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Abstract

We present a new test of hypothesis in which we seek the probability of the null condi-
tioned on the data, where the null is a simplification undertaken to counter the intractability of
the more complex model, that the simpler null model is nested within. With the more complex
model rendered intractable, the null model uses a simplifying assumption that capacitates the
learning of an unknown parameter vector given the data. Bayes factors are shown to be known
only up to a ratio of unknown data-dependent constants–a problem that cannot be cured using
prescriptions similar to those suggested to solve the problem caused to Bayes factor computa-
tion, by non-informative priors. Thus, a new test is needed in which we can circumvent Bayes
factor computation. In this test, we undertake generation of data from the model in which the
null hypothesis is true and can achieve support in the measured data for the null by comparing
the marginalised posterior of the model parameter given the measured data, to that given such
generated data. However, such a ratio of marginalised posteriors can confound interpretation
of comparison of support in one measured data for a null, with that in another data set for a
different null. Given an application in which such comparison is undertaken, we alternatively
define support in a measured data set for a null by identifying the model parameters that are
less consistent with the measured data than is minimally possible given the generated data,
and realising that the higher the number of such parameter values, less is the support in the
measured data for the null. Then, the probability of the null conditional on the data is given
within an MCMC-based scheme, by marginalising the posterior given the measured data, over
parameter values that are as, or more consistent with the measured data, than with the gener-
ated data. In the aforementioned application, we test the hypothesis that a galactic state space
bears an isotropic geometry, where the (missing) data comprising measurements of some com-
ponents of the state space vector of a sample of observed galactic particles, is implemented to
Bayesianly learn the gravitational mass density of all matter in the galaxy. In lieu of an as-
sumption about the state space being isotropic, the likelihood of the sought gravitational mass
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density given the data, is intractable. For a real example galaxy, we find unequal values of the
probability of the null–that the host state space is isotropic–given two different data sets, im-
plying that in this galaxy, the system state space constitutes at least two disjoint sub-volumes
that the two data sets respectively live in. Implementation on simulated galactic data is also
undertaken, as is an empirical illustration on the well-known O-ring data, to test for the form
of the thermal variation of the failure probability of the O-rings.

Bayes Factors Hypothesis Testing Markov Chain Monte Carlo Bayesian P-Values
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1 Introduction

Model selection is a very common exercise faced by practitioners of different disciplines, and

substantial literature exists in this fieldBarbieri and Berger(2004); Berger and Pericchi(2001);

Casella et al.(2009); Chipman et al.(2001); Ghosh and Samanta(2001); Kass and Raftery(1995);

O’Hagan(1995). In this context, some advantages of Bayesian approaches, over frequentist meth-

ods have been reportedBerger and Pericchi(2004); Robert(2001). Much has been discussed in

the literature to deal with the computational challenge of Bayes factors (Casella et al., 2009; Chib

and Jeliazkov, 2001; Han and Carlin, 2000, to name a few). At the same time, methods have been

advanced as possible resolutions when faced with the challenge of improper priors on the system

variablesAitkin (1991); Berger and Pericchi(996a); O’Hagan(1995). Nonetheless, Bayes factor

computation persists as a challenge, especially in the context of non-parametric and multimodal

inference on a high-dimensional state spaceLink and Barker(2006).

In this paper we discuss a new test of hypothesis that is aimed at finding support in the available

data for the null that the state space that the observed variable lives in, is endowed with a simple

symmetry, namely isotropy. In an isotropic state space, the density at a given point depends only

on the magnitude of the state space vector to that point, and not on the inclination of this vector

to a chosen direction. This assumption about the geometry of the state space is invoked to allow

us to refer to an application, in which the sought model parameter vector can be estimated from

the data, only under the simplistic assumption that the state space is isotropic. In lieu of such an

assumption, the likelihood of the unknown parameters given the data is rendered intractable. Upon

the estimation of the sought parameters, given the data at hand, we want to review how bad this

assumption of isotropy of the state space is, in the considered data.

The application we elude to above, involves the estimation of the density of all gravitating

matter in a real galaxy NGC 3379 for which multiple data sets are measured for two distinct types

of galactic particlesBergond et al.(2006); Douglas et al.(2007). The sought model behaviour
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function is the gravitational mass density function of all matter–dark as well as luminous–in this

real galaxy. One of the burning questions in science today is the understanding of dark matter. The

quantification of the distribution of dark matter in our Universe, at different length scales, is of

major interest in Cosmologyde Blok et al.(2003); Hayashi et al.(2007); Roberts and Whitehurst

(1975); Salucci and Burkert(2000); Sofue and Rubin(2001). At scales of individual galaxies,

the relevant version of this exercise is the estimation of the density of the gravitational mass of

luminous as well as dark matter content of these systems. Readily available data on galactic im-

ages, can in principle be astronomically modelled to quantify the gravitational mass density of the

luminous matter in the galaxy,Bell and de Jong(2001); Gallazzi and Bell(2009); such luminous

matter is however, only a minor fraction of the total that is responsible for the gravitational field

of the galaxy since the major fraction of the galactic gravitational mass is contributed to by dark

matterKalinova(2014). Astronomical measurements that bear signature of the gravitational effect

of all (dark+luminous) matter in a galaxy are hard to achieve in “early-type” galaxies, the observed

images of which is typically elliptical in shape2. Of some such astronomical measurements, noisy

and partially missing information on velocities of individual galactic particles have been imple-

mented to learn the density of all gravitating matter in the galaxyChakrabarty and Raychaudhury

(2008); Côté et al.(2001); Genzel et al.(2003).

In this application, the null states that the native space of the data variable is isotropic. This

null is nested within a more complex model in which, the data lives in a state space that is not nec-

essarily isotropic. However, in this application, estimation of the model parameters is not possible

under this more complex model, given the data; in fact, even the formulation of the likelihood of

the unknown parameters given the data, is not possible unless the null is invoked. When we refer

below to the complex model being “intractable”, we imply the impossibility of both formulating

and computing the likelihood under this model. Given this nature of the complex model, we find

2The intrinsic global morphology of such “early-type” galaxies is approximated as a triaxial ellipsoid; in this paper
we discuss gravitational mass density determination of this type of galaxies that are more frequent.
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that the posterior odds of the null model given two independent data sets is known only upto a ratio

of unknown constants, where these constants are the uncomputable probabilities of the considered

data sets. In form, the indeterminacy of the posterior odds appears similar to that of the Bayes

Factor when non-informative priors are used on the model parameters–in that case, the priors are

known only upto an unknown constant, so that the the Bayes Factor is left indeterminate upto a

ratio of these unknown constants. However, unlike the indeterminacy caused by non-informative

priors, the indeterminacy of the posterior odds in the considered application is entirely data de-

pendent, motivating us to seek a new test that bypasses computation of Bayes Factors. This test

helps find support in a data set for a null, or can find the ratio of supports for two nulls given two

different data sets. When the application is in the latter context, the test permits usage of data sets

of widely different sizes, and the dimensionality of the model parameter vectors sought under the

different models could also be very different from each other. Lastly, very little prior information

may be available on the model parameter vectors in one or both models.

This new test involves generating data from the model in which the null is true. Though in

principle, it is possible to compare the marginalised posterior of the model parameter given mea-

sured data to that given generated data, a ratio of these posteriors may confound the comparison of

supports in two differently sized data sets for respective nulls, with model parameters of different

dimensionalities. Such describes the galactic application discussed above. In such applications,

support in a data for a null is given by the probability of the null conditional on the data, which

in turn is the posterior of the model parameter marginalised over those parameter values that are

more or equally consistent with the measured data, than is minimally achieved given the data that

is generated when the null is true.

The paper is organised as follows. Section2 discusses the general background to the estimation

of the unknown model parameter vector and its specific formulation in the context of the applica-

tion undertaken in this work. Section3.1clarifies the formulation of the null as the assertion that

the state space that the data variable lives in, is isotropic. In this same section we discuss the va-
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garies of an intractable alternative that the null is nested within and motivate the need for a new

test, which is introduced in Section4. Differences between this new test and FBST are discussed

in Section4.1. An empirical illustration of this test on the well-known O-ring data is presented

in Section4.2. The implementation of this new test in the context of our galactic application is

discussed in Section5. Such implementation is illustrated on simulated and real data. The work

with the simulated data is presented in Section6 while the application to the data of a real galaxy

is included in Section7. The paper is concluded with a discourse on the implications of the results,

in Section8.

