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Abstract
Micro-gesture recognition has been widely research in recent years, in particular there
has been a great focus on 3D micro-gesture recognition which consists of classifying the
micro-gesture movements of the fingers for touch-less control applications. Holoscopic
3D imaging system mimics fly’s eye technique to capture true 3D scene which is enrich
in both texture and motion information. As a result, holoscopic 3D imaging system shall
be a suitable approach for robust recognition application. This PhD research focuses on
innovative 3D micro-gesture recognition based on holoscopic 3D system which delivers
robust and reliable performance with precision for 3D micro-gestures. Indeed this can
be applied to other wide range of applications such as Internet of things (IoT), AR/VR,
robotics and other touch-less interaction.

Due to lack of holoscopic 3D dataset, a comprehensive 3D micro-gesture dataset (HoMG)
includes both holoscopic 3D images and videos is prepared. It is a reasonable size holo-
scopic 3D dataset which is captured with different camera settings and conditions from
40 participants. Innovative 3D micro-gesture recognition is proposed based on 2D feature
extraction methods with basic classification methods, the recognition accuracy can reach
around 50.9%. For video-based data, the 3D feature extraction methods are achieved
66.7% recognition accuracy over 50.9% accuracy for micro-gesture images as the initial
investigation. HoMG database held a challenge in IEEE International automatic face and
gesture 2018, and 4 groups from the international research institutes joined the challenge
and contributed many new methods as further development where the proposed method
was published.

The holoscopic 3D dataset further enrich innovative micro-gesture 3D recognition sys-
tem is proposed and its performance is evaluated by carrying out like to like comparison
with state of the art methods. In addition, a fast and efficient pre-processing algorithm
for H3D images to extract the element images. Simplified viewpoint image extraction
method are presented. A pre-trained CNN model with the attention mechanics is im-
plemented based on VP image for the predicted probabilities of gesture. The proposed
approached is further improved using voting strategy. The proposed approach achieves
87% accuracy, which outperform all existing state of the art methods on the image-based
database.



Advanced 3D micro-gesture recognition is investigated based on sequence video database,
the end-to-end model has been used on effective H3D based micro-gesture recognition
system. For front-end network, there are two method of traditional viewpoint image
extraction and novel pseudo viewpoint image extraction have been used and evaluated.
The pseudo viewpoint (PVP) front-end has been created, which used to deep learning
networks understanding the implied 3D information of H3D imaging system. The view-
point (VP) front-end follows the traditional H3D image method to extract and reconstruct
the multi-viewpoint images. Both front-end have been feed in four popular advanced
deep networks using for learning and classification. This experiments evaluated the per-
formance of 2D/3D convolutional, mixing 2D and 3D convolutional and LSTM on the
HoMG video database, which is beneficial to H3D imaging system using deep learning
network. Finally, in order to obtain the high accuracies, the majority voting has been ap-
plied for further improve. The final results show that the performance is not only better
than the traditional methods, but also superior to the existing deep learning based ap-
proaches, which clearly demonstrates the effectiveness of the proposed approach.

Keywords: Micro-gesture Recognition, Gesture Recognition; Human-computer Interac-
tion; Machine Learning; Deep Learning;
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Chapter 1

Introduction

1.1 Overview

Human-computer interaction (HCI) is a multidisciplinary field of research, which focuses
especially on the design of computer technology [14]. In particular, the interaction be-
tween humans and computers, such as body, hand, language, face and so on. Hand gesture
is a non-verbal body language and ubiquitous in our life. Hand gesture recognition has
achieved increasing research interest in computer vision, human-computer interaction and
pattern recognition in recent years.

Hand gesture is a type of expression of human thoughts, since the beginning of human
history, hand gesture has been used to manipulate, expression and so on, which is early
than speech communication [15]. Because hand gestures feature natural, ubiquitous, and
meaningful characters, that enable the combination with sound to achieve a tightly inte-
grated system during human cognition [16]. Human-computer interaction is inspired by
human interaction, therefore gesture, speech, and vision constitute the most efficient and
powerful method of HCI [17].

With the rapid development of technologies such as augmented reality (AR) and virtual
reality (VR) technology, HCI has been greatly improved for gaming interaction of AR
and VR control. Finger micro-gesture is a hot research focus due to the growth of the In-
ternet of Things (IoT) and wearable technologies. Recently Google has developed a radar
based micro-gesture sensor which is Google Soli [1]. Also, there are a number of finger
micro-gesture techniques that have been developed using Time of Flight (ToF) imaging
sensors for wearable 3D glasses such as Atheer mobile glasses [18]. Note that the finger
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gesture is only between the two or three fingers movements, and it does not include the
arm and body. The principle of holoscopic 3D (H3D) imaging mimics fly’s eye technique
that captures a true 3D optical model of the scene using a microlens array, however, there
is limited progress of holoscopic 3D systems due to the lack of high quality and publicly
available database.

There is a need of benchmark database for holoscopic 3D micro-gesture recognition that
shall be made a publicly available and this makes the innovative holoscopic 3D imaging
system accessible for researcher to continue innovation in H3D micro-gesture recognition.
The baseline method with a comprehensive results as a benchmark are made available for
other researchers to explore their methods. And results as a benchmark are made available
for other researchers to explore their methods. Outstanding opportunity was given to or-
ganize the first Holoscopic Micro-Gesture Recognition Challenge (HoMGR 2018) [19] in
IEEE conference which attracted researchers all over the world to take part to put their ef-
forts to this research [20] [21] [22] [23]. Although significant progress has been made on
the performance of micro-gesture recognition based on H3D imaging, there are still some
challenges that have not been tackled. During in this PhD research, further developed
H3D micro-gesture recognition, and achieves a robust H3D micro-gesture recognition
system. Therefore, based on the each subset data, different methodologies are proposed
in this thesis to tackle problems related to H3D information used in machine learning
models. Additionally, the proposed methodologies achieved improved performance and
accuracy compared to existing peer works in the field. a research area that includes com-
puter vision, psychology HCI and H3D imaging technologies etc.

1.2 Background

1.2.1 Human-computer Interaction

User interaction is an activity between a certain device and the user. User interaction
and user interface have many similarities. User interaction not only includes design inter-
face, it also contains internet interaction, gesture, recognition and so on. Generally, user
interface design is designed to enhance visuals and user-friendliness of the interface. It
can increase the satisfaction of using the product [24]. Interaction not only enhances the
experience of the user, but also uses many biological and electronic technologies to add
more value. Click and touch are two traditional and basic methods of user interaction.
Recently, gesture and speech methods became two popular research topics in the human-
computer interaction filed. For new wearable designs, languages and gestures are the
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primary methods. More and more products are beginning to use these new ways of inter-
action. For 2D interaction, many companies used large size screen display to improve the
user experiment, however, the disadvantages are obvious. Therefore, interaction method
of 2D interface combining with multi-touch has been used to new kind of devices, such
as Iwatch, pad and so on.

For the past couple of decades, the mouse and touch-based techniques are main interac-
tion methods [25]. In recent years, AR/VR applications has been extend some traditional
industries, like manufacturing. Digital manufacturing can help companies time and en-
ergy [26]. Moreover, wearable computer and AR have grown to a $200 billion industry at
a time when there are more and more business establishments [27]. Therefore, the wear-
able devices will gradually infiltrate the daily lives of people and become assistants [28].
Usually immersing technology is based on the 3D as well as AR and VR. Virtual reality or
augmented realities is also known as immersive multimedia or computer-simulated real-
ity. a computer technology that replicates an environment, real or imagined, and simulates
a user’s physical presence and environment to allow for user interaction. Virtual realities
artificially create sensory experience, which can include sight, touch, hearing and smell.

Figure 1.1: Leap motion sensor
captures hand motion by the skele-
ton. Figure 1.2: Atheer AR glasses.

1.2.2 Hand Gesture

Gesture is a type of body language that can be used to communicate a specific and single
command [29]. Gesture and body languages are not same with the sign language be-
cause, sign languages are full complex languages like other spoken languages and have
their complex grammar systems, as well as being able to exhibit the essential properties
that exist in all languages. Body languages are natural activities of humans and animals
that used to express feelings. These feelings can be categorised into facial expressions,
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body posture, touch as well as the use of space, gestures and eye movement [30] [31].
This project does not focus on the other type of body language apart from gesture.

Gesture can be include of the movement of speech, face and other parts of the body. This
gesture can be grouped as descriptive gestures, emphatic gestures, suggestive gestures and
prompting gestures. Most gestures express the natural reaction of hearing, visualization,
touch, and feel. 3D gesture can be more naturally described as the behaviour and thinking
of a user. To achieve the best user experience, gesture control started to mimic more nat-
ural movements with higher precision. Meanwhile, a sensor with the same capabilities is
required to support this function. Hence, an increasing number of commercial companies
and research groups are working on this topic such as Google Soli Project [1], Leap Mo-
tion [2] and so on. Even though multiple types of sensors support novel technologies of
gesture recognition, most of these technologies presented are still in the exploratory stage
and are lacking in reliability and precision aside from high cost of production.

Figure 1.3: Google Soli project us-
ing Radar sensor[1].

Figure 1.4: Leap Motion senor cap-
ture hand motion by the skeleton[2]

With the development of new techniques, human computer interaction has started to mul-
tiply in professional research and applications. Gesture and speech support the human
semantic intent and manipulate activity. Recently, in order to improve human conversa-
tion interaction, many research and application proposed the method of combining gesture
and speech to produce multi-model interaction.

1.2.3 Holoscopic 3D Imaging System

Lippmann and Ives first implemented the holoscopic 3D imaging system in 1908 [32].
The holoscopic 3D imaging system mimics viewing system of the fly’s eye technique and
uses special optical units to capture true 3D scene. Holoscopic 3D imaging system has
more widely view coverage than 2D imaging technology. This technique uses unique
optical components, that create and represent the naked eye object’s optical model in the
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form of the planar intensity distribution.

The 3D imaging system is popular uses in academia and industry for decade years, its
especially contributed to 3DTV and display area. Nonetheless, the holoscopic 3D camera
is enabled to offer to embed 3D information high-quality RGB image and video, which
satisfy the gesture recognition of high demand.

1.2.4 Machine Learning

Classification Models
This section is briefly introduce machine learning techniques of classification tasks.

• Support Vector Machine
Support vector machine (SVM) is part of the supervised learning algorithms that
are widely use for classification and regression analysis of data analysis. It used
hyperplanes to classes and separate the different classes of patterns. It is achieved
by mapping the given features into a high dimensional feature space that enable to
separate the feature from different classes.

• K-Nearest Neighbour
K-Nearest Neighbour(KNN) is a efficient machine learning algorithm that enable
to calculated distance between an input sample with a set of training samples. The
classification is based on a plurality vote of its neighbours, then the object will be
assign to the class , which is most common among its K-nearest neighbour.

• Deep Learning
Deep learning is part of machine learning methods. And the learning is classified to
supervised, semi-supervised, and unsupervised. deep neural networks, deep belief
networks, recurrent neural networks (CNN) and convolutional neural networks are
very popular architecture enable to using for computer vision, natural language
processing, audio recognition, speech recognition and so on. The principle of deep
learning is using multiple layers to progressively extract higher level features from
raw input. With developing of high demand, the trend of the networks are going to
deep such as ResNet 152 [33] and DenseNet 161 [34].

1.3 Research Motivation

There has been a lot of work done for gesture recognition based on various sensors and
technologies, such as Kinect, Leap motion and Google soli. With the rapidly developing
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of virtue reality (VR) and augmented reality (AR), the gesture controlling is required high
precision and convenience to achieve the interaction. However, there are many particu-
lar problem which still have not yet been solved. Specifically, outstanding performance
and manipulation of high demands are turning into the researchers’ spotlight issue for
discussing. The holoscopic 3D camera has widely viewing to capture and tracking the
object’s movement, which is as a novel robust sensor enables to more possibilities for
gesture recognition. As a single aperture camera with micro-lens array enable to capture
the multi-view image with 3D information in 2D format. However, there is no available
public data enable to use for 3D micro-gesture recognition. Therefore, this research is first
proposed using the H3D camera as a capture sensor to recognize the 3D micro-gesture.
Then hold a international challenge in order to inspire more researchers and companies
join this new research.

Machine learning, especially deep learning is a hot topic in the pattern recognition area.
Since Convolutional Neural Networks has been proved a great success for large-scale
ImageNet dataset. It created many miracles on different areas. Many researchers are
based on deep learning to produce the gesture recognition, for example Tas [35] proposed
using first layer of CNN to recognition Kinect-based data. Using CNN architectures and
LSTM to recognition the dynamic hand gesture by Chinmaya [36]. Although the data are
based on different technologies, the performance has been surpassed before. Based on
peer works, the motivation is to produce advanced techniques to improve the performance
of H3D 3D micro-gesture recognition. The Holoscopic 3D micro-gesture(HoMG) dataset
has been created and public to encourage more researchers work for this area.

Figure 1.5: H3D micro-gesture recognition approach.

1.4 Research Aim and Objectives

The main aim of the research is to use advanced techniques to improve the 3D micro-
gesture controlling for VR/AV immersive devices. Since H3D imaging system provides
enrich high accuracy, high-resolution image-based and video-based data with 3D infor-
mation, and it has many advantages for micro-gesture recognition.
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Good performances have been made on H3D display technology and image process-
ing. However, this is first time based on the H3D image system to recognize the micro-
gestures, and the main challenge that is a combination of different subjects such as gesture
interaction, H3D imaging system, image processing, and deep learning and so on. There-
fore, learned many experience for different area to try on this new topic.

During the research, holoscopic 3D gesture dataset was developed that will be made avail-
able public for a better research dissemination which is Holoscopic micro-gesture(HoMG)
dataset. Based on this dataset, it had a fundamental result on image-based subset and
video-based subset. Moreover, we hold an international challenge to public this dataset
and baseline then encourage more people to join this new area research. After this
dataset got more and more attention, the research will investigate efficient H3D micro-
gesture system, which includes holoscopic 3D image processing, image-based micro-
gesture recognition and video-based gesture recognition for deep network.

Investigate Holoscopic 3D content analysis for 3D feature identification and selection.

The research finding will be evaluated based on different novel methodologies. List of
main objectives of the research as follows.

• Carry out a literature review on gesture interaction, 3D imaging system and machine
learning algorithms.

• Investigate Holoscopic 3D imaging system for 3D micro-gesture application.

• Design protocol for data collection on holoscopic 3D imaging system based micro-
gesture recognition.

• Identify and develop a suitable machine-learning algorithm for micro-gesture recog-
nition.

• Evaluate the whole system and provide further improvement.

1.5 PhD Contributions

Chapter 3 based on the human gesture conventionality to designed three micro-gestures to
use on holoscopic 3D micro-gesture (HoMG) recognition dataset set up. HoMG datasets
is consist of the image-based subset and video-based subset, 50 participants have been
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joined this dataset recording, including 17 female and male participants from different
races. 40 subjects have been on HoMG and 10 subjects as backup. In order to data has
diversity and rich, four positions and two background colours for each participant has
been used recorded. Image-based subset contains 16763 training images, 6560 develop-
ment images, and 7291 testing images. Video-based subset have 240 training videos, 240
development videos, and 240 testing videos. For image-based subset, it used LBP and
LPQ to extract the feature for classification. For video-based subset, used LBPTOP and
LPQTOP for feature extraction. Then used three common classifiers of k-NN, SVM and
Bayes on baseline results to classify the three H3D micro-gestures. HoMG dataset as a
first H3D micro-gesture dataset has been made publicly available for micro-gesture recog-
nition competition (HoMGR 2018, http://3dvie.co.uk/) and the baseline was published on
the challenge workshop in 2018.

Chapter 4 creates automatically detected the edges of element images using advanced
the H3D image pre-processing algorithms and extract 16 viewpoint images from image-
based subset data. Then uses convolutional neural network with attention-based residual
block to learn the micro-gestures on each viewpoint, along with the finger movements
and different angles. Finally, bagging classification tree decision level fusion was used
to combine the predictions together. Innovative methods are designed to combine image
processing, deep learning and fusion to achieved pre-processing easily-obtainable view-
point image, used the 3D information from H3D data and gained the best accuracy on the
image-based subset.

Chapter 5 develops a novel end-to-end system that obtains the 3D information from orig-
inal H3D frames then input to deep learning networking to training for classification.
Therefore, the PVP based front-end has been created to assist the deep Networks’ learning
the H3D features. First, the PVP based front-end used the classic deep network architec-
ture to evaluate feasibility. The result surpassed all the before result on the video-based
subset and proven its effectiveness and robustness. Then, the PVP based front-end has
been produce in four popular deep network architectures. And based on the input partic-
ular questions, the experiments were shown the performance and comparison.

1.6 The Outlines of PhD Thesis

Chapter 1 is an introductory chapter, which briefly introduces background of the research,
the aim objectives, the research contributions and the thesis outlines.
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Chapter 2 provides a detailed review of current technology and techniques in the area
of human hand gesture, gesture recognition, holoscopic 3D imaging and deep networks.
The chapter also contains the details of creating efficient system based on holoscopic 3D
imaging for micro-gesture recognition, such as deep network.

Chapter 3 proposed a novel holoscopic 3D micro-gesture (HoMG) dataset. It consists
of image-based dataset and video-based subset. And the baseline has published using to
speed up the research in this area.

Chapter 4 presents a micro-gesture recognition system based on the image-based subset
data. It contains a fast, robust method for multiple viewpoint image extraction, CNN mode
with an attention-based residual block, and Bagging classification tree decision level fu-
sion.

Chapter 5 proposed a micro-gesture recognition system based on the video-based subset
data. It contains easily-obtainable pseudo viewpoints extraction, deep network and ma-
jority voting to compare each method performance.

Chapter 6 presents conclusions of the research findings and development. In addition, it
discusses the potential future work in the area of H3D micro-gesture recognition.
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Chapter 2

Literature Review

2.1 Human Computer Interaction

Human-Computer Interaction (HCI) is an interdisciplinary research between computer
technology and user interaction design and appeared as early as 1983 [37]. HCI tends to
improve the interaction between users and computers, which gives the user more flexibil-
ity in commanding and controlling computer functions. This multi-disciplinary subject
involves computer science, media studies, design, behavioural science and several other
relevant field subjects.

There are many interaction methods between people and computer systems - many de-
vices are used to assist in HCI. In the early stages, most methods belong to Graphical User
Interface (GUI), but also have some methods of using speech recognition and synthesiz-
ing systems, which is referred to as Voice User Interfaces (VUI). In addition, interaction
method of multi-modal and user interfaces permit the user have freedom nature body lan-
guages. For example, VUI uses speech recognition and synthesizing systems to achieve
a complete system. Therefore, the development and applications of HCI can be found
almost everywhere, from Internet browsers, handheld computers to desktop applications.

Hand gesture recognition is a subject that part of the HCI. As a robust, natural interaction
method, gesture interaction benefit sign language recognition and the gaming industry.
Although the technology in these fields have yet to achieve technology-readiness levels
that can be applied independently to various industries, the revolution and impact it brings
to the interactive industry cannot be underestimated.
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HCI has a history of more than 40 years, and different types of devices have also de-
termined different ways of interaction [38]. User interaction principle is human-centred,
which follow design concepts based on human natural behaviour. It is a perceptible type
of user interface that can be used to guide users with implicit and explicit information [39].
It interacts with the sensor through vision, hearing, touch and taste. For example, Google
Soli Project uses the sense of touch to interact with the sensor.

