in the
clinical domain.8 It provides an insight into the prediction and relative prevention of the asso-
ciated complications, which are expected to occur in a patient follow-ups.9 It generally can
lead to less suffering time for patients while saving time and cost to healthcare. However,
that is highly dependent on the stage of disease along with the prior occurring complica-
tions, which is associated with time series analysis. In time series analysis, every disease
risk factor and complication is determined by various features in previous patient visits
(time interval).

In this work, we attempt to address this issue and present an informative rules/ordering
pattern of patient behavior, with an aim to capture the complexities of the associated compli-
cations' over time. The proposed descriptive strategy has been regarded as a useful tool known
as association rules (ARs) to detect interesting relationships among T2DM complications. ARs
strategy originated from learning patterns from supermarket transaction data and was intro-
duced by Agrawal.10 Temporal abstraction (TA) has also been employed for the segmentation
and aggregation of time series data into a symbolic representation, suitable for decision mak-
ing and data mining.11 TARs12 is an extension to ARs10 to analyze basket data that include a
temporal dimension to order related items. Many algorithms with temporal rules work by divid-
ing the temporal transitions database into different partitions based on the time granularity. For
example, different mining algorithms are reformulated and presented to reflect the new gen-
eral TARs, and these include progressive partition minder (PPM), segmented progressive filter
(SPF), and TAR algorithm.10 Various algorithms are proposed for the incremental mining of
TARs, especially for numerical attributes.13 Allen's rules14 abstracted time series data into a rela-
tion (PRECEDES) to find TARs in Reference 15. Various ways have been proposed to explore
the problem of TARs discovery.16 Nevertheless, previous studies employed ARs strategy on a
given subset specified by the time,17 while not considering the specific exhibition period of the
elements.

Association rule mining (ARM) finds frequent patterns by mining ARs with the use
of two basic parameters of support and confidence.18 The majority of the previous ARM
algorithms worked by dividing the temporal transitions database into different partitions
based on the time granularity obliged. Then mining TARs were employed by locating fre-
quent temporal item subsets within these partitions. However, the incremental mining of
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TARs for numerical attributes cannot always be easily adapted to a transaction database.
Despite all efforts, it appeared that no method exists today that can find meaningful sub-
groups of patients based on the underlying pattern of complications in the existence of the
latent risk factors. With a similar objective as this thesis, Moskovitch and Shahar11 conducted
a study in which time-interval mining methods obtained informative temporal patterns for
finding relationships in the transitivity inherent in time series diabetic patients. Also, they
exploited TA for the segmentation and aggregation of a time series into a symbolic represen-
tation, suitable for decision making and data mining. Although Moskovitch's paper is con-
sistent with this study by using supervised learning in time series diabetes data, it differs
from this work in finding meaningful time series patterns only based on gender not com-
plex temporal patterns from a longitudinal clinical dataset with the appearance of latent risk
factors.

A considerable amount of literature has been published on TARs to discover interesting
rules based on several quality filtering metrics known as constraints. Luna et al19 conducted
an empirical study in the optimization of the most interesting groups of metrics. In addi-
tion, recently, they provided a rich review on the commonly used frequent itemsets mining
algorithms.20 Part of this work is motivated by Hashler and Karpienko,21 which introduced a
distance-based clustering of ARs. It then is supported by Li et al,22 which revealed that applying
a postprocessing method to ARs to find the most frequent calendar patterns improves inter-
pretability in the descriptive analysis. Unfortunately, the previous methods were not only limited
in time granules but also increased the uncertainty in the relationship among rules, while there
was overlap among clusters in k-means clustering. The frequent pattern mining research sig-
nificantly affects data mining techniques in longitudinal data. A postprocessing approach in
Reference 23 attempted to extract interesting subsets of temporal rules within T2DM data. How-
ever, it only considered characteristic patterns of administrative data without the appearance
of latent variables. Other researchers have undertaken AR mining of clinical data. Lee et al
attempted to address the issue in Reference 24, and these have led to the proposal of the con-
cept of general TARs, where the items are allowed to have varying exhibition periods, and
their support is made based on that. Another piece of research conducted by Plasse et al25

looked at finding homogeneous groups of variables. They suggested that a variable clustering
method could be applied to the data in order to achieve a better result in pattern discover-
ing methodology. However, their strategy to mine ARs differs from this study in which the
number of rules was reduced only based on hierarchical clustering applied to items, not to mul-
tiple identical binary attributes. Among these, some methods uncovered temporal patterns and
relationships among clinical variables, including causal information26 and numeric time series
analysis.27

In longitudinal clinical data (eg, T2DM), one of the most important factors in the high
number of dependencies among features and complications is the appearance of unmeasured
risk factors. Surprisingly, the effect of understanding unmeasured variables, which play an
important role in disease prediction, does not seem that closely examined. The reason behind
this might be because of the recent focus on the AI models with a black box nature. What
is more, there are several issues with TARs when there are some rare rules of particular
interest.28

Given the strong association between the complications, another challenge is the exis-
tence of unknown (latent) factors in the data. It is crucial to understand better the latent
variables and other associated risk factors to be able to predict their underlying patterns
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earlier than their actual occurrence time. That can be done by exploring a well-chosen group
of potentially all significant patients' patterns while identifying temporal phenotypes based
on their unmeasured risk factors with reasonably minimal outliers. Having insight into the
causal associations, among disease complications, we attempt to open a black box model to
ease interpretation of the hidden patterns of complications in an accurate predictive model.
We, therefore, need to take into consideration both descriptive and predictive data mining
strategies.

Nevertheless, Lakkaraju et al29 suggested that there is a trade-off between patient per-
sonalization (in a descriptive analysis) and prediction performance (in predictive analysis).
In other words, aiming explainability (in an explainable/interpretable model) is often possi-
ble at a higher cost of the predictive accuracy (in a Black box model).8 Therefore, in the
black box models, it can be challenging to determine from just temporal clinical data what
is coordinating the visible patterns, to separate the underlying causes into meaningful and
spurious causes, which help patient stratification with understanding hidden variables. Black
box AI models in decision making are mostly based on deep learning techniques with many
latent variables. For example, these models map a patient's latent/risk factor into a class only
based on the combinations of weights without exposing the reasons why. Black box mod-
els are problematic not only for lack of transparency but also for possible biases inherited
by the algorithms from clinician's mistakes.30 This issue is caused based on the human prej-
udices and underestimation of the impact of the risk factors underlying behavior/pattern as
well as the existence of latent variables in the dataset, which may lead to incorrect and unfair
decisions.

Nevertheless, considering all of this evidence, none of the above studies have clustered uneven
time series clinical data based on a hidden variable for extracting temporal phenotype and behav-
iors of patients. There are quite few research studies on predicting T2DM complications and
T2DM black box models. However, studies on explaining an unknown risk factor/latent pheno-
type by using a hybrid data mining methodology (including descriptive and predictive) are rare
to find in literature.

In this work, we argue that binary complications could be predicted accurately by discover-
ing the latent factors and adding them to the observed data.1 Another study in Reference 3 have
primarily concentrated on the clustering approach based on the latent variable to personalise
the patients. That is consistent with the very current work in Reference 4, which also provided
a comparison methodology to evaluate the discovered latent variable clusters by using a com-
bination of supervised learning such as clustering and TARs among the binary complications.
Hence, Reference 4 found similar clusters to those obtained in Reference 3. This article extends
the previous work in Reference 4 in order to take into consideration both descriptive and pre-
dictive analysis when it comes to the basic idea of precise prediction through and explainable
model.

To sum up, the motivation behind this work is conducting new research in order to
suggest that the identification of a “latent phenotype” can be utilized to separate patients
into meaningful subgroups with the consideration of the relation among T2DM complica-
tions. In general, as observed balancing strategies from the prior studies to deal with imbal-
anced data for one complication at a time, it is challenging to obtain the prediction perfor-
mance enhancement for all complications. Therefore, another motivation for this study is to
improve the performance for predicting associated complications considering the imbalance
issue.
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2 METHODOLOGY

2.1 Data

The data for this study consist of prediagnosed T2DM patients aged 25 to 65 years
(inclusive) that were recruited from clinical followups at the “IRCCS Instituti Clinic Sci-
entifici” (ICS) Maugeri of Pavia, Italy. The MOSAIC project funds the data under the
Seventh Framework Program of the European Commission, Theme ICT—“2011.5.2 Vir-
tual Physiological Human (600914)” from 2009 to 2013. The dataset consists of physical
examinations such as cholesterol and blood pressure and laboratory data including HbA1c
measurements and lipid profile. For this study, certain complications and risk factors (pre-
dictors) were selected based on existing literature on diabetes31 and using recommenda-
tions from the clinicians at ICS. The selected T2DM complications are retinopathy (RET),
hypertension (HYP), nephropathy (NEP), neuropathy (NEU), and liver disease (LIV). Here,
the predictors are identified and selected from the dataset: body mass index (BMI), systolic
blood pressure (SBP), high-density lipoprotein (HDL), glycated hemoglobin/HbA1c (HBA),
diastolic blood pressure (DBP), cholesterol (COL), smoking habit (SMK), and creatinine
(CRT).

2.2 Preliminaries

From diabetes health status records, the T2DM dataset is accumulated (which is denoted here
as DS) from prediagnosed diabetic patients. For each patient in T2DM dataset defined the fol-
lowing notations. DS =

∑p
i=1 𝜋i = (𝜋1, 𝜋2, 𝜋3,… , 𝜋p), where 𝜋 demonstrates a distinct patient, i

identifies the patient in which i ≤ p, and p denotes the maximum number of patients in DS. Vi
refers the visits of patient i (𝜋i), there is a maximum Ti of visits Vi, where p = 356 represents a
maximum number of patients and Ti is a maximum of visits (Vi) for ith patient. The number of
visits is not necessarily the same for different i and varies (2 ≤ Ti ≤ 300). Hence, there is a total of
T = 3959 visits/instances/time series in DS, which contains temporal observations of the occur-
ring complications. Let 𝜋i =

∑Ti=300
j=1 Vij = (Vi1,… ,Viv,… ,ViTi ) be a set of visits for i-th patient

with Ti time series where Viv represents the vth visit of 𝜋i (as demonstrated in Equation (1)). For
each of the patients in DS, over which linear order is defined, v ≤ z means Vvi occurs before or
is earlier than Viz in [VivViz]. In order to clarify the dataset, a vector of patients is demonstrated
in Equation (1).

Tables 1 and 2 represent the selected T2DM complications (comorbidities), risk factors, and
their clinical control values. Data are discretized into qualitative states (binary and nonbinary
features) of ordinal clinical risk by using statistical parameters such as mean, median, and
SD. The main goal of this thesis is to understand the underlying patterns of associated binary
complications.