2 Case Study

In the application that we are interested in, the state space vectorW ∈ W ⊆ R6,W = (X1,X2,X3,V1,V2,V3)T ,

whereX = (X1,X2,X3)T andV = (V1,V2,V3)T. In the application,X is the three-dimensional

location andV the velocity vector of a particle in the system. The measurables include some com-

ponents ofX and some components ofV–the measurable vector isU = (X1,X2,V3)T so that the

data set isD = {uk}
Ndata
k=1 . Thus,U ∈ U ⊂ W. We are interested in estimating the model parameter

vectorθ ∈ S. In the application,θ = (Ψ1, . . . ,ΨNeng, ρ1, ρ2, . . . , ρNx)
T , whereρ = (ρ1, ρ2, . . . , ρNx)

T

andΨ = (Ψ1,Ψ2, . . . ,ΨNeng)
T which respectively, are the discretised versions of an unknown model

functionρ(X) and the state spacepd f. In our application,ρ(X) is the density of gravitational mass

of all (dark+luminous) matter in the galaxy, in whichU has been observed for a sample ofNdata

galactic particles.

The reason for reducing our ambition from learning the full functionsρ(X) and the state space

pd f, to their discretised forms–namelyρ andΨ respectively–is the lack of “training data”, which

in this context, is the data set comprising a set of values of the data variableU, generated at

chosen values ofρ(X) and the state spacepd f. However, we do not know the physics underlying

the relation between the unknown functions andU–such is the system at hand. This results in

the inability to generate the value ofU at a chosen value ofρ(X) and the state spacepd f, i.e.
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results in the unavailability of training data. In this situation, we cannot take the usual approach of

statistical learning using training data, to train a model of the relationship between the measurable

and unknown functions, to thereafter predict the unknown function by implementing the available

measurements (test data) in this modelNeal(1998).

Consequently, we are left with the possibility of discretising the support of the unknown func-

tions and estimate the values of the functions in each resulting grid cell, treating these values as

independent of each other without invoking a correlation structure. Thus we can only learn the

discretised forms of these unknown functions, i.e. learn the vectorρ where thei-th component of

ρ is the value ofρ(X) in the i-th grid cell that the support ofρ(X) is discretised into (and likewise

for the vectorΨ, a component of which is the value of the state spacepd f over a grid-cell, where

the support of thispd f is discretised into grid-cells).

Details of the estimation ofρ andΨ from D is discussed in SectionS-1 of the Supplemen-

tary Material. It is to be noted that this estimation is markedly non-trivial given that the mea-

surements are of parametersX1,X2,V3 while the sought unknown functionρ(X) is defined over

X = (X1,X2,X3)T and the sought unknown state space density is defined over the state space vec-

tor W = (X1,X2,X3,V1,V2,V3)T . Thus the measurables live only in a sub-volume inside the state

space, i.e.U ⊂ W. In other words, the measurables are sampled from the densityν(U) of theU

vector, whereν(U) is achieved by marginalising the state space density over the non-measurables,

i.e. overX3,V1,V2. The likelihood function is written in terms ofν(U) convolved with the density

of the errors in the measurables. Importantly, this likelihood is intractable unless the state spaceW

admits isotropy. So we assume an isotropic state space and achieve the likelihood of the unknowns

ρ, Ψ givenD. Relevant priors are invoked and we write the posterior of the unknowns given the

data; posterior inference is carried out using Metropolis-Hastings.

For NGC 3379, data include missing data on the three observable state space coordinates of 164

galactic particles called planetary nebulae (PNe)–that are the end states of certain massive stars–

as reported byDouglas et al.(2007). In addition, there is data on 29 of another type of galactic
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particles called globular clusters (GCs) that are clusters of stars–reported byBergond et al.(2006).

NGC 3379, or M 105, seems to have initiated its journey within the observational domain, in

neglect - though Pierre Mechain is credited with its discovery in 1781, it did not initially make it

to Messier’s catalogue. Amends were made later in 1947, when it was among four new objects

that were “added to the accepted list of Messier’s catalogue as nos. 104, 105, 106 and 107” (from

Helen Sawyer, 1947). In spite of this early inattention, NGC 3379 has been studied carefully in

the past few years.Romanowsky et al.(2003) advanced the idea that NGC 3379 is one of the

five “naked galaxies”, that were tracked using the data on the observed PNe samples in these five

galaxies . Such claims were contested byDekel et al.(2005), thoughDouglas et al.(2007) defend

the earlier result ofRomanowsky et al.(2003) by analysing the PNe data in NGC 3379. For this

galaxy,Douglas et al.(2007) also reportonevalue of gravitational mass at a chosen distance from

the galactic centre, obtained from using the GCs data in this galaxyBergond et al.(2006). This

single value obtained using the GC data, is shown to concur with the estimate based on PNe data,

within error bars.Weijmans and et al.(2009) cannot infer the distribution of the total gravitational

mass distribution in this galaxy since the halo contribution is an unknown model parameter for

them. Coccato et al.(2009) andPierce and et al.(2006) report the characterisation of this galaxy

using PNe and GC data respectively.

It is to be noted that by “training data” in the first part of this section, we imply data that

consists of pairs of design points and measurable values generated at this design point, while in

the context of Bayes Factor literature, “training samples” or “training data” typically imply data

that mimic the available set of measurements and can therefore be “real” (i.e. are samples of the

available measurements), or “imaginary” i.e. sampled from the posterior predictive under the null,

given the available measurements.
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3 Testing for the assumption of an isotropic state space given
the data at hand

3.1 The null hypothesis

If the state spaceW is isotropic, the state space density is an isotropic function ofX andV, where

the state space vector isW = (X1,X2,X3,V1,V2,V3)T.

Remark 3.1. If a real-valued function g(∙, ∙) of two vectorsa,b ∈ Rm, is an isotropic function of
a,b, then g(a,b) = g(Qa,Qb), for any orthogonal transformation matrixQ ∈ R(m×m) Truesdell
et al. (2004); Wang(1969). We recall from the theory of scalar valued functions of two vectors,
that if g(∙, ∙) is an isotropic function, its set of invariants with respect toQ isΥQ = {a ∙a,b ∙b,a ∙b}
where “∙” is the inner product of 2 vectors. Then, the isotropic function of two vectors, g(a,b),
admits the representation g(ΥQ) ≡ g(a ∙ a,b ∙ b,a ∙ b) Liu (2002); Truesdell et al.(2004).

In our application,X ∙V=0 identically so that it follows from Remark3.1that if the state space

density f (X,V) is an isotropic function ofX andV, then it will depend onX andV via the form

f (X ∙ X,V ∙ V), i.e. f (X2,V2), sinceX ∙ X =‖ X ‖2= X2 = (X2
1 + X2

2 + X2
3), where‖ ∙ ‖ is the

L2-norm of a vector. Similarly,V ∙V =‖ V ‖2= V2 = (V2
1 +V2

2 +V2
3). Thus, in this application, any

functionf (X2,V2) is an isotropic scalar-valued function ofX andV. To summarise, any function

that depends onX andV via theL2-norms of theX andV vectors, is an isotropic function of the 2

vectorsX andV.

In our application, it then follows that if we define a simple function ofX (:=
√

X2 = ‖ X ‖)

andV (:= ‖ V ‖) as: E(X,V) := Φ(X) + η(V)3, the state space density that bears the formΨ(E) is

an isotropic function ofX andV, implying that state spaceW is isotropic. HereΨ(∙) ≥ 0 is any

function; (the constraint of non-negativity stems from non-negativity of the state space density).

Thus, the null that thei-th data set at hand (Di) is sampled from an isotropic state space density

function fi(X,V), is expressed as:

H(i)
0 : fi(X,V) = Ψi(E(X,V)), where Ψi(∙) ≥ 0, (3.1)

3In Section5 we will see thatρ(X) being a known function ofΦ(X), is embedded within the support of the state
spacepd f under the null model, i.e. within the support ofΨ(∙). We will then estimate the discretised version ofρ(X)
as the vectorρ (as well as the discretised versionΨ of the state space density under a null model, i.e. ofΨ(E(X,V))).
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where in our application,i = 1,2. That the null model is different in the 2 cases suggests that while

dataD1 lives in the isotropic state spaceW1 under the nullH(1)
0 , the dataD2 does not necessarily

live in the same state space but rather in a different state spaceW2 in general, which is isotropic

under the nullH(2)
0 .

We have discussed in Section2 that lack of training data causes replacement of the learning of

the unknown gravitational mass density functionρ(X) by its discretised version, namely the vector

ρ = (ρ1, . . . , ρNx)
T . Similarly, the state space density functionf (X,V) = Ψ(E(X,V)) under the

assumption of isotropy, cannot be learnt, but in its place, its discretised version is learnt, namely

the vectorΨ = (Ψ1, . . . ,ΨNE)T . Then the sought model parameter vector, learnt using dataDi is

θi = (Ψ(i)
1 , . . . ,Ψ

(i)
NE
, ρ(i)

1 , . . . , ρ
(i)
Nx

)T , i = 1,2.