2.1.1 Body Language and Gesture

Humans and animals naturally use body language to express thoughts and feelings. These
body languages can be further categorised into facial expressions, body posture, touch and
the use of space, gestures, and eye movement. This research focuses on gestures as a form
of expression. Gesture and body languages are not same with the sign language, because
sign languages are full complex languages like other spoken languages and have their own
complex grammar systems, as well as being able to exhibit the essential properties that
exist in all languages. This gesture can be grouped into descriptive gestures, emphatic
gestures, suggestive gestures and prompting gestures. Most gestures express reaction to
hearing, visualization, touch and feeling. 3D gesture can be specifically described as the
behaviour and thoughts of a user.

Based on previous works, several gesture varieties can be defined. For instance, Quek
et al. [3] proposed gesture types, which are based on manipulation, gesticulation, deictic
and language gestures and semaphores to classify the current gestures.

• Deictic Gestures
Deictic gestures contain pointing to establish the identity or spatial location of an
object within the context of the application domain. The application domain can
include desktop computer, virtual reality applications and mobile devices.

• Manipulative Gestures
The intended purpose of manipulation gestures is to control some entity by apply-
ing a tight relationship between the actual movements of the gesturing hand or arm
with the entity being manipulated.

Manipulations can occur both on the desktop in a 2-dimensional interaction using a
direct manipulation device such as a mouse or stylus, as a 3-dimensional interaction
involving empty-handed movements to mimic manipulations of physical objects as
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in virtual reality interfaces or by manipulating actual physical objects that map onto
a virtual object in tangible interfaces.

• Semaphoric Gestures
Flags, lights or arms are commonly as the signalling used for Semaphore gesture
system [3]. Additionally, we define semaphoric gestures to be any gesturing sys-
tem that employs a stylized dictionary of static or dynamic hand or arm gestures.
Semaphoric approaches may be referred to as ”communicative”, in the sense that
gestures serve as a universe of symbols to be communicated to the machine.

• Gesticulation
For the past couple of decades, many researchers believe that the application of ges-
tures is only used for theoretical research [40]. However, with rapid developing of
technologies, this gesture also known as descriptive or iconic gestures, is designed
to increase the clarity of speech recognition and orally describe the physical shape
or form through gestures.

2.1.2 2D vs. 3D Gesture Interaction

A gesture is a form of non-verbal communication in which visible bodily actions com-
municate particular messages, either in place of, or in conjunction with speech. Gestures
include movement of the hands, arm, or other parts of the body [41]. Thus, developing
sensor uses different method to capture gesturethat is based on the different type sensor
device such as the Wii. The popular and easy to control display is Microsoft Kinect that
fiducially markers to capture visual tracking system. Meanwhile, the gestural interaction
following the increasing 3D displays to rapidly developing. Immersive 3D user experi-
ence is used for the gaming environment, so freehand interaction and no hands-on input
is a mainstream [42]. Although touchless gestures bring convenience, like no need to
hold and touch the screen, they lose some advantages, like clicking buttons and tapping
surfaces. Nevertheless, this project uses the simulate touch gesture and the interactions
feel physical and responsive. Users can feel the finger’s haptic sensation [43]. The re-
search development provides more natural and human-centered methods of interacting
with computers. This is also a kind of the perceptive user interfaces, which support the
perceptive, as same time effect the implicit and explicit information between the user
and the environment. Vision is a non-intrusive and low cost method, therefore, imaging
capture became a popular and modality method for user face.
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Figure 2.1: The diagram represents the distribution of the different gesture styles that
appear in the literature review[3].

Gestures have been used for over 40 years in HCI, namely for mouse control, keyboard
and stylus [44] in graphical user interface (GUI). However, not all the technology of out-
put and input can permit gesture interaction and the immersive user experience demand
more natural and non-intrusive ways to improve the interaction between human and com-
puters. With the fast-growing smart mobile phone market, multi-touch interaction became
a significant component of gesture interaction. More and more research in this day and
age focus on the touch screen gesture control [45] [46] [47] [48]. Aoki et al. [46] pro-
posed 2D gesture use for touch screen interface of TV controllers, which is designed
for 2D finger gesture movement on Unicursal Gesture Interface (UGI). Then, Bragdon
et al. [47] considered the use of the environment to supplement several design elements
for touch-screen gestures and highlighted the limitation of dedicated screen space. They
compared hard button-initiated gestures [49], Bezel gestures [50] and soft buttons [51],
and describes physical button user experience, advantages and disadvantages of each ges-
ture in detail. However, the evaluation proofed the touch screen gesture limitations for
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new devices. Therefore, manipulative gesture has been used in new technology applica-
tions, such as wearable device, Internet of Things(IoT) and so on. Although Yepez et
al. [52] proposed using projection to support the interface of the gesture assistant, the free
manipulation gesture is yet to be solved due to technical limitations.

3D gesture system is beyond the traditional interaction and is a more complex version of
HCI. In the last few decades, it is clear that 2D gestures are ubiquitous and significant for
HCI, such as a mouse, pad and so on. Since 2006, WiiMote has proposed a method of
hand movement in 3D space [32]. Xbox designed by Microsoft Kinect has made a major
breakthrough in 2010, which has driven users to get a 3D motion control experience [37],
especially using Kinect as a sensor for 3D interactive systems. The Software Develop-
ment Kit (SDK) also breaks the tedious 2D gesture system and provides a more accurate
display, such as RGB-D cameras and microphones. Later, due to the development of 3D
gesture systems, more and more displays can be used in augmented reality interface. Most
3D gesture manipulations become non-touch, natural and flexible, which allows the users
to express more freedom in defined 3D space. Users can truly use their body or finger to
control displays. The trend of the 3D gesture system is heuristics, which means the user
can use it based on their instinctive activities [38].

However, there are many challenges in the area of 3D gesture design. Most marking ges-
tures are based on the previous 2D input devices to design. G.Ren [42] proposed four
main challenges in 3D gesture designs:

• Ensure the user can see all the menu items and correctly perceive their 3D position
in order to select them. Hence, rendering the 3D marking menu needs very care-
fully.

• How to ensure users can easily choose an accurate option. Thus, in addition to
facilitating the perception of the correct position of each menu item, an effective
3D hand gesture selection technique should also facilitate efficient selection of the
correct menu item in the presence of such an interfere.

• How to coordinate the user’s eyes and hands to effectively to control their hand
movement in a defined physical 3D space and measure the relationship between the
virtual and physical 3D space.
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• How to balance the traditional user experience of user selection of objects. Due to
the freehand gestural interaction are no button and physical touch interface [53].

However, User experience of 3D gesture system is a complex process as it demands high
speed motion capture, however at the same time a simple interface platform needs to be
presented to the users to enable usage with minimal training. Recently, many productions
have functions to capture gesture. For high-level precision gestures, most sensors essen-
tially lack flexibility and accuracy in gesture recognition.

Limitations exist in many devices of this sort. Primarily, the RGB data need to be layered
and then supplemented with the use of certain tools and accessories. The advantages and
disadvantages of each sensor are discussed in detail in the following sections.

3D micro-gesture is ideal for people with disabilities, as it has touchless function and
does not require any additional interfaces. This new type of design also matches new
technologies such as Google Soli Project’s 3D micro-gesture recognition by radar [1].
This type of design is based on the human centered principle that collects common human
finger gesture movements.

Figure 2.2: Continuous gestures [2]
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2.1.3 3D Micro-gesture

Gesture recognition is part of computer vision, human-computer interaction and pattern
recognition. Three-dimensional (3D) hand gesture recognition, because of the emerging
depth sensors, assist in developing gesture recognition diversification. In this section, will
introduce 3D depth sensors based on gesture recognition, which support more advantages
beyond traditional 2D domain sensors.

3D gesture system is more advanced than traditional interaction, and therefore it becomes
much better than previous HCI methods. In the last few decades, it is clear that 2D
gestures are ubiquitous for HCI, such as mouse, pad and so on. Since 2006, WiiMote
proposed the hand movement in the 3D space [43]. This is a significant breakthrough for
Xbox, designed by Microsoft Kinect in the 2010s, which enabled users to have 3D mo-
tion control experience [54]. Specifically, Kinect uses skeleton capturing to develop their
3D interaction system. Software Development Kits (SDKs) also broke the tedious 2D
gesture system and achieved high-accuracy display used in RGB-D cameras and micro-
phones. Therefore, most displays can be used for augmented reality interfaces, because
of the development of 3D gesture system. Most 3D gesture features are touchless, natural
and flexible, giving users more freedom to express themselves within a defined 3D space.
The user is able to truly use their body or finger to control the displays. 3D gesture system
design is commonly heuristic, user can use it based on their instinctive activities [41].

2.1.4 3D Micro-gesture Technologies and System

Microsoft Kinect
Kinect as a motion device by Microsoft is used for Xbox 360 and Xbox. It is able to link
video game consoles and Windows PCs. The webcam-style device is an add-on periph-
eral of the console and computer, which uses gestures and spoken commands to control
games through a natural user interface [55]. The first-generation of Kinect was first in-
troduced in November 2010 in an attempt to broaden Xbox 360’s audience beyond its
typical gamer base [56]. A version for Windows was released on February 1, 2012 [57].
Kinect is in competition with several motion controllers on other home consoles, such as
Wii Remote Plus for Wii and Wii U, PlayStation Move/PlayStation Eye for PlayStation
3, and PlayStation Camera for PlayStation 4. Microsoft released the beta version of the
Kinect SDK for Windows 7 on June 16, 2011 [58] [59]. This SDK was meant to allow
developers to write Kinect apps in C++/CLI, C, or Visual Basic [58].

RGB-D Cameras
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RGB-D cameras is type of depth sensing devices. In the past few years, used in novel
camera systems such as Microsoft Kinect and Asus Xtion [60]. The sensors provide both
colour and dense depth images, which are able to be used in real-time applications. Those
systems will lead to a boost of new applications in the field of 3D perception. Particularly,
it is suited to robots operating in unstructured environments and under real-world condi-
tions [59]. RGB-D sensors are also used for 3D mapping and location determination,
path planning, navigation, object recognition and the tracking of people. RGB-D cameras
estimate depth using structured light techniques. However, the optical power of the pro-
jected pattern reflects insufficient information back to the sensor. Another drawback with
RGB-D is that the active triangulation method requires a baseline for depth estimation.

Leap Motion
Leap Motion is a company developing motion-sensing technology. It creates the no touch
gesture interactions to enable computer hardware to recognize hand and finger motions as
a form of command input. It has similar functions to a mouse but does not require a ca-
ble connection, which brings about more convenience to the user. It is very prominent in
visual aspects as it uses 3D technology to present virtual reality scenes and provide an im-
mersive experience for the user. Users can use their hands to interaction with the scene. It
is compact and easily portable, on top of that, it is flexible and can identify swipes, grabs,
pinches and so on. Leap motion can also work with a traditional mouse and keyboard.
Nowadays, due to the ease of use in order to achieve immersive experiences, Leap Motion
has hundreds of applications [2].

Google Soli project
Google Soli Project is a new technology that uses radar to capture and recognise micro-
gestures. Google Soli project designs powerful micro-gesture interaction systems that are
based on human intuition.

Google Soli project’s gestures are designed for two finger (thumb and forefinger) oper-
ations to minimize interference with the outside world. This is of worthy potential for
wearable technologies, phone, computer, car and IoT digital displays. The radar has char-
acteristically high recognition accuracy - an advantage over most sensors, which typically
have low precision recognition. Although the radar is limited by distance, there is no 2D
interface as an auxiliary operation [1].

Micro-gesture not only is minimal in size, they can also accurately control displays. In-
tricate gestures has a variety of advantages, such as movement privacy, no limitation in
space and are free from sound or speech barriers. Nonetheless, it is difficult to track
small movements accurately. Additionally, in noisy environments most reasonably low
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cost technology cannot meet satisfactory requirements. Moreover, there are many sensors
that cannot track acceleration movement [42]. This project uses holoscopic 3D camera as
the sensor, which is a promising technology that can record full vertical and parallax of a
scene. The holoscopic 3D camera offers the 3D precision gesture system more freedom
and higher accuracy [1].

Cheng et al. [61] proposed the classification of 3D hand gesture into four categories.
These are 3D hand modelling, static hand gesture recognition, hand trajectory gesture
recognition and continuous hand gesture recognition. The team intensive analysed 2D
hand gesture recognition approaches during past decades. Based on the type of sensor
used in the data collection process, there are three main types of gesture data. For ex-
ample the first type is based on the sensor’s accelerometers or gyros to capture hand and
finger movement. The second type is multi-touch screen sensors, which are widely used
in mobile devices. Thus, the limitation of sensor is obvious, in the sense that they are
not able to support touch-less interaction. The third type is vision-based sensors, which
has significant advantages over the other two types. Compare this to another two type of
sensors, vision-based sensors do not need physical contact with the users and support a
much larger working distance. Due to the high demand for hand detection and tracking,
they used gloves or coloured markers in the early stages, although their approach can
aid the algorithm, it compromises user experience. With the development of commer-
cial 3D sensor technologies, the new sensors provide more robust approaches for gesture
recognition. Moeslund et al. [62] classified their recognition types into static recogni-
tion and dynamic recognition. For static recognition, the aim is to capture and recognise
movements. Therefore the data is based on spatial or frame, and recognition method is
compared with prestored information of the current image and data formed can gener-
ate normalized silhouettes, templates, postures, or transformed templates. For dynamic
recognition, the data includes spatial-temporal templates [58] and motion templates [63],
which uses temporal characteristics to achieve the recognition task.

3D Micro-gesture system
Sang et al.[64] proposed a system that uses the ultrasonic active sensing to recognize
the micro hand gesture. In this system, they use the end-to-end neural network model to
learn radar signal processing and time-sequence pattern by machine learning. This system
achieved the accuracy of 96.32% and supported the real-time prototype. The Pyro[65] is
a micro thumb-tip gesture recognition technology which is based on the thermal infrared
signals radiating of the finger movements. The sensor advantages are low-power, com-
pact. It is suitable for wearable device and mobile applications. This system includes
the software for signal processing and machine learning, infrared pyroelectric sensor, a
custom sensing circuit. And it achieved 84.9% from ten-participant user data without the
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light conditions, background motion and hand temperatures.

2.2 3D Imaging Principles

2.2.1 Stereoscopic 3D Imaging System

This technique was first proposed by Charles Wheatstone in 1838 [66] [67]. In the early
stages, stereoscopic images required complicated and bulky optical components to show
the perception of 3D depth effect for the viewer. With further developments in research,
the pair of 3D glasses replaced large optical components. There are three methods of
stereoscopic glasses, as shown in Figure 2.3 below, which enable the viewers binocular
visual system to perceive slightly different views.

Figure 2.3: Stereoscopic 3D glasses [4].

The first method is anaglyph, which uses colour coded image projection to allow viewers
to perceives slight different views in each eye. Specifically, the blue tint and red tint of
the anaglyph glasses filters view respectively by allowing only compatible views to be
perceived by the viewer. This system is simple and popular due to the low-cost and ease
of production. However, one crucial problem is the weakly rigging or misalignment of its
recording system, that lead to ghosting effect and various degrees of cross-talk. Addition-
ally, the blue and red filters leak over and produce eyestrain, and thus have a high risk of
an unsatisfactory 3D effect. Figure. 2.4 shows the stereoscopic concept of red and blue
filters from the left and right eye.

The second is polarisation, which is widely used in industry and entertainment. This
technique depends on perpendicular polarisation, which projects the two separate views
simultaneously, then uses varying polarized lenses to filter out an unwanted view, result-
ing to each visual system (eye) to perceive the correct view [68]. Techniques of linear
polarisation and circular polarisation both support stereoscopic 3D imaging system, Fig-
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Figure 2.4: Anaglyph stereoscopic 3D scene[4]

ure. 2.5 shows the difference between linear polarisation and circular polarisation. As
circular polarisation is more flexible in angles than linear polarisation, which do not have
any limitations in terms of the viewing angle and produce more natural user experiences.
Compared with the anaglyph technique, the benefit of polarisation is that it offers full-
colour images, while the disadvantage is the reduction of resolution by half, which is still
a significant limitation of the technique [69].

Figure 2.5: Linear polarisation and circular polarisation [5]
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The third method is time division, also called “active shutter”, which displays the left and
right views at a high frame rate. Therefore, the shutters of the lens need to rapidly open
and shut, which shown in Figure. 2.6 below, alternating images of the screen display to
the left and right eyes. All the methods mentioned above have its disadvantages and for
active shutter, the time delay between the two images, and visual eye strain is inevitable
after a considerable duration of usage.

Figure 2.6: Time Division[6].

The major drawbacks of stereoscopic 3D imaging is that wearers of the glasses over a
period of time will experience eyestrain, headache and other fatigue related symptoms.
However, the principle behind the most commercial displays is based on the stereoscopic
imaging system, mostly used to display true 3D modelling and improve on current 2D
viewer experience with the introduction of depth.

2.2.2 ToF 3D Imaging System

Time-of-flight (ToF) camera is a popular imaging system due to its fast, accurate, easy
depth measurement principle, and relatively low-cost, compared to other active imaging
systems. This imagining system is used in HCI and computer vision applications such as
object recognition, 3D modelling, mixed reality, obstacle avoidance and gesture recog-
nition [70] [71]. The principle behind the Time-of-flight imaging system evolves around
measurement of the time it takes a projected light source from the image system to reflects
off an object in a given scene and back the imaging sensor, shown in Figure. 2.7 below.

Figure. 2.7 above presents the general principle behind the ToF imaging system, the fol-
lowing system usually consist of four major components namely: i) a recording lens ii) an
integrated light source that is emitted either as a pulse or static frequency, iii) an imaging
sensor and iv) interface. The ToF imaging system is mainly grouped in two categories
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Figure 2.7: ToF imaging system principle [7].

based of their light emission process, knows as pulse-light and modulated-light ToF sys-
tems [72]. The pulse-light ToF imaging system measures the time taken for a light to
reflect of an object in a scene and back to the sensor. As the speed of the light is already
know, the distance is easy calculated with the acquired time data. However, in the case
of modulated-light ToF imaging system, a constant light is emitted, therefore phase shift
between the emitted and reflected light is calculated to determine the time, where distance
is easily calculated. Based on the imaging principles of the ToF imaging system, they are
commonly used in game devices and implemented in touch-less controllers, as a result a
popular system used to capture hand movement [70].

2.2.3 Holoscopic 3D Imaging System

Lippmann and Ives first implemented the holoscopic imaging system in 1908 [32]. The
holoscopic 3D imaging system mimics the fly’s eye viewing system and uses special op-
tical units to record the angular and spatial information of any scene. Holoscopic 3D
imaging system has wider view coverage over the 2D imaging technology as this tech-
nique uses unique optical components, mainly the micro lens array, that can create and
represent the naked eye object’s optical model in the form of planar intensity distribution.
The 3D imaging system has been widely applied in academic research and industry dur-
ing the past decades, such as 3DTV and performing arts.