In this study, the association of nonbinary risk factors/symptoms has not been consid-
ered in order to extract rules among T2DM complications. The reason behind this is that
by utilizing the discovered latent variable, the overall behavior of T2DM risk factors is cap-
tured by using the IC*LS algorithm in a DBN framework (which is called a “latent phe-
notype”). Therefore, this study only concentrates on five binary complications as predictive
target classes in a binary classification problem (two categories of classes: “high” or “low”
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T A B L E 1 The
description of T2DM
complications, clinical
control values, and the
discretized states

Target complication Diagnosis outcome Clinical risk class

Retinopathy (RET) {Negative,Positive} {low,high}

Neuropathy (NEU) {Negative,Positive} {low,high}

Nephropathy (NEP) {Negative,Positive} {low,high}

Liver Disease (LIV) {Negative,Positive} {low,high}

Hypertension (HYP) {Negative,Positive} {low,high}

T A B L E 2 The description of the T2DM clinical features, risk factors, control values, and the
discretized states

T2DM risk factors Control value (Mean±SD) Discretized value

HbA1c (HBA) 6.6 ± 1.2 (%) {low,medium,high}

BMI 26.4 ± 2.4 (kg/m2) {low,medium,high}

Creatinine (CRT) 0.9 ± 0.2 (mg/dL) {low,medium,high}

Cholesterol (COL) 0.9 ± 0.2 (mg/dL) {low,medium,high}

HDL 1.1 ± 0.3 (mmol/l) {low,medium,high}

Diastolic blood pressure (DBP) 91 ± 12 (mmHg) {low,medium,high}

Systolic blood pressure (SBP) 148 ± 19 (mmHg) {low,medium,high}

Smoking habit (SMK) {nonsmoker, ex-smoker, smoker} {low,medium,high}

risk). Furthermore, a complication class value of low risk (zero) represents a patient visit
in which the complication is not present; otherwise, it is at high risk (one). For instance, a
complication class value of zero represents a patient visit in which the complication is not
present; otherwise, it is one. Alternatively, other risk factors associated with a patient (symp-
toms/clinical tests) are abstracted in the multiclass classification problems with more than two
targets including “high,” “medium,” and “low” risk patient, according to a diabetes expert's
definitions.32,33

Let 𝜒 be a set of binary complications in DS, where 𝜒 =
∑5

i=1 𝜒i. 𝜒i must be selected
from one of HYP, NEU, NEP, LIV, RET, and 𝜒i only takes on clinical class values from
{low, high}. For example, if ith complication (𝜒i) of kth patient (𝜋k) is diagnosed negatively
(not having the complication of 𝜒i), the class value becomes zero (𝜋k(𝜒i) = low); otherwise
it sets to one (𝜋k(𝜒i) = high) in which it shows that the patient is diagnosed positively
(having the ith complication).

For retrieving the conditional rules (if-then pattern) among the complications, we
need to make use of some concepts within the associated complications rules. Here,
preliminaries for ARs are defined according to a study conducted by Parvez et al.34

ARs in this article aim to uncover all such relationships between complications from
T2DM dataset. TAR of {antecedent ⇒ consequent} is a representation of finding consequent
on the patient visits (which is called basket) followed by the corresponding antecedent
on it.
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𝜋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Patients Visits Complications Pattern

𝜋1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V11 {}
V21 {HYP}
V31 {HYP}
V41 {HYP,LIV}
V51 {HYP,LIV ,NEU}
V61 {HYP,LIV ,NEU,NEP}
V71 {HYP,LIV ,NEU,NEP}
V81 {HYP,LIV ,NEU,NEP}

⎤⎥⎥⎥⎥⎥⎥⎥⎦

𝜋2

⎡⎢⎢⎢⎢⎢⎣

V12 {}
V22 {RET}
V32 {RET,HYP}
V42 {RET,HYP,NEU}
V52 {RET,HYP,NEU,LIV}
V62 {RET,HYP,NEU,LIV}

⎤⎥⎥⎥⎥⎥⎦
.
.
.

𝜋i

⎡⎢⎢⎢⎣
V1i
V2i
...
VTii

⎤⎥⎥⎥⎦
.
.
.

𝜋p

⎡⎢⎢⎢⎣
V1p
V2p
...
VTip

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

2.3 Latent phenotype discovery and time series clustering

The previous work by Yousefi and co-authors in Reference 4 stated that a discovered latent phe-
notype could be used to capture the temporal risk factors while monitoring the pattern changes
in the disease. The latent phenotype for each patient is extracted from the most influential hidden
variable identified using the IC* Stepwise algorithm,4 which uses a DBN framework for inferring
model structure and any potential hidden variables simultaneously. A latent variable H is defined
to be the expected values for this hidden variable calculated using EM algorithm within the DBN
framework. Time series clustering is used on these expected values of the latent variables with
DTW to generate clusters of patients as well as identify the “mediod” patient at the center of each
cluster. Having discovered the latent phenotype clusters (which is called “H clusters”), it assumes
that patients within a cluster share a similar risk factor profile as well as a similar pattern of the
occurring complications. In this study, this pattern for each H cluster represents the most frequent
ordering pattern of complications, which is associated with the corresponding deep latent pheno-
type. However, the meaning of the H and its influence on the complications' pattern for each sub-
group of patients has remained unclear. In order to understand how the latent phenotype helps to
group patients, a combination of the TARs mining and time series clustering is performed in the
next section.



YOUSEFI et al. 9

2.4 TAR and AR mining

In this study, ARM is a method that discovers all combination/sequence/set of items (com-
plications), which is called itemsets with the frequency of transactions (referred to sup-
port) greater than a predefined minimum threshold based on large itemsets (in the case
greater than 0.001). To generate interesting rules with having a confidence greater than the
default threshold, it was important to find large itemsets. However, for the sake of sim-
plicity and having a small-sized dataset with sensitive clinical data, a confidence constraint
of 25% is chosen. In T2DM dataset, support is regarded as an explicit constraint to iden-
tify the outliers. Thus, the minimum constraints must be assigned at a low level. This is
because complication rules with predefined constraints that vary from a patient to another
patient. Moreover, in the small-sized dataset with the appearance of bias, it is necessary
to ascertain that the frequent items do not affect the associations of other items rather
than HYP.

T2DM binary complications are representing items of TARs in the shopping basket problem.
Itemset of {antecedent, consequent} is a representation of the sequence of complications occurs
between two visits of [VivViz]. An itemset I is a transaction that represents a pattern of all asso-
ciated complications over a patient time series (from the first recorded visit to the last visit). If
I is a transaction in database R and a rule is an implication of the form {𝜒i ⇒ 𝜒j} where 𝜒i ⊆ I,
𝜒j ⊆ I, and 𝜒i ∩ 𝜒j ≡ {}. The maximum number of items in I is five (|I| = 5), which is equal to
the number of binary complications (items). In terms of explaining temporal notation, every two
itemsets with a similar complication co-occurrences are treated equivalent and any redundant
complication in their intersection is ignored.

In order to analyze antecedent and consequent itemsets, we declare the following definition:
{𝜒i, 𝜒j} is an ordered pair of complications (two-tuple) in which representing the set consist-
ing of both complications 𝜒i and 𝜒j with respect to their ordering pattern. {𝜒i, 𝜒j, 𝜒k} is an
ordered triple (three-tuple), while ∅ or {} is the empty tuple (zero-tuple). The consequent item-
sets may be consisted of more than one item per rules. In the process of pruning/analyzing the
rules to pick the most interesting one, our main priority in predictive model for the decision
making is based on consequents. Note that despite the fact that the empty set (no complica-
tion is diagnosed) is an empty type and one subtype of each of rules antecedent ({} ⟂ 𝜕(𝜒)),
this is not allowed to be located in consequents. Database R =

∑m=87
l=1 Rl is retrieved based

on the relationships among the complications for all patients within DS. An antecedent of
Rl is the left-hand-side subrule (LHS(Rl)) in which Rl is a rule of the form {𝜒k, 𝜒h}. Alter-
natively, consequent is the right-hand-side subrule (RHS(Rl)) where RHS(Rl) is a rule of the
form {𝜒k, 𝜒m}.

In addition, if there is an “OR” (|) operation among complications in a rule, {𝜒i|𝜒j} means
that either of complications (𝜒i or 𝜒j) can occur or neither of them ({}), as shown in Equation (2).

{𝜒i|𝜒j} ≡ 𝜒i|𝜒j|{}. (2)

In this case study, {HYP}, {RET}, and {HYP,RET} are equivalent. However, {HYP,RET} and
{RET,HYP} are not considered equivalent as the former ordering is important. Nevertheless, two
rules such as {NEU,RET,RET} and {NEU,RET} are assumed equivalent, whereas {NEU|RET} is
different (in this study with a “,”) as NEU should be developed before RET, while {NEU|RET} ⊆

{NEU,RET} with a “|” without consideration of ordering indicates either RET or NEU or any
ordering of both or none of them ({}) could occur. Two rules of {{NEP,HYP},NEU} ⇒ {RET}
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and {{NEP,HYP},RET} ⇒ {NEU} are the most interesting rules with the highest confidence
and lift, respectively. In addition, an empty antecedent {} and two empty antecedents {}{} in
the complication rules represent a patient/transaction with no complication during the first two
visits.

Each of the patients in DS can develop any combination of items included in 𝜒 where C(𝜋i)
represents all complications/items that patient i has developed during the visits record. A set
k-combination of items is a subset of k distinct complications/items chosen from 𝜒 (k-itemsets,
which is called a subrule). For each patient 𝜋i with a set of visits Vi, the number of k-combinations
is equal to the binomial coefficient. C(𝜋i) ⋈ C(𝜋j) is the natural join of the relations C(𝜋i)
and C(𝜋j) where all combinations of tuples in C(𝜋i) and C(𝜋j) are equal on their common
complications.

Given a set of 𝜋k(𝜒i) ⊆ VTii ⊂ DS, the power set of I (which is represented by ℘(VTii, k))

is the set of all complications denoted by
(

k
VTii

)
, where k ≤ 5. Thus, a sequence of compli-

cations co-occurrence of 𝜒 is assumed as a partial ordering on 𝜕(𝜒), where 𝜕(𝜒, ⊆) is a poset
considering 𝜒 . The inclusion relation ⊆ defined as a partial ordering on the power set of 𝜒

with a reflexive, antisymmetric, and transitive nature. For example, 𝜋i with a pattern of the
complications co-occurrence C(𝜋i) is allocated a subset of 𝜕(𝜒, ⊆) with C(𝜋i) ⊆ 𝜕(𝜒). Since for
every set {LIV,HYP} ⊆ {HYP,LIV}, hence, ⊆ is reflexive. It is also antisymmetric while there
is no repetition of the complications. C(𝜋i) ⟂ C(𝜋j) means that C(𝜋i) is comparable to C(𝜋i)
if C(𝜋i) ≼ C(𝜋j) where |C(𝜋i)| ≤ |C(𝜋j)| under set containment. C(𝜋i) ⊨ C(𝜋j) indicates that
C(𝜋i) entails C(𝜋j), that is, in every patient, in which C(𝜋i) and C(𝜋j) are true. There exists at
least one 𝜋j that matches 𝜋i such that C(𝜋i) ⇔ C(𝜋i). A mathematical expression of C(𝜋i) ⊖

C(𝜋j) means the set of items is exactly one of C(𝜋i) or C(𝜋j). Thus, patients ith and jth are
developing a similar rules and belonging to a subgroup if their antecedents follows C(𝜋i) ⊖

C(𝜋j) or 𝜕(LHS(C(𝜋i) ⊖ C(𝜋j))) ⊆ C(𝜋i) ∪ C(𝜋j). This means that the set of items in the con-
sequent of is belonged to intersection of both rules 𝜕(RHS(C(𝜋i) ⊖ C(𝜋j))) ⊆ C(𝜋i) ∩ C(𝜋j).
As a result, {HYP,LIV} ⊆ {HYP,LIV,LIV}, {HYP,LIV,LIV} ⊆ {HYP,LIV}, and{HYP,LIV} =
{HYP,LIV,LIV}. It is also transitive as {HYP} ⊆ {HYP,LIV} and {HYP,LIV} ⊆ {HYP,LIV,RET}
imply {HYP} ⊆ {HYP,LIV,RET}. Therefore, there is equivalence itemsets of {HYP,LIV,LIV}
in which {HYP,LIV} ∶ {HYP,LIV} ≡ {HYP,LIV} (≡ is an equivalence relation). The symbol
≼ illustrates the relation in any partial set and ordering pattern of occurrence in which each
element in its left-hand side is a predecessor of element the right-hand side. The notation
{HYP,LIV} ≺ {HYP,LIV,RET} is used to denote {HYP,LIV} ⊆ {HYP,LIV} and but does not
succeed {HYP,LIV,RET} ⊆ {HYP,LIV} while {HYP,LIV} ⊁ {HYP,LIV ,RET}.

2.4.1 Quality metrics

Support is a fraction of patients containing the itemsets (which is called a transaction or a basket
of items). Confidence calculates the probability of occurrence of {consequent} given {antecedent}
is present. Lift is the ratio of confidence to baseline probability of occurrence of {consequent}. A
frequent itemset is an itemset included in at least a significant number of patients. ARM involves
the generation of itemsets and TARs. Maximal frequent itemsets represent an itemsets in which
none of the corresponding supersets are frequent.