3.2 The alternative model is intractable

One would readily suggest that comparative support in data setsD1 andD2 for an isotropic state

space (that the respective data lives in), be given by the posterior odds
Pr(H(1)

0 |D1)

Pr(H(1)
C |D1)

and
Pr(H(2)

0 |D2)

Pr(H(2)
C |D2)

,

where the more complex model,H(i)
C , suggests that thei-th data set lives in a state space that is

not necessarily isotropic;i = 1,2. However, as we discussed above, the application is such that

posterior computation under the complex model is intractable. In that case we could compare

the posterior odds of the null and the alternative
Pr(H(1)

0 |D1)

1− Pr(H(1)
0 |D1)

with
Pr(H(2)

0 |D2)

1− Pr(H(2)
0 |D2)

, where the

alternativeH(i)
1 suggests that thei-data lives in an anisotropic state space, such that Pr(H(i)

1 |Di) =

1− Pr(H(i)
0 |Di). Now, from Bayes rule, we can express the posterior ofH(i)

0 given thei-th data set,

as proportional to the likelihood of this null given dataDi and the prior on this null, so that

Pr(H0|Di)
1− Pr(H0|Di)

=
αi Pr(Di |H0) Pr(H0)

1− αi Pr(Di |H0) Pr(H0)
(3.2)

whereαi is defined as the reciprocal of Pr(Di), i.e.

α−1
i := Pr(Di) = Pr(Di |H

(i)
0 ) Pr(H(i)

0 ) +
∑

j

Pr(Di |H
(i)
1 j ) Pr(H(i)

1 j ), (3.3)
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showing the probability of the dataDi at hand as conditional upon an isotropic model for the state

space (1st term on RHS of Equation3.3), and upon all possible disjoint anisotropic modelsH1i for

the state space (2nd term on RHS). Thenαi cannot be computed, since this 2nd term on the RHS of

Equation3.3 cannot be computed. This is because, likelihood under the anisotropic model given

the data is not computable due to the intractability of the anisotropic model. This then implies that

the posterior odds expressed in Equation3.2 is not known.

In fact, we find that if we express the posterior odds of nullH(1)
0 given dataD1 to H(2)

0 givenD2,

such an odds ratio is known only upto the ratio of the unknown constants
α1

α2
, as in the following.

Pr(H(1)
0 |D1)

Pr(H(2)
0 |D2)

=
α1

α2
×

Pr(D1|H
(1)
0 )

Pr(D2|H
(2)
0 )
×

Pr(H(1)
0 )

Pr(H(2)
0 )
, (3.4)

whereαi is unknown,i = 1,2, so that the indeterminacy in the posterior odds in Equation3.4is due

to the unknown ratioα1/α2. (We stress that the 2nd factor on the RHS of Equation3.4 is not the

Bayes Factor since it is the ratio of marginals of two different data sets, given the respective null).

Yet, the form of this indeterminacy is reminiscent of the form of the indeterminacy in Bayes Factors

(BFs) when one uses non-informative priors on the unknown model parameter vectorθ such that

these priors are known only upto an unknown constant–we can then compute BFs in principle,

with posterior Bayes factorsAitkin (1991), intrinsic Bayes factorsBerger and Pericchi(996a,b) or

with fractional Bayes factorsO’Hagan(1995). We clarify this similarity in form between the two

indeterminacies in the following section.

3.3 Indeterminacy of Bayes Factors given non-informative priors and irrel-
evance of prescribed cures to our posterior odds

The posterior odds of the two null models given the respective data sets, is expressed in Equa-

tion 3.4. Now, we can set the prior odds for the nullsH(1)
0 andH(2)

0 to be unity and rewrite the

posterior odds
Pr(H(1)

0 |D1)

Pr(H(2)
0 |D2)

by expanding the marginal likelihood given data setDi in terms of the

likelihood fi(Di |θi) of the unknown model parameterθi given this data, and the priorπ0(θi) of θi.
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Here we realise that the model parameter vector sought under the modelH(1)
0 is not equal to that

sought under the modelH(2)
0 ; hence these parameters are distinguished in the notation asθ1 and

θ2. Likewise, the notation acknowledges for difference between the likelihood function of the un-

known parameter given one data set in one case, and the other given the other dataset in the other

case. Thus under prior odds of unity, i.e. for Pr(H(1)
0 ) = Pr(H(2)

0 ),

Pr(H(1)
0 |D1)

Pr(H(2)
0 |D2)

=
α1 Pr(D1|H

(1)
0 ) Pr(H(1)

0 )

α2 Pr(D2|H
(2)
0 ) Pr(H(2)

0 )
=
α1

∫
f1(D1|θ1)π0(θ1)dθ1

α2

∫
f2(D2|θ2)π0(θ2)dθ2

(3.5)

Then Equation3.5 indicates that if the prior onθi is non-informative, so that it is known only upto

an unknown constantci, then the indeterminacy in the posterior odds is compounded by the factor
c1

c2
in addition to the existing indeterminacy due to the unknown ratio

α1

α2
.

The problem about BFs being known upto the ratio of the unknown constantsc1/c2 that stems

from the usage of non-informative priors on the model parameters, has been dealt with in the

literatureBerger and Pericchi(2004). In this situation, the BF is the ratio given the models 1 and

2 and is arbitrary in its scale; here this “arbitrary BF” isB(A)
12 :=

c1

∫
f1(D|θ1)π0(θ1)dθ1

c2

∫
f2(D|θ2)π0(θ2)dθ2

. (We

note that the BF having been defined at a given data set, is not quite the ratio of the marginal

likelihoods given the 2 different data sets that we consider in Equation3.5). The suggestion that

is offered in the literature is thatB(A)
12 , needs to be replaced by the fully computable BFB12 where

B12 is defined as:B12 = B
(A)
12

〈
B(A)

21 (D(`))
〉
, whereB(A)

12 is computed using the available dataD while
〈
B(A)

21 (D(`))
〉

is the average computed using the new data setD`, with the averaging performed over

all such “new”–or training data. Indeed, the indeterminacy in the BF caused by the ratioc1/c2

is eliminated in this prescription. As mentioned in Section2, training data could typically imply

data that mimic the available set of measurements and can therefore be “real” (i.e.D(`) is one

partition of the available measurements), or “imaginary” i.e. sampled from the posterior predictive

under the null, given the available measurementsBerger and Pericchi(996a). The posterior of the

model parameterθi given an “imaginary”D(`), averaged over allD(`), is then referred to as the

“expected-posterior prior” ofθi under the nullH(i)
0 , and used in place of the prior onθi, according

12
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to
∫
π(θi |D

(`)
i )mi(D

(`)
i )dD(`)

i –seeFouskakis et al.(2015). Heremi(D
(`)
i ) =

∫
fi(D

(`)
i |θi)π0(θi)dθi.

Irrespective of the nature of the training data, the prescription that helps cure the indeterminacy

caused by the usage of non-informative priors onθi, i.e. the data-independent unknownsci. How-

ever it is irrelevant to curing the indeterminacy in the posterior odds of Equation3.5that is caused

by the uncomputable data-dependent ratio
Pr(D2)
Pr(D1)

≡
α1

α2
, where the uncomputable nature of this

probability owes to the intractable nature of the complex model that thei-th null is nested within,

i = 1,2. It is then clear that multiplying the ratio of the marginal likelihoods of the data under the

respective null, by its reciprocal computed at new data setsD(`)
1 andD(`)

2 , will only introduce a new

ratio of unknowns
Pr(D(`)

1 )

Pr(D(`)
2 )

to compound the problem.

3.4 Tractable alternative–numerical difficulties in high dimensions

The new test that we discuss herein, is relevant even when the complex model that the simpler null

is nested within is tractable–unlike in the galactic application we consider here–though it is chal-

lenging in a high-dimensional non-parametric situation, to achieve intrinsic priors with imaginary

training data setsBerger and Pericchi(996a), or where real training data are unachievable given

that the available measurements are under-abundant to begin with. Implementation of imaginary

training data sets may be hard whenθ is high dimensional; the computational intricacy involved

in averaging over all possible imaginary samples would increase with increase in dimensionality

of θ. We would need to generate a large sample of training data sets, and for each these training

data sets, we would need to learn the high-dimensionalθ1 under the nullH(1)
0 andθ2 underH(2)

0 .