Development of the holoscopic 3D imaging system was initiated by Prof Gabriel M. Lipp-
mann from 1908 [32] when he used a series of lenses to record an image with parallax
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in all directions. An array of spherical convex lenses was used to record and play back
the images. Emphasis was placed on the electronic image sensor, which captured all 3D
information into a single aperture. Many sub aperture 2D images of the recorded scene
are overlapped through the micro-lenses, known as elemental images (EI). Lippmann’s
method has limitations, as a result, Ives [73] presented the technique called “two-step
integral photography” to solved the image problem known as the pseudoscopic image.
The rectification of the pseudoscopic “inverted depth” problem, which enable to use for
commercial applications [74]. However, this this resulted to image degradation. Chutjian
and Collier of Bell Labs [75] proposed a more effective method in the year 1968, which
uses computer generation to produce the correct 3D orthoscopic depth image. After, in
order to achieve depth orthoscopic image without distortion and high degradation, Vil-
lums [76] and Hain [77] further improved the method with the use of colour transparency
and explored the technique of diffractive lens arrays to produce integral imaging.

With the rapid development of micro-lens manufacturing, optoelectronic sensors and dis-
play devices, and increasing number of research groups and companies have utilised in-
tegral imaging the principle to enhance sensor functionality, and tackled many crucial
problems, for example, using the curved lens array to expand the viewing angle drasti-
cally. However, that could not get rid the image distortion caused by the lens arrays.

In 2010, H3D imaging has been further developed by 3D VIVANT in the research group
of Brunel University London. The initial research aim is the capture and display of 3D
content for H3DI, therefore the H3D content has been enhanced by the prototype of a
2D camera. The single aperture ultra-high H3D camera is capable of a high resolution
RGB data. Following the early publications, they proposed many novel methods to tackle
many critical problems, which achieved immersive ultra-high resolution 3D content. Most
works are based on the display function to investigate the 3D optical work. Recently,
research works have explored other related fields such as imaging processing, gesture
recognition, facial recognition, and other similar virtual applications.

The holoscopic 3D imaging also known as integral imaging offers a technique that en-
able to record and replay the true spatial optical model of the 3D scene in the form of a
planar intensity distribution by using optical components [78] on a much bigger sensor
compared to competing Holoscopic industries like Lytro. This eliminates the need for
a coherent source and limits darkness, making this method a more practical method to
capture and display in real-time [79].

The holoscopic 3D imaging captures varying 3D scene’s views via lens arrays. And the
lens arrays is made up of hundreds of micro-lenses, which are 1D lenticular sheet or 2D
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micro-lens array (see Figure. 2.8 below). H3DI have two main forms: unidirectional tech-
nique and omnidirectional technique. The unidirectional technique uses a lenticular sheet
to form a single direction 3D depth and motion parallax image. The omnidirectional tech-
nique uses a 2D microlens array of based on the fly’s eye technique to offer an image, that
has full parallax 3D depth and motion parallax [8]. The Figure. 2.8 (a)(b) demonstrated
the microlens arrays structures. (c)(d) spherical microlens array with single direction and
full parallax. The microlens arrays has been spaced in tube and shown in Figure. 2.10(a).
(b) shows holoscopic 3D camera setup, which can capture the larger overall objective or
3D scenes, and also easily capture optical geometry from microlenses arrays. Because
the each small lens of microlens arrays are capable of acquiring the scene from different
viewpoint. (c) shows the holoscopic 3D camera record the H3D micro-gesture image,
which view the object at the a slight different angle to its neighbour and produce elemen-
tal images.

Figure 2.8: (a) demonstrated the microlens arrays structures. (b) spherical microlens array
with omnidirectional and full parallax.

In this study, the omnidirectional images have been recorded with omnidirectional lens
array. Therefore, the H3D image have vertical and horizontal depth information. Fur-
thermore, H3D imaging system extraction and reconstruction in this research is based on
the omni-directional 3D information. Computationally, the Holoscopic 3D image can be
rendered in lens design software like POV-Ray. The rendering method depend on the
relationship between the lens array and the camera clock model [80], where M by N or-
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Figure 2.9: (a) is the unidirectional holoscopic 3D for the single direction. (b) is Omnidi-
rectional holoscopic image with full parallax.

Figure 2.10: Holoscopic 3D camera and imaging system,(a) Microlens arrays.

thographic cameras represent the row number of per lens, and N is column number of
per lens, supporting the full H3D spatial and angular data structure. As mentioned earlier
the Holoscopic 3D imaging system offers high accuracy, full colour and multidirectional
viewpoint image, therefore used as the primary recording device for this research.
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2.2.4 Holoscopic 3D Camera System and Reinstallation

The holoscopic 3D camera is a single aperture camera with a micro lens array, which uses
optical components to record and replay the true spatial optical model of the 3D scene
in form of a planar intensity distribution. Figure. 2.11 (a) shows each main component,
namely the relay lens, micro-lens array and camera. (b) shows the parameters of the 3D
VIVIANT project installation. Two relay lens as a group inverts an image and extends
the optical tube, which is used to refract the 3D object. The micro-lens array is mounted
between two relay lens, which capture the positions in the scene from different perspec-
tives.

Figure 2.11: Assembled holoscopic 3D camera at Brunel University. (a) Main compo-
nents, (b) The 3D VIVANT project installed details.

In this research, the camera is assembled for the 3D VIVIANT project at Brunel Uni-
versity London. In the current study, the Canon 5D Mark2 (C5D M2) DLSR camera
was reinstalled as the sensor to achieve the purpose of development and capture of H3D
micro-gesture movement. The main Holoscopic 3D components consist of the micro-lens
array, relay lens and digital camera. The installation work is based on the previous H3D
system theory and work to re-installed the sensor, then the modifying part is depend on
the micro-gesture capture requirement to adjusted the new focus lens. For the setup pro-
cess, firstly, the inside of the camera should be cleaned in order to make sure that there is
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no dirt or dust to affect the image. Figure. 2.12 shows the camera removal and cleaning
process. All previous components are removed from original camera, then checking the
cracks and damages, which ensure the encapsulation and precision of the optics. The in-
stallation and assembly process is based on the principle in Figure. 2.11 (a) Figure. 2.11
(b) illustrates the installation starts from right to left. The digital camera connect the tube
and relay lens. The tubes of attaching the lenses are length and size of specially tailored,
which is according to the needs of the camera principle. All the tailored tubes and holders
are made in Brunel University London’s 3D printing studio. For better visual feedback
during capture, H3D camera is connected with a Microsoft Surface tablet, which is used
to supervise the conditions of the recording. It limits motion within a set frame, which
eliminates video recording issues outside of camera’s viewing area. Figure. 2.13 shows
the surface interface recording of the H3D scene. Figure. 2.15 shows the reinstated cam-
era that used for recording the H3D micro-gestures.

Figure 2.12: (a) Camera removed all the lens and prepare for checking the cracks and
damage, (b) Clean up the camera.

Figure 2.13: The Microsoft surface supervised H3D camera interface.
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Figure 2.14: The H3D camera re-installation for H3D micro-gesture capture.

2.2.5 H3D Image Processing and Viewpoint Extraction

The initial purpose of correcting geometric distortions is to avoid the banding and moire
effects on the replayed image, caused by placement of the microlens array is placed in
front of the camera sensor. The distortions lead to rotational and scaling errors became the
main disadvantages. However, the methods require specialist solutions unique to tackle
the different integral image establishment [81] [9] [82] [42]. A. Aggoun [83] proposed
based on the Hough Transform to calculate the deviation’s angle, which use to correct ge-
ometric distortion. Swash et al. [84] proposed detect introduced dark borders and remove
them to correct the distortion of H3D imaging system.

The H3D imaging technology has been successfully applied to the 3D cinema, 3D-capable
televisions and broadcasters. The H3D camera used here is built from the 3D Vivant
Project (3D Live Immerse Video-Audio Interactive Multimedia) [8] and the purpose is to
capture high quality 3D images. The developed camera includes micro-lens array, relay
lens, and digital camera sensors. The principle of the holoscopic 3D imaging is shown in
Figure. 2.11 (a)The 3D holoscopic image’s spatial sampling is determined by the number
of lenses. It shows that the captured 2D lenslet array views are slightly different angled
than its neighbour [8]. The detailed parameters of the camera installation are shown in
Figure. 2.11(b).

The fly’s-eye lenses have a slightly different angle to other individual micro lens and hence
multiple viewpoint of the scene can be capture in a single shot. Although, these methods
have some limitations for depth field. The nowadays replay device of the 3D Holoscopic
image can place the microlens array on top of the re-encoded planar intensity distribution
from the diffuse light illumination from behind. The object will be constructed in space
by the intersection of ray bundles emanating from each of the lenslets as shown in figure
2.7(b) [85]. In replay, the reconstructed image is pseudoscopic (inverted in depth). In the
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last two decades, optical and digital techniques to convert the pseudoscopic image to an
orthoscopic image have been proposed [8] [86] [87] [88].

Holoscopic 3D camera sensor has unique optical components which support the contin-
uous parallax RGB image system, contain the depth information viewpoint images. The
Figure shows the H3D imaging having the full colour with full parallax. H3D imaging
is comprised of the 2D array of micro images. The H3D sensor is a crucial requirement
for the capture of the objects. This database uses the H3D imaging system to support the
dynamic and static RGB data. It can also record the continuous motion, and the varying
views can be extracted through the repetitive lens array. The system brings more poten-
tials for innovation in the field of gesture capture and recognition.

Figure 2.15: The H3D imaging system principle:(a) recording and (b) display process[8].

The 3D gesture system presented in this research is based on the Holoscopic camera tech-
nology capture multiple viewing angles of finger motion gesture, resulting to the creating
of H3D dataset. This system can completely capture and accurately recognize micro-
gesture, even in the case of micro-gesture. And immersive design made user can free-
dom enjoy virtual reality and augmented reality user experience. Holoscopic camera has
widely viewing and uses view point map to recognize every elements images.

Holoscopic 3D imaging system is records 3D information in 2D format. During to the
record step, the 3D scenes includes rich depth information. The viewpoint extraction is a
popular method used for reconstructing multiple 2D viewpoint image from a single Holo-
scopic image.
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The real-world light rays are captured via a microlens array as shown in Figure. 2.16 (a).
The rays marked n1, n2, n3, n4, and n5 represent different perspective views of the same
scene. Since a microlens array is involved in the recording stage, the local pixel position
under each microlens contains directional view of the scene presented in Figure. 2.16(b).

A single orthographic (VPI) is reconstructed by sampling of all pixels in the same location
under different microlenses, this creates a perspective image that portrays one directional
view of the scene. The construction of viewpoint images in both UH3DI and OH3I are
graphically illustrated in Figure. 2.17. It is also mathematically expressed in 2.2.5 [6]:

O(i, j) = I(i+nk, j+mp) (2.1)

The above equation describes the viewpoint sampling, the n and m are the pixel co-
ordinates under micro-lens of j and i, where j = 1 to k, i = 1 to p, n = 1 to N and m

= 1 to M are the horizontal and vertical positions of an Omnidirectional Image (OI)’s
pixel respectively as shown in Figure. 2.16(b)

Figure 2.16: Holoscopic 3D capturing systematic[9].

It is important to mention that each individual viewpoint can also be defined as V P j, i(n,m)=

OI( j, i,n,m) where n,m are the co-ordinates of parallel light rays that is different from
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Figure 2.17: Illustration of (a) UH3DI viewpoint image extraction, (b) OH3DI viewpoint
image extraction[6].

perspective image property. Hence, the final output O(i, j)’s image resolution is the (n
×m)pixels.

2.3 Machine Learning Algorithms

2.3.1 Machine Learning

Arthur Samuel first proposed machine learning in 1959 [89] which demonstrated the pat-
tern recognition and computational learning theory in artificial intelligence area. Machine
learning offer the algorithms of study and construction. As the algorithm development,
machine learning achieved a range of computing tasks such as data breach, learning to
rank and optical character recognition and computer vision. Furthermore, based on the
machine-learning task, they classified two of the broad categories: supervised learning
and unsupervised learning. In the supervised learning has semi-supervised learning, ac-
tive learning and reinforcement learning.

In 1959, the Arthur Samuel explained what is the machine learning “gives computers the
ability to learn without being explicitly programmed” [90] [91], which described the ma-
chine learning model learns and make the data through the algorithm. For example, an
implementation of the predictions and decisions are through the program instruction to do
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algorithms, sample input is through the building the model. Machine learning can work
for program and design part of the computer work. It is involved the optical character
recognition (OCR) [92], search engines, computer vision and so on. Machine learning
is the latest development and prospect of AI (Artificial Intelligence) and is an important
part of AI. With the rapid development of the AR and VR technology, machine machine
learning will become a fundamental change in digital display technology.

Machine learning need consider computational statistics, and they have overlapping parts,
and they all focus on the predictions used by computers. Sometimes machine learning
overlaps with data mining [93], which focuses on data analysis and unsupervised learn-
ing. However, the function of unsupervised machine learning learn and built a summary
of the baseline behaviour of various entities [94] and then use to find meaningful excep-
tions.

Exception the unsupervised, machine learning has various concepts such as supervised
learning, semi-supervised learning and deep learning etc.

Supervised Learning
This is inference branch of the labeled training data. The training data is including the
training samples. And every sample has input object and supervisory signal. It is through
analysis the training data and produces. The algorithm determine the class labels for un-
seen instances to achieve optimal scenario.

Semi-supervised Learning
It is a class of supervised learning tasks and techniques that also make use of unlabeled
data for training – typically a small amount of labeled data with a large amount of unla-
beled data. Semi-supervised learning falls between unsupervised learning (without any
labeled training data) and supervised learning (with completely labeled training data).
Many machine-learning researchers have found that unlabeled data.

A standard neural network (NN) consists of many simple, connected processors called
neurons, each producing a sequence of real-valued activation. Input neurons get acti-
vated through sensors perceiving the environment, other neurons get activated through
weighted connections from previously active neurons. Some neurons may influence the
environment by triggering actions. Learning or credit assignment is about finding weights
that make the NN exhibit desired behaviour, such as driving a car. Depending on the prob-
lem and how the neurons are connected, such behaviour may require long causal chains of
computational stages, where each stage transforms (often in a non-linear way) the aggre-
gate activation of the network. Deep Learning is about accurately assigning credit across
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many such stages [95].

Support Vector Machine
Support Vector Machine(SVM) also called support-vector networks,which is supervised
learning models in machine learning. This models used to data classification and regres-
sion analysis. The algorithm is generalized linear classifier, which performs binary clas-
sification on data by a supervised learning manner. The decision boundary is maximum-
margin hyperplane of solving the learning sample [96].

The SVM uses the hinge loss function to calculate the empirical risk and adds a regular-
ization term to the solution system to optimize the structural risk. It is a classifier with
sparsity and robustness. SVM can be nonlinearly classified by the kernel method, which
is one of the common kernel learning methods [97].

K-Nearest Neighbour
k-nearest neighbors algorithm (k-NN) is a simple and classic machine learning method,
which is a popular use for classification and regression in pattern recognition. The princi-
ple of k-NN is if a sample has most of the k most similar samples in the feature space (ie,
the nearest neighbour in the feature space) belongs to a certain category, then the sample
also belongs to this category. In k-NN classification, the majority voting method has been
used, which is the K samples closest to the sample features in the training set and the
predicted sample are predicted to have the most categories of categories.

2.3.2 Deep Learning Models

Deep Learning also called deep structured learning or hierarchical learning, and it is part
of the machine learning method. Deep learning is based on the learning data representa-
tions, which is consist of the supervised, semi-supervised and unsupervised [98] [99] [100].

Deep learning have many different networks for various function studies. Deep learn-
ing models are vaguely inspired by information processing and communication patterns
in biological nervous systems yet have various differences from the structural and func-
tional properties of biological brains, which make them incompatible with neuroscience
evidences [101] [102].

Deep Neural Networks (DNNs)
Since the ImageNet classification challenge inspired many advance methods, Deep Neural
Networks (DNNs) has been used in computer vision. In 2012, AlexNet has been proved
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successful using DNN model. Due to this model achieved best the performance, the net-
work architecture develop to deep and complexity. However, the useful part has been
questioned. Canziani [10] et al. proposed a comprehensive analysis, which indicated:
firstly, the power consumption is not affected by batch size and architecture. Secondly,
the relationship between accuracy and inference time are in a hyperbolic. Thirdly, the up-
per bound on the maximum achievable accuracy and model complexity are based on the
energy constraint. Then, the number of operations is a reliable estimate of the inference
time. Figure. 2.18. provides a series of information, that benefit the use and design DNN
model.

Figure 2.18: Top1 vs. operation, size and parameters [10].

Convolution Neural Networks CNNs(CNN)
CNNs were inspired by by biological processes,which are connection by neurons. Hence,
multilayer is a significant characters, multilayer through each neuron to connected differ-
ent layer and most networks are fully connected.

In recent years, CNN played a very important role in computer vision. The application
of CNN enable to use anything image related works such as gesture recognition, object
detection and face recognition. Laviola et al. [103] and Trindade et al. [104] have defined
a number of joint descriptors that represent hand states in order to learn these descriptors.
Then different vectors are used in this method [103]. Elmezain et al. [105] also used
feature vector, which is consists of the geometric and physical characteristics of the hand
motion. Reddy et al. [106] used a popular method is that uses local histogram feature
descriptors. Many machine learning algorithm have been used to learning those feature
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vectors such as SVM, HMM, and artificial neural networks [107].

CNNs are not only shown to be very powerful for solving image-based tasks. 2D CNN
was popular using for gesture recognition. With more research proposed the issue of the
2D CNN is desirable to capture the motion in the video. And most methods are based on
the conventional paradigm of pattern recognition. The Figure. 2.19 shows the structure of
fully connect of multilayer perceptions.

Figure 2.19: Multilayer perceptions and fully connection.

2.3.3 Decision Fusion

In the early step, seeking a second or third opinion before making a decision that com-
monly using for financial, medical and so on. This process obtains the final result through
the weighing individual opinions, combing all the thoughts and reaching most informed
one. However, the benefits of automated making decision applications were used to com-
putational intelligence community in recent years. Many used this method systems have
been produced better results comparing the single expert system, such as mixture of ex-
perts, multiple classifier systems and so on. These systems are hot topic, which work to
current and future research directions for novel applications, Such applications data fu-
sion, feature selection, confidence estimation, learning with missing features, and error
correcting output code.

In this research, the application focus on the data fusion, which consists of the feature,
classifier, and decision level. Sharma et al. [108]. proposed using individual decisions to
solve feature vector of multiple-modal sensor’s data in 1998. The classifier used to solve
the recognition of complex movements [109]. In 2006, Polikar et al. [110] introduced
classifier fusion.
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Decision fusion called decision level fusion, which is part of the distributed detection
systems[111] and it used for a broader area, especially having significant performance in
classification. Generally the decision fusion combines the decisions of multiple classifiers
in order to a common decision[112].

Mixture of Experts (ME) Mixture of Experts(ME) is popular use for classification, re-
gression, and fusion application in recognition, healthcare, surveillance, and finance. The
mixture of experts (ME) model has been combined many different classification and
regression models such as hidden Markov models (HMMs), support vector machines
(SVMs), Gaussian processes (GPs) to improved performance[113].