The support measure of itemsets C(𝜋i) ∗ (supp(C(𝜋i)) is defined as the proportion of trans-
actions in the dataset containing RHS(C(𝜋i)). In particular, an AR of 𝜕(C(𝜋i)) ⇒ 𝜕(C(𝜋j)) has a
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support of P(C(𝜋i)C(𝜋j)). The confidence measure of a rule identifies the proportion of transac-
tions with the most interesting/important relationships. In addition, the confidence of a rule is
defined as confidence(C(𝜋i) ⇒ C(𝜋j) ≡ support(C(𝜋i) ∪ C(𝜋j)) ≡ support(C(𝜋j)), which satisfies
Equation (8).

support(C(𝜋i) ∪ C(𝜋j)) > 𝜎, confidence(C(𝜋i) ⇒ C(𝜋j)) > 𝛿lift
( P(C(𝜋i) ∩ C(𝜋j))

P(C(𝜋i)) ∗ P(C(𝜋j))

)
. (3)

Parameters such as 𝜎 and 𝛿 are the minimum support and confidence, respectively. Instead
of using accuracy, efficiency is an appropriate way to evaluate ARs.34 To obtain the frequents
itemsets, first TARs are filtered by using support and confidence. However, they are not able to
filter complication rules based on the different dependencies among the rules. For this purpose,
a measurement of independence of C(𝜋i) and C(𝜋j), which is known as lift. Lift is the deviation
of the whole rule support from the expected support under independence given both sides of the
rule support. Higher lift values indicate strong associations. Lift of 1 represents C(𝜋i) and C(𝜋j)
are independent as shown in Equation (9).

lift(C(𝜋i) ⇒ C(𝜋j)) = support(C(𝜋i) ∪ C(𝜋j)) = support(C(𝜋i)) ∗ support(C(𝜋j)). (4)

For example, the probability of developing both HYP and LIV is associated with the like-
lihood of developing RET. Confidence of HYP,LIV implying RET is given as the likelihood
of developing HYP,LIV, and also RET over the likelihood of developing only HYP and LIV
(see Equation (10)).

confidence({HYP,LIV} ⇒ {RET}) =
support({HYP,LIV ,RET})

support({HYP,LIV})
. (5)

The confidence measures whether {RET,HYP,NEU,RET} implies LIV. This reveals that how
likely a given patient develops {RET,HYP},NEU,RET, and LIV. In order to find the most inter-
esting itemsets, support ensures that all subrules of the frequent itemsets are also frequent, hence
no superset of infrequent itemsets can be frequent. Confidence is very sensitive to the frequency
of the consequent. It has been reported that consequents with higher support will produce higher
confidence even though there is no association among the antecedent and consequent. Thus, it
might not be useful in performing effectively with the existence of bias in dataset DS with a hav-
ing small number of patients and relatively complications. Confidence measures the strength of
the ARs in which the patients that have complication C(𝜋i) also developed C(𝜋j) together. There
is a number of choices for selecting the filtering measures35 such as lift, leverage, and cover-
age, where Lift(C(𝜋i) ⇒ C(𝜋j)) = confidence(C(𝜋i) ⇒ C(𝜋j)) × support(𝜒j), leverage(C(𝜋i) ⇒
C(𝜋j)) = support(C(𝜋i) ⇒ C(𝜋j)) - (support(𝜒i) × support(𝜒j)), coverage(C(𝜋i) ⇒ C(𝜋j)) =
support(C(𝜋i)). In T2DM dataset, there is a strong association (indicated by the highest lift) among
the complications, which shows the likelihood of the complication being developed relative to
its general developing rate, given that the patient developed other complications. For instance,
the conditional probability of developing both HYP and LIV in are associated with the likeli-
hood of the patient developing RET. There is a strong association (indicated by the highest lift)
among the complications, which shows the likelihood of the complication being developed rel-
ative to its general developing rate, given that the patient developed other complications. For
example, the conditional probability of a patient developing both HYP and LIV is associated with
the likelihood of the patient developing RET. Whereas coverage filters the rules mostly based on
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their antecedents. This is opposite to this article preferences where the consequents (the com-
plications occur in the future visits) have been considered as the most revealing itemsets in
the decision making and prediction process. Similar to lift, conviction metric assesses the like-
lihood of the appearance of an antecedent in which the corresponding consequent is not likely
to occur.

Overall, a question still remains to answer whether it could be possible to trust these metrics by
the user-defined thresholds. In particular, there are many challenges to find the most interesting
rules36 only by relying on TARs. Nevertheless, most of the previously mentioned metrics in this
study are mainly depended on the support and frequency. In a small-sized dataset like DS, where
there is a different imbalance ratio for each item (complication), bias, and latent factors, it may
not be beneficial if is only trust on the obtained itemsets resulted by using support, confidence,
and lift.

Moreover, there are some itemsets that are called frequent itemsets, while their occur-
rence exceeds the threshold in the database. In order to generate interesting rules, one could
come across many frequent itemsets with minimal confidence. In the other words, by applying
a rigid constraint with having bias in data, the final itemsets can be identified as interest-
ing itemsets wrongly. This is because interestingness is only based on the association of HYP
with the items, not the relationships among the items themselves. An item like HYP with
a high occurrence rate can affect the way how other items are associated with each other.
To avoid the above issue in a small-sized dataset, we tend to discover all types of associa-
tions regardless of effect of bias (eg, HYP) and focus mostly on the relaxed or flexible filtering
metrics.

It does not seem to be possible to only rely on lift as it may not be trustworthy enough
and unable to perform effectively with the existence of bias in the incomplete data. Lift suf-
fers from having nonfixed range of variables. It only assesses the dependency and correlation
of the items without taking into consideration the importance of the cause and effect relation-
ships among antecedents and consequents. Similar to the issue related to support and confident,
lift is susceptible to infrequent items with a relatively low probability complication rules that
can be ranked wrongly as the most interesting itemsets. Although having a very low or min-
imal constraints to be applied on the quality metrics, it does not eliminate the above issue,
which is caused by generating all possible permutations of complications for all transactions
as an non-optimal option. This is because, Tables 3 and 4 contain many different antecedents
and consequents, which increase the database size exponentially based on the number of items.
It also leads to generating large number of uninteresting distances among many small rules
despite the previously chosen optimal/minimal threshold for support and confidence. In this
situation, neither clustering nor ARM methodology perform effectively and can be even worse
and problematic in a sparse dataset (such as T2DM). In conclusion, for making a better deci-
sion, the uninteresting rules needs to be reduced at another level which is addressed in the
next section.

2.5 Methods

This section explains the methods to find explainable subgroups of patients. Our recent work
in References 3 and 4 has suggested that the identification of a “phenotype” can be used to
separate patients into meaningful subgroups with the consideration of the T2DM risk factor
and complication relationships. Here we, first, identify an informative pattern based on latent
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T A B L E 3 Database R of the associated rules with the complications generated using TARs

Rulea Antecedent Consequent
Interesting itemsets
(objects) from Db Support Confidence Lift

1 { } ⇒ {HYP,RET} 3,14,23,27,28,33,38,41 ≥ 0.001 ≥ 0.001 1.00

2 { } ⇒ {RET,HYP} 3,14,23,27,28,33,38,41 0.01 0.01 1.00

3 { } ⇒ {NEU,HYP} 5,13,21,26,28,31,38,41 0.01 0.01 1.00

4 { } ⇒ {LIV,HYP} 6,24,30,31,33,35,36,37,39,40 0.02 0.02 1.00

5 { } ⇒ {NEP,HYP} 2,13,14,20,26,27,30,38,41 0.03 0.03 1.00

6 { } ⇒ { }{ } 9 0.02 0.02 1.00

7 { } ⇒ {NEP} 2,11,13,14,16,17,18,20,25, 0.11 0.11 1.00

29,30,32,35,36,37,38,41

8 { } ⇒ {NEU} 5,7,13,15,16,19,21,25,26,28, 0.16 0.16 1.00

29,31,34,35,37,38,39,40,41

9 { } ⇒ {RET} 3,4,8,14,15,17,22,23,25,27,28, 0.15 0.15 1.00

32,33,34,38,41

10 { } ⇒ {LIV} 6,12,18,19,22,24,29,30,31,32, 0.15 0.15 1.00

33,34,35,36,37,39,40

11 { } ⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23, 0.86 0.86 1.00

24,26,27,28,30,31,33,38,41

12 {NEU,HYP} ⇒ {NEU} 13,26,38,41 0.01 0.27 1.71

13 {NEU} ⇒ {NEP,HYP} 13,26,38,41 0.01 0.05 1.71

14 {NEP,HYP} ⇒ {RET} 14,27,38,41 0.01 0.27 1.79

15 {RET} ⇒ {NEP,HYP} 14,27,38,41 0.01 0.05 1.79

16 { }{ } ⇒ {RET} 3,4,8,14,15,17,22,23,25,27, 0.01 0.22 1.46

28,32,33,34,38,41

17 {RET} ⇒ { }{ } 3,4,8,14,15,17,22,23,25,27, 0.01 0.03 1.46

28,32,33,34,38,41

18 { }{ } ⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23, 0.02 0.78 0.90

24,26,27,28,30,31,33,38,41

19 {HYP} ⇒ { }{ } 2,3,4,5,6,10,13,14,20,21,23, 0.02 0.02 0.90

24,26,27,28,30,31,33,38,41

20 {NEP} ⇒ {NEU} 13,16,25,26,29,38,41 0.02 0.19 1.17

21 {NEU} ⇒ {NEU} 13,16,25,26,29,38,41 0.02 0.13 1.17

22 {NEP} ⇒ {RET} 14,17,25,27,32,38,41 0.02 0.14 0.92

23 {RET} ⇒ {NEP} 14,17,25,27,32,38,41 0.02 0.10 0.92

24 {NEP} ⇒ {LIV} 18,29,30,32,36,37 0.04 0.37 2.49

(Continues)
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T A B L E 3 (Continued)

Rulea Antecedent Consequent
Interesting itemsets
(objects) from Db Support Confidence Lift

25 {LIV} ⇒ {NEP} 18,29,30,32,36,37 0.04 0.27 2.49

26 {NEP} ⇒ {HYP} 2,13,14,20,26,27,30,38,41 0.10 0.93 1.08

27 {HYP} ⇒ {NEP} 2,13,14,20,26,27,30,38,41 0.10 0.12 1.08

28 {NEU} ⇒ {RET} 15,25,28,34,38,39,40,41 0.04 0.25 1.64

29 {RET} ⇒ {NEU} 15,25,28,34,38,39,40,41 0.04 0.26 1.64

30 {NEU} ⇒ {LIV} 19,29,31,34,35,37,39,40 0.02 0.11 0.73

31 {LIV} ⇒ {NEU} 19,29,31,34,35,37,39,40 0.02 0.12 0.73

32 {NEU} ⇒ {HYP} 5,13,21,26,28,31,35, 0.12 0.78 0.91

37,38,39,40,41

33 {HYP} ⇒ {NEU} 5,13,21,26,28,31,35,37, 0.12 0.14 0.91

38,39,40,41

34 {RET} ⇒ {LIV} 22,32,34,36,39,40 0.03 0.20 1.31

35 {LIV} ⇒ {RET} 22,32,34,36,39,40 0.03 0.20 1.31

36 {RET} ⇒ {HYP} 3,14,23,27,28,33,36,38,41 0.12 0.79 0.91

37 {HYP} ⇒ {RET} 3,14,23,27,28,33,36,38,41 0.12 0.14 0.91

38 {LIV} ⇒ {HYP} 6,24,30,31,33,35,36,37,39,40 0.14 0.92 1.06

aThis table shows rule number 1 to 37.
bIdentification of a set of objects which follows any combinations of the itemsets in D.

variables, which we call a “latent phenotype.” This is then used to group patients and captured
the complexities/homogeneity of the risk factors/complications over time.