This suggests running twice as many, long MCMC chains to convergence, as there are training

data sets that are averaged over. This is required to be a large number, if we want to explore the

expected non-linearity in the joint posterior probability of the large number of components of the

high-dimensionalθi. Given such a computationally intensive method, we seek a new method that

is numerically less cost intensive.
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4 The new test

In the new test we express the support in the measured dataDi for the nullH(i)
0 , without invoking

the ratio of posterior under the null and the more complex model–to be precise, we compute the

probability of the null hypothesis, conditional on the measured data, by marginalising the posterior

of the model parameterθi givenDi, over all thoseθi that are at least as consistent with the data, as

is minimally possible when the null is true. The posterior when the null is true, is computed as the

posterior ofθi given dataD/i , whereD/i is the data that is generated from the model in which the

null H(i)
0 is true, and is referred to as the “generated data”–to be distinguished from the measured

dataDi, i.e. generated dataD/i is different from available measured dataDi, in general. Then the

posterior probability density ofθi given the generated dataD/i is its posterior if the null were true.

Hereafter, we refer to this model that the null is true in, as the “benchmark model” and denote it by

the notationMi. For example, in the galactic application considered in this paper, the benchmark

model is one in which the state spacepd f is an isotropic function of the location and velocity

vectors.

When the posterior probability of thei-th model parameterθi can be computed given thei-th

measured data, as well as given thei-th generated data–even if the same non-informative prior is

invoked in each posterior computation–it may be possible to define the support in this measured

data for thei-th null, by comparing the marginalised posterior ofθi given the measured dataDi,

to the marginalised posterior ofθi when thei-th null is true, i.e. by comparing
∫

θi

π(θi |Di)dθi, to

∫

θi

π(θi |D
/
i )dθi. In other words, the support in this measured data for this nullcould in principle be

given by the odds ratio

Ωi =

∫

θi

π(θi |Di)dθi

∫

θi

π(θi |D
/
i )dθi

, (4.1)

(wherei = 1,2 in our galactic application). In that case, an odds ratioΩi ≥ 1 would imply that the
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support in the measured data for the null is high, with higher support for bigger values of the ratio.

Similarly, Ωi < 1 would indicate lower support. However, such a definition of the support for the

null in the data, could confound the interpretation of the comparison of support in measured dataD1

for null H(1)
0 , with support in another measured data setD2 for null H(2)

0 , where the two data sets are

differently sized and the model parameters are of different dimensionalities–a comparative exercise

of this nature is the prime target in this work, insofar as the galactic application is concerned. Such

a comparison is easier to interpret if the defined support in a data for a null is bounded from

both ends. To achieve the same, we opt to define the support in the measured data for the null,

as the probability of the null conditional on the data, i.e. as Pr(H(i)
0 |Di). In this definition then,

there can be zero support in the data for the null while the maximal support is 1, s.t. there is no

distinction made in this definition, between models that offer odds ratio (defined in Equation4.1)

in excess of 1. Then the support inD1 for H(1)
0 is easily compared to that inD2 for H(2)

0 , as

Pr(H(1)
0 |D1)/Pr(H(2)

0 |D2). However, when the application does not involve comparison of supports

in two different data sets, for respective nulls, the odds ratioΩ of Equation4.1is indeed applicable

(as in the example application on the O-ring data, presented in Section4.2). The pursuit of the

definition of support as the probability of the null conditional on the data–as distinguished from

the odds ratio–may appear to resemble the Fully Bayesian Significance Test or FBSTPereira et al.

(2008). FBST tests the sharp null hypothesis that the relevant model parameterβ, has a value

β0, i.e. H0 : β = β0. We discuss FBST in detail in SectionS-2 of the attached Supplementary

Material. However, this new test differs from FBST in both scope (allows for implementation to

non-sharp nulls, in high-dimensional, non-parametric contexts), as well as in structure (by invoking

posterior computation given the generated data, unlike by identifying the posterior computed at

the null-abiding valueβ0 of the model parameter, as in FBST). These differences are clarified in

Section4.1. In our definition of support as the probability of the null given the data, we partition

the native space of model parameterθi into the spaceTMi (Di) that harbours parameters that are

more or equally consistent with the measured data than is minimally possible when the null is true,

15
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and compute Pr(θi ∈ TMi (Di)). We discuss this construct in the following paragraphs.

Let θi ∈ Si ⊆ Rd. We begin by partitioningSi into the data-dependent, disjoint and exhaustive

sub-spacesTMi (Di) andTMi (Di), for a given benchmark modelMi, such thatSi = TMi (Di) ∪

TMi (Di) where forθi ∈ TMi (Di), π(θi |Di), is less than the minimum value ofπ(θi |D
/
i ), i.e. the

minimum value of the posterior if the nullH(i)
0 were true. Again, forθi ∈ TMi (Di), π(θi |Di), is

equal to, or in excess of the minimum value ofπ(θi |D
/
i ). In other words,TMi (Di) contains allθ

that are at least as consistent with the measured dataDi as is minimally possible if the null were

trueandTMi (Di) contains allθ that are less consistent with the measured dataDi than is minimally

possible if the null were true. The larger the proportion ofθ that livein TMi (Di), the smaller is the

support in dataDi towards the null. Then we can express the conditional probability Pr(H(i)
0 |Di), as

1− Pr(θ ∈ TMi (Di), which in turn is the probability thatθ lives insideTMi (Di):

Pr(H(i)
0 |Di) = Pr(θi ∈ TMi (Di)) where (4.2)

Pr(θi ∈ TMi (Di)) =

∫

TMi (Di )

π(θi |Di)dθi with (4.3)

TMi (Di) =




θ :
π(min)(θ|D/i )

r(θ)
≤
π(θ|Di)

r(θ)




, (4.4)

whereπ(min)(θi |D
/
i ) is the minimum value of the posterior probability density of the unknown

model parameter vectorθi if the null were true, i.e. in the benchmark modelMi. Actually, to

ensure invariance to a bijective and continuously differentiable transformationΞ(∙) of θi, in Equa-

tion 4.4, we defineTMi (Di) as the set of allθi ’s, the normalised posterior density of which given

dataDi is greater than or equal to the normalised posterior under the benchmark model, with the

normalisation given by a reference densityr(θi), r : Si −→ R. We choose to work with a reference

densityr(θi), that is uniform inθi, i = 1,2. Then using this normalisation, Pr(H(i)
0 |Di) is rendered

invariant to re-parametrisation ofθi brought about by the transformationω = Ξ(θi), Madruga et al.

(2003); the authors presented this suggestion in the context of FBSTPereira et al.(2008).

Thus Equation4.2, Equation4.3and Equation4.4 tell us that in this new test, the definition of
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the sub-spaceTMi (Di) follows from the identification of the minimal posterior probability density

of θi given generated dataD/i , achieved if the null were true, i.e. achieved in the benchmark

modelMi. Once the sub-spaceTMi (Di) is identified for a chosenMi, support inDi for null H(i)
0 is

quantified by integrating the posterior density over all theθi that live insideTMi (Di). Thus, unlike

in Bayes Factors–the computation of which involves integrating over the whole of the parameter

spaceSi–this test involves integrating over an identified subspace,TMi (Di) of Si.

In practice, Pr(θi ∈ TMi (Di)) is approximated as the proportion of samples ofθi generated in

the MCMC chain run with measured dataD, that exceed the minimal posterior attained in the

MCMC chain run with generated dataD/. It is this proportion of parameter values that reside in

the subspaceTMi (Di), and so, this is the proportion of values ofθi that are at least as consistent

with dataDi, than is minimally possible if the null were true. The conditional probability of the

null given the measured data, is then the computed Pr(θi ∈ TMi (Di)).

Once we know how to compute the probability of a null conditional on the measured data, we

can compute probability of nullsH(1)
0 andH(2)

0 respectively, given dataD1 andD2. To do this we

would need to generate dataD/1 andD/2 from benchmark modelsM1 andM2 respectively, where,

the benchmark modelM1 is defined such that in it nullH(1)
0 is true, while modelM2 can be defined

so that nullH(2)
0 is true. Then we can finally compare Pr(H(1)

0 |D1) with Pr(H(2)
0 |D2). In fact in our

galactic application–as we shall see below–D/i is the data generated by sampling from the isotropic

state spacepd f that is learnt using the measured dataDi; i = 1,2. The benchmark modelMi is

then the model in which thei-th state spacepd f is isotropic, i.e. nullH(i)
0 is true; i = 1,2. As

mentioned at the end of Section3.1, in this application, we learn the unknown model parameter

vectorθi := (Ψ(i)
1 , . . . ,Ψ

(i)
NE
, ρ(i)

1 , . . . , ρ
(i)
Nx

)T , using the dataDi, i = 1,2. Then the support in the data

Di for the null that state spaceWi is isotropic, is given by Pr(H(i)
0 |Di) = Pr(ρi ,Ψi ∈ TM1(Di)),

i = 1,2. In Section5 we discuss the implementation of this new test to find such support in

• 2 data sets of disparate sizes,
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• when it is not possible to learnθi under the consideration that thei-th data lives in an

anisotropic state space fori = 1,2 (since such an alternative model is intractable),

• whenθ1 andθ2 have different dimensionalities, and

• the error distributions of the measurablesX1,X2,V3 in dataD1 andD2 are not the same.