2.4 Summary

Chapter 2 is reviewed latest technologies of gestures. Although many companies have
been introduced different sensors for micro-gesture interaction, there problems have many
limitations such as immature technology, low recognition rate, etc. Holoscopic 3D imag-
ing system mimic fly’s eye, which uses coherent replication of light to construct a true
3D scene in space. Then, it offers high resolution full colour continuous video with 3D
depth. Considering the unique advantages of H3D imaging system, in this study it was
decided to use H3D as a sensor to implement micro-gesture interaction. Although H3D
technology has been more mature research and application in the field of 3D display, it
is unprecedented to use as a sensor to record high-precision micro-gesture. Because of it
has great potential and guarantee, the use of H3D technology to implement micro-gesture
interaction is a subject that should be developed for extensive research. Since this is a
completely new study, in addition to the H3D imaging system technology and gesture
interaction, a guaranteed database as the basis for the research is required. Therefore, de-
signing and creating a micro-gesture database based on H3D imaging system has become
the primary task of this research.
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Chapter 3

H3D Micro-gesture Database Creation

and Validation

3.1 Micro-gesture Interaction

However, with the development of the gaming interaction and wearable device, precise
finger gesture has more advantages than body gesture, especially for control devices[114].
The finger movement is one of the micro-gestures that can accurately manipulate the de-
vice. However, the traditional devices are matched by the 2D touchscreen gesture not
enable to working for a new trend. Since the Kinect and RBG-D camera were popular
sensors for gaming in the Augmented Reality (AR) and Virtual Reality (VR) community
with its low-cost been a major advantage, as well as its immersive user experience and
usability [54]. Due to the people prefer to use more natural and conventional 3D gesture
system, which mean the sensors enable to supported more free space flexible interaction
[115]. However, these systems lack the ability to capture quality and accurate objects
which could be seen as one of its major drawbacks [116].

Recently, some new research from Leap motion [117] and Google Soli project [118] cre-
ated new techniques for 3D detection that has huge potentials for success. Holoscopic
3D (H3D) imaging system is a novel potential technique which can satisfy the higher de-
mand for user interactive experience. Detection of precision 3D micro-gesture can make
use of the wide view coverage of the Holoscopic 3D camera to capture accurate finger
movement [13]. This addressed the significant issue of using additional gloves and rings
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to improve accuracy, as well as contributed to the more perceptual interaction experi-
ence [119]. H3D system supports the RGB high quality dynamic and static data, and it
is renowned for high accuracy and true 3D to excellence than traditional 3D capture de-
vices. H3D system has been very successful in 3DTV and display area. However, this
technology has not been used widely for capturing and recognition of the finger gesture.
This chapter aims to use the H3D imaging system to create an unique 3D micro-gesture
database, further to promote the gesture recognition.

HCI appeared early in 1983 [37], which use multiple modalities such as voice, gestures
(e.g. body, hand, arm, finger). For example, Siri [120] is a very popular voice-based
interface. However, the natural gesture is another way to interact with the computer. The
trend of the HCI is user experience of intuitionistic and effective [115]. The gesture is
a touchless, non-intrusive method for HCI, and it is represented as the diverse type of
the gestures [121]. Manipulative type of gesture appears the most popular one from the
previous literature. The aim is to control entity being manipulated through the actual
movements of the gesturing hand and arm [38]. Hand as a direct input device is more and
more popular, as one of the outstanding interaction methods.

The Kinect and RGB-D camera were very popular in recent years due to the benefits of
Kinect and RGB-D camera that have low cost and wide availability as a sensor [42] to
capture gestures. However, RGB-D camera suffers from the underside artifacts such as
the edge inaccuracies, low object remission [116]. The Kinect sensor offers the informa-
tion of the depth measurement and creates coordinates of the 3D objects. Although the
abundant development toolkits can support the human body recognition, the weakness
is its lacking ability to capture the flexible and robust mechanism to perform high-level
gesture [122].

Leap Motion (LM) [123] is a device that can be used to detect the hand and finger dynamic
movements through its API software. The API has the robust pre-processing function
which can reduce the complexity of the user control. However, LM is a monocular video
sensor which is a challenging for capturing the abundant dynamic hand gestures and finger
micro movements [124].

3.2 Holoscopic 3D Imaging for Micro-gesture

Holoscopic 3D camera is a single aperture sensor not only to represent the real-time and
represents a true volume spatial optical model of the object scene but also to record the
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viewing natural continuous parallax 3D objects within a wide viewing zone [125]. It pro-
vides a new way to capture micro-gestures.

Recently, there are numerous 2D and 3D gesture or body movement datasets, which
have supported body gesture research. For example, the Cambridge Hand Gesture data
set [126] is consist of 900 image sequence of 9 gesture classes. The Imperial College
London [127] had success on Hands In the Million Challenge (HIM2017), they proposed
10 methods on three tasks of single frame 3D pose estimation, 3D hand tracking, and hand
pose estimation during object interaction. Isaac et al. [115] presents a review summary
of 21 gesture datasets from previous research and public datasets, in which 7 databases
are for hands. ChaLearn[128] gesture database proposed in 2012, which contains 50,000
hand and arm gestures recorded by RGB and depth camera. Most gestures are signals
used by divers, referees, marshalling, and so on. This dataset has been used a challenge
for training a large number of sub-tasks. Most datasets are recorded using to the Kinect
or RGB-D camera as the sensor.

In order to the support the diversification of the gesture recognition and encourage the
development of the human computer interaction, we propose a new 3D gesture database
included the three ubiquitous micro-gestures that are most the popular ones used in the
Google Soli project. Those are intuitive and unobtrusive manipulative gesture. This
database does not only include the continuous dynamic data but also contained the abun-
dant static data to support the 3D micro-gesture recognition.

3.3 H3D Dataset Preparation and Creation

3.3.1 Micro-gesture Design

Micro-gesture is part of the hand gesture motivation, a notable question is the movements
only between the fingers, it the highlight different between the macro-gesture and micro-
gesture, which is a type of accessible design. The micro-gestures is consist of 2D and
3D micro-gestures, which use to the different type devices. The 2D micro-gestures are
used for the touchscreen to assist the interface to manipulate. The Figure. 3.1 shown
2D micro-gestures, the movement tracks are direct touch gestures based on the interface,
which have the issues of high visual attention and soft button of low perceived power [47].

The 3D micro-gestures are combined the 2D and 3D gesture’s functions to summarised
the control type gestures. The movement track shown Figure. 3.2. The movements are
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Figure 3.1: (a) The touchscreen micro-gestures, (b) The 2D micro-gestures movement
tracking [11].

no longer restricted for direction and space, as well as the gesture manipulations are more
flexible, which satisfying the non-barrier and adaptive design thinking [129] [130].

Figure 3.2: (a) The 3D gesture movement tracks [2], (b) The 3D micro-gesture in an
application [12].

Meanwhile, the gestural interaction following the increasing 3D displays to rapidly devel-
oping. Immersive 3D user experience most uses to the gaming environment, so freehand
interaction and no hands-on input is mainstream[42]. Although freehand gestures bring
convenient like no need hold and touchscreen, lost some advantages like clicking but-
tons and tapping surfaces. Nevertheless, some researchers use to simulate touch gesture
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to satisfy the physical interactions feel and responsive. With the developing of research
is provided more natural and based human-centred method of interacting with the com-
puter. Matching perceptual user interfaces of 3D micro-gesture are the product of new
interaction, which supports the perceptual interaction, as same time affect the implicit
and explicit information between the user and the environment[43].

In this research, the traditional 2D touch screen gesture and 3D gesture movements all
have been considered. In order to follow the user’s hobby and basic function for manip-
ulation, we tried select to some control gestures that have the character of 2D and 3D,
which is enabled to feel the control response. The micro-gesture movements design in-
spiration shown in Figure.3.3.

Figure 3.3: Comparison of manipulate gestures.

There are many micro-gestures that can be used for control in AR and VR applications.
In this research, three intuitive micro-gestures are selected references to the Google Soli
project as shown in Figure.3.4. The three gestures are based on the human intuitiveness
when they try to control display. For instance, the button gesture executes the submission
function, dial gesture shows that user wants to slightly adjust the current situation, and
the slider gesture is to express the slide up or down to adjust the volume and options. This
three gesture belong to the manipulative type of the gesture, which are used to touch-less
control the devices or simulation console. In this research, we focus on mid-air gestures
only between the fingers. Since the fingers are more flexible part of the body, the finger
gestures are kaleidoscopic. For holoscopic 3D gesture design, I prefer considering the
barrier-free design, which means the gesture movements as much as been decrease. To
matching control devices, this research will be an initial design exploration, the ubiquitous
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and conventional gestures which are enabled to use for wearable devices such as watch
and glasses. Therefore, the three spontaneous control micro-gestures have been selected
use to the HoMG dataset first time to shoot.

Figure 3.4: Google Soli project gesture [1].

In recent years, with the rapid development of new sensors, some researchers and com-
panies have established related gesture databases for research. Figure. 3.1 shown four
gesture database details. Some of them receive special attention, such as DVS128 of
IBM [131] and Cambridge GesureDataset [132]. Table. 3.1 show four related gesture
database. Most datasets are based on Kinect or Leap Motion to recorded the database,
gestures are movements that involve hands and arms. DVS 128 have 11 type gestures
with 29 subject [131] [133] created an infrared image based 10 type gestures with 10
subjects, which recorded by Leap Motion. These gesture database establishments have
promoted the development of more gesture recognition algorithms, but since most of the
gestures in these databases are macro-gestures, they are different from the application di-
rection of this study. In addition, different database sensors have some disadvantages and
shortcomings, which are difficult to fully refer and judge.

Table 3.1: The summary recording length of videos.

Database Gesture Type No. Subject Sensor
DVS128[131] 11 29 Dynamic Vision Sensor

Cambridge-gesture database[132] 9 2 Camera
I.C.V.L./Hand[134] 25 180 6D sensors

Infrared Based [133] 10 10 Leap Motion

3.3.2 Design Process

The three types of gestures have been chosen: Button, Dial and Slider. Those three types
gestures are ubiquitous, perceptual and conventional, the gesture design concept is easy
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(a) Button (b) Dial (c) Slider

Figure 3.5: Three key types of finger 3D micro-gestures studied in HoMG database.

learning and underling the manipulation.

Fig.3.6 shows the gesture design process: Firstly, the investigate the exciting gesture
types and feature for H3D micro-gesture. Secondly, the ethic course has been required in
Brunel academic research. Thirdly, creating the H3D micro-gesture movements, that are
verified in the research group and gained the standard for acquiring movements. Then,
a series of forms and tutorial works have been finished, such as participants information
sheets, tutorial video etc. I recruited 50 participants are join this database recording. The
required data have been checked quality and random the order for promising the equity.
The database has been uploaded to Google Drive for sharing the other researcher.

Figure 3.6: The process of gesture design process.

3.3.3 H3D Imaging System

H3D imaging technology is a success for use in the 3D cinema, 3D-capable televisions
and broadcasters. The H3D camera used here is built from the 3D Vivant Project (3D
Live Immerse Video-Audio Interactive Multimedia) [8] and the purpose is to capture high
quality 3D images. The developed camera includes micro-lens array, relay lens, and dig-
ital camera sensors. The 3D holoscopic image’s spatial sampling is determined by the
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number of lenses. It shows that the captured 2D lenslet array views are slight different
angle than its neighbour and reconstructed image in relay [8]. The detailed parameters of
the camera are shown in Figure. 3.2.

Figure 3.7: Principle of the holoscopic 3D camera. The microlens array is placed between
objective and relay lens to produce fly eye style images [8].

The holoscopic 3D camera sensor has unique optical components which support the con-
tinuous parallax RGB image system, and contain the depth information viewpoint images.
The Figure shows the H3D imaging having the full colour with full parallax. H3D imag-
ing is comprised of the 2D array of micro images.

The H3D sensor is a crucial requirement for the capture of the objects. This database uses
the H3D imaging system to support the dynamic and static RGB data. And it’s not only
can record the continuous motion, but repetitive lens array can extract different angles
viewpoint images. The uniqueness to encourage the innovation of gesture capture and
recognition.

Figure 3.8: Assembled holoscopic 3D camera[13].
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Figure 3.9: H3D Data acquisition configuration.

3.3.4 Recording Setup

The recording H3D gesture place, as in Figure. 3.9 a green screen room is used for the
recording where it can offer clear and professional recording background to reduce noise.
Four locations are use to capture the micro-gesture movements. 1 and 2 are use for the
left-hand recording while 3 and 4 use to right-hand recording. The different settings are in
consideration of different control behaviours of a left-hander and a right-hander. In order
to enrich the data diversity and test the various kinds of angles, there set up two distances
capture viewing angle. Due to the gesture movement on air are not stable. In the closed
position, we set a hollow frame to help the participant to find the 3D micro-gesture cap-
ture zone shown in Figure. 3.10. Before the recording, the holoscopic 3D camera adapted
and surface are set up in advance. Canon 5D camera has been used as sensor. And the
camera settings are configured to ISO200, shutter 1/250. Holoscopic 3D camera adaptor
is calibrated and the lens is corrected.

Considering the influence of distances, angles, and backgrounds, we prepared 4 positions
for participants. In order to enrich the data diversity and test the various kinds of angles,
there set up two distances capture viewing angle. Two positions are the close and far
locations where the objective lens set to 45cm and 95cm. Figure. 3.10 shown the details.
The other two positions are from the left and right hand side for the convenience of the
participants. It is noted that hollow frame has been set to help the participant finding the
3D micro-gesture capture zone in the close position.
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Figure 3.10: H3D Data acquisition positions,(1)(2) are close positions of 50cm for left
and right hand. (c)(d) are far positions of 90cm for left and right hand record.

Figure 3.11: Debrief for participants before record data.

Before recording, we have a short introduction and tutorial for each participant, which
ensures that all participant understand the aim and content of the gesture data collection.
Figure. A.1 show the explanation in progress and demonstration of the three gestures be-
fore the commencement of shooting. In order to follow the human natural gesture of
the concrete thinking [135]. We remind the participants the name of the gestures while
recording their finger movements, which encourage participants to perform the said ges-
ture in their own unique way based on their understanding of the function of the gesture.
The participants can perform their micro-gesture at their own speed. The recording dura-
tion is around 15 minutes for each participant.

We prepared two different colour backgrounds, two different distances of close and far
from the end of the camera lens to gesture area. The recorded imaging resolution is 1086
x 1902 pixels, and the microlens is 27 x 27 pixels. Participants are successively stand each
pre-established position to play three gestures around 3-5 seconds. The three gestures are
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involved button, dial,and slider.

Holoscopic 3D image is composed of the many regular elements images. And the function
of the elements image array is a capture process. The square aperture fitted on the front
of the camera lens when achieve over 95%. A standard 3D Holoscopic image satisfies the
fill elements over 95%, so there is a square aperture to install the front of the camera lens.
It gives rise to a regular structure in the intensity distribution by using the square aperture
at the front of the camera lens and the regular structure of the square micro-lenses array
in the square grid (recording micro-lens array) as shown in Figure. 3.7 below. Each block
pixel pattern is called a micro-image and the planar intensity distribution representing a
3D holoscopic image consists of a 2D array of micro-images.

Table 3.2: Data acquisition details.

Parameters Detailed Information

Micro-gesture Button (B), Dial (D), Slider (S)

Participants Male (33), Female (17)

Hand Right (R), Left (L)

Distance Close ( 45cm), Far ( 95cm)

Background Green (G), White (W)

Camera Canon 5D

Image resolution 1902 x 1086

Lens array 28 x 28

Shutter speed 1/250

Film speed ISO200

Frame rate 25

Recording length Between 2 and 20 Sec.
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3.3.5 Participants

In total, 40 participants attended the recordings including 17 female participants and 33
male participants, who all read the participant information sheet guidance and sign the re-
search ethics application forms before the recording. There is no any limitation of age and
race for the participants and we respect the participants’ will. The Figure. 3.3.5 shown the
gender and age of participants, which may predict different target users’ user behaviours
and hobbies. Some participants wear married rings and watches during the recording on
finger movements. These increase the data’s noise and bring more challenges. The partic-
ipants’ double hands have been record, in order to increase the diversity of the data. The
detailed information about the data acquisition is summarised in Table. 3.2. The ethics
form is attached to the sub-file of final thesis.

Table 3.3: Participants genders and ages.

Gender/Age 20-30 30-40 40-50 50-60

Female 11 5 1 0

Male 15 15 2 1

3.3.6 HoMG Database Structure

For the data collection, the recordings from 40 participants are selected to make the
HoMG database. The recordings were done under different conditions. One participant
has recorded 24 videos. In total, 960 videos are included in the database.

Table 3.4: The summary recording length of videos.

Partition under 2 Sec 2 - 5 Sec 5 - 10 Sec 10 - 15 Sec 15 - 20 Sec over 20 Sec

Number 2 361 358 167 53 19

Table 3.5: The summary recording length of videos.

Training Development Testing

Subjects 480 240 240

49



Chapter 3. H3D Micro-gesture Database Creation and Validation

Figure 3.12: Button gesture movement tracking.
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Figure 3.13: Dial gesture movement tracking.
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Figure 3.14: Button gesture movement tracking.
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Figure 3.15: Frame numbers of each video in training set.

Figure 3.16: Fame numbers of each video in development set.
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Figure 3.17: Fame numbers of each video in test set.

For micro-gesture recognition, it can be done based on single image or can be done from a
short video. So this database was divided into two subsets: image based and video based
micro-gesture subsets. Each subset have three classify gestures: Button, Dial, and Slider.
The each gesture movements shown in Figure. 3.12, Figure. 3.13, and Figure. 3.14. The
action decomposition diagrams of the three gestures fully demonstrate the trajectory of
each movement. Although the gesture movements recorded by the H3D camera, and the
videos are based on the fly’s eye lens to shown. The video that record by close distance
has been clear to recognize the finger tracks. Figure. 3.12 demonstrates the two fingers
from open to close, which simulate the press the button actions. In the button videos,
the user hobbies have been discovered when they want to play the button gestures. There
are two types of finger movements: One is to move with two fingers at the same time,
and the other is to use one finger as a plane to press down with the other finger. Both of
these behaviours are based on the user’s previous life experience and intuitive perception
of manipulation, especially they feel response without the interface. The second class
gesture is dial, and the movement tack can be seen in Figure. 3.13, where each frame
shows the high accuracy micro-adjustment using the two fingers friction. Figure. 3.14
shows the slider gesture movements. Due to the nature of the gesture, this gesture takes
longer than other gestures to complete. User will use this gesture to choose they want,
which means this action is repeated. It can be seen from the three gesture decomposition
diagrams that the initial actions of the three gestures are the same, which also means the
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importance of data coherence. It is important to note that the two gestures, slider and dial
have more coincidence points.

Figure 3.18: Six types of gestures on every class.

Figure 3.19: Video validation.

H3D Video Subset

There are 40 subjects and each subject has 24 videos due to the different setting and three
gestures. For each video, the frame rate is 25 frames per second and length of videos
are from few seconds to 20 seconds and not equally. The data validation process show
the Figure. 3.19, and the detail of each video’ frame number has shown in Figure. 3.15
Figure. 3.16 Figure. 3.17. Due to all the video record by participant’s gesture speed, and
every video recorded each movement at least twice to make sure the movement integrity.
When we record the videos are based on every participant’s order, therefore the original
record files are name by location and background colour. There six types of videos for
each class. Which show Figure. 3.18 We used the capital of words represent the file con-
tent, for example WLFB means white background record left hand play button of gesture
type on far distance. Then considering rich the data and made it have multiple categories,
the data have been reassignment based on every participant’s movements. Firstly, the
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whole dataset was divided into 3 parts. 20 subjects for the training set, 10 subjects for
development set and another 10 subjects for testing set. In this way, the micro-gesture
recognition is person independent. Then, we randomized the video subset of all the sub-
jects, which means the even distribution of different types of videos in the training set,
development set, and testing set. Figure. 3.20 show the training set details. Figure. 3.15
shows the each video’s frame.

Figure 3.20: Video-based subset data overview.