Studies relating to enhancing the interpretability of latent variables along with a significant
improvement in the prediction performance have been relatively scant. There is no study focus-
ing on utilizing ARM in the underlying patterns of temporal complications rules (which we note
as “complication rules”) in order to explain the latent variable behavior. Since the clinical model
can have serious consequences, it is imperative to better understand the associated complication
rules in trustable/interpretable patients models. These models are relatively complex; however,
it can be accurately modeled by using data mining techniques (including both descriptive and
predictive strategies). We further extend this idea by using a hybrid methodology of TARs, ARM,
time series clustering, statistical, Bayesian structure modeling, and predictive analysis in order
to find explainable subgroups of patients with more personalised prediction. To implement the
model, the associated complication rules are mined to assess the occurrence likelihood of binary
complications in relation to the rest of complications associated with a prediagnosed T2DM
patient. For example, to find out whether the increasing prevalence of HYP has been accompa-
nied by an increase in the NEU or patients with NEP are also diagnosed by LIV. Then, TARs
are chosen according to the needs of the study to discover underlying relationships among the
complications.

Similarly, pattern mining and sequence discovery are performed to explain and highlight the
potential usefulness of the complication rules with a deeper understanding of their causal struc-
ture within the clinical data. With ARM we are interested in the absolute number of patients that
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T A B L E 4 Database R of the associated rules with the complications generated using TARs

Rulea LHS RHS
Interesting itemsets
(objects) from Db Support Confidence Lift

39 {HYP} ⇒ {LIV} 6,24,30,31,33,35,36,37,39,40 0.14 0.16 1.06

40 {{NEP,HYP},NEU} ⇒ {RET} 28,38,41 0.01 1.00 6.57

41 {{NEP,HYP},RET} ⇒ {NEU} 28,38,41 0.01 1.00 6.27

42 {NEU,RET} ⇒ {NEP,HYP} 28,38,41 0.01 0.19 6.84

43 {NEP,NEU} ⇒ {RET} 25,38,41 0.01 0.25 1.64

44 {NEP,RET} ⇒ {NEU} 25,38,41 0.01 0.33 2.09

45 {NEU,RET} ⇒ {NEP} 25,38,41 0.01 0.13 1.17

46 {NEP,NEU} ⇒ {LIV} 29,35,37 0.01 0.25 1.67

47 {LIV,NEP} ⇒ {NEU} 29,35,37 0.01 0.13 0.78

48 {LIV,NEU} ⇒ {NEP} 29,35,37 0.01 0.29 2.66

49 {NEP,NEU} ⇒ {HYP} 26,35,37,38,41 0.02 0.88 1.01

50 {HYP,NEP} ⇒ {NEU} 26,35,37,38,41 0.02 0.18 1.10

51 {HYP,NEU} ⇒ {NEP} 26,35,37,38,41 0.02 0.14 1.31

52 {NEP,RET} ⇒ {LIV} 32,36 ≥ 0.001 0.17 1.11

53 {LIV,NEP} ⇒ {RET} 32,36 ≥ 0.001 0.06 0.41

54 {LIV,RET} ⇒ {NEP} 32,36 ≥ 0.001 0.08 0.78

55 {NEP,RET} ⇒ {HYP} 27,36,38,41 0.01 0.67 0.77

56 {HYP,NEP} ⇒ {RET} 27,36,38,41 0.01 0.10 0.66

57 {HYP,RET} ⇒ {NEP} 27,36,38,41 0.01 0.08 0.78

58 {LIV,NEP} ⇒ {HYP} 30,35,36,37 0.04 0.94 1.09

59 {HYP,NEP} ⇒ {LIV} 30,35,36,37 0.04 0.38 2.51

60 {HYP,LIV} ⇒ {NEP} 30,35,36,37 0.04 0.27 2.54

61 {NEU,RET} ⇒ {LIV} 34,39,40 0.01 0.13 0.84

62 {LIV,NEU} ⇒ {RET} 34,39,40 0.01 0.29 1.88

63 {LIV,RET} ⇒ {NEU} 34,39,40 0.01 0.17 1.04

64 {NEU,RET} ⇒ {HYP} 28,38,39,40,41 0.03 0.75 0.87

65 {HYP,NEU} ⇒ {RET} 28,38,39,40,41 0.03 0.24 1.58

66 {HYP,RET} ⇒ {NEU} 28,38,39,40,41 0.03 0.25 1.57

67 {LIV,NEU} ⇒ {HYP} 31,35,37,39,40 0.02 0.86 0.99

68 {HYP,NEU} ⇒ {LIV} 31,35,37,39,40 0.02 0.12 0.80

69 {HYP,LIV} ⇒ {NEU} 31,35,37,39,40 0.02 0.11 0.68

70 {LIV,RET} ⇒ {HYP} 33,36,39,40 0.03 1.00 1.16

71 {HYP,RET} ⇒ {LIV} 33,36,39,40 0.03 0.25 1.67

(Continues)
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T A B L E 4 (Continued)

Rulea LHS RHS
Interesting itemsets
(objects) from Db Support Confidence Lift

72 {HYP,LIV} ⇒ {RET} 33,36,39,40 0.03 0.22 1.43

73 {NEP,NEU,RET} ⇒ {HYP} 38,41 ≥ 0.001 0.50 0.58

74 {HYP,NEP,NEU} ⇒ {RET} 38,41 ≥ 0.001 0.14 0.94

75 {HYP,NEP,RET} ⇒ {NEU} 38,41 ≥ 0.001 0.25 1.57

76 {HYP,NEU,RET} ⇒ {NEP} 38,41 ≥ 0.001 0.08 0.78

77 {LIV,NEP,NEU} ⇒ {HYP} 37 0.01 1.00 1.16

78 {HYP,NEP,NEU} ⇒ {LIV} 37 0.01 0.29 1.91

79 {HYP,LIV,NEP} ⇒ {NEU} 37 0.01 0.13 0.84

80 {HYP,LIV,NEU} ⇒ {NEP} 37 0.01 0.33 3.11

81 {LIV,NEP,RET} ⇒ {HYP} 36 ≥ 0.001 1.00 1.16

82 {HYP,NEP,RET} ⇒ {LIV} 36 ≥ 0.001 0.25 1.67

83 {HYP,LIV,NEP} ⇒ {RET} 36 ≥ 0.001 0.07 0.44

84 {HYP,LIV,RET} ⇒ {NEP} 36 ≥ 0.001 0.08 0.78

85 {LIV,NEU,RET} ⇒ {HYP} 39 0.01 1.00 1.16

86 {HYP,NEU,RET} ⇒ {LIV} 39 0.01 0.17 1.11

87 {HYP,LIV,NEU} ⇒ {RET} 39 0.01 0.33 2.19

aThis table shows rule number 39 to 87.
bIdentification of a set of objects which follows any combinations of the itemsets in D.

contain a particular set of complications. By utilizing TARs, given many patterns of complica-
tion rules (itemsets), we attempt to find which itemsets, that belong to a patient, predict another
complication for the patient. Thus, we use a postprocessing approach (which is called minimum
coverage itemsets [MCI]) to prune the rules to the most important ones and to find the most
useful distances in order to obtain meaningful clustering outcomes. We then attempt to explain
and validate these groups through the integration of TARs combined with time series clustering.
Figure 1 illustrates the overall process that includes: hidden variable discovery that is used to iden-
tify the latent phenotype and, in turn, generates the latent phenotype clusters (H cluster), TARs
clusters, and finally comparison and validation strategies (involving Jaccard distance metrics and
sensitivity analysis).

The proposed hybrid methodology to find explainable subgroups of patient and interpret
the latent variable by personalizing diabetic patients in precision medicine is demonstrated as a
multiple-stage process in Figure 1, which is labeled and explained as follows:

1. Data discretization and preparation are employed to generate the original T2DM dataset (DS)
in the preprocessing approach.

2. For each patient, an informative pattern (latent phenotype) is identified based on the latent
variable discovery approach using DBNs and IC* Stepwise algorithm, latent phenotype.

3. DTW finds dissimilarities between the discovered latent phenotypes and captures the com-
plexities/homogeneity of the risk factors/complications over time.
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F I G U R E 1 The proposed hybrid methodology to find explainable subgroups of patient to interpret the
latent variable by personalizing diabetic patients in precision medicine [Color figure can be viewed at
wileyonlinelibrary.com]

4. Time series clustering based on DTW distance is applied to stratify patients into four latent
phenotype clusters.

5. The multiple binary complications, as items from the preprocessed dataset DS, are extracted
and mined to retrieve the temporal patterns of items for all patients.

6. TARs are applied on the obtained patterns from DS and generate Tables 3 and 4. These rules
consists of (87 × 2) subrules (including 87 antecedents and 87 consequents).

7. A postprocessing ARM methodology is applied to the complication rules where metrics such
as support and confidence with predefined soft thresholds filtered frequent rules. These

http://wileyonlinelibrary.com
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constraints are strengthened in which lift of the frequent rules must come through the
highest lift boundary. Then another algorithm (which we called MCI) generates least item-
sets in D covering the interesting rules from R. MCI locates alternative optimal combinations
of the subrules in which the number of repetitive items can be reduced. As a result, dataset
D is generated based on the most important rules.

8. All rules in R are mapped to the relevant objects/itemsets in D based on the implications
of the antecedents and consequents. Jaccard index measured the objects to clusters the
complication rules (TAR clusters).

9. By using agglomerative clustering, objects are grouped in five groups. Patients are assigned
to the corresponding cluster based upon their associated unique pattern of complications.

10. Jaccard Similarity and more statistical methods is applied to compare and validate the dis-
covered clusters to find meaningful subgroups of patients from the intersection of H and TAR
clusters.

11. Prediction performance of the discovered meaningful subgroup (DS1) as a subset is compared
to DS.

12. Sensitivity analysis is utilized to assess DS1 and analyze its prediction performance compar-
ing to DS.

13. The latent variable is explained for patients with a similar pattern of TARs and latent
phenotype.

2.6 Latent phenotype discovery and time series clustering

Previously, we stated that a discovered latent phenotype could be used to capture the tempo-
ral risk factors while monitoring the pattern changes in the disease. The latent phenotype for
each patient is extracted from the most influential hidden variable identified using the IC* Step-
wise algorithm,4 which uses a DBN framework for inferring model structure and any potential
hidden variables simultaneously. We define H to be the expected values for this hidden variable
calculated using expectation-maximization (EM) algorithm37 within the DBN framework. Time
series clustering is used on these expected values of the latent variables with DTW to generate
clusters of patients as well as identify the “mediod” patient at the center of each cluster. Having
discovered the latent phenotype clusters (which we call “H clusters”), we assume that patients
within a cluster share a similar risk factor profile as well as a similar pattern of the occurring
complications. In this study, this pattern for each H cluster represents the most frequent order-
ing pattern of complications, which is associated with the corresponding deep latent phenotype.
However, the meaning of the H and its influence on the complications' pattern for each sub-
group of patients has remained unclear. In order to understand how the latent phenotype helps to
group patients, a combination of the TARs mining and time series clustering is performed in the
next section.

2.7 TARs and AR mining

In this study, ARM is a method that discovers all combination/sequence/set of items (complica-
tions), which is called itemsets with the frequency of transactions (referred to support) greater
than a predefined minimum threshold based on large itemsets (in our case greater than 0.001).
To generate interesting rules with having a confidence greater than the default threshold, it was
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important to find large itemsets. However, for the sake of simplicity and having a small-sized
dataset with sensitive clinical data, we choose a confidence constraint of 25%. In T2DM dataset,
support is regarded as an explicit constraint to identify the outliers. Thus, the minimum con-
straints must be assigned at a low level. This is because complication rules with predefined
constraints which vary from a patient to another patient. Moreover, in the small-sized dataset with
the appearance of bias, we need to ascertain that the frequent items do not affect the associations
of other items rather than HYP.