It is to be noted that marginalisation is undertaken in this new test, as in Bayes factor computa-

tion, but unlike with BFs, the marginalisation is not over the full parameter space. Instead the

marginalisation is over that sub-space of the parameter space that harbours those model parameter

values that are more or equally compatible with the available data, than with the generated data,

i.e. than when the null is true. In seeking such a sub-space, there is a motivational similarity in this

procedure with FBST, though there are structural differences between FBST and the computation

of support in our test. These are discussed in the next subsection.

Before proceeding to discuss those differences, we note that definition for support in the data

for a null as per Equation4.2, is not an approximation for Bayes factors in any sense. One worry

about this implementation–alluded to early in this section–is that there is no distinction made

between models that enjoy support of 1 in the data given the null. On the contrary, the odds

ratio computed as marginalisation over the full parameter space given the measured and generated

data (Equation4.1), when applicable, is capable of distinguishing between all models that are

differently compatible with the data. In applications that cannot be addressed by Bayes factors, or

by the odds ratio computation, computation of support as per Equation4.2 is a good way out, but

there may remain worries about its asymptotic consistency.

4.1 Differences with FBST

This new test differs from FBST as far as its remit as well as its structure is concerned.

In FBST, one seeks the maximum value of the posterior of the model parameterβ given the

available dataD, computed at the valueβ0 of the model parameter, since the (sharp) null states that
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β = β0. Then the probability that the posterior of the model parameter givenD exceeds or equals

this identified maximal value, is used to compute the support in the null given the data. However,

in our new test, the instrument of use is the “generated data”, i.e. the data that is generated from

the model in which the null is true. With the generated data in hand, there is no need to evaluate the

posterior of the model parameterθ given the measured data, at chosen values ofθ. Rather, it is the

posterior ofθ givenD, that is effectively compared to the posterior ofθ given the generated data.

Consequently, even if the null is not sharp, but states that the data is chosen from a density with a

certain symmetry/form, we can still test for such a null inD. An example of this is the very galactic

application that we address in this paper. We recall from Section3.1 that in this application, the

null states that the host space of the state space vectorW = (X1,X2,X3,V1,V2,V3)T is isotropic.

This is inherently a non-sharp hypothesis–we express this null in a form that may appear sharp,

but only speciously so, by stating that the state space densityf (X,V) is an isotropic function of

X andV under the null, i.e.H0 : f (X,V) = Ψ(E(X,V)), whereΨ(∙) can be any function, as long

asΨ(∙) ≥ 0 (see Equation3.1). Thus, in contrast to the sharp hypothesis that states that the model

parameterβ equals a known valueβ0, our null states that the state space density enjoys a prescribed

symmetry, namely isotropy, and not a particular value, since the value of the functionΨ(E) is not

fixed. The benchmark model in which this null is true, is then one in which the state space density

is assumed to be an isotropic function ofX andV, without any further specification. In fact, we

undertake an empirical illustration of our test in the following subsection, to demonstrate that the

new test can compute support in a measured data set for a diffused null that states that the data is

described by a model function that is an approximation for a known descriptor of the data, where

the quality of this approximation is given. Such applications are outside the remit of FBST in its

current form. Thus, one prime difference between the new test and FBST is that this test finds

support in the measured data for a hypothesis that is not necessarily sharp, while FBST is limited

to hypothesis of the typeH0 : θ = θ0, i.e. sharp hypotheses.

In this test we can even compute support in the measured data for the null as the ratio of the
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marginalised posteriors computed given the measured and generated data–except, such a construct

is difficult to interpret when we seek to compare support in one data for a given null, to support in

another data for another null. Indeed, in applications that do not involve such a comparison, using

our test, we can compute support in the data for a null either as Pr(θ ∈ TM(D)), or as the odds

ratio Ω defined in Equation4.1. This is undertaken in our empirical illustration discussed in the

following section. However, in the galactic application, we do undertake a comparison of supports

for different nulls in respective data sets, and therefore, support in thei-th data for thei-th null is

computed only as Pr(θi ∈ TMi (Di)).

In such applications, we identify the minimal posterior attained if the null were true, i.e. given

the generated data, and compute the probability that this minimal value is equalled or exceeded

by the posterior ofθ given D. In this pursuit, there is a motivational similarity between our test

and FBST. However, unlike in FBST, computation of this probability is performed by counting the

fraction of samples ofθ generated in the MCMC chain run withD, for which the posterior exceeds

the minimal posterior attained in the MCMC chain run with the generated data–thus avoiding an

explicit arg(max(∙)) of the posterior given the generated data. Importantly, avoiding such optimisa-

tion then helps us to extend the applicability of this test to contexts in whichθ is high-dimensional

(as borne by the galactic application). In contrast, undertaking such optimisation under the null in

FBST, will get more difficult with increasing dimensionality of the model parameter, thus limiting

the applicability of FBST to low-dimensional contexts.

Implementation in this new test also helps enhance its applicability over FBST, to non-parametric

situations, i.e. when the posterior probability ofθ given data (measured and/or generated) is not

closed-form, as well as when the model in which the null is true, is not parametric, as demonstrated

by our galactic application–such a non-parametric application is outside the scope of FBST in its

current form.
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4.2 Illustration using standard data for a diffused null

We illustrate the new test using a simple and standard data set, before moving on to implement-

ing it on galactic data. For the purposes of this illustration, we invoke the well-known (though

potently morbid) data on the failure of O-rings with temperature,Dalal et al.(1989); Robert and

Casella(2004). The “O-rings” are the rubber rings that were used to seal the joints in a part of the

Challenger space shuttle, that exploded on the 28th of January, 1986, within a little more than the

first minute of its flight. The explosion was attributed to the failure of an O-ring in this part, where

O-ring failure is now known to be induced at low temperatures, such as the very low temperature

of 31◦ F at the time of the Challenger launch.

The data that we use here is the same given on page 15 of the book byRobert and Casella

(2004). This data set includes the temperatureT (in ◦ F) at the time of the flight and the cor-

responding O-ring failure or success–given as 1 or 0, respectively–in 23 shuttle flights. Logistic

regression is a natural choice to model the effect of the predictor variableT on this binary pre-

dictor Y of O-ring failure. Robert and Casella(2004) treatY ∼ Bernoulli(p(T)), where the rate

p(T) of this Bernoulli distribution is temperature dependent, with log

(
p(T)

1− p(T)

)

= α + βT, so

that p(T) =
eα+βT

1− eα+βT
, whereα, β are the parameters of this logistic regression model, to be learnt

given the O-ring data. Then the likelihood function is

`(α, β) =
23∏

i=1

(pi)
yi (1− pi)

1−yi , (4.5)

where in the O-ring data, at the temperatureT = ti in the i-th row, Y = yi with probability of

failure given bypi; i = 1, . . . , 23. (TemperatureT ∈ τ ⊂ R; by writing T = ti, we imply a

temperature in theε-neighbourhood ofti, in the limit of ε approaching zero). With this likeli-

hood, and chosen priors onα andβ, Robert and Casella(2004) express the posterior probability

density of these parameters given the O-ring data, from which they perform posterior sampling

using Metropolis-Hastings (independent sampler), to learnα andβ. At the modes of the marginal

posterior probability ofα andβ, (at approximately 15.25 and -0.24 respectively), thepi values
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computed in this logistic model fori = 1, . . . , 23, are plotted in filled black circles in Figure1, and

the learnt functionp(T) in this model is depicted by the solid black line that connects these points

in this figure. We refer to this model ofp(T) as pmode(T)–to signify that this model is achieved

using the modal values ofα andβ learnt byRobert and Casella(2004), given the O-ring data

D = {y1, . . . , y23}.

Then pmode(T) is the variation in the failure probability with temperature that describes the

measured dataD. We approximatepmode(T) with model functionpk(T), wherek is a string-valued

variable,k =′′ red′′, “blue′′, “green′′, with the quality of the approximation parametrised by the

constant mean square distanceαk:

αk =

23∑

i=1
(pmode(ti) − pk(ti))

2

23
. (4.6)

The variation of failure probability withT, as displayed in Figure1, reminds us of the shape of a

(scaled) folded-normal density functionLeone et al.(1961). This motivates us to choose a scaled-

folded-normal functional form forpk(T), as follows.

pk(T) = sk

[

exp

(

−
(T −mk)2

2vk

)

+ exp

(

−
(T + mk)2

2vk

)]

, (4.7)

where the parameters of this function–the scaled-folded-normal (SFN) function–are:S ∈ R≥0,

M ∈ τ ⊂ R and V ∈ R≥0, which take valuessk,mk, vk in the SFN-shaped variationpk(T) of

failure probability with temperature. Thus, in thek-th model, the model parameter vector isθk =

(sk,mk, vk)T , k = “ red′′, “blue′′, “green′′. Table1 includes the constant mean squared distance

parameter,αk, that defines the SFN functionpk(T), givenpmode(T).