H3D Image Subset

Video can capture the motion information of the micro-gesture and it is a good way for
micro-gesture recognition. However, it needs more data and takes a long time. It is very
interesting to see whether it is possible to recognize the micro-gesture from a single im-
age with high accuracy. Hence, the image-based database has been created, which extract
and select from video data. The Figure. 3.21 and Figure. 3.22 shown the image-based
subset details. For each gesture movement file is extracted from each gesture videos and
we selected every one frame from every 6 frames, which possible keep the movement
continuity.
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Figure 3.21: Green colour background data of image-based subset overview.

Figure 3.22: White colour background data of image-based subset overview.

From each video recording, the different number of frames were selected as the still
micro-gesture images. In total, there are 30635 images selected. The whole dataset was
split into three partitions: Training, Development, and Testing partition. There are 15237
images in the training subsets of 20 participants with 8364 in close distance and 6853 in
the far distance. There are 6956 images in the development subsets of 10 participants
with 3077 in close distance and 3879 in far distance. There are 8442 images in the testing
subsets of 10 participants with 3930 in close distance and 4512 in far distance.

The summary of the HoMG database is listed in the Table 3.6.
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Table 3.6: The summary of the HoMG database.

Partition Subjects Image Set Video Set

Training 20 16763 480

Development 10 6560 240

Testing 10 7291 240

3.4 Micro-Gesture Recognition Validation

The initial investigation is carried out independently based micro-gesture recognition
study from video and image separately. We would like to see how high performance
can be achieved from each.

3.4.1 H3D Video Subset for Micro-gesture Recognition

There are many good features that can be extracted from each video to capture the move-
ment of the fingers. Here LBPTOP [136] and LPQTOP [137] are selected. These features
can not only calculate the distribution of the local information of each frame, but also the
distribution of finger movements along to the time. From each video, the frame size was
reduced to 66 x 38 pixels from 1920 x 1080 pixels. Firstly, then a feature vector with
the dimension of 768 is extracted using LBPTOP and LPQTOP for the classification. For
the classification, it is a three class classification problem. There are lots of classifiers
available. Here, most popular ones such as k-NN, Support Vector Machines (SVM) and
Naive Bayes classifiers are chosen for comparison purpose. SVM, KNN and Bayes are
based on the MATLAB toolbox/library.
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Figure 3.23: Video-based subset micro-gesture recognition process. (a) shows the video
data have been resized, (b) use LBP-TOP and LPQ-TOP to extract the feature, (c) use
the algorithms of k-NN, Support Vector Machines (SVM) and Naive Bayes classifiers to
obtain the final results.

Table. 3.7 shows the accuracy using three different classifiers under different distance on
video based micro-gesture recognition. From this table, it can be seen that LPQTOP is
better than LBPTOP for feature extraction. SVM is better than k-NN and Naive Bayes
classifiers in most cases. In general, the accuracy on close distance is better than far dis-
tance because the detailed information of the finger movement can be captured. For the
testing set, both training and development sets were used for training. Overall, 66.7%
accuracy can be achieved even use the feature extraction methods from all videos in the
testing set.
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Table 3.7: Recognition accuracy (%) of video based micro-gesture recognition on devel-
opment (Dev.) and testing sets using k-NN, SVM and Naive Bayes classifiers.

Dataset Distance Feature
Classifier

k-NN SVM Bayes

Dev.

Close
LBPTOP 53.3 68.3 52.5

LPQTOP 56.7 66.7 63.3

Far
LBPTOP 40.8 53.3 47.5

LPQTOP 50.8 55.8 49.2

All
LBPTOP 44.5 52.9 47.9

LPQTOP 47.9 60.4 51.3

Test

Close
LBPTOP 56.7 53.3 40.8

LPQTOP 67.5 73.3 65.8

Far
LBPTOP 55 55 50.8

LPQTOP 51.7 65.8 58.3

All
LBPTOP 53.3 59.5 45.4

LPQTOP 60.4 66.7 57.5

3.4.2 H3D Image Subset for Micro-gesture Recognition

For each image, 2D texture features such LBP [138] and LPQ [139] were extracted to
represent each image. These two features captured the edge and local information of
the 2D image in different ways and form a histogram feature vector with the dimension
of 256. Popular classification methods such as k-NN, SVM and Naive Bayes classifiers
were used for recognising the three different micro-gestures. The whole process can be
seen in Figure. 3.24, (a) Image pre-processing,(b) feature extraction by LBP and LPQ, (c)
is classification.
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Figure 3.24: Image-based subset micro-gesture recognition process. (a)shows the image
data is resized, (b)use LBP and LPQ to extract the feature, (c)use the algorithms of k-NN,
SVM and Naive Bayes classifiers to classify

Table. 3.7 should the experimental results on video based micro-gesture recognition by
training on the training set and tested on the development, and testing subsets. From
this table, it can be seen that for most of the classifications, around 50% accuracy can be
achieved.
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Table 3.8: Recognition accuracy (%) of image based micro-gesture recognition on de-
velopment (Dev.) and testing sets using k-NN, SVM and Naive Bayes classifiers under
different distance conditions.

Dataset Distance Feature
Classifier

k-NN SVM Bayes

Dev.

Close
LBP 40.9 44.3 46.0

LPQ 43.4 45.0 42.8

Far
LBP 35.9 32.1 37.4

LPQ 36.7 52.6 47.5

All
LBP 41.0 35.0 39.6

LPQ 32.9 51.6 50.6

Test

Close
LBP 49.7 33.6 45.4

LPQ 44.1 46.4 39.7

Far
LBP 50.9 37.7 47.2

LPQ 34.6 51.6 50.0

All
LBP 44.7 48.9 44.7

LPQ 46.8 50.9 46.8

3.5 Conclusion

This chapter introduces an unique holoscopic 3D micro-gesture database (HoMG), which
is recorded under different settings and conditions from 40 participants. The data record-
ing uses the similar the H3D system of fly viewing to capture the participants’ precise
finger movements. The H3D imaging system supports robust 3D depth micro lens array
to capture dynamic and static information. The HoMG database has 3 unobtrusive ma-
nipulative gestures in two different backgrounds, two different distances, left and right
hands. These micro-gestures can be used to control multifarious displays. This database
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would speed up the research in this area.

The database is further divided into video and image subsets. Initial investigation of
micro-gesture recognition is conducted. For the comparison, video based method achieved
better performance as it has dynamic finger movement information in the data. However,
this method needs much more data and computing time. Image based method is conve-
nient for the user and might have more applications, especially on the portable devices.
Even with the standard 2D feature extraction methods and basic classification methods,
66.7% recognition accuracy can be achieved for micro-gesture videos and over 50.9% ac-
curacy for micro-gesture images. This baseline methods and results will give a foundation
for other researchers to explore their methods.

From the initial investigation, it can be seen that the recognition accuracy can reach around
66% even just using the 2D image processing methods. For 3D image processing meth-
ods, such as extracting the different viewing point images and extract 3D information of
the micro-gesture, high accuracy will be achieved. This will be our future works. In ad-
dition, more type of gestures can be added into the dataset for wide applications.

HoMG dataset has been published and it holds an international challenge in 2018. Four
teams from all over the world participated in the challenge. They all presented many
novel approaches to achieved tasks. Meanwhile, some particular problems appeared and
wait to solve.
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Chapter 4

CNN and Decision Fusion for

Image-based Micro-gesture Recognition

In Chapter 3, it is designed three ubiquitous 3D micro-gesture for VR and AR interac-
tion of manipulation gesture, then the those 3D micro-gestures have been tested capture
by holoscopic camera. In holoscopic micro-gesture (HoMG) database, we recorded 50
participants(40 subjects using for database, 10 subjects using for backup) to perform the
three classes of 3D micro-gestures in different angles, distances and backgrounds. HoMG
database creation follows the human-centre principle to design. Therefore we have invited
many participants of different races, genders, and ages to record micro-gestures. Then the
HoMG database has been publicised to our website using for further research.

To inspired more researcher to work this dataset, some classical and potential machine
learning methods have been used micro-gesture recognition, and the initial result have
been public as the baseline. Meanwhile, we hold a international challenge in order to
inspired more researchers and companies join this new research. After that, based on the
feedback from the participants and the suggestions and comments on the baseline, the
following feedback summary was made: first of all, deep learning is a popular trend of
gesture recognition, and it can provide effective algorithms for micro-gesture recogni-
tion. Therefore, deep learning become the main algorithm reference for further research.
Secondly, as the characteristics of the new database H3D imaging system are not fully
utilised. Hence, using the 3D information implied in the data is another focus on the next
study. Finally, an effective system for improving the recognition rate of micro-gestures is
established. The above summaries are the problems, that will be a focus and tackle in this
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chapter.

4.1 State-of-the-Art Methods

Figure 4.1: Holoscopic 3D micro-gesture image capture. (a) Recording setting, (b) Ob-
tained H3D image, (c) Three types of micro-gestures.

Recently, the first Holoscopic Micro-Gesture (HoMG) database [140] has been created
and made it publicly available. Figure. 4.1 (a) shows the scene of the HoMG database
recording. Four positions were set up to capture the gesture from different distances, and
different sides of the hand. The obtained image is shown in Figure. 4.1 (b) where 3D infor-
mation was embedded inside of the H3D image. Figure. 4.1 (c) presents the three gesture
types: button, dial and slider used in the capture. We also organized the first Holoscopic
Micro-Gesture Recognition Challenge and attracted the researchers all over the world to
invest their efforts to this challenge [22] [21] [20] [23]. Although significant progress has
been made on the performance of micro-gesture recognition based on H3D imaging, there
are two key problems that haven’t yet been solved. The first one is that the pre-processing
of the holoscopic image is insufficient, and attempts to extract detailed 3D information
from H3D images were unsuccessful. The second one is that micro-gesture recognition
rate is still unsatisfactory for real-world applications due to the limited 3D information.
In this research, a new H3D image pre-processing method used to takes the advantages
of 3D information and then use deep neural network for pattern recognition.In addition,
the several decision fusion approaches has been applied to combine multiple viewpoint
recognition decisions.
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The research on holoscopic 3D micro-gesture recognition has been accelerated after the
first holoscopic 3D micro-gesture database HoMG was created [140]. Additionally, the
HoMG database was made publicly available and the first HoMGR challenge competition
was held [140]. Created by using the H3D imaging system, the 3D micro-gesture database
supported high resolution static image data as well as high quality dynamic video data. It
is renowned that the 3D micro-gesture database obtained has high quality micro-gestures
and true 3D advantage over traditional 3D capture device. Although there are image
and video subsets in the HoMG dataset, we only focus on the image subset, as the data
processing methods will be quite different for video subset. The dynamic information
extraction is the key in video based micro-gesture recognition systems. For image based
micro-gesture recognition, good efforts have been made recently [140] [22] [23] [20] [21].
Traditional 2D image feature extraction and classification methods were used in the base-
line paper [140]. Zhang et al. [22] proposed a method on 2D micro-gesture images using
CNN models with fine-tuning. The method achieved the best accuracy by averaging the
probabilities predicted from different models and different epochs. Lei et al. [20] pro-
posed a bi-directional morphological filter and a fast fuzzy C-Means Clustering (FCM)
method [141] to reconstruct 2D images from a H3D image. It is a good method for solv-
ing the problem of blur and distortion grids in the H3D image. It was ranked in the second
place of the challenge competition in the image subset. The main limitation of this method
is that the reconstructed image has a lower resolution and loses some detailed information.
Sharama et al. [23] considered that each micro-lens captured the image at its respective
angle which was different from the other lenses. They extracted a viewpoint image by
selecting a pixel from each micro-lens and used feature fusion technique on both hand-
crafted and deep features extracted from the neural network. The experiments show that
their proposed method outperforms the baseline by an absolute margin of 26.67%. Peng
et al. [21] proposed a deep residual network with attention mechanism. The experiments
show that the attention design can highlight the micro-gesture part and reduce the noise
introduced from the wrist and background. An accuracy of 82.1% on the image subset
was achieved.

From the methods of all the participants in the challenge on this dataset, it can be seen that
there are three potential issues that may help to improve the performance of the micro-
gesture recognition. Firstly, because the original H3D images contain a lot of noise,
the appropriate image processing method is crucial for extracting correct 3D information
from H3D images. Although Lei et al. [20] and Garima et al. [23] have made attempts on
this issue, the noise such as dark borders and geometric distortions were not eradicated.
More importantly, none of the participants took the advantage of the full 3D informa-
tion for micro-gesture recognition. Secondly, most participants accomplished the task
of micro-gesture recognition by using deep learning methods and obtained significantly
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improved results than the baseline method. However, most of the deep learning models
were applied for H3D images directly or some 2D images with limited view angles. The
power of the deep learning models were not fully used. Thirdly, Lei et al. [20] and Zhang
et al. [22] used the decision fusion methods to improve the recognition accuracy. This is
a good way and should be explored further. In what follows, we will address all these
issues one by one and to make a better system for micro-gesture recognition.

4.2 System Development

This section introduces the detailed information on our solutions on each issue identified
in current methods and then proposes our solution. We present our method below in
detail.

4.2.1 Micro-gesture Recognition System

Figure 4.2: Block diagram of the proposed micro-gesture recognition system. There are
four stages: (a) Pre-processing; (b) Viewpoint image extraction; (c) Deep learning for
prediction on viewpoint images; (d) Decision level fusion.

Figure. 4.2 shows the framework of our proposed method that includes four main stages.
Firstly, in the pre-processing stage, the original H3D images are cut on the four bound-
aries in order to localize the Element Images (EIs). An EI is a local area in the H3D image
that was captured by one of the micro-lens array. The captured H3D images might have
various offsets depending on the positions of the micro-lens array inside of the camera.
This is a preparation step for View Point (VP) image extraction where the VP image is
a 2D image of the scene from a particular viewing angle. Secondly, multiple shifted VP
images are extracted from one H3D image where each VP image has different shifts from
horizontal and vertical positions in the angle of view. Three simple and efficient patch-
based rendering approaches were proposed by Georgiev and Lumsdaine [142], which
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were used by Yang et al. [143] in holoscopic image coding scheme. However, our pro-
posed method here is simpler and the EIs can be cut out automatically. Thirdly, CNN
model with an attention block is used to extract features from each VP image and gives
predictions (e.g. the possibilities it belongs to each type of micro-gesture from its fully
connected layer). Finally, the decision fusion methods are used to combine the predicted
decision values from each VP images together and produce the final prediction of the type
of micro-gesture.

4.2.2 H3D Pre-processing

In the recording process of the original H3D image, an object is captured through an array
of micro-lenses, where each micro-lens captures a perspective 2D elemental image of the
object from a specific angle. The final captured image contains the intensity and direc-
tional information of the corresponding 3D scene in 2D form. This 2D elemental image
is called the EI that is a small grid area in the H3D image. The standard pre-processing
process can be found in [144], which includes lens correction, distortion correction, EI
extraction, viewpoint extraction, etc. The first step of our pre-processing is to create an
automated method to detect the edges of EIs and cut out the EIs from the original H3D
image. Because of the lens distortion led to the many incomplete EIs which cannot extract
the useful 3D information.

Figure 4.3: H3D micro-gesture image is consist of multiple 2D Element Images (EIs).
Here 9 EIs are enlarged from the original H3D image.

Figure. 4.3 shows an example of a holoscopic 3D micro-gesture image that consists of
many 2D EIs. Roughly, each EI is a approximately square area with small values (dark
colour) on the edge. However, some boundaries are not straight lines due to the distor-
tion of the micro-lens, especially the ones near the H3D image boundary as the associated
micro-lens are far from the centre. Barrel distortion is caused by spatial imaging in narrow
space, which results in the obvious distortion in the corner and edges. Although the dis-
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tortion is not easy to be noticed by human eye, it affects greatly in extraction process [84].

In this work, all the EIs are cut out based on straight lines and the distortion will be dealt
with later by the algorithm for VP image extraction. On the boundaries of the H3D image,
some EIs are not captured fully, so only completed EIs will be cut out and used later for
VP image extraction.

The cutting algorithm is based on the detection of the minimum values of the rows
and columns of a H3D image. For a H3D gray-scale image H(i, j), i = 1,2, · · · , Io, j =

1,2, · · · ,Jo with a resolution of Io× Jo, all the values are summarized to Hc and Hr ac-
cording to column and row as shown in the equations 4.1 and 4.2 respectively. Then the
local minima of function Hc and Hr are picked up as the boundaries of the EIs. For exam-
ple, if the H3D image has a resolution of 1080×1920, we can get two vectors as shown
in Figure. 4.4 and Figure. 4.5. In Figure. 4.4, there are 40 local minima detected where
the left and right minimum points were removed as they are the edge of an incomplete EI.
Therefore, 38 EI edges were finally chosen. In the same manner, in Figure. 4.5, there are
70 local minima detected where the left and right minimum points were removed, Thus,
EI edges were finally chosen. In the end, 38 × 68 EIs were cut out from one H3D image.
This method is a fast algorithm that can quickly produce all the EI images.

Hc(i) =
Jo

∑
j=1

H(i, j), i = 1,2, · · · , Io (4.1)

Hr( j) =
Io

∑
i=1

H(i, j), j = 1,2, · · · ,Jo (4.2)

In practice, the camera calibration is not executed perfectly as the micro-lens cannot be
placed perfectly on the horizontal and vertical lines of the H3D image. There might be
a small angle δ between the boundary of EIs and the horizontal and vertical lines of the
H3D image as shown in Figure. 4.6. A small shift image Hδ of the original H3D image
can be used in the above methods and then the best δ̂ can be obtained by minimizing the
local minima of the summary of row and column pixels as shown in the following Eq. 4.3:

δ̂ = argmin
δ

(
Io

∑
i=1

Hδ
c (i)+

Jo

∑
j=1

Hδ
r ( j)) (4.3)

In this way, the best cut of H3D image Ic is obtained with δ̂ .
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Figure 4.4: The minimal values of the summarized rows of a H3D image. The 38 points
marked with small red triangles are the selected boundaries of the EIs.

Figure 4.5: The minimal values of the summarized columns of a H3D image. The 68
points marked with small red triangles are the selected boundaries of the EIs.

4.2.3 H3D Viewpoint Extraction based on Shifting Method

From all the obtained EIs, VP images can be extracted. The VP image is a low-resolution
orthographic projection type of rays from a particular direction. It can be extracted from
the pixels of all the EIs. The basic principle of the recording process is the object to im-
age through a micro-lens array, where each micro-lens has the intensity and directional
information from the captured specific angle. Figure. 4.7 shows the relationship between
5 EIs and 3 focus layers. The captured H3D image has micro-lens array of 5 lenses with
3 pixels per lens. In this particular example, there are 3 planes per slice with the image
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Figure 4.6: The horizontal and vertical lines of the H3D images are adjusted for the EI
extraction.

size of 5 pixels, which is the VP image. In the recording stage, each micro-lens of local
pixel position is involved direction as shown in Figure 4.7(a). To each VP image, the
construction integrate all the pixels from the same location under different micro-lenses.
And all the VP images, such as VP1, VP2 and VP3, are orthographic image as shown in
Figure. 4.7 (b), and they are reconstructed by all pixels from same location in the 5 EIs.
It should be mentioned here that the focus plane of each VP image might be different as
shown in Figure. 4.7 (b). Holoscopic 3D image is changing the focus plane that is all
the light ray to converge the ideal virtual depth plane. However, the viewpoint rendering
pixel used to refocus at different depth planes.