In order to find the most interesting itemsets, support ensures that all subrules of the fre-
quent itemsets are also frequent, hence no superset of infrequent itemsets can be frequent.
Confidence is very sensitive to the frequency of the consequent. It has been reported that conse-
quents with higher support will produce higher confidence even though there is no association
among the antecedent and consequent. Thus, it might not be useful in performing effectively
with the existence of bias in dataset DS with a having small number of patients and relatively
complications. Confidence measures the strength of the ARs in which the patients that have
complication 𝜒i also developed 𝜒j together. We have a number of choices for selecting the filter-
ing measures35 such as lift, leverage, and coverage, where Lift(𝜒i ⇒ 𝜒j) = confidence(𝜒i ⇒ 𝜒j) ×
support(𝜒j), Leverage(𝜒i ⇒ 𝜒j) = support(𝜒i ⇒ 𝜒j) - (support(𝜒i) × support(𝜒j)), Coverage(𝜒i ⇒
𝜒j) = support(𝜒i). In T2DM dataset, there is a strong association (indicated by the highest lift)
among the complications, which shows the likelihood of the complication being developed rel-
ative to its general developing rate, given that the patient developed other complications. For
instance, the conditional probability of a patient developing both HYP and LIV is associated with
the likelihood of the patient developing RET. There is a strong association (indicated by the high-
est lift) among the complications, which shows the likelihood of the complication being developed
relative to its general developing rate, given that the patient developed other complications. For
example, the conditional probability of a patient developing both HYP and LIV is associated with
the likelihood of the patient developing RET. Whereas coverage filters the rules mostly based on
their antecedents. This opposite the present paper preferences where the consequents (the com-
plications occur in the future visits) have been considered as the most revealing itemsets in the
decision making and prediction process. Similar to lift, conviction metric assesses the likelihood
of the appearance of an antecedent without the corresponding consequent.

Nevertheless, a question still remains to answer as if we can trust these metrics by the
user-defined thresholds. In particular, there are many challenges to find the most interesting
rules36 only based on the TARs and its constraints. For example, all of the previously mentioned
metrics in this article only depend on the support and frequency. In a small-sized dataset like DS,
where there is a different imbalance ratio for each item (complication), bias, and latent factors,
it may not be beneficial if we only rely on the obtained itemsets resulted by using support, con-
fidence, and lift. Unfortunately, there are some itemsets that are called frequent itemsets while
their occurrence exceeds the threshold in the database.

Moreover, in order to generate interesting rules, we come across many frequent itemsets with
minimal confidence. In the other words, by applying a rigid constraint with having bias in data,
the final itemsets can be identified as interesting itemsets wrongly. This is because interestingness
is only based on the association of HYP with the items, not the relationships among the items
themselves. An item like HYP with a high occurrence rate can affect the way how other items are
associated with each other. To avoid this issue in a small-sized dataset, we need to find all types
of associations regardless of effect of HYP and relaxed or flexible filtering metrics.

Having said that, if we only rely on lift, it might not be trustworthy enough and unable to per-
form effectively with the existence of bias in the incomplete data. Lift suffers from having nonfixed
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range of variables. It only assesses the dependency and correlation of the items without taking
into consideration the importance of the cause and effect relationships among antecedents and
consequents. Similar to the issue related to support and confident, lift is susceptible to infrequent
items with a relatively low probability complication rules that can be ranked wrongly as the most
interesting itemsets.

Although having a very low minimum could eliminate the above issue, generating all possi-
ble permutations of complications for all transactions is not an optimal option. This is because,
Tables 3 and 4 contain many different antecedents and consequents, which increase the database
size exponentially based on the number of items. It also leads to generating large number of unin-
teresting distances among many small rules despite the previously chosen optimal minimum
threshold for support and confidence. In this situation, neither clustering nor ARM methodology
perform effectively and can be even worse and problematic in a sparse dataset (such as T2DM). In
conclusion, for making a better decision, we need to reduce uninteresting rules at another level
which is addressed in the next section.

2.8 Interesting itemsets in complication rules using minimal
coverage itemsets algorithm

Thus far, metrics such as support, confidence, and lift were used to identify the most interest-
ing rules. However, we argued that there might still be many uninteresting/uninformative rules
remained, which would be challenging to interpret due to the complex nature of the associated
complications. To overcome this, we intend to discover the minimum coverage of rules by using
MCI, which is motivated by a variation on the proposed methodology conducted by Liu et al to
enhance k-means clustering in Reference 38. The identified sequence of complications is mined
to extract the useful rules and detect an appropriate ordering of the complications as a mini-
mum coverage of set, which is called itemsets. As can be seen in Figure 2 in the left hand side,
temporal patterns of the complications co-occurrences are retrieved from DS. The database is
mined to include the temporal relationships among the multiple complications into their associ-
ated rules. We used TARs on the temporal co-occurrence pattern of the complications to obtain
87 rules. Then, MCI analyze subrules (antecedents and consequents) as input and produces the
minimum coverage itemsets (41 objects found) as output in Table 5. A minimum number of
aggregated subrules are produced based on their uniqueness/intersection while covering the most
frequent/interesting rules. We then refer to database R to find the related objects of the relevant
associated rules once all of the objects are identified and mapped to the rules in Tables 3 and 4.
By choosing the objects in the instead of rules, a minimum overlap among the data points is pro-
duced, this cannot be achieved using only lift. Thus, distance among the objects represents higher
quality data points with less repetition of unimportant rules as the clustering input. In addition
to this, MCI helps in achieving the optimal number of meaningful subgroups in the clustering
method.

2.9 Combined methodology of ARM and clustering

In this article, a hybrid methodology of TARs mining and clustering attempts to validate and give
meaning to the H clusters. We also proposed MCI algorithm to find minimum rules set as the
most interesting itemsets from the temporal complications within the T2DM. Furthermore, the
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F I G U R E 2 The deep latent phenotype for the Hidden variable clusters, the corresponding risk factor
profiles, and the most frequent ordering pattern of the complications [Color figure can be viewed at
wileyonlinelibrary.com]

T A B L E 5 The frequent itemsets are generated in dataset D based on the rules in
generated using TARs

Objects ID Interesting itemsets Objects ID Interesting itemsets

1 { } 21 {NEU|HYP}

2 {NEP,HYP} 22 {RET}

3 {HYP,RET} 23 {HYP|RET}

4 {RET,HYP} 24 {HYP|LIV}

5 {NEU,HYP} 25 {NEP|NEU|RET}

6 {LIV,HYP} 26 {HYP|NEP|NEU}

7 {NEU} 27 {HYP|NEP|RET}

8 {RET} 28 {HYP|NEU|RET}

9 { }{ } 29 {LIV|NEP|NEU}

10 {HYP} 30 {HYP|LIV|NEP}

11 {NEP} 31 {HYP|LIV|NEU}

12 {LIV} 32 {LIV|NEP|RET}

13 {{NEP,HYP}|NEU} 33 {HYP|LIV|RET}

14 {{NEP,HYP}|RET} 34 {LIV|NEU|RET}

15 {NEU|RET} 35 {LIV|HYP|NEU}

16 {NEU} 36 {HYP|LIV|RET|NEP}

17 {NEP|RET} 37 {HYP|LIV|NEU|NEP}

18 {LIV|NEP} 38 {NEU|RET|NEP|HYP}

19 {LIV|NEU} 39 {NEU|HYP|RET|LIV}

20 {HYP|NEP} 40 {LIV|HYP|NEU|RET}

21 {HYP|NEU} 41 {NEP,HYP}RET,NEU}

Note: Each of resulted itemsets of the applied MCI is identified by unique objects.

http://wileyonlinelibrary.com
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meaningful rules after applying the MCI based on the aggregation of only the most frequent and
important antecedents and consequents are utilized in Table 5. The issue of discovering the fre-
quent itemsets (ARM) differs from the similarity search in the clustering method. Instead of using
all rules as a clustering input, we only use the significant itemsets (objects) in the hierarchical
clustering method. The clustering method allocates objects as itemsets in such a way that objects
in the same subgroup coincide with each other subgroups, based upon Jaccard index. The Jaccard
distance between two itemsets (objects) (Ii and Ij) is calculated by the number of similar itemsets
between Ii and Ij over all unique itemsets in both itemsets. For a set of m itemsets, there is over-
all of m(m − 1)∕2 distances that can be used to cluster the objects and further patient subgroups.
Therefore, clustering tries to find objects that have a significant fraction of their associated pattern
of complications in common; the absolute number of those objects is not of interest. Thus, patients
are assigned to a cluster if their patterns of complications match the most frequent object/itemsets
in the corresponding cluster. In other words, patients that have been diagnosed with a similar
occurring pattern of complications over time (corresponding frequent itemsets) are gathered in
one cluster. In the next part, we attempt to measure the distance among the objects. The proposed
MCI procedure to discover the most interesting itemsets (which we call objects/clustering data
points) is illustrated below and shown in Figure 2.

1. Input: R in Tables 3 and 4, considering minimum support 𝜎 and minimum confidence 𝛿

thresholds.
2. Output: Interesting itemsets (objects) in Table 5.
3. Rule R is of the form (X,Y) which represents {X} ⇒ {Y}.
4. lift(Rl) ≥ MAX lift(R) conf(Rl) ≥ 𝛿

5. OverlapRate ← 0, MinOverlapRate ← 0
6. r ← ∅, rk ← ∅
7. For each Rl SubSet R
8. If lift(Rl) ≥ max lift(R)
9. If supp(Rl) ≥ 𝜎 AND conf(Rl) ≥ 𝛿

10. R ← Rexcludes Rl
11. R ← Rexcludes Rl
12. D ← {LHS(Rl),RHS(Rl)} ∪ D
13. r(Rl) ← {LHS(Rl),RHS(Rl)}
14. D ←

∑m=87
l=1 r(Rl)

15. For each itemsets r(Rl) SubSet of D
16. r(Rl) ← {LHS(Rl)} ∪ r(Rl)
17. r(Rl) ← {RHS(Rl)} ∪ r(Rl)
18. r(Rl) ← R ⊆ PowerSet r(Rl)
19. Objects(r(Rl)) ← D ⊆ PowerSet r(Rl)
20. For Each r(k) and r(h)
21. If r(k) ⊆ r and r(h) ⊆ r and r(k) ≠ r(h)
22. OverlapRate ← Count r(k) ∩ r(h)
23. If OverlapRate ≤ MinOverlap
24. MCI ← {(r(k) ∪ r(h))∪} MCI
25. Else
26. MCI ← {(r(k) ∩ r(h))∪} MCI
27. Return MCI.
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2.10 Jaccard index and TAR clusters

To handle a large number of rules, we grouped the rules using agglomerative hierarchical
clustering.39 The combined use of unsupervised learning is motivated by Hahsler et al' research
conducted in Reference 39, which introduced a distance-based clustering of ARs. However,
we adopted a different method for a more in-depth analysis of the correlation between rules
to find dissimilarities (distances). In the clustering literature, the frequent rule sets as a
fundamental concept of TARs have enhanced the overall clustering methodology.38 Agglom-
erative hierarchical clustering is employed to group the associated rules into more infor-
mative rules or the so-called itemsets. Accordingly, the Jaccard index is applied to create
distances between itemsets. Comparisons between the two patients from two different clus-
ters are made using unrelated rules on their associated complications. Table 6 represents
the elements of clusters, which represented as objects. Finally, patients are allocated to a
cluster based on the object meeting the rules belong to the itemsets within the correspond-
ing cluster. We cluster patients based on their TARs clusters (CTAR), where each cluster
shares a similar complications sequence (co-occurrence pattern of complications). For com-
paring two different sequences of the complications (i and j) in the hierarchical clustering of
the itemsets of Ii and Ij, we use Jaccard index (Jaccard(Ii, Ij)) and Jaccard distance (di,j) in
Equation (6).