We want to test for the nullH(k)
0 , given the O-ring data. HereH(k)

0 states that the measurable

Y–measurements of which compriseD–is distributed as Bernoulli with probability for a “fail” that

is an SFN-shaped function ofT, namelypk(T), that approximatespmode(T) s.t. the mean squared

distance between these two functions computed att1, . . . , t23 is a constantαk, (presented in the 6-th

column of Table1). Then if at temperatureT = t, the measurable isY = y (=1 or 0 for fail or
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not-fail, respectively), thek-th null is

H(k)
0 : Pr(Y = y) = (pk(t))

y (1− pk(t))
1−y , where

pk(T) is an SFN function ofT, s.t.,

23∑

i=1
(pmode(ti) − pk(ti))

2

23
= αk, (4.8)

k =′′ blue′′, ′′red′′, ′′green′′. Here the constantαblue = 0.00005657, αred = 0.001411, αgreen =

0.01234 andti is the temperature in thei-th row of the O-ring data. Thus, thek-th null is not sharp,

for anyk. By null H(k)
0 , the observed temperature variation of O-ring failure rate is described by

pk(T), wherepk(T) is known to be an approximation topmode(T) with the quality of the approx-

imation parametrised by the given distanceαk between them. Now,pmode(T) describesD well,

as learnt byRobert and Casella(2004). Thus, the O-ring data is described approximately well

by pk(T), where the quality of such an approximation is given by how wellpk(T) approximates

pmode(T), i.e. how smallαk is. Thus, the smaller theαk, the better doespk(T) describe the dataD,

i.e. higher is the support inD for H(k)
0 . Then we expect high support inD for H(blue)

0 asαblue is small

(smallest of the three models considered). On the other hand, owing to the higher value ofαred,

support inD for H(red)
0 is expected to be less than forH(blue)

0 . Equally, support inD for H(green)
0 is

expected to be least, aspgreen(T) is the worst of the three approximations topmode(T) (corroborated

in Figure1).

Values ofS,M,V that can define the SFN functionpk(T) that approximatespmode(T) according

to given distanceαk, are tabulated in Table1 for eachk. This table also includes Pr(H(k)
0 |D), which

is the support for thek-th null in the measured O-ring dataD that comprises measured values of

Y. The last column of this table gives the logarithm of the ratioΩk of the marginalised posterior

of θk, given dataD to the dataD/k that is generated from thek-th model of thermal variation in the

O-ring data (to be precise,D/k comprises 23 random numbers, thei-th of which is sampled from a

Bernoulli distribution with ratepk(ti), i = 1, . . . , 23).

Here, the values ofαk are not arbitrarily chosen, but very much motivated by aspects of
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this application. pblue(T) is the least squares fit of an SFN-shaped function ofT to the sample

{(ti , pmode(ti))}23
i=1 taken frompmode(T) that is learnt byRobert and Casella(2004) (the filled black

circles in Figure1); pblue(T) is depicted in this figure in blue broken lines. The fit has a mean

square error (MSE) ofαblue of about 0.00005657. Figure1 also includes the SFN functionpred(T)

in dotted (red) lines.pred(T) is only a moderately good fit with an MSE of about 0.001411 (=αred).

This SFN functionpred(T) is parametrised by the modal values ofS, M andV that are learnt using

dataD in an MCMC-based inference scheme. To achieve the modal values ofS,M,V, we model

p(T) as an SFN function with unknown parametersS,M,V, so that the likelihood is rendered as

in the RHS of Equation4.5, except nowpi is the value of the SFN functionp(T) computed at

T = ti. Using this likelihood and flat priors on all three unknown parameters, we generate pos-

terior samples fromπ(S,M,V|D) using Random-Walk Metropolis-Hastings. Let us refer to this

MCMC chain as “Chain I” for future reference. The trace of this joint posterior probability in this

chain is shown in Figure3 in the solid black line. The marginals ofS, M andV are shown in

Figure2. So when the modal values of these marginals are employed assred,mred andvred (see

columns 3,4,5 of Table1), in an SFN function ofT (Equation4.7), pred(T) results, which isαred

distance away frompmode(T). pgreen(T) is constructed by choosing a value ofS,M,V each from

the tails of their respective marginals learnt usingD (Figure2). pgreen is a bad approximation of

pmode(T), as parametrised by a highαgreen (of about 0.01234).

The test is implemented using the following steps.

1. We consider the measurableY to be a Bernoulli variate with rate parameter that varies with

temperature asp(T)–modelled as an SFN function with unknown model parameter vector

θ = (S,M,V)T . We perform Bayesian learning of these parameters given the measured data

D, in “Chain I”. Trace ofπ(θ|D) is shown in Figure3 in the solid black line.

2. We identify the benchmark modelMk in which thek-th null is true,k =′′ red′′, “blue′′, “green′′.

Then in modelMk, the variation of failure probability with temperature is an SFN-shaped
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function pk(T), s.t. the mean squared distance between itself andpmode(T), computed at the

temperature values in each row of the O-ring data, isαk. Such a functionpk(T) is achieved

usingθk that is given in Table1. Then we attain the generated dataD/k by selecting a random

Bernoulli variate with rate given by thispk(T). We then run an MCMC chain withD/k, to

obtain samples fromπ(θ|D/k). (This chain is of course different from “Chain I” that is run

with dataD). We employ this chain to identify the minimum value ofπ(θ|D/k). Trace of

the posterior in this chain is shown in Figure3 in (colourk in the electronic version) dashed

lines fork =′′ blue′′, dotted lines fork =′′ red′′, broad-dashed lines fork =′′ green′′. The

minimum posterior in the post-burnin part of the chain is also presented in the figure as a

horizontal line in the corresponding line-type.

3. Next we identify the sub-spaceTMk(D) that is the native space of those model parameter

vectors, for whichπ(θ|D) equals or exceeds the minimum posterior attained under thek-th

null, i.e. whenpmode(T) is approximated bypk(T), within a distance parameter ofαk. Once

we identify this sub-space, we then need to compute Pr(θ ∈ TMk |D) =

∫

θ∈TMk
(D)

π(θ|D)dθ.

However, we avoid the computation of this integral, and instead approximate the probability

of membership in this sub-space via a simple case-counting scheme. Thus, we identify the

numberPk out of the total ofQk θ samples that are generated in the MCMC chain “Chain I”,

run with measured dataD, for which posterior probability exceeds, or is equal toπ(min)(θ|D/k).

Then, Pr(θ ∈ TMk |D) is approximated by
Pk

Qk
. Then by Equation4.2, the probability of the

k-th null conditional on the measured data, is Pr(θ ∈ TMk |D) ≈
Pk

Qk
. This is tabulated in the

7-th column of Table1 for eachk =′′ red′′, “blue′′, “green′′. The 8-th column contains the

logarithm of the odds ratioΩk discussed in Equation4.1.

As said above in the paragraph following Equation4.8, we expect high support inD for H(blue)
0 .

In fact, in the chain run with generated dataD/blue, π
(min)(θ|D/blue) is about -13.55, which is lower

thanπ(θ|D) obtained for allθ samples generated in Chain I (in solid black line in Figure3), i.e.
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Pblue

Qblue
≈ Pr(θ ∈ TMblue|D) = Pr(H(blue)

0 |D) = 1–the highest support possible in the measured data.

Compared toH(blue)
0 , support inD for H(red)

0 is expected to be less. Indeed we find that
Pred

Qred
≈

0.8168 or equivalently, Pr(θ ∈ TMred|D) = Pr(H(red)
0 |D) is about 0.8168. Hereπ(min)(θ|D/red) ≈

−11.14. For the crudest (out of the three models) approximation forpmode(T), in the chain run with

generated dataD/green, the minimum posterior probability exceeds the posterior achieved for every

θ sample generated in Chain I that is run with measured dataD. Then fraction of these samples

for which posterior exceeds of equals posterior achieved in chain run with generated data, is 0, i.e.
Pgreen

Qgreen
= 0 implying Pr(H(green)

0 |D) = 0.