In holoscopic 3D imaging principle, each EI, which is captured by a micro-lens contains
a pixel from each layer of the 3D scene. In the same way, all EIs contribute to create a
single aperture holoscopic 3D scene in the space.

H3D viewpoint extraction process is to select appropriate pixels at the same location from
every EI of the H3D image to reconstruct an orthographic viewpoint image. The principle
of the proposed viewpoint extraction method is illustrated in Figure. 4.8 where there are
3×3 pixels in each EI, and the 9 EIs constitute an omni-directional H3D image.

In general, for a well-cut H3D image Ic with n×m EIs, each EI can be represented as EI
(p,q) where p = 1 to P and q = 1 to Q. The VP image V P(p,q) will have the dimension
of n×m as there is one pixel extracted from each EI. The values of P and Q are decided
by the resolution of the cut H3D image Ic because Ic resolution will be (m×P,n×Q).
The equation for VP extraction can be represented as the following:

V Pp,q(i, j) = Ic((i−1)P+ p,( j−1)Q+q) (4.4)
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Figure 4.7: The relationship between EIs and focus layers of the holoscopic 3D capturing
system. (a) micro-lens array recording system, (b) Orthographic viewpoint images from
different perspectives.

where i = 1, · · · ,m and j = 1, · · · ,n are the coordinates of the VP image and p and q are
the index of the horizontal and vertical positions of VP images respectively. The VP im-
age V Pp,q(i, j) has a resolution of n×m pixels.

In principle, P×Q VP images can be extracted from one H3D image where every pix-
els in all EIs can be picked up. However, it is not working as expected in practice due
to several issues. Firstly, there is very small difference between two adjacent pixels in
one EI and there is no much additional information provided by picking up all the VP
images. Secondly, intensity value of one pixel might vary due to the lighting conditional
and random noise. It will reduce the quality of the VP images. Thirdly, there are barrel
distortion effect on the boundaries of each EI while the distances between the object and
the micro-lens are bigger.

In our proposed method, we address all these issues in order to obtain the high quality
VP images. Firstly, we only extract small number of VP images that have big difference
between each other. Secondly, our VP images are extracted from patches instead of single
pixels of each EI. Thirdly, only central area in one EI are selected and used for VP image
extraction in order to avoid the distortions. The patches are shifted in horizontal and
vertical directions and only small number of viewpoint images are extracted.
Figure. 4.9 shows one EI where the boundary pixels are not used and only the central
pixels are selected for VP image extraction. The central pixels are made of 16 patches,
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Figure 4.8: Illustration of the principle of H3D image viewpoint image extraction. (a) The
3×3 pixels under each micro-lens, (b) One viewpoint image extracted from same position
under different micro-lenses, (c) Nine viewpoint images extracted from 3×3 EIs.

each of them has 3×3 pixels. all the 3×3 pixels contribute to one pixel in the VP image.
From each patch, one VP image is reconstructed and totally 16 viewpoint images are
extracted.

4.2.4 Convolutional Neural Network Model

Convolutional neural network (CNN) is a biologically-inspired model and very successful
in image-related recognition tasks [145]. The important component of the CNN is the
shared-weight and sub-sampling. Figure. 4.10 shows the general structure of a CNN. The
input layer receives images with the same size. After processed by a convolution kernel,
each small neighborhood in the input layer will form a value in a feature map (each plane
in the layer). The ith feature map Ci can be expressed as:

Ci = f (x∗W i +bi) (4.5)

where f is the activation function, x is the input VP image, W and b are the weight of
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.

Figure 4.9: This is one EI image with the resolution of 27×27. The boundary pixels are
avoided, only the central pixels are selected. Each patch has 3×3 pixels. In the end, only
16 patch areas are selected from this EI.

the convolution kernel and bias, respectively. Each feature map shares the same W and b.
In a convolutional layer, there is normally more than one convolution kernel, so multiple
feature maps are calculated. The ith feature map Pi in the pooling layer (S1 layer) can be
calculated by using:

Pi = f (β ∗S(Ci))+α) (4.6)

β and α are the coefficient and bias, respectively. S(·) denotes the sub-sampling operation
for a convolutional feature map. It can be written as:

S(Ci) = maxCi
s,l ‖s‖ ≤

Ns

2
, |l| ≤ Ns

2
,s, l ∈ Z+ (4.7)

where Ns is the sub-sampling size.

Generally, a deep convolutional neural network formed by stacking multiple convolution
layers and sub-sampling layers [146]. The fully-connected layer is a multi-layer percep-
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tion feed-forward neural network, the output layer can be written as:

p( j|F ;θ) =
eθ T

j F

∑
J
i=1 eθ T

i F
1≤ j ≤ J (4.8)

where p( j|F ;θ) denotes the probability that the input feature F belongs to class j, θ is the
weight vector between the output layer and the previous layer, J is the number of class.

Figure 4.10: The general structure of a CNN. The inputs are the VP images extracted.
There are a few pair of convolution layer (C) and Sub-sampling layer (S). Finally, it is
fully connected layers with the number of outputs being the number of class.

Many CNN structures, such as GoogLeNet [147] and ResNet [148], have been trained
on ImageNet [145] with super performance. Here, pre-trained ResNet model is used and
then fine-tuning is carried on the model with our dataset. In addition, we modified the
existing CNN model by adding an attention-based residual block.

Figure. 4.11 shows the attention-based residual block, where the dotted-line area is the at-
tention branch that can spotlight the finger micro-gesture and reduce the noise introduced
from the wrist and background. For input x, the overall output is O(x).

O(x) = F(x)+F(x) ·A(x)+ x (4.9)

A(x) represents the spatial attention mask. This attention branch here has been used in
our previous work [21]. It is a bottom-up top-down structure to learn the interesting area
in a gesture image as shown in Figure. 4.12. From Figure. 4.12, it can be seen that the at-
tention design puts more attention on the gesture area in higher level layers. We believed
that this is special for micro-gesture recognition.

The CNN model adopted this attention design is applied for all the VP images for the
micro-gesture recognition. The output probabilities of the CNN was produced. From
each sample, the probabilities of three gestures are computed, which are used for decision
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Figure 4.11: Attention-based residual block that was integrated to the CNN architecture.

level fusion.

4.2.5 Decision Level Fusion

The decision fusion also referred as mixture of experts [113] is a method that can con-
tribute to improve the recognition rate by combining all the decisions together. In this
work, some ensemble functions based on voting [149] and trainable methods [150] have
been explored for combining predictions from multiple VP images efficiently. Specif-
ically, some simple fusion methods such as majority voting, averaging, product of the
predictions as well as trainable mixture of experts approach such as bagging learning
strategy with REPTree are used on the multiple viewpoint predictions.

Assume there are J classes for all the H3D images and each H3D image has K VP images,
CNN models will be applied on all VP images separately to produce all the prediction
probabilities {p j,k}, where { j = 1,2, · · · ,J} is the index of the class and {k = 1,2, · · · ,K}
is the index of the VP images.
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Figure 4.12: First row and second row represent the feature maps learned by ResNet-
50 and attention based ResNet-50, respectively at res2b layer (low-level), res4b layer
(middle-level) and res5c layer (high level).

Majority Voting. For an instance, voting strategies assume that each classifier gives a
single class label. For convenience, define the output of the multiple classifier as Vk as the
following,

Vk = argmax
j
(p j,k), k = 1,2, · · · ,K (4.10)

The predicted label VM for the majority voting can be written as:

VM = argmax
j
(

K

∑
k=1

I{Vk= j}) (4.11)

where index function I∆ will be one if set ∆ is non-empty and 0, otherwise.

Averaging. Averaging fusion method can be applied to the multiple classifier under the
condition that each output of the classifiers is expressed in probabilities. The decision
output VA for the averaging fusion can be written as:

VA = argmax
j
(

1
K

K

∑
k=1

p j,k) (4.12)

Product. Product probability fusion method is to calculate the product of experts by
multiplying individual probabilities. Similarly to the averaging probability fusion method,
the product probability fusion output VP can be written as:

77



Chapter 4. CNN and Decision Fusion for Image-based Micro-gesture Recognition

VP = argmax
j
(

K

∏
k=1

p j,k) (4.13)

Bagging Classification Tree. Trainable mixture of experts has the ability to learn from
individual classifier outputs to form a higher level of experts. In this work, Bagging learn-
ing with REPTree has been explored to heighten the multi-viewpoint results. Bagging
learning strategy was introduced by Breiman [151] to reduce the variance of a predictor.
It is a successful way for improving classification performance. Reduce Error Pruning
Tree (REPTree) [152] is a fast decision tree learning method that based on the informa-
tion gain. The substantial steps of the trainable mixture of experts approach are as follows.

Assume that we have N instance. For each instance, the number of VP images and classes
are K and J, respectively. Therefore, the feature dimension of each instance is K× J.
Firstly, a training set is sampled (with replacement) from the all instances to generate a
classifier. Specifically, REPTree algorithms are used as the learning system. And then,
same as the first step, the number of T trails are replicated to form the T classifiers. Fi-
nally, for an instance, the classification result is voted by every classifier for the class with
the most votes.

Mean Probability Voting
For the ith classifier, suppose the probabilities of each sample to be class j is p j,i, the
ensemble decision for the mean probability voting can be written as:

VP = argmax(mean(
m

∑
i=1

p j,i) (4.14)

Ranking Decision Fusion
In ranking decision fusion method [153], for the ith classifier, suppose the probabilities of
each sample to be class j is p j,i, a new vector z j, i is generated as follows:

Define a ranking vector r=r j=0; j ε[1 c];

For j=0 step 1 until c,

r j = argmax p j, iz j, i = c− ( j−1) (4.15)
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Table 4.1: Number of samples in each partition of the HoMG database. ”B” stands for
Button, D stands for Dial and S stands for Slide.

Subset
Training Development Testing

B D S B D S B D S
Image 5507 5534 5722 2266 2188 2106 2665 2267 2359
Video 160 160 160 80 80 80 80 80 80

4.3 Experiments and Evaluation

4.3.1 H3D Image Subset of HoMG Database

Holoscopic Mirco-Gesture (HoMG) database was recorded for this research that is pub-
lic available at our website. For the data collection, 40 participants were selected and
the recordings were done under 2 different backgrounds, 2 hands (e.g. left and right), 2
distances (e.g. far and close) and 3 micro-gestures (e.g. Button, Dial and Slide). So 24
videos were recorded for one participants. The length of the video is between 2 and 20
seconds with a frame rate of 25 and resolution of 1902× 1086. In total, 960 videos are
included in the database.

The HoMG database has been made public available [140] for micro-gesture recogni-
tion competition where it was divided into two subsets: image based and video based
micro-gesture subsets. Also it was divided into training, develop and testing subsets. The
detailed information of HoMG is shown in the Table 4.1. In this paper, the work is only
done for the image based subset where each micro-gesture is represented by a H3D image.

4.3.2 H3D VP Extraction Parameters

For an original H3D image, its resolution is 1920×1080 pixels. The resolution of element
image from each micro-lens is about 27×27 pixels. However, at the edge of the H3D im-
age, there are some EIs that can not have the full resolution due to the in-completion of
the micro-lens. So these pixels of the H3D image were cut out. Specifically, 68×38 pixels
full EI were cut out from one H3D image after rotation of the image and make the straight
cutting lines.

After the edge cutting, the H3D image should be estimated in depth and be refocused
to extract the VP images. Small patch area of 3×3 was chosen from the central area of
each EI, and then shift it in horizontal and vertical directions. The shift value also leads
to the depth transformation. We obtained 16 points by extracting the viewpoint from
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the different refocusing layers, as shown in Figure. 4.9. In the human eyes, the slight
movement from the viewing of the continuous VP images can be observed. In the end,
for each H3D micro-gesture image, 16 2D VP images were extracted from different depth
as shown in Figure. 4.13 .

Figure 4.13: The 16 viewpoint images extract from a H3D image and its associated recog-
nition accuracy based on CNN models.

4.3.3 Implementation Details of CNN Model and Mixture of Experts

Considering that the micro-gesture is a small-local representation in an image, we adopted
the attention mechanism to spotlight the finger micro-gesture area.

Before training, we used the transfer learning strategy to initialize the network with Im-
ageNet database and get a pre-trained model [148]. In the stage of training for micro-
gesture recognition, fine-tuning was done for the pre-trained model on the HoMG database.
The average values of all pixels of the training set have been subtracted from the input
gray-scale image and the input image was further divided by the variance of all pixels
of the training set. This is a normalization process. To increase the robustness of the
network, each VP image was resized to 256×256 and then cropped out the four corners
to size of 224×224. Moreover, data augmentation such as color shift (maximum value
of 20) and image rotation (maximum degree of 10) are applied to the training set with a
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Table 4.2: Classification accuracy(%) of CNN models on each VP images at the testing
set of HoMG database.

No.VP Acc No.VP Acc No.VP Acc No.VP Acc
VP1 86.50 VP5 86.69 VP9 86.81 VP13 86.79
VP2 86.47 VP6 86.76 VP10 86.61 VP14 86.62
VP3 85.68 VP7 86.33 VP11 86.28 VP15 86.27
VP4 85.74 VP8 86.01 VP12 86.1 VP16 86.42

probability of 0.5. The dropout ratio of the last weight layer was set to 0.5. The batch size
is set to 9 with momentum of 0.9 and weight decay of 0.0005. The initial learning rate
was set to 0.001, which decreases 10 times smaller after every 10 epochs. Our training
process was implemented on Caffe framework [154] with an Nvidia Titan X GPU.

After the training, each VP image in the dataset was input to the trained model to get a
decision output of the classification layer. Specifically, each value in the output vector
represents the probability belonging to the three types of micro-gesture, respectively. Due
to each instance in the dataset having 16 VP image, we got 16×3 output values as the
probabilities of the instance belonging to each type of micro-gesture based on each VP
image.

In our mixture of experts procedure, we set the number of bagging trails as 10000 and in
each trail, 50% of the instance in the training set has been sampled to generate a classifier.
For REPTree training [152], the minimum total weight of the instances in a leaf is set to
2 and the amount of data used for pruning is set to 3.

4.3.4 Experimental Results and Comparison

Table 4.3.4 shows the experimental results using CNN models on separate VP images.
Totally, 16 VP images were extracted from one H3D image. Each of them has been ap-
plied in the proposed CNN models and the associated classification probabilities have
been produced. This accuracy is the percentage of correctly classified micro-gestures in
the testing set after the models was trained on the training and development subsets. From
this table, it can be seen that similar performance has been achieved for each single VP
image. The best results of 86.81% was achieved for viewpoint 9, which is a very good
accuracy already.

Table. 4.3.4 shows the results achieved by our proposed method in comparison with other
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Table 4.3: Classification accuracy (%) comparison between the proposed method with all
the existing methods on the testing subset of HoMG dataset. ”A” means attention block.
”M.V.” means ”majority voting”.

Author Methods Accuracy
Liu et al. [140] LBP+k-NN 50.90
Liu et al. [140] LPQ+SVM 52.6

Sharma et al. [23] CNN+LPQ(Max Vote) 77.57
Peng et al. [21] A-Resnet 82.10
Lei et al. [20] FCM+GoogLeNet 84.28

Zhang et al. [22] ResNet152+DenseNet161+SeResNet50+M.V. 86.70
This work 16VPs+A-ResNet 86.71
This work 16VPs+A-Resnet+M.V. 87.04
This work 16VPs+A-Resnet+(Mean Probability Fusion) 87.04
This work 16VPs+A-Resnet+(Product Probability Fusion) 87.03
This work 16VPs+A-Resnet+(Bagging Classification Tree) 87.15

state-of-the-art methods. Firstly, we combined all the 16 VP images together and applied
CNN model and achieved the accuracy of 86.71%. The last four methods of the table de-
note the the methods combining the CNN outputs based on mixture of experts approach.
We can see from the Table. 4.3.4, our proposed pre-processing methods used for H3D
image combining CNN with mixture of experts approach obtained a significant perfor-
mance improvement on micro-gesture recognition. Specially, the proposed methods that
combine CNN with Bagging Classification Tree approach gained an improvement about
40% of recognition accuracy than baseline method. It also outperforms the method of
Zhang et al. [22] (87.15% vs 86.70%). Besides, compared with the method of Peng et
al. [21], the CNN model achieved an accuracy improvement of 5% approximately. It even
slightly higher than the method achieved by Zhang et al. [22] although voting method
was used in their work (86.71% vs 86.70%). Consequently, the proposed pre-processing
methods used for H3D image is validated to be effective. Moreover, the last four methods
in the table show that the mixture of experts approach makes a great contribution to the
improved recognition rate. Notably, the proposed trainable mixture of experts based on
bagging classification tree is more superior than the voting and probability fusion method.

4.4 Conclusion

Image based finger micro-gesture recognition is a very challenging problem. In this study,
we presented a recorded public micro-gesture dataset using a holoscopic 3D imaging sen-
sor for this particular research area. Then, A new micro-gesture recognition system has
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been proposed and evaluated it on the dataset in comparison with the state of the art
methods. We proposed a fast and robust pre-processing methods for H3D images, which
can extract the element images. In addition, we presented our simplified viewpoint im-
age extraction method. Each viewpoint image is clean and prominent, which highlights
the micro-gesture area and creates full representation of the original H3D image. Fur-
thermore, a pre-trained CNN model with the attention mechanics is applied for each VP
image for the predicted probabilities of each gesture. Finally, some mixture of experts
methods based on voting strategy and trainable model have been explored to achieve bet-
ter classification results. The achieved recognition accuracy is better than all existing state
of the art methods. The accuracy of 87% might be good for some applications already.
The main reason is that the attention-based network can learn to focus on the interest area
for each viewpoint image, and the decision fusion method ensemble the classification re-
sults of each viewpoint efficiently.
In addition, it demonstrated that holoscopic imaging is a potential way for real-world ap-
plications. This image sensor can be embedded into a general digital camera with small
additional cost.

The proposed system might be improved further in the following ways. Firstly, the num-
ber of VP images can be optimized. Better performance might be achieved if larger num-
ber of VP images are extracted. However, that means more computing cost and slower
speed. Secondly, feature level fusion methods might be considered, and achieve better
performance. Thirdly, the whole system might be treated as a learning system, in which
the optimized parameters can be learned together for the best performance.
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Chapter 5

Pseudo Viewpoint and Deep Learning

for Video-based H3D Micro-gesture

Recognition

The HoMG database has been introduced in chapter 3, and the recognition task focuses
on the HoMG image subset in chapter 4. However, The HoMG image subset still have
many limiting factors for micro-gesture movements, such as time sequence and data con-
sistency. As the video subset is able to offer rich information, they become a new trend
for HCI applications. Apart from the implicit 3D and depth information, the HoMG video
subset supports each micro-movement from each time sequence.

This chapter focuses on the HoMG video subset for H3D micro-gesture recognition. In
order to further develop the algorithms for the HoMG video subset, relevant recognition
algorithms have been investigated, such as macro-gesture recognition, facial expression
and lip-reading. Because the H3D micro-gesture video has richer information than the
H3D image, the more advanced system has been created to further improve the perfor-
mance on the HoMG database.

In summary, all the methods mentioned above have many advantages, for example the
3D information still not fully used to recognition, and the accuracies are not satisfactory.
Therefore, micro-gesture recognition based on video subset of HoMGR dataset will be
further development in this chapter.
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5.1 Methodology

5.1.1 Proposed Video-based H3D Micro-gesture Recognition System

In this section, the PVP based 3D micro-gesture recognition is described in detail.