Jaccard(Ii, Ij) =
|Ii ∩ Ij||Ii ∪ Ij| , di,j = 1 − Jaccard(Ii, Ij). (6)

2.11 Clustering comparison and validation strategies

We intend to ascertain the usefulness trustworthiness of the TAR cluster in understanding the
underlying disease as well as being a reliable source to validate the latent phenotype. Internal
validation is applied to assess the validity of the CTAR through the use of the information con-
tained within the given database of complication rules. In order to remove uninformative and rare
rules from the database, the most infrequent itemsets are ignored. Then the dissimilarities (dis-
tances) among TAR clusters filter out the discovered meaningful rules. For example, rules with a
high lift and confidence score are selected. Thus, the number of TARs is reduced to a manageable
number while concentrating the most interesting rules. For external validation, the H clusters
are assessed based upon another data source (TAR clusters). Jaccard similarity is applied to cal-
culate the proportion of the overlapped patients for each pair of the latent phenotype and TAR

T A B L E 6 Clusters of
the frequent itemsets
identified by groups of
objects in the associated
interesting itemsets from
Tables 3-5

TAR clusters Elements of cluster (interesting itemsets/objects)

C1
TAR 10,13,2,20,21,24,26,30,31,5,6,38

C2
TAR 11,12,16,18,19,29,7,9

C3
TAR 14,23,27,28,3,33,38,4,41

C4
TAR 15,17,22,25,32,34,8

C5
TAR 35,36,37,39,40
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clusters. Although the Jaccard similarity seems useful to measure the overlap between two clus-
ters, the resulting value is not able to indicate the likelihood of the observed overlap. As a result,
normal approximation for the binomial approximation of the hypergeometric distribution (NBH)
metric40 is utilized to evaluate the probability of observing an overlap between each pair of clus-
ters from CH and CTAR. A low value (probability) indicated that the chance of observing a given
overlap was highly unlikely to occur by random chance. For a given Ci

TAR of size si (where (i indi-
cates the cluster number) compared to a Cj

H of size kj (where (j indicates the cluster number), the
probable score of the overlap occurring randomly can be modeled using a binomial distribution,
as shown in Equation (7).40

Pr(observing x from groupj) =
(

kj
x

)
pxqkj , (7)

x = Jaccard(Cj
H ,Ci

TAR), n = |CH ∪ CTAR|, si = |Ci
TAR|, kj = |Cj

H|, pi =
si

n
, q = 1 − p,

where n is the number of patients in the union of all of the Ci
TAR and all of the Cj

H . If both n
and npq are large, a binomial distribution can be approximated by a normal distribution. For
example, obtaining a very low NBH probability represents there is a considerable/significant over-
lapped rate between two clusters from different data sources. We illustrate the finding and more
explanation regarding the NBH probability in the following section.

3 EXPERIMENTAL RESULTS

In this section, we validate TAR clusters and compare them with the latent phenotype to
understand whether the latent phenotype reduces some uncertainty caused by the complex
relationships among the temporal complications. In Table 5, the most frequent and interesting
itemsets (ordering pattern of complications) are identified by an object. In order to quantify a
distance between two heterogeneous rules, one solution could be to use cluster rules based on
their features (support, confidence, and lift). However, these measures can only capture the inter-
action of rules on the data and characterize only a single rule. Thus, more in-depth analysis of
the correlation/causation between rules is possible when we find dissimilarities among the item-
sets. Agglomerative hierarchical clustering is employed in order to build homogeneous groups of
objects.

ARs are grouped according to the descriptors (itemsets or objects), as shown in Table 6. On
the other hand, they are not grouped according to their coverage, as explained in MCI algorithm.
Each of the patients within DS that have been diagnosed with the a similar occurring pattern of
complications (the corresponding frequent itemsets) are gathered in one cluster. The distances
among the frequent itemsets are aggregated for two patients within a cluster by using Jaccard
distance, which are applied to the group of the object associated with the corresponding pattern.

3.1 Discovered clusters

We obtained the initial five clusters of the TARs as CTAR = { C1
TAR, C2

TAR, C3
TAR, C4

TAR, C5
TAR},

according to the dissimilarities between associated rules (itemsets) using Jaccard dissimilarity.
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F I G U R E 3 The proposed complication pattern mining methodology by using ARM and MCI to obtain the
interesting itemsets as clustering objects [Color figure can be viewed at wileyonlinelibrary.com]

The optimal number of clusters, in here five, is established and validated by using the elbow
method.41 T2DM patients are grouped based upon CTAR. If two rules do not share patients,
we assume that they are not in the same cluster. In Figure 3, there were four T2DM patient
clusters as the discovered hidden variable CH = {C1

H , C2
H , C3

H , C4
H} in which obtained using dis-

similarity (1-correlation). Each one had a unique deep temporal phenotype (latent phenotype)
and risk factor profile. In Figure 3, in the right-hand column (the most frequent ordering pat-
tern of the complications), a symbol of > between two complications demonstrates whether a
complication in the left-hand of the symbol occurred before the right-hand one with the higher
occurrence rate.

3.2 Clustering comparison and validation findings

In this section, the latent phenotype clusters are compared with the TAR clusters by applying
a number comparison and validation strategies to the identified clusters. These strategies assess
the similarities among subgroups of patients, whereas they are clustered based upon different
data sources. The comparison also aims to ensure a more appropriate decision for discover-
ing the most meaningful subgroup of patients as well as explaining the behavior of the latent
phenotype. For example, the intersection of C4

H and C3
TAR (the right-hand column in Table 7)

revealed that a significant number of patients (with an overlap of >50%) shared a similar compli-
cations co-occurrence pattern. C4

H with the complications pattern of {HYP,NEU,RET,LIV} and
C3

TAR with the occurrence order of {RET,HYP},NEU,LIV have also coincided. The intersection
of C3

TAR and C4
H showed that they greatly resembled each other, and it revealed an important

link between the two clustering methods. Overall, we believed that there was a strong link
between C1

H and C1
TAR where both clusters were sharing a similar complications co-occurrence

pattern of {HYP,LIV,NEU}. In order to ascertain precisely that the overlap was not random,
we used the NBH metric as illustrated in Table 7. C3

TAR was the most significant cluster with
the lowest NBH values (<0.001) among Ci

TAR. It also had the highest percentage of Cj
H (52%)

of overlapping patients. Patients within C3
TAR were more likely to develop RET,HYP,NEU, and

LIV with the occurrence percentages of 96, 90, 25, and 13, respectively. Similarly, C4
H was more

http://wileyonlinelibrary.com
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C1
TAR C2

TAR C3
TAR C4

TAR C5
TAR

NBH ð NBH ð NBH ð NBH ð NBH ð

C1
H <0.001 90% 0.580 45% ≥ 0.001 4% 0.480 38% 0.490 40%

C2
H 0.064 66% 0.072 0% 0.290 16% 0.440 13% 0.092 0%

C3
H 0.032 60% 0.630 9% <0.001 28% 0.610 13% <0.001 40%

C4
H <0.001 55% 0.045 45% <0.001 52% 0.170 38% 0.530 20%

T A B L E 7 Probabilities
of the Jaccard similarity,
overlapped rate (ð), and
NBH across CH and CTAR

TAR Cluster RET NEU NEP LIV HYP Interesting Itemsets

C1
TAR 0 15 10 16 100 {HYP}{LIV,NEU}

C2
TAR 0 80 10 40 0 {NEU,LIV}

C3
TAR 96 25 8 13 90 {RET,HYP},{NEU}{LIV}

C4
TAR 67 0 33 17 50 {RET,HYP,NEP,LIV}

C5
TAR 30 40 40 60 100 {HYP,LIV}{NEP,NEU,RET}

C1
H 7 11 8 13 61 {HYP,LIV,NEU}

C2
H 13 10 6 7 63 {HYP,RET,NEU}

C3
H 4 16 11 13 56 {HYP,NEU,LIV,NEP}

C4
H 12 13 6 11 57 {HYP,NEU,RET,LIV}

Note: On the right-hand, there are comparison results of the complication rates
occurring in each cluster.

T A B L E 8 Proportion of
patients with the complication
co-occurrence pattern for
CTAR and CH

likely to develop {RET,HYP},NEU, and LIV (see Table 8), revealing a significant as well as a
meaningful relationship between those two clusters (C4

H and C3
TAR). Moreover, a Ci

TAR pattern,
for example, {RET,HYP}, {NEU}, {LIV} revealed that {RET,HYP} was more likely to be seen
than NEU, and NEU was more likely to be developed compared to LIV and the rest of compli-
cations were not likely to be developed in patients within the corresponding cluster C3

TAR (as
shown in Table 8). In particular, our hypothesis was checked whether C2

H resembled C4
TAR. As

can be seen in Table 8, for the patients within C4
TAR, the chances of having RET, HYP, and NEP

were approximated by percentages of 67, 50, and 33, respectively. Similarly, the chance of hav-
ing a consequence of RET, HYP, and NEP for patients in C2

H was high (see evidence in Table 8).
Additionally, as shown in Table 7, C2

H ∩ C4
TAR with the lowest NBH probability of <7.9E-90 and

second highest overlapped number of patients of 25% revealed a significant and meaningful rela-
tionship between those two clusters (C2

H and C4
TAR). In this article, the dissimilarities (distances)

between clusters are analyzed as the interestingness to filter discovered rules, which was opti-
mized after filtering out uninteresting rules effectively. These results will attract a domain expert
to choose interesting patterns from the remaining small set of rules. For instance, the itemsets
consisting of similar items are uninteresting, despite the fact that the frequent itemsets with dif-
ferent items are interesting. Figure 4 represents a dendrogram of the TAR clusters based upon
the objects.
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F I G U R E 4 Hierarchical clustering for objects
items in association rules, using dissimilarity Jaccard
distance. x-axis and y-axis illustrate Jaccard Distance
among objects and objects id obtained in Table 5,
respectively [Color figure can be viewed at
wileyonlinelibrary.com]

3.3 The meaningful subgroup of the personalized patients

In this section, we attempted to investigate how the similarities between the Ci
TAR and Cj

H could
validate and give meaning to the latent phenotype. Figure 3 represented patients in C1

H , with a
decreasing and an increasing pattern in their deep temporal phenotype, shared similar trajectories
over the observed risk factor profiles. Almost 90% of patients within C1

H was found in C1
TAR. More

importantly, it was significantly validated from a statistical point of view as the likelihood of ran-
domly observing this overlap was very low with an NBH probability of<0.001, as shown in Table 7.
Thus, there was sufficient evidence to suggest that nearly all patients belonged to a similar TAR
cluster (C1

TAR). It also appeared that the most frequent ordering pattern of complications of HYP,
LIV, and NEU belonged to C1

H matched {HYP,LIV,NEU} belonged to C1
TAR. Having known that

patients within C1
H and (C1

TAR) were selected from two different data sources, not only statistically
validated our clusters but also revealed the meaningfulness of the latent phenotype. Therefore,
patients in the intersection of Ci

TAR and Cj
H (Ci

TAR ∩ Cj
H) with the highest similarities among

other clusters might represent a link between their latent phenotype and the temporal associated
complications.

The most significant intersection of the TARs and latent phenotype clusters (C1
TAR ∩ C1

H) was
considered as the most informative (meaningful) subgroup and thought as DS1 (see Figure 1.
We are interested in prediction the complications, personalizing patients based on their latent
phenotype as well as the underlying pattern of complications. The latent variable is discovered
based on the whole set of features (using IC* stepwise approach in DBNs framework). We trained
the data, including all risk factors and complications for comparing two datasets (the original
dataset (DS) to the meaningful subgroup (DS1)). In the next section, the prediction results are

http://wileyonlinelibrary.com
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T A B L E 9 The prediction accuracy of a target complication (MAP), posterior likelihood level (clinical
level), patients' group (dataset), evidence (E), P(MAP|E), P(E), and P(MAP,E) are compared between DS and
DS1

Level Data

MAP Low High DS DS1 E P(MAP|E) P(E) P(MAP,E)

NEU HYP,LIV 0.57 0.23 0.13

NEU HYP,LIV 0.83 0.29 0.24

NEU HYP,LIV,RET 0.57 0.23 0.13

NEU HYP,LIV,RET 0.85 0.03 0.02

RET HYP,LIV 0.71 0.23 0.16

RET HYP,LIV 0.87 0.29 0.27

NEP HYP,LIV 0.76 0.29 0.22

NEP HYP,LIV,RET,NEU 0.76 0.02 0.02

NEP HYP,LIV,RET,NEU 0.86 0.03 0.02

SMK NEP 0.33 0.49 0.16

SMK NEP 1.00 0.49 0.50

Accuracy
in DS

Accuracy
in DS1

NEP 0.81 0.93

LIV 0.77 0.88

HYP 0.90 1.00

NEU 0.76 0.81

RET 0.81 0.79

All 0.81 0.88

analyzed to investigate the differentiation of DS1 and DS in terms of how accurate the hybrid
complications prediction is in the personalised dataset compared to the raw dataset.