As in this application we are not comparing support in one data set for a given null, to support in

another data for a different null, we could have computed the support in the measured O-ring data

D, for thek-th null, using the ratio of the marginalised posterior givenD to that givenD/ that is de-

fined in Equation4.1asΩk. In this example, we can perform posterior computation given measured

and generated data;
∫

θ

π(θ|D)dθ approximated as the sum of the joint posterior probability density

of θ givenD at each iteration, over the converged part of the chain, normalised by the number of

iterations in this part, is about 5.4× 10−10; here we assume the converged part of the chain to have

attained ergodicity, so that averaging over values ofθ and over iteration numbers are held equiva-

lent. Similarly,
∫

θ

π(θ|D/k)dθ approximated as the average over iterations from the equilibrium part

of the chain is about 2.7×10−6, 1.6×10−9, 3.0×10−11, for k =′′ green′′, “ red′′, “blue′′, so that sup-

port inD for thek-th model as in log(Ωk), is about -8.53, -1.08, 2.89 fork =′′ green′′, “ red′′, “blue′′

respectively (see Table1).

5 Implementation of the new test to the galactic application

Following Section4, we implement the new test by finding the minimum posterior achieved under

the null, in order to identify the sub-spaceTMi (Di), and then proceed to compute the probability of

the null given dataDi, as the probability thatθi ∈ TMi (Di).
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Let the model parameter vector that minimises the posterior probability density under the null,

be referred to asθ(min)
i .

5.1 Identification of posterior-optimising model parameter vector, under
the null

In order to identify the vector,θ(min)
i , the following scheme is used, where the scheme below is

expressed in the paradigm of the Bayesian method in which the discretised state space density

vectorΨ(i) and the discretised gravitational mass density vectorρ(i) are learnt given the measured

dataDi, under the assumption that the state spacepd f is isotropic (see Section3.1). The benchmark

modelMi is such, that under it, the state spacepd f is an isotropic function of the locationX and

velocityV of a galactic particle, i.e. the nullH(i)
0 is true in modelMi.

• We perform inference onθi given measured dataDi, with Metropolis-Hastings. During this

inference, let the state space vector in thec-th iteration beθ(c)
i , c = 1, . . . ,N0, where the

chain isN0 steps long. Upon convergence, the unknownθi, i.e.Ψi andρi in our application,

are learnt within 95% HPD credible regions. From a given chain, we identify the modal

parameter vectorθ(M)
i := (Ψ(M,i)

1 , . . . ,Ψ(M,i)
NE
, ρ(M,i)

1 , ρ(M,i)
Nx

)T , corresponding to the mode of the

posterior densityπ(θi |Di).

• We learn the discretised state space densityΨ(M,i) and gravitational mass densityρ(M,i) given

Di, in the aforementioned Bayesian method, where the learnt state space density is isotropic

by construct, (since isotropy of the state space density is the basic underlying assumption

of the Bayesian method). From this learnt isotropicpd f, at the learntρ(M,i), we simulate an

N(i)
data-sized data set of the observed variablesX1, X2 andV3. Let this generated data set be

D(gen)
i := {(x(k)

1, gen, x
(k)
2, gen, v

(k)
3, gen)}

N(i)
data

k=1 ,

where the size ofDi is N(i)
data.
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• Importantly, generated dataD(gen)
i is simulated from an isotropic state space function (the

discretised form of which is)Ψ(M,i), at ρ(M,i), using rejection sampling, according to the

following algorithm.

1. We solve for the functionΦ(X) that relates to the sought unknownρ(X) via the Poisson

equation:∇2Φ(X) = −4πGρ(X), whereX :=‖ X ‖. The relevance ofΦ(X) is that it

is part of the functionE(X,V) (= Φ(X) + η(V)) that was introduced in Section3.1,

where the functionE(∙, ∙) forms the argument of state space density:Ψi(E(X,V)). By

its dependence onX and V, (via E(X,V)), this model of the state spacepd f is an

isotropic function ofX andV (see Section3.1). Then isotropic state spacepd f bears

the formΨi(E(X,V)) or equivalently, the formΨi(Φ(X), η(V)) which is again equivalent

in form to Ψi(ρ(X), η(V)), by invoking Poisson equation. In this way, the discretised

versionρ, of ρ(X), can be embedded into the argument of the state space density that is

modelled as isotropic;ρ thereby enters the likelihood of the unknowns given the data,

thus allowing for inference on the unknownρ.

2. In our application,E(X,V) is identified with the total energy of a galactic particle, with

Φ(X) the potential andη(V) = V2/2 identified with the kinetic energy. In fact in our

application,Φ(X) ≤ 0 for ρ(X) ≥ 0 and the minimum value ofΦ(X) is Φ(0). We

consider only those galactic particles that are bound to the galaxy; the energy of any

such bound particle is negative. Thus, in this application,E(X,V) can at most approach

0, and at least beΦ(0). Thus, the valueε of E(X,V) normalised byΦ(0), lies in (0,1].

3. Since the value ofE(X,V) (= Φ(X) + V2/2) is minimally Φ(0), and maximally ap-

proaches 0, the range of values ofV is [−
√
−2Φ(0),

√
−2Φ(0)].

4. We discretiseρ(X) by discretising the range thatx lies in, and discretiseΨ(E) by dis-

cretising the range thatε lies in. Thus,ρp = ρ(x) if x ∈ [(p − 1)δ, pδ) andΨt = Ψ(ε)

if ε ∈ [(t − 1)δE, tδE), for p = 1, . . . ,Nx, t = 1, . . . ,NE. (Though we use uniform
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binning in this application–with constant bin widthsδ > 0 andδE > 0–other forms of

discretisation can be potentially implemented within this scheme).

5. We computeΦ(x) via M(x) whereΦ(x) =
−GM(x)

x
− 4πG

∫ Nxδ

s=x
ρ(s)sds, with M(x) =

∫ x

s=0
4πρ(s)s2ds andG is a known (Universal Gravitational) constant. For computa-

tional ease we discretise these integrals, to define

M(x) =

p−1∑

q=1

4π
3

[q3δ3 − (q− 1)3δ3]ρq +
4π
3

[x3 − (p− 1)3δ3]ρp, for x ∈ [(p− 1)δ, pδ), p > 1

M(x) =
4π
3

[x3]ρ1, for x ∈ [0, δ),

M(x) =

Nx∑

q=1

4π
3

[q3δ3 − (q− 1)3δ3]ρq for x ≥ Nxδ,

Nxδ∫

s=x

ρ(s)sds =

Nx∑

q=p+1

[q2δ2 − (q− 1)2δ2]
ρq

2
+ [p2δ2 − x2]

ρp

2
, for x ∈ [(p− 1)δ, pδ),

Nxδ∫

s=x

ρ(s)sds = 0 for x ≥ Nxδ. (5.1)

HereNxδ is the maximum radius to which data are available so thatp = 1, . . . ,Nx, and

ρq is the gravitational mass density in theq-th radial bin. This definesΦ(x) for any

x ≥ 0, given the identifiedρ(M,i).

6. Next, we sampleε, i.e. the value ofE(∙, ∙) normalised byΦ(0). As ε ∈ (0,1], we

chooseε randomly fromU[0,1], whereU[a,b] is the uniform distribution over the

range [a,b], a,b ∈ R. Let the sampledε be such that it lies in thet-th energy bin, i.e.

ε ∈ [(t − 1)δE, tδE], t = 1, . . . ,NE; let thet-th component ofΨ(M,i) beΨ(M,i)
t .

7. The 3 components of the location vector are continuous in [−Nxδ,Nxδ]. So we sample,

X1,X2,X3 ∼ U[−Nxδ,Nxδ] and using these sampled valuesx1, x2, x3, obtain the value

of ‖ x ‖≡ x =

√
x2

1 + x2
2 + x2

3. Let x be such that it lies in theq-th radial bin, i.e.

x ∈ [(q− 1)δ, qδ], q = 1, . . . ,Nx. For this chosenx, we then computeΦ(x) usingM(x)
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from Equation5.1and the definitionΦ(x) =
−GM(x)

x
. We normaliseΦ(x) by Φ(0), so

thatΦ(x) now lives in the range (0,1].

8. Check if the chosenε > Φ(x). If not, go back to step number 6. If yes, then recall that

the components of the velocity vector,V1, V2, V3 is each continuous in [−
√
−2Φ(0),

√
−2Φ(0)],

to suggest thatV1,V2,V3 be each sampled asV1,V2,V3 ∼ U[−
√
−2Φ(0),

√
−2Φ(0)].

So we drawv1, v2, v3 individually from this uniform distribution.

9. In this step, we sample fromΨ(M,i)
t using rejection sampling. Here the chosenε is in the

t-th energy-bin so thatΨ(M,i)
t is the value of the state spacepd f in our discretised model.

The rejection sampling is done by checking if
Ψ

(M,i)
t

g(ε)
> u or not, whereu is a random

number in [0,1], u ∼ U[0,1]. Hereg(ε) is the proposal density function that is chosen

to envelope overΨ(ε), ∀ε, and is defined asg(ε) = 1.05∀ε. This is an adequate choice

because the state spacepd f Ψ(ε) is normalised to be in (0,1]. If the above inequality

holds, we allow an integer-valued flag,γ, an increment of 1 and accept the valuesx1, x2

andv3 as chosen in steps 7 and 8 respectively, as theγ-th data point inD(gen)
i . We iterate

over points 4 to 9, untilγ equalsN(i)
data.