Figure 5.1: The video-based H3D micro-gesture recognition pipeline: (a) Sample video
data of HoMG (b) is front-end, which consists the PVP extraction and pre-processing (c)
described the back-end, which consist the deep network models and majority voting.

Figure. 5.1 shows the framework of the whole recognition pipeline. Firstly, each H3D
frame has been transform in the original video to several PVP images according to the
imaging principle of H3D cameras. In this transformation, the 25 frames in each second
have all been kept, although the duration of each video is different. The issue is that
videos of different durations do not consider pre-processing in the early stage. However,
the input method will tackle this problem when the input is fed to deep neural networks.
Besides these transformation problems, several videos have been obtained with different
amounts of Pseudo View-Points of the single input video. The PVP extraction method is
similar to VP extraction principles, which extracts pixels from each EI image at the same
location, and then reconstructs the pixels of each patch into PVP images with different
depth and multi-view. It is noted that PVP images cannot be displayed and human eye can
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hardly recognise the image integrity. A deep neural network extracts features in each PVP
frame, therefore obtaining the prediction results of each PVP. Compared to static images,
gesture recognition of videos is more challenging, because it is difficult to represent their
temporal features and the training process is more time-consuming, especially in real-
time applications [155]. In this section, four advanced deep learning architectures have
been trained on the data. This system used end-to-end models, which not only reduce the
input and output process, also learn spatiotemporal visual features and a sequence model.
The layers of deep learning models have also been adjusted for back-end comparison.
Majority voting has been performed on all the results to get the final prediction of the
input H3D video.

5.1.2 The VP based Front-end

For viewpoint extraction, it is a common method to used to obtain different depth images.
The principle follows Figure. 5.4, which shows the relationship between EI and the focus
layers from H3D capture system. For HoMGR video data, the pre-processing is a nec-
essary step, because the captured spatial imaging is in a narrow space, which lead to the
image has distortion. Viewpoint was widely used in display area, the traditional method
are complicated. Following the traditional method to cut the straight lines and correct
the distortion [156]. In order to cut the incomplete EIs on a batch basis, the automatical
cutting pre-processing method has been used. The cut-out is along the straight lines, and
the complete EIs are used to extract and reconstruct viewpoint images. For extraction of
viewpoint images , distortion of all the EIs have been corrected in order to extract the VPs
without noise pixels. This method was commonly used in the H3D imaging system of 3D
display, and therefore gesture movements in the reconstructed VPs are easily recognized
by human eyes. In this section, as the VP extraction is based on the traditional principle.
This process is similar to the method used for the image database in the last chapter, but
the VPs resolution is higher than image database because of selected patch size.

Original H3D image is composed of the a set of 2D element images, which is against to
direct using for deep learning model even it has many 3D information inner. The res-
olution of H3D video frames are 1080 × 1920 pixels, which means consuming a mass
of the time for data training. Therefore, the viewpoint extraction is necessary. For VP
front-end, following the traditional principle extraction. As the 3D scenes of the intensity
and directional information are recorded in 2D form. The omni-directional H3D imaging
system is include the parallax and 3D information from recorded the direction, which is
record by spherical microlens. And the element image (EI) is consist of the single pixels,
Figure. 5.4 explain 3 × 3 pixels the single pixels constitutes the element images and the
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viewpoint extraction. The H3D images are orthographic, which is the parallel rays of
projected at various angles from the object, then forming viewpoint images (VP). And the
viewpoints use zigzag manner to select from pixel mapping. Figure. 5.4 shows the exam-
ple of the 3× 3 pixels element images of H3D image extract the all-in-focused viewpoint
images [156]. (a) proposed n × m EIs and each element images have 3 × 3 pixels. (b) is
explanations of the sub-sampling pixels from (a). (c) described the shifting of extraction
location. The equation of the VP extraction can be represented as below:

V Pp,q (i, j) = Ic((i−1)P)+ p,( j−1)Q+q) (5.1)

where i = 1, · · · ,m and j = 1, · · · ,n are the coordinates of the VP image and p and q are
the index of the horizontal and vertical positions of VP images respectively. The VP im-
age V Pp,q(i, j) has a resolution of n × m pixels.

Viewpoint extraction follows the traditional method, which is based on the holoscopic 3D
imaging system principle. Extraction process extract a set of the patch from the each of
the 2D EIs, then re-construct the extracted pixels. Before the extraction stage, the cut off
EIs in the edges should be considered. There is obvious barrel distortion due to the spa-
cial imaging in narrow space, and the most boundaries are not straight lines. Additionally,
each EI has small values under the dark square. Based on the above of the situations, there
are many limited conditions for extract visible level viewpoint.

Therefore, the visible level viewpoint extraction is complicated. First, the cut the H3D
images edges from horizontal and vertical in order to obtain the H3D image is consists of
the full element images. Then the lens correction should be considered due to the barrel
distortion, which is caused by the spatial imaging in narrow space. The distortion has
been negative affection on extraction process, therefore the most distortion are not easy
noticed by human eye. In this part work, the principle of cutting algorithm is based on the
minimum values of H3D image from rows and columns, the incomplete element images
have been removed from horizontal and vertical.

For viewpoint extraction and shift, every pixels under all EIs have been used for selection
and extraction. Every time has a patch pixels from same location under each EIs have
been selected and extracted, then those patch pixels use for each VP reconstruction. The
shifting patch has been selected from horizontal and vertical direction respectively. It is
noted that only select the central pixels for shifting due to boundaries’ pixel not exertion.
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Figure 5.2: Pseudo viewpoint(PVP) frame and viewpoint frame. (a) obtained PVP frame,
and the resolution is 340 by 185.(b) VP frames extraction.

5.1.3 The PVP based Front-end

For pseudo viewpoint extraction, obtaining the image from several different depth planes
according to the principle of all-in-focused. One time-consuming step in the traditional
viewpoint based process is the way to tackle the distortion effect and the incomplete ele-
ment image (EI) in the boundaries. In the previously works, most researches are correct
distortion first, then used manual software to remove the incomplete EI images. In this
study, this process has been simplified by temporarily, and ignoring the distortions in the
corner and the edges, which is follow the principle of integral imaging extraction and
reconstruction, the Figure. 5.4 shows the concept of extraction. All the pixels have been
kept, even some of which are partly or completely distorted. Hence, the Figure. 5.4(a)
and (b) shows the PVP images have many noises, Specifically, a H3D image resolution
is 1920 × 1080 pixels, then resize the each frame to 1836 × 999 pixels, which in accord
with the VP. As the each EI is 27 × 27 pixels and the number of EI could be approxi-
mately 68 × 37. The PVP images resolution depend on the number of EIs and patch size.
A several local patches in each EI have been sampled, then obtain the final PVP frame
by putting all the patches from all EIs together in a single frame. To make a fair compar-
ison with the traditional methods, PVP16 has been extracted for training and comparison .

In order to further compare with multi-viewing affect, PVP 25 has been extracted, which
means add the one more selection and reconstruction from horizontal and vertical direc-
tion respectively, Figure. 5.5 shown the each viewpoint extraction direction. Due to the
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Figure 5.3: Pseudocode for Pseudo viewpoint(PVP) extraction algorithm.

Figure 5.4: The principle of viewpoint extraction
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Figure 5.5: PVP16 and PVP 25 extraction from horizontal and vertical.

PVP is not based on the visible level to extract the viewpoint image, and the extraction
and reconstruction of PVP image is based on the EI number and sampling patch size. For
example, the each EI size is 27 × 27 pixels, if every time shift 1 pixels and every time
sampling 1 pixels, which enable to shift 25 times from horizontal and vertical direction
respectively. The PVP25 has been proven the high accuracy than PVP 16.

5.1.4 Deep network Architecture Based Back-end

Architecture Comparison
In this section, the four deep learning models have been use for training, the architectures
shown in the Figure. 5.6. Then the evaluation of each model and result. Therefore, four
of the models is apart from these differences, the architectures share the configuration of
based convolution neural network [36], and this allows us to directly compare the perfor-
mance across different input designs. The time sequence has a notable capability that is
proposed by peer works. It is based on the spatio-temporal feature description, and most
works are using CNN architectures which combination of the RGB and optical flow CNN
streams [35].

Based on these four types of models, the aim that provides a to afford a relatively com-
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Figure 5.6: The four network architectures. (a) VGG-16,(b) LSTM-1,(C) D3D,(d) 3D+2D

91



Chapter 5. Pseudo Viewpoint and Deep Learning for Video-based H3D Micro-gesture
Recognition

plete analysis and comparison of the current advanced deep learning networks. In this
comparison, fully 2D convolutional layers, fully 3D convolutional layers and mixing 3D
and 2D convolutions layers have been testing performance on HoMG video data.

Convolutional neural networks (CNN) have four crucial elements: local connections,
shared weights, pooling and the use of many layers,which are making major advances
for solving problems. The good performance of the feature representation under image
based on two dimensional convolution. Based on this performance, many peer work used
to CNN to train the gesture and increase hand gesture recognition. One representative
work [157] is using CNN to automatically extract the spatial and semantic feature from
the gesture. Modified CNN structure has been proved to be effective against popular 2D
gesture dataset such as Cambridge Hand Gesture Data set. The signals, sequence, and lan-
guage usually use the 1D, images or audio spectrograms have a process by 2D, 3D usually
has been used for video or volumetric images [98]. With the video dataset is main trend,
the spatiotemporal feature learning become a crucial factor of deep deep 3-dimensional
convolutional networks (3D ConvNets). However, different modalities use to process the
various forms of multiple arrays. Based on 3D convolution front-end network is popular
using lipreading recognition, which transforms the raw input video into spatial-temporal
features based on three 3D convolutional layers. And its feed them to the following gated
recurrent units (GRUs) to generate the final transcription [158]. Sharma et al [23]. pro-
posed use the GRUs and LSTM obtaining these features while the final accuracy has not
presented the merit. The 2D spatial convolutional layer is widely use to gesture recogni-
tion for extraction and classify feature in the spatial domain. Whereas the 3D temporal
convolution layer becomes a new upsurge due to the video data popularization. With the
developing of novel models, a combination of 2D convolutional layer and 3D convolution
layer to achieve a new network has been using to training data by peer works. This type of
architecture enhances the features and demonstrate their strong performances. For exam-
ple, this model increased the accuracy of lip reading recognition [159] [158]. Enlightened
by the good performance of high accuracy micro-movement recognition, therefore archi-
tecture enable to use for micro-gesture recognition.

The convolutional layers of VGG-16 and LSTM are completely composed of 2D convo-
lutional layers. VGG-16 has achieved an appealing performance on the ImageNet chal-
lenge. LSTM as a model is often used to inference for temporal sequences. And this
model is very popular to use for continuous dynamic movement recognition, such as fa-
cial emotion recognition and lipreading. “D3D” model transforms the 2D DenseNet into
a 3D counterpart, which is the same as “3D+2D” front layers. Three models of “LSTM”,
“D3D”, and “3D+2D” have back layers of same structure, which contains a two-layer
LSTM and softmax to perform the final recognition. In order to better test the function
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and performance of different functional layers, the number of layers remains the same
as possible in all network structures. To perform a fair comparison, four models used
softmax as the last layer, and LSTM, D3D, and 3D+2D are combined with a back-end
network of the same structure which contains a two-layer bi-directional LSTM to per-
form the final recognition.

Considering that the amount of data in the HoMG database is smaller than that of Im-
ageNet and other databases when selecting a deep network framework, the number of
layers above the convolutional layers should be reduced to avoid over-fitting and reduce
unnecessary waste.

The performance of the model combining 2D and 3D convolutional layers is better than
fully 3D front-end, which was proven on the lip-reading. A probable reason for 2D con-
volutional layers for extracting fine-grained features in the spatial domain is a necessity,
which is beneficial for discriminating similar lip movements. For micro-gesture move-
ments, it has many similar characters to lip-reading movements and the performance may
affect as well.

Consider a single image X0 that is passed through a convolutional network. The network
comprises L layers, each of which implements a non-linear transformation Hl(·), where
l indexes the layer. Hl(·) can be a composite function of operations such as Batch Nor-
malization (BN) [160], rectified linear units (ReLU) [161], Pooling [162], or Convolution
(Conv). The output of the lth layer is denoted as Xl .

Traditional convolutional feed-forward networks connect the output of the lth layer as
input to the (l +1)th layer [145], which gives rise to the following layer transition: Xl =

Hl (Xl−1). The algorithm for ResNet can be understood as follows [34] :

Xl = Hl (Xl−1)+Xl−1 (5.2)

To further improve the information flow between layers, a different connectivity pattern is
proposed [34]: direct connections are introduced from any layer to all subsequent layers.
Consequently, the th layer receives the feature-maps of all preceding layers, X0, · · · ,Xl−1,
as input:

Xl = Xl ([X0,X1, · · · ,Xl−1]) (5.3)

where ([X0,X1, ...,Xl−1]) refers to the concatenation of the feature-maps produced in lay-
ers X0, ..., Xl−1.
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Figure 5.7: VGG-16 is classic deep learning model, which consists of the 13 2D convo-
lutional layers, 5 pooling layers, 3 fully connect layers and softmax layer.

VGG-16
With the wide development of deep learning, a number of researchers have started to
take advantage of them to tackle the micro-gesture recognition problem. In this research,
a classic VGG architecture has been used, known as Visual Geometry Group, which is a
group from Oxford, UK. In 2014, they published the 16-layer and 19-layer models, which
have achieved successful performance on ImageNet [146]. This architecture uses multiple
small kernel-sized filters to replace the large kernel-sized filters, which could capture the
high-accuracy movements and reduce the information redundancy [146]. VGG-16 and
VGG-19 are the networks they trained for visual object recognition amongst 14 million
images of over 20,000 categories [163]. This has shown good performance on many of
the different object databases. VGG-16 network contains 16 layers in total. It contains
13 convolutional layers, 3 fully connected layers,5 pooling layers, and 1 softmax layer as
output layer. Through filters, the input image generates the output feature map of the same
size. Each of the convolutional layers has a kernel size of 3×3, stride of 1 and padding of
1.

This property makes it much appropriate for our task. In the training process, the input
PVP videos into several non-overlap clips are divided and a frame is randomly selected
from each clip to generate a new short sequence. Therefore, the input are fixed-size 122×
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122 grey scale images. The images are passed through a stack of convolutional layers of
filters with very small 3× 3 receptive field. 1× 1 convolutional filters have been used for
a linear transformation of the input channels, which follows non-linearity. The maximum
pooling replaces the pixel values with the largest pixel value in the corresponding area of
the filter, which is used for dimension reduction. Here, the filters used by the pooling are
2 × 2 in size, so the image size obtained after pooling is 1/2 of the original size. There
are five maximum pooling layers, which follow the convolutional layers. It is noted that
in this experiment VGG-16 consists of 13 convolutional layers, 3 fully connected layers,5
pooling layers, and 1 softmax layer as output layer. Each of the convolutional layers has
a kernel size of 3 × 3, stride of 2 and padding of 1. Three fully connected layers follow
a stack of convolutional layers. Each neuron in the fully connected layer is connected to
each neuron of the upper layer, and the output features of the previous layer are integrated.
In VGG-16 architecture proposed by Simonyan et al. [164], the first fully connected layer
FC1 has 4096 channels, and the upper pool have 51200 channels. Similarly, the second
fully connected layer FC2 has 4096 channels, and the last FC3 has 1000 neurons. In my
experiment, three fully connected layers have 1024 channels on each layer. As the end
of the architecture, a softmax layer is used for classification and normalisation. And final
softmax equation shown equation 5.4.

f
(
z j
)
=

ez j

∑
n
i=1 ezi

(5.4)

The standard exponential function is applied to each element z j of the input vector z and
these values are normalized by dividing by the sum of all these exponentials. This nor-
malization ensures that the sum of the components of the output vector is 1.

All these short sequences will be used as individual samples to be fed into the network
for training. This can be regarded as a special type of data augmentation, which is helpful
for the network’s learning process. The network has to learn to discriminate the correct
regions of the gestures in each frame where both the distortions of the corner and the
noise pixels exist. For the test process, multiple different PVP videos corresponding to
the single test video are obtained and majority voting is performed based on the predic-
tions from all the PVP videos to obtain the final prediction.

LSTM

Long short-term memory(LSTM) is a type of recurrent neural network(RNN). LSTM
model was commonly used in emotion recognition, face recognition, and so on. Kuchaiev
et al. [148] proposed to combine Bidirectional LSMTs and CNN to recognize the six types
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Figure 5.8: 2D convolutional layer generally used on Image data, the kernel slides are
along 2 dimensions on the data.

of 3D hand gesture and obtained high accuracy. However, this gesture recognition sys-
tem captured hand skeletal by a Leap Motion. In this experiment, the same convolutional
layers of VGG-16 model has been used to make a fair comparison. LSTM-1 consists of
the 2D convolutional layers and LSTM layers. 2D convolutional layers are used to extract
image features, while the LSTM layers are used to remember the temporal information
through the input gate, output gate, and forget gate. Finally, the softmax is used for clas-
sification.

DenseNet in 3D Version (D3D)

In the previously research works, the different action categories are hard to be captured
in the real-world scenarios. There is a significant performance improvement of 3D CNN
over 2D CNN, because 3D CNN can represent temporal features. Kurmaji et al. [165]
proposed a novel method, which used 3D convolutions to extract feature and classify ges-
tures more accurately. Their experiment indicates that the 3D CNN model has significant
advantages compared with frame-based 2D CNN for most training tasks, especially in
small positive training samples.

DenseNet have more narrow and fewer parameters than traditional convolutional net-
works, that would benefit the each layer has direct access to the gradients from the origi-
nal input signal and loss function.

DenseNet in 3D Version (D3D) model was created by Yang et al. in 2018 [158]. This
model transforms the 2D DenseNet into the 3D counterpart, which is fully 3D convo-
lutional architecture. DenseNet is more advanced than ResNet, DenseNet generates the
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Figure 5.9: The kernels are applied in 3D convolution, t is temporal.

feature map from different layers, And keeps feature sizes consistent in transition layers.
The Figure. 5.10 shows the D3D model details and it is used for training and recognition
of lipreading, because the characteristic of the dataset is complex. In this experiment,
similar characteristics between micro-gesture movement and lip-movement were found.
So we believe that commonalities are able to achieve a good performance in the same
architecture.

3D + 2D
The 2D convolutional layers extract features from local neighbourhoods on the feature
map of the previous layer, and only use 2D spatial-dimension feature maps. 3D convo-
lutional layers apply a 3D convolution kernel to the cube formed by stacking multiple
consecutive frames. In this configuration, each feature map in the convolutional layer is
connected to multiple adjacent consecutive frames in the previous layer, thus capturing
motion information.

Many researchers have investigated the potential of 2D over 3D CNN’s for representing
temporal features and hand gesture classification in videos. In particular, the sequence of
frames of gestures is mapped to a chronological pattern to capture the dynamics of hand
motion in a single frame. Therefore, both 2D and 3D convolutional functions are used
to achieve better performance. Many research works take advantage of combining 2D
and 3D convolutional layers [158] [146] [155]. In this experiment, the first layers of the
model are the same as those of D3D. Hence, this architecture consists of 3D convolutional
layers, Residual Blocks, and two LSTM layers.
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Figure 5.10: The D3D network(DenseNet in 3D version) (a) The D3D model (b) The
structure of each Dense Layer (c)The structure of each Trans Block
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Figure 5.11: The architecture of mixing 2D and 3D convolutional layers (a) The 3D+2D
model, (b) The structure of each Residual block Layer
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It is noted that the 3D convolutional kernel can only extract one type of feature from the
cube, because the weight of the convolutional kernel is the same in the entire cube. That
is, the shared weight is the same convolutional kernel (The lines of the same colour in the
figure represent the same weight). Multiple convolutional kernels can be used to extract
multiple features.