4 EVALUATING THE PREDICTION PERFORMANCE

The evaluation strategy in this section argued that uncertainties in the cause and effects relation-
ship among T2DM data could affect the prediction performance negatively. It also suggested that
DS1 (by personalizing patients) could be considered as a dataset with less uncertainty compared
to DS. This section has not concentrated only on the descriptive study. Therefore, by utilizing a
predictive strategy (as a contribution for this chapter), the underlying patterns of complications
were predicted for each of patients within DS1 (which were discovered in the descriptive strategy
of the proposed hybrid methodology). These results then were compared to the prediction per-
formance of the whole group of patients (which also includes DS1). This comparison attempted
to reveal an explainability of the state-of-the-art method in order to uncover the meaning behind
the latent AI model and gain insight into opening the black box. Thus, the prediction results were
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analyzed to investigate the differentiation of DS1 and DS in terms of how accurate the hybrid
complications were predicted in the personalised dataset (DS1) compared to the raw dataset of
DS. Table 9 illustrated the prediction accuracy of the hybrid complications, which was compared
between DS and DS1, where an optimal posterior likelihood of a high or low clinical level was the
question of the interest.

4.1 Improvement in the overall prediction accuracy

The prediction accuracy for each target complication was assessed for both DS and DS1 in
Table 9. For example, the prediction accuracy of DS1 being diagnosed with HYP is 1, while
for LIV and NEU are 0.88 and 0.81, respectively. Additionally, as shown in Table 9, the over-
all prediction accuracy across all complications for DS1 was 0.88 compared to a lower overall
accuracy of 0.81 for DS. Similarly, the prediction accuracy for DS of individual complications
was significantly smaller than in DS1, for HYP, LIV, and NEU by 0.90, 0.77, and 0.76, respec-
tively. These results indicated that by applying the proposed methodology and discovering
the meaningful subgroup, the prediction accuracy was increased for each complication within
the most frequent ordering pattern of complications belonging to DS1. Accordingly, the over-
all prediction accuracy across all complications with a different pattern has been improved
significantly.

4.2 Optimal posterior likelihood

Predicting a target complication and deciding whether a diagnostic test result was positive
or negative were challenging. One possible solution could be provided by computing the
expected utility as a likelihood of each decision alternative. The clinical decision alterna-
tive with the highest expected gain must be an optimal option, which was chosen by the
clinicians. Thus, an approach was utilised to approximate the posterior likelihood of devel-
oping complications when optimizing the Bayesian parameters. An integration of maximum
entropy and Bayesian optimization methodology was applied to the parameters. For this pur-
pose, the posterior likelihood of the developing complications was approximated by using
“Maximum A posteriori Probability” (MAP) algorithm,42,43 which converged toward the set of
parameters.

In the proposed model with latent variables, MAP was utilized as an iterative strategy to
discover maximum a posteriori of parameters. Then, an optimization procedure such as simu-
lated annealing algorithm44 was obtained to produce optimal posterior results along with the
evidence. The simulated annealing algorithm was aggregated to a stochastic simulation of the
hidden Markov chain which relied on data augmentation in the same way as EM algorithm.

The causal relationships are explained in terms of static and dynamic correlations between
T2DM risk factors (attributes) to describe the inference problem. The causal inference has a
greater focus on distinguishing causes from other associations than on uncovering detailed tem-
poral relationships. It also facilitates a hybrid type approach that would yield useful information
to find the inference used in probabilistic graphical models (Bayesian networks). These aim to
distinguish and understand different categories while exploring knowledge in discovering causes.
In this chapter, the prediction is obtained based on prior knowledge as well as the current stage
of the risk factors and complications.
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F I G U R E 5 An influence diagram to represent Bayesian Structure applied to DS [Color figure can be
viewed at wileyonlinelibrary.com]

In Table 9, an optimal posterior likelihood of developing RET, NEU, LIV, and SMK is compared
with DS1 and DS in terms of a prior/evidence (already developed complications such as HYP
and LIV). Having illustrated the extensive findings in Table 9, the cause and effect relationship
were investigated in influence diagrams (as illustrated in Figures 5 and 6), which demonstrated
Bayesian structures for DS and DS1, respectively. In these figures, class values for HYP and LIV
are set to their highest/lowest clinical level, as the evidence, to observe changes in the clinical
level of a targeted complication in the Bayesian structure modeling. In order to ascertain the
obtained posterior likelihood of being at the high risk of having LIV and NEU, both should be
coincided with demonstrating Bayesian structures. For example, once the patients in DS1 has
been diagnosed with having HYP and LIV, the likelihood of developing NEU is increased to 0.84.
Alternatively, with assuming that patients in DS to be diagnosed with NEU by knowing that the
patients have already developed HYP and LIV, where the optimal level was low with the posterior
likelihood of 0.57.

As can be seen in Table 9, if HYP and LIV class values were set to their high clinical
level, probability of developing NEU (P(NEU|{HYP,LIV}) of 0.83 was higher than likelihood of
not developing RET (P(RET|{HYP,LIV}) of 0.96 thus, the evidence showed that DS1 patients
with HYP and LIV were at a high risk of being diagnosed with NEU compared to a high

http://wileyonlinelibrary.com
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F I G U R E 6 An influence diagram to represent Bayesian Structure applied to the subgroup of patients in
DS1 [Color figure can be viewed at wileyonlinelibrary.com]

probability not being diagnosed with RET. Again, in Table 9, in DS1, when the posterior like-
lihood of LIV raised above 88%, growth of damaged eye cells in developing RET decreased
to 96%. RET was negatively affected by the occurrence of LIV shown with a thick red arrow
in DS1, which was revealed in Figure 6. Then this was compared to the no influence
arrow in DS, as shown in Figure 5. Similarly, NEP in DS1 seemed less likely to be devel-
oped since HYP, LIV, RET and NEU occured with the optimal likelihood posterior of 0.86
at the low clinical level. However, for DS1, the posterior with the same evidence was 0.76
at a high clinical level (see Table 9). The influence of HYP (with a diagnosis likelihood of
1) on the rest of complications is neglected as it is a macrovascular complication, which is
often developed in T2DM data with the same likelihood with or without adding it to the
evidence of (P(NEU|LIV) = P(NEU|{HYP,LIV})). This observation is ensured with a thicker
red-coloured arrow pointing to RET from LIV in DS1 and no arc in DS as demonstrated in
Figures 5 and 6.

In Figure 5, a thick purple edge from NEP to SMK illustrated the development of NEP causes
SMK. Additionally, in Figure 6, positive causation was represented by a green edge from NEP to
SMK. These findings suggested that once a patient has been diagnosed with NEP, the probability
of being a smoker was increased significantly from 0.33 to 1.00 by comparing P(SMK|NEP) values
between DS and DS1 in Table 9.

http://wileyonlinelibrary.com
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T A B L E 10 A subset of database R (r1) of the associated rules with the complications

Rulea LHS RHS Objectsb Support Confidence Lift

7 { } ⇒ {NEP} 2,11,13,14,16,17,18,20,25, 0.11 0.11 1.00

29,30,32,35,36,37,38,41

8 { } ⇒ {NEU} 5,7,13,15,16,19,21,25,26,28, 0.16 0.16 1.00

29,31,34,35,37,38,39,40,41

9 { } ⇒ {RET} 3,4,8,14,15,17,22,23,25,27,28, 0.15 0.15 1.00

32,33,34,38,41

10 { } ⇒ {LIV} 6,12,18,19,22,24,29,30,31,32, 0.15 0.15 1.00

33,34,35,36,37,39,40

11 { } ⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23, 0.86 0.86 1.00

24,26,27,28,30,31,33,38,41

12 {NEU|HYP} ⇒ {NEU} 13,26,38,41 0.01 0.27 1.71

39 {HYP} ⇒ {LIV} 6,24,30,31,33,35,36,37,39,40 0.14 0.16 1.06

40 {{NEP|HYP}|NEU} ⇒ {RET} 28,38,41 0.01 1.00 6.57

42 {NEU|RET} ⇒ {NEP|HYP} 28,38,41 0.01 0.19 6.84

53 {LIV|NEP} ⇒ {RET} 32,36 ≥ 0.001 0.06 0.41

62 {LIV|NEU} ⇒ {RET} 34,39,40 0.01 0.29 1.88

80 {HYP|LIV|NEU} ⇒ {NEP} 37 0.01 0.33 3.11

aThis table shows a subset of rules in r1.
bIdentification of a set of objects which follows any combinations of the items in D.

5 DISCUSSION

Lack of prediction of the onset of associated diseases/complications can negatively affect a
patient's health in many ways. They can be numerous and interact in complex nonlinear
ways throughout the disease process. Patients must switch to another medication if more
complications have been developed, for example, when a patient uses a treatment that may
not be suitable for another complication. It leads to unsuccessful treatment, where clini-
cians are pushed to follow an unreliable and suboptimal approach in prescribing treatment
options. In this situation, the medicine that is prescribed to help a patient in a particu-
lar complication might lead to patient dissatisfaction and more severe health outcomes. On
the other hand, T2DM is potentially reversible, treatable, manageable, and, if caught, early
enough. Early diagnosis and management of the disease have reduced the risk of complication
development.45

The state-of-the-art modeling techniques for analyzing T2DM progression is either focused
on descriptive or predictive strategies. Despite this, the present research in order to personalise
patients in a precise prediction is based on both descriptive methodology and predictive analysis.
For this purpose, the thesis conducted a new methodology based on a framework that com-
bines notions of causality in medicine with algorithmic approaches built on Bayesian model as
well as statistical techniques for analyzing the causal relationship. Additionally, having greater
insight into the discovered subgroups and relatively, the prior understanding of the interesting
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T A B L E 11 A subset of database R (r2) of the associated rules with the complications

Rulea LHS RHS Objectsb Support Confidence Lift

10 { } ⇒ {LIV} 6,12,18,19,22,24,29,30,31,32, 0.15 0.15 1.00

33,34,35,36,37,39,40

11 { } ⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23, 0.86 0.86 1.00

24,26,27,28,30,31,33,38,41

16 { }{ } ⇒ {RET} 3,4,8,14,15,17,22,23,25,27, 0.01 0.22 1.46

28,32,33,34,38,41

18 { }{ } ⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23, 0.02 0.78 0.90

24,26,27,28,30,31,33,38,41

20 {NEP} ⇒ {NEU} 13,16,25,26,29,38,41 0.02 0.19 1.17

25 {LIV} ⇒ {NEP} 18,29,30,32,36,37 0.04 0.27 2.49

39 {HYP} ⇒ {LIV} 6,24,30,31,33,35,36,37,39,40 0.14 0.16 1.06

40 {{NEP|HYP}|NEU} ⇒ {RET} 28,38,41 0.01 1.00 6.57

42 {NEU|RET} ⇒ {NEP,HYP} 28,38,41 0.01 0.19 6.84

48 {LIV|NEU} ⇒ {NEP} 29,35,37 0.01 0.29 2.66

60 {HYP|LIV} ⇒ {NEP} 30,35,36,37 0.04 0.27 2.54

69 {HYP|LIV} ⇒ {NEU} 31,35,37,39,40 0.02 0.11 0.68

80 {HYP|LIV|NEU} ⇒ {NEP} 37 0.01 0.33 3.11

aThis table shows a subset of rules which is called r2.
bIdentification of a set of objects which follows any combinations of the items in D.

rules helps interpreting the predictive results correctly. Therefore, the discovered hidden vari-
able/latent phenotype can be combined with the meaningfully associated complication rules for
optimal performance of the patient personalization.