• Now that we have discussed the algorithm used to sample the generated dataD(gen)
i , in order

to estimateθi using this generated data, we start a new MCMC chain. We remind ourselves

that unlike the measured dataDi that may live in an anisotropic state space, the generated

dataD(gen)
i is sampled from an isotropic state space density (rather its discretised formΨi),

i.e. posterior ofθi given dataD(gen)
i is the posterior when the null is true. Post burn-in,

samples ofθi vectors generated in each iteration are recorded. In this recorded sample of

values ofθi, that which minimises the posterior density [Ψ
(i)
1 , . . . ,Ψ

(i)
NE
, ρ(i)

1 , . . . , ρ
(i)
Nx
|D(gen)

i ], is

the posterior-minimising parameter in the benchmark modelMi:

θ(min)
i := (Ψ(i,min)

1 , . . . ,Ψ(i,min)
NE
, ρ(i,min)

1 , . . . , ρ(i,min)
Nx

)T . (5.2)
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Let the minimum posterior ofθ given the generated data beπ(min)(θi |D
(gen)
i ).

5.2 Probability of membership in subspaceTMi(Di)

We need to identify the sub-spaceTMi (Di) in which live model parameter vectors, the posterior

of which equals or exceeds the minimal posterior probability density attained under the null,

i.e. π(min)(θi |D
(gen)
i ). We are required to integrate the posterior probability density ofθi given

measured dataDi, over all such values ofθi that live in the subspaceTMi (Di), i.e. compute
∫

θi∈TMi (Di )

π(θi |Di)dθi. This integral is then equal to Pr(θ ∈ TMi |Di).

Thus, in this approach, it is possible to implement Pr(H(i)
0 |Di), even in a high-dimensional

state space, by approximating this probability of membership of the model parameter vectorθi in

TMi (Di), with a case-counting scheme. In other words, we compute the proportion of the model

parameter vectors for whichπ(min)(θi |D
(gen)
i ) ≤ π(θi |Di), as recovered in the post-burnin stage of

chains run with measured dataDi.

Thus, let there be a total ofQi number of samples ofθi vectors recovered in the post-burnin

stage in chains run with measured dataDi. Out of these, letPi number ofθi vectors be such that

π(min)(θi |D
(gen)
i ) ≤ π(θi |Di). Here,Qi , Pi ∈ Z+, Pi ≤ Qi. Then the fractionPi/Qi is an approximation

to the probability thatθi ∈ TM〉(Di). Then recalling Equation4.2, we state that

Pr(H(i)
0 |Di) =

Pi

Qi
, (5.3)

i=1,2.

6 Testing with synthetic galactic data

In this section, we implement this new test to find the probability of the null (that the state space

of a toy galaxy is isotropic), given the (simulated) data at hand. For this simulation exercise, we

use synthetic data that is sampled from chosen state space density models, constructed to simulate

real galactic state space density functions. To be precise, we sample data setsDA andDB from two
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chosen state space density functionsf (True)
A (X,V) and f (True)

B (X,V) respectively, that are anisotropic

to different extents, as parametrised by an anisotropy parameter that we discuss below. We realise

that a state space density that is a function ofX andV via a function such asE(X,V), is an isotropic

function of vectorsX andV. On the other hand, a density function that depends onX andV via

any form of these vectors, other than theirL2-norm, is not an isotropic function ofX andV.

The model state spacepd f that we sample the synthetic dataDA andDB from, are

f (True)
∙ (x, v) =

1
√

2πσ
exp

(
ε(x, v)
2σ2

)

exp

(

−
[P(x, v)]2

r2
aσ

2

)

(6.1)

where ε(x, v) =
v2/2+ Φ(x)

Φ0
, (6.2)

and [P(x, v)]2 = (x2v3 − x3v2)
2 + (x3v1 − x1v3)

2 + (x1v2 − x2v1)
2, (6.3)

andra andσ are parameters of this density. The first exponential term in the RHS of Equation6.1

manifests the purely isotropic dependence onX andV, while the second exponential term man-

ifests dependence onX andV via a form that is different from theL2-norm of these vectors, i.e.

this second exponential term manifests anisotropic dependence onX andV. Thus, the chosen state

space density functions of the type in Equation6.1, are anisotropic in general, with the strength

of the (anisotropic) second exponential factor on the RHS of Equation6.1, parametrised by the

parameterra; the bigger is the value ofra, higher is the relative amplitude of the anisotropic factor

to the isotropic factor (that is parametrised only byσ). Equally, for ra approaching 0, the con-

structed state spacepd f in Equation6.1 approaches an isotropic form. The parameterra is then

the anisotropy scale length. It is measured in the astronomical unit of length on galactic scales:

“kiloparsec”, abbreviated to “kpc”.

We choosef (True)
A (X,V) to be more anisotropic thanf (True)

B (X,V) by choosingra=4 kpc and

ra=0.2 kpc in the two models respectively. In every other way, inputs tofA(X,V) and fB(X,V) are

identical. We chooseσ = 220, in units of km s−1. To defineE(X,V) and thereby its valueε in
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Equation6.1, we need to choose the form ofΦ(X). We construct this to be

Φ(x) = −
GM0

√
r2

c + x2
, (6.4)

where we chose the parameters to beM0 = 4×1011 times the mass of the Sun or “M�” (astronomical

unit of mass on galactic scales) andrc=8 kpc. G is a known physical constant, (the Universal

Gravitational constant).

Having constructedf (True)
A (X,V) and f (True)

B (X,V), we simulate dataDA andDB respectively

from these state space densities, where each data set contains information onX1, X2 andV3. Size

of DA is 710 while size ofDB is 135. The sampledV3 data is chosen to be characterised by Gaussian

noise∼ N(0,202) which is typical of real-life galaxies that are nearbyDouglas et al.(2007).

The i-th null states that the dataDi is sampled from an isotropic state space densityfi(X,V)

for i = A, B, i.e. fi(X,V) = Ψi(E(X,V)), Ψi(∙) ≥ 0, whereX ∈ X ⊆ R≥0 andV ∈ V ⊆ R≥0. To

condense,

H(i)
0 : fi(X,V) = Ψi(E(X,V)), Ψi(∙) ≥ 0, (6.5)

for i = A, B. When the null is true, the state spacepd f is an isotropic function ofX andV. As

discussed above for our application, the intractability of the more complex model (anisotropic

state spacepd f) compels us to learn the model parameterθi only under the null model, i.e.

by assuming the state space to be isotropic. The model parameter vector fori = A is θA =

(Ψ(A)
1 , . . . ,Ψ

(A)
NE
, ρ(A)

1 , . . . , ρ
(A)
Nx

)T is learnt using dataDA under the assumption that the galactic state

space is isotropic, whereρA := (ρ(A)
1 , . . . , ρ

(A)
Nx

)T andΨA := (Ψ(A)
1 , . . . ,Ψ

(A)
NE

)T . Similarly, we define

θB, ρB, ΨB, learnt using dataDB, while assuming an isotropic galactic state space.

In Figure4 we present the posterior probability densityπ(θA|DA) (right panel) andπ(θB|DB)

(left panel), in grey (or red in the electronic version). The posterior probability density attained

under the null, i.e. computed given the generated data, is shown in black in each case:π(θA|D
(gen)
A )

in the right andπ(θB|D
(gen)
B ) in the left panel. We recall that the generated data setsD(gen)

i are

generated using rejection sampling fromΨi(E)–or rather its discretised versionΨi that is learnt
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using available measurementsDi–at the estimatedρi. See Section5 for details of implementation

of this rejection sampling.

It is clear that for the case of the more anisotropic true state space density, i.e. for caseA, the

posterior probability density of the model parameter vector falls below the minimal value of the

posterior under the null, i.e.π(θA|DA) < π(min)(θA|D
(gen)
A ), ∀θA, implying that the sub-spaceTMA(DA)

is empty. It then follows that Pr(H(A)
0 |DA) = 0, so that we reject nullH(A)

0 with 100% probability.

In other words, the hypothesis that the dataDA is sampled from an isotropic state space density is

rejected at probability of 1. This is indeed what we expect given that the true densityf (True)
A (X,V)

thatDA is sampled from is chosen to be strongly anisotropic.

For the case of the less anisotropic true state space density, i.e. for caseB, in the post-burnin

part of the chain (beyond the 600,000-th iteration; in black in Figure4), π(min)(θB|D
(gen)
B ) is depicted

in the solid black line. There are multiple values ofπ(θB|DB) that exceed this minimal posterior

achieved under the null. In fact, in the post-burnin stage of