The mixed 2D and 3D convolutional architecture combines the functions of 2D and 3D
convolutions. 2D convolutional layers extract the fine-grained features in spatial domain
and discriminate the similar movements of micro-gestures. 3D convolutional layers have
proved effective in action recognition, because the spatial-temporal convolutional layer is
able to capture the temporal dynamics in the sequence. In this experiment, the model of
a 2D residual network is referred to two spatial-temporal convolutional layers to extract
the relevant features (Stafylakis and Tzimiropoulos [166]). Meanwhile, this model has
proved successful in lip movements.

In this experiment, our architecture is based on the model in [166], which is a combina-
tion of spatiotemporal convolutional, residual blocks and bidirectional Long Short-Term
Memory networks. Each block consists of two convolutional layers, batch normalization
(BN) and rectified linear units (ReLU). This architecture was used for ImageNet. Resid-
ual blocks gradually reduces the spatial dimension with the max pooling layer until its
output becomes a single dimensional tensor at each time step.

5.2 Experiments

5.2.1 Database

The HoMGR dataset contains 3 gestures, i.e, Button, Slider, and Dial. In this chapter,
focus on the video subset, HoMGR video subset is consists of the 40 subjects and each
subject is involved 24 videos due to a different setting and three classify gestures. There
are 25 frames per second in each video, and the length of the videos are from a few
seconds to 20 seconds. The each frame resolution is 1920 × 1080 pixels. Each EI is
selected to be size 27 × 27 pixels and the patch to be 5 × 5 pixels in each EI.

5.2.2 Parameters Setting

Our implementation is based on the PyTorch and the models are trained on servers with
four NVIDIA Titan X GPUs with 12GB memory. Training a single net took 2–3 days de-
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pending on the different architectures. We use the Adam optimizer with an initial learning
rate of 0.001, with = (0.9, 0.99).

5.2.3 H3D Pre-processing

Viewpoint(VP)
For viewpoint image extraction, the method is similar with the HoMG image subset pro-
posed the method, which means the incomplete EIs on the four edges in the images need
remove. The remove approach is based on the minimum value of the H3D row and col-
umn in the boundaries and this method was mentioned in the image data. After cutting
of the incomplete EI, there produce 68 and 37 EIs on the horizontal and vertical direction
respectively. Then, each patch of 5 × 5 pixels is sampled, which may reduce the dark
line effects of not straight lines. Finally, a result frame of 340 × 185 pixels is obtained
for each viewpoint, as shown in Figure. 5.2 (b). In order to acquire different depth in-
formation from data, 16 viewpoints in total are extracted, by shifting 1 pixel along the
horizontal and vertical direction 4 times respectively. It noted that the 16 viewpoints are
maximum extraction from 27 × 27 EIs, because every EIs have dark boundaries affect,
that part cannot achieve VP extraction.

Pseudo Viewpoint(PVP)
For pseudo viewpoint image extraction, each patch is selected in the same way but the
incomplete EIs have not removed. Therefore, H3D frames are resized for 1836 × 999
pixels, which match the 68 × 37 EIs. Then a similar selection and shift process as de-
tailed above is applied to obtain the final frames. The final resolution of each frame is
340 × 185 pixels, resolution of the PVP and VP are same, that ensure the fairness of
competition. One resulting PVP image is shown in Figure. 5.2 (a) and we can easily see
the noisy pixels. The noise and interference factors of the extracted viewpoint images are
random. Although some viewpoint images contained a lot of noise, their appearance in
three gesture frames are relatively balanced, which also ensures the fairness of the three
gesture predictions. In order to obtain the more information of the deep and view, PVPs
extraction have been shifting 1 pixel along the horizontal and vertical direction 5 times
respectively. Figure. 5.5 shows the PVP16 and PVP25 shifting direction.

All the VP and PVP images are converted to grayscale and normalized with their mean
and variance. When fed into the models, the frames in each sequence are cropped in the
same random position for training and development, then cropped in the centre position
for testing. All the frames have been resized to 122 × 122 pixels and then cropped to 112
× 112 pixels for training and testing. In the meanwhile, the frames are randomly flipped
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Figure 5.12: Initial testing on multilayer perception and LSTM. (a) is based on the VGG-
16 last four layers (b) is based on the LSTM last four layers.

to avoid overfitting. It is noted that multiple tower architectures are used, this model
is referred by [146]. For example, VGG input size is 122 × 122 × T, T is number of
Towers. It is no explicit time-domain connectivity between frames before convolutional
layers, and T=16 towers with common convolutional layers (with shared weights), each of
which takes an input frame. Figure. 4.2 (c) shows the frames have been selected and input
in the models. Training frames have been random selected and testing frames only used
middle number of each video as the testing data input the model. And the convolutional
layers linked an maxpool layer, which has been activated and concatenate along a new
dimension. Moreover, 2D convolutions and 3D convolutions are performed in the same
manner. The Tower has been activated, which are concatenated channel-wise after first
maxpool, and produced an output activation with 1200 channels. The subsequent 1 × 1
convolution is performed to reduce this dimension, to keep the number of parameters at
convolutional layer at a manageable level.

5.2.4 Experiment Results

For the back-end experiments have three parts: Firstly, as the first aim is test different
function layer work on the HoMG video data. The VGG-16 and LSTM are used same 2D
convolutional layers to test the performance of the softmax layer and Bidirectional LSTM
layers. Therefore, the 2D convolution layer forward input feature layers have been closed,
the results of output only shown the last four layers performance in the preliminary test
and the results shown Table. 5.1. The importance of the convolutional layer was also ver-
ified in this experiment. Subsequently, the convolutional layers of the two networks were
opened to retest the performance of the model on the database for comparison with the
latter two networks and the results shown in Table. 5.4.

The second experiment is using the VGG-16 network which is through a series of con-
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Table 5.1: Classification accuracy (%) initial testing on multiplayer perception and LSTM
layers. ”M.V.” means ”majority voting”.

Model VGG-S.M. M.V. LSTM-1 M.V.
Original 55.83% - 63.33% -

VP16 58.96% 60.42% 67.06 68.08%
PVP16 45.63% 48.33% 58.67% 61.67%
PVP25 53.98% 57.92% 73.07% 77.50%

Table 5.2: Classification accuracy (%) comparison between the proposed methods and
Majority Vote on the testing dataset of HoMG dataset. + M.V. means the model results
used Majority Vote.

VGG-16+M.V. LSTM+M.V. D3D+M.V. 3D+2D+M.V.
VP16 83.27 83.21 77.92 83.33

PVP16 82.50 85.10 81.25 85.01
PVP25 85.42 85.10 83.75 85.83

volutional layers and pooling layers to out put a data feature,then use three full connec-
tion layers, finally, using softmax of regularization to get final result. This structure has
achieved appealing performance on the ImageNet Challenge and famous boom. The sec-
ond network is LSTM-5 network that is proposed by Chung et al. [146]. It is based on
multi-tower structure to faster to train deep models. The third network was using for
lipreading area which involve frond-end of three spatial temporal convolutional layers.
The fourth network transformed by DenseNet which apply the fully 3D convolutional
layers as front-end. It is noted that our training process does not use pre-trained models,
because our task is different from lipreading. It is noted that most PVP accuracies are
higher than VP, and the PVP25 accuracies are higher than PVP16. Because of the more
PVP have more 3D information as well as give the models are more useful training infor-
mation.

Majority Vote
In order to further improve the final accuracies, the majority vote has been applied to fu-
sion the final prediction label on each VP. Then, using the each VP’s accuracies to vote the
most likely results. The final result shown in the Figure. 5.2. In order to further understand
the work process of majority vote Figure. 5.13 shown the accuracies of each models, the
red points represent the wrong predictions, the black represent the right predictions. Most
results used majority vote able to improve 1-3%, some results failed to greatly increase
because some of gestures have many similar movements and hard to recognize.
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Figure 5.13: Each VP accuracies input the majority vote to fusion. (a)VGG-16 (b)LSTM
(c)2D+3D (d)D3D

Table 5.3: Classification accuracy (%) comparison between the proposed methods on the
development dataset of HoMG dataset.

VGG-16 LSTM-1 D3D 2D+3D

Original 48.25 51.66 72.5 79.16

VP16 82.68 61.43 75.67 80.29

PVP16 93.21 85.40 90.13 94.79

PVP25 94.02 94.37 94.70 94.13
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Table 5.4: Classification accuracy (%) comparison between the proposed methods on the
testing dataset of HoMG dataset.

VGG-16 LSTM D3D 3D+2D

Ori 60.83 62.50 68.75 78.75

VP16 82.03 82.31 77.92 83.33

PVP16 82.01 84.27 80.05 83.37

PVP25 84.67 84.48 83.06 85.07

5.2.5 Comparison with State-of-Art Method

To avoid the tedious extraction of exact viewpoint images, this section proposes to sim-
ply sample pseudo viewpoint images and thus presents an innovative 3D micro-gesture
recognition method. This is performed by extracting the features of several depth planes
to generate PVP based descriptions and then learning the gestures’ pattern by a deep neu-
ral network based back-end. Comprehensive experiments are carried out and the results
have outperformed all the state-of-the-art methods that evidently prove the robustness and
effectiveness of our method. Because the proposed method is able to be expanded for any
H3D recognition problems and the deep neural network based back-end testing could be
reference for future works.

Table. 5.6 shows the 3D+2D model achieved best accuracies, which use the PVP based
front-end and the traditional VP based front-end. The VGG-16 is classic architecture
work for image feature extraction. The LSTM architecture, although it relies only on the
2D convolutional layers, the bi-directional LSTM still working on it. The 3D convolution
benefit for capturing short-term motion information, which has been proven important in-
formation for micro-gesture movements. However, the fully 3D model cannot surpass the
model combining 3D and 2D convolutional layers and those four models have not much
different in the results. Hence, this result proves the necessity of 2D convolutional layers
for extracting fine-grained features in the spatial domain, which is quite useful for micro-
gesture recognition. In addition, Table. 5.6 can be easily seen that PVP based front-end
performs better than VP based front-end. May the PVP extraction without pre-processing
and noise pixels do not interfere with model training. And VP25 performance better than
VP16, which maybe due to the VP25 providing more useful information. On the develop-
ment set shown Figure.5.3, our PVPs based method gives an accuracy of 90.5% and 94%,
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Table 5.5: Classification accuracy (%) development dataset of HoMG dataset.

ResNet152 DenseNet161 SE-ResNet50
Video training set [22] 93.00 93.00 92.00

Video development set [22] 90.00 87.00 90.00
Video test set [22] 82.00 82.00 82.00

Table 5.6: Classification accuracy (%) comparison ”M.V.” means ”majority voting”.

Dev Dev+M.V. Test Test+M.V.
Original 48.3 - Original 60.8 -

VP16 82.7 83.3 VP16 82.0 83.3
PVP16 90.5 94 PVP16 82.2 83.5
PVP25 92.0 94.1 PVP25 84.7 85.4

which is about 10% higher than the traditional viewpoint based method. On the test set,
our method achieves 85.4%. Zhang et al. [22]. achieved 90% on development set, and
[22] used three deep learning models gave the accuracies shown 5.5. It is noted that all
the methods perform better on the development set.

Table 5.7 shows the results of the proposed approach in comparison with other models.
The initial results [19] show that LBPTOP and LPQTOP features with SVM classifier
can predict the 3D micro-gestures with an accuracy of 59.5% and 66.7% respectively. In
Sharma’s paper [23], they used the original frames in the H3D video directly with Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) and reported an accuracy
of 69.2%. In 2018, Zhang et al [22] used three advanced deep networks, ResNet152,
DenseNet161 and SeResNet50, together with majority voting and achieved an accuracy
of 82%. In our approach, only a single VGG network is used and an accuracy of 85.4%
is achieved, which surpasses all existing results and clearly demonstrate the effectiveness
of our method shown in Figure.5.14.

5.3 Conclusion

This section presents a novel effective H3D based micro-gesture recognition system,
which is end-to-end model. For front-end network, there are two methods have been
used for evaluation. The VP front-end follows the traditional H3D image method to ex-
tract and reconstruct the multi-viewpoint images, and the PVP front-end is a novel idea to
create a simple front-end using for deep learning. In order to evaluate the performance,
there four advanced deep networks have been used for training. Compared with tradi-
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Figure 5.14: Classification accuracy (%) comparison between the proposed method with
all the existing methods on the testing subset of HoMG dataset.

Table 5.7: Classification accuracy (%) comparison between the proposed method with
all the existing methods on the testing subset of HoMG dataset. ”M.V.” means ”majority
voting” GRU means ”Gated Recurrent Unit”. ”n.SVM” means ”non-Linear SVM”

Author Methods Acc
Liu et al.[19] LBPTOP+SVM 59.5
Liu et al.[19] LPQTOP+SVM 66.7

Sharma et al.[23] LSTM 65.4
Sharma et al.[23] GRU 69.2
Zhang et al.[22] ResNet152+M.V. 82.0
Zhang et al.[22] DenseNet161+M.V. 82.0
Zhang et al.[22] SeResNet50+M.V. 82.0
Qin et al.[167] LPQTOP+n.SVM+mRMR 84.6

The proposed works

PVP25+ VGG16 +M.V. 85.42
PVP25+ LSTM +M.V. 85.10
PVP25+ D3D +M.V. 83.75

PVP25+”3D+2D”+M.V. 85.83
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tional VPs front-end, the PVP has remarkable improve. PVP experiment is benefit to
the H3D imaging system further development, because the pseudo viewpoint extraction
method is different from the past complex handcrafted feature extraction. This purpose of
this method is to replace the traditional complex extraction methods and improve the un-
derstanding and learning of H3D image systems in deep networks. In order to identify the
effectiveness of this method, the method and quantity of the viewpoint/ pseudo viewpoint
extraction were verified and the influencing factors were compared in the experiment.

For the four back-end networks, there are four architectures experiments consist of the
three parts. It is noted that the input size and frames in the time sequence has been ad-
justed that in order to keep consistency. The different models given the special function
layer to training the data and given the feed backs. The first experiment is testing the sin-
gle softmax and LSTM function layers. Then, the second experiment used the same front
2D convolutional layers to test the VGG-16 and LSTM of the different back layer. The
third experiment is used the same 3D convolutional front layers to compare the ResNet
and DenseNet of different back layers. The purpose of these experiments is understanding
the H3D data performance on deep learning models. Finally, in order to further improve
the accuracy of video-based database, the majority vote has been applied.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

6.1.1 HoMG dataset and baseline

Micro-gesture recognition based on the holoscopic 3D imaging system is a novel topic,
which includes the human centre interaction, gesture design, holoscopic 3D imaging sys-
tem and gesture recognition. The aim of this research create a novel micro-gesture interac-
tion system in order to improve H3D micro-gesture recognition performance. Therefore,
the first micro-gesture database (HoMG) based on the holoscopic 3D imaging has been
designed and created. This design use a novel advanced gesture interaction method for
application, which can use for disabled facilities. HoMG database record by H3D camera,
which offer RGB continuous video and image with 3D information. Two types of data are
riches the models and encourage different algorithms. In order to evaluate and promote
HoMG database development, the video subset baseline used LBPTOP and LPQTOP to
extract the feature and the image subset baseline used LBP and LPQ to extract the feature,
then used three classical methods of machine learning to classify the three type gestures,
the result has been published for encourage the more people to join this research. And this
database holds an international challenge in IEEE automatic face and gesture recognition
2018 and four international groups joined this challenge and proposed a serial of novel
methods for HoMG further developing.
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6.1.2 Image-based Micro-gesture recognition

The novel system has been proposed to tackle the problem of using H3D special informa-
tion and improve the performance based on image subset, and the results surpass all the
existing methods on HoMG image subset. Therefore, the holoscopic 3D imaging of 3D
information benefit the CNN model. Firstly, the H3D imaging system has been under-
standing to improve the 3D micro-gesture system. Then, the automatic cut out algorithm
has been proposed for large-scale H3D data pre-processing. The principle of extraction
and re-construction method enable to use, the particular extract patch size, re-constructed
VP image number and size are based on the after cutting out H3D images. The 16 view-
points have been re-constructed, which are from different depth layers. For developing the
micro-gesture recognition, the 16 VPs input to CNN model with attention block, which
is used to extract features from each VPs, then predict each label possibility. Finally, in
order to further improve the accuracy and performance, the five fusion decision methods
have been tried for improving the recognition accuracy. The bagging classification tree
method has been proven the best performance, and the final accuracy surpassed all the
existing methods on the HoMG image-based database.

6.1.3 Video-based Micro-gesture recognition

It propose an efficient and robust H3D micro-gesture recognition end-to-end system,
which have innovative Pseudo View Points (PVP) based front-end and efficient deep net-
works based back-end. PVP front-end is tackled the tedious 3D information extraction
problem. While the VP16, PVP16 and PVP25 have been used for comparison, the PVP
performance better than traditional VP front-end. For the back-end, the four advanced
networks: VGG-16, LSTM, D3D and 3D+2D have been applied for training the HoMG
video data, which test data on basic softmax layer, bi-directional LSTM layer, fully 2D
convolution network, 3D convolution network, and combing the 3D and 2D convolution
network. The performances of four deep networks have been evaluated. In order to further
improve the performance, majority voting is utilised to further improve the accuracies.
Finally, the proposed method achieved 85.83% which is state-of-the-art performance and
outperforms all existing methods on a public database.

6.2 Future Work

For the database design and creation, there are three micro-gesture movements have been
recorded in HoMG database, further work should acquire more gesture types. In addition,
there are still some issues with the proposed micro-gestures database that can be worked
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on to improve the database further, for example, the micro-gesture design only focus on
the wearable devices, the three types of micro-gestures are similar with the start move-
ments, and data record backgrounds are too clear. Therefore, further improvements can
be to develop more types of gestures, which are not only limited to manipulative micro-
gestures and wearable applications. With the development of the Internet of Things (IoT),
more scenarios and manipulations should be considered. Besides, the HoMG database
used camera and microlens array can be improved, with a specific focus on noise reduc-
tion which will also reduce data pre-processing procedure.
For the video-based subset, there are other areas of improvement that possibly make the
descriptor more robust and more feature character for training and classification. For
future improvements of performance and accuracy. Firstly, it can be extract more 3D
information from PVP, and the models can be modified and created based on the data
features. Then, it can be use the varied fusion decision methods to improve accuracy.
Finally, the recognition accuracy should be improve due to satisfy the requirements of
most applications.
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Appendix A. Participant Information Form

Appendix A

Participant Information Form

This document is provided to all participants to inform them of the purpose of the exper-
iment and the content of the participation. Before taking part in the experiment, they can
ask questions and train the three micro-gestures.

Then, after the participants have sufficiently understand the role of each micro-gesture
action and gesture function, they proceed to the shooting area and is introduced to the
experimental equipment and individual shooting points. Figure.teach shows the principal
investigator explaining each micro-gestures to the participant.

After the recording, each participants’ videos is recorded with a serial number to repre-
sent every position and gesture performed. Figure A.2. shows the video record process.
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Figure A.1: Explanation of the micro-gesture movements.

Figure A.2: Data recording and classification.
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Figure A.3: Participant information sheet
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Figure B.1: End User License Agreement
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