Despite the importance of prediction of an expected complication at a time, finding a patient
model that simultaneously takes into account the chance of occurrence of other associated
complications can produce a more precise predictive model. In order to investigate whether a par-
ticular patient is at a high risk of developing a target complication, we need to analyze multiple
factors. That may depend on the patient's clinical history, stage of the disease, and fluctuations
of the related risk factors. More importantly, it can be affected by the associations of the prior
complications with the expected complications (likely to be diagnosed and yet to be developed).
In T2DM data, the worsening level of the microvascular diseases and HYP is known as a signifi-
cant cause of death.46 Even though microvascular complications such as RET, NEP, and NEU are
less frequent comparing to HYP, an inadequate estimation of them causes long-term suffering
and life-threatening comorbidities.7 Fowler et al9 researched type 2 diabetic American patients.
This research utilized T2DM key risk factors such as H21Ac, SBP, and DBP to investigate rela-
tionships among complications such as HYP, NEP, RET, and NEU. In addition, LIV is a severe
phenotype of diabetes and associated with T2DM complications, especially NEU.47 Litwak et al
analyzed Russian diabetic patients in Reference 48, which referred to the influence of macrovas-
cular and microvascular disease on one anther. For example, important features in T2DM dataset
such as blood pressure, HDL, lipid, BMI, and H2A1c influence diabetic patients' complications.
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T A B L E 12 The power set (MCI) obtained based on the MCI algorithm of the most interesting rules
in MCI representing two subsets (r1 and r2) of the intersected associated rules with the complications

Rulea LHS RHS Objectsb Support Confidence Lift

7 { } ⇒ {NEP} 2,11,13,14,16,17,18,20,25 0.11 0.11 1.00

,29,30,32,35,36,37,38,41

8 { } ⇒ {NEU} 5,7,13,15,16,19,21,25,26,28 0.16 0.16 1.00

,29,31,34,35,37,38,39,40,41

9 { } ⇒ {RET} 3,4,8,14,15,17,22,23,25,27,28 0.15 0.15 1.00

,32,33,34,38,41

10 { } ⇒ {LIV} 6,12,18,19,22,24,29,30,31,32 0.15 0.15 1.00

,33,34,35,36,37,39,40

11 { } ⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23 0.86 0.86 1.00

,24,26,27,28,30,31,33,38,41

12 {{NEU|HYP}} ⇒ {NEU} 13,26,38,41 0.01 0.27 1.71

11 { } ⇒ {HYP} 2,3,4,5,6,10,13,14,20,21,23 0.86 0.86 1.00

,24,26,27,28,30,31,33,38,41

42 {NEU|RET} ⇒ {NEP,HYP} 28,38,41 0.01 0.19 6.84

60 {HYP|LIV} ⇒ {NEP} 30,35,36,37 0.04 0.27 2.54

62 {LIV|NEU} ⇒ {RET} 34,39,40 0.01 0.29 1.88

80 {HYP|LIV|NEU} ⇒ {NEP} 37 0.01 0.33 3.11

aThis table shows an intersection of the most interesting rules from r1 and r2.
bIdentification of a set of objects which follows any combinations of the items in D.

They also revealed that HDL has a negative effect on HYP, NEP, NEU, and RET, whereas H2A1c
negatively associated with HYP. Again, a study conducted by Ramachandran et al49 referred
to the high prevalence of NEU and RET in Type 2 diabetes in India. Similarly, research in
Reference 50 suggested that most of the diabetic patients have objective evidence for some
variety of NEU, but only a few of them have identified by symptoms. This research also showed
that there is a strong association among NEP, NEU, and RET.

All together, it seems pertinent to remember that understanding the underlying pattern of the
complications is based on the correlation and causation of their co-occurrences (both positively
and negatively). Here we give an illustration of what we mean. In the first case, an occurring
complication is caused or followed by other complications. Alternatively, in the second case,
if any combination of two complications is less likely to be followed or caused by another one.
That is to say, the occurrence of some complications may negatively affects the occurrence of
another complication. Here, we provide one case study example to clarify the contribution of
this article. We have been able to come to the conclusion that if the levels of HYP and LIV of the
patient population rises, the risk of developing RET decreases while the chance of developing
NEU increases (based upon “causality backwards”). Moreover, since DS has appeared to be more
complicated than DS1, there could be some unmeasured/hidden risk factors, which may affect
both LIV levels and the likelihood of having RET in DS. In this situation with a considerable
amount of uncertainty, one could argue that RET is caused by other underlying risk factors
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(latent phenotype), such as exercise, genes, and diet. Thus, we attempt to open the clinical black
box model by utilizing an appropriate methodology in order to discover correlation and causation
among temporal risk factors and complications in the presence of hidden factors. We utilized
DBNs, which allow the description of each time between cause and effect and the likelihood
of this relationship being discovered. We obtained this causal phenotype with the associated
probabilities as we had a tendency to calculate the joint impact a cause made to its influence and
then observed statistically significant causes through the ideas of multiple hypothesis testing
(treating each causal relationship as a hypothesis) and false discovery control. Having known the
mentioned investigation, it seems reasonable to assume that the ordering of the complications
co-occurrence and their temporal transactions produces remarkable/informative knowledge in
order to interpret the patient model. This is not the only evidence that supports this study's claim,
there is evidence to suggest that informative patterns of complications significantly improve the
prediction performance for the personalised subgroup comparing to the original dataset.

6 CONCLUSIONS

Discovering a latent phenotype by identifying the underlying sequence of temporally associated
complications to explain AI black box model is notably absent from Scholar. It even becomes
more problematic when a significant improvement in the predictive model is vital. Our main
contribution in this article is based on the challenge of how to construct meaningful explanations
of patients' subgroups in a precise prediction by uncovering the hidden factors. As a matter of fact,
due to the difficulties of the explanation of the constraints and latent phenotype, we proposed a
combination of data mining techniques while exploring knowledge in discovery cause and effect.
For being able to explain the black-box model and hidden variables, we attempted to explore
a well-known group of patients. We applied TARs to the data followed by MCI algorithm that
filter out the most interesting itemsets only based on the underlying patterns of complications.
Then, the discovered interesting patterns were considered as the input of the descriptive methods.
Alternatively, the resulted subgroups of patients in the descriptive study became a new dataset
for analyzing the predictive model. Then, we used the predictive model to capture the behavior
of the latent variable and then in descriptive data mining techniques like unsupervised learning,
patients were allocated to four clusters only based on their latent phenotype.

In this work, a combined data mining methodology was adopted to help understand and val-
idate the latent phenotype in order to find a meaningful subgroup of patients. It also intended to
assist the clinicians in the decision-making process to help with the early and precise diagnosis
of complications. Existing approaches in pattern discovery from time series clinical data have not
yet exploited the representational power of the integrated data mining techniques such as hid-
den variable discovery, TAR mining, time series clustering, patient personalization, and enhanced
prediction methodology.

To sum up, in this research, we addressed three goals. First, we demonstrated a rich clinical
data to provide fine temporal phenotype in associations. Second, we aimed to illustrate cluster
analysis of time series data with an underlying causal structure in T2DM phenomenon. Further-
more, considering the hybrid complications as a class, in the classification/prediction problem,
we addressed the unbalanced issue. Our promising experimental results showed that the patient
personalization by using the proposed integrated data mining techniques could provide bet-
ter prediction accuracy and interpretability in discovering the temporal associated complication
rules and understanding the latent phenotype. More importantly, these findings revealed that the
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proposed hybrid techniques could handle uncertainty in the clinical decision-making process. It
also aided the clinicians to prepare future prognosis of the most likely occurring complications.

Nevertheless, several questions remain to be answered as we have just attempted to open the
black box AI models. In future work, we are attempting to provide more interpretation of the
results from the clinician's point of view. The generalizability of these results is limited to the
T2DM dataset. Thus, we intend to apply the proposed methodology to a new dataset with more
risk factors and patient visits with the aim to understand the black box latent DBNs model. This
new understanding should help to improve predictions of the impact of the latent phenotype
on associated complications. In the future works, a few possible solutions can be of interest to
the authors of this paper. For instance, causal confidence and support could be combined with
the other metrics in order to uncover these types of uncertainties. We will also consider employ-
ing Fisher's p-value that is ranked as the most robust measure in which ensuring the interesting
itemsets acts as an informative input in the predictive model.

SUPPORTING INFORMATION

Implementation tools

We exploit AR mining based on an extension package “arules” in R.39 The original (imbalanced)
dataset is considered to find a pattern of developing different complications throughout patients
visits. Additionally, we use the R-extension package “arulesViz” and “Gephi” for visualization
techniques to explore ARs clearly. The visualization techniques are utilized to determine a con-
siderable number of rules, allowing interesting information to be discovered from the transaction
data. Finally, “Genie” is used to infer the BN as well as illustrate an influence diagram and applied
diagnosis test and sensitivity analysis.

TARs

The support measure of itemsets X (supp(X)) is defined as the proportion of transactions in the
dataset containing X . In particular, an ARs of X ⇒ Y has a support of P(XY). The confidence
measure of a rule (conf(X ⇒ Y)= P(XY )

P(X)
) identifies the proportion of transactions with the most

interesting or important relationships. In addition, the confidence of a rule is defined as conf(X ⇒
Y) = supp(X ∪ Y) = supp(X) in which it satisfies Equation (8).

supp(X ∪ Y ) > 𝜎, conf(X ⇒ Y ) > 𝛿. (8)

Parameters such as 𝜎 and 𝛿 are the minimum support and confidence, respectively. Instead
of using accuracy, efficiency is an appropriate way to evaluate ARs.34 To obtain the frequents
itemsets, first, we filter TARs by using support and confidence. However, they are not able to
filter complication rules based on the different dependencies among the rules. For this purpose,
we used a measurement of independence of X and Y (known as lift and defined as lift(X ⇒ Y ) =

P(XY )
P(X)P(Y )

. Lift of 1 represents two itemsets X and Y are independent as shown in Equation (9).

lift(X ⇒ Y ) = supp(X ∪ Y ) = supp(X)supp(Y ). (9)
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Lift is the deviation of the whole rule support from the expected support under independence
given both sides of the rule support. Higher lift values indicate strong associations. For instance,
the conditional probability of a patient developing both HYP and LIV is associated with the like-
lihood of the patient developing RET. For example, the confidence of HYP,LIV implying RET is
given as the likelihood of the patient developing HYP,LIV and also RET over the likelihood of
developing only HYP and LIV (see Equation (10)).

Conf({HYP,LIV} ⇒ {RET}) =
Supp({HYP,LIV ,RET})

Supp({HYP,LIV})
. (10)

The confidence measure in {RET,HYP,NEU,RET} implying LIV reveals how likely a given
patient developed {RET,HYP},NEU,RET, and also LIV.

MCI

To ascertain whether patients in each cluster are developing a similar pattern of complications
(the most frequent itemsets which are also unique for the corresponding cluster) as well as a dif-
ferent pattern from other patients within another cluster. For instance, if HYP happens before LIV
and RET and NEU or NEP or no complication occur after them, there is a co-occurrence pattern
of {HYP, {LIV,RET}, {NEU|NEP}}. For example, we select two subsets of rules with maximum
lift and reasonable support and lift (meeting the constraints) as follows (as shown in Tables 10
and 11):

r1 = {R7,R8,R9,R10,R12,R27,R39,R40,R42,R53,R62,R80},

r2 = {R10,R11,R16,R18,R20,R25,R39,R40,R42,R48,R60,R69,R80}.

The union of objects in these subsets is meeting the most items in D. We need to find out whether
the rules set are covering the optimal/minimal number of the associated objects. There is an ideal
itemsets MCI of the intersection of r1 and r2, which is defined as MCI = {R10,R11,R42,R60,R62}
(as illustrated in Table 12). These itemsets are generated based upon the intersection of objects in
MCI representing a unique/minimum coverage set of items in D and are illustrated in Figure 2.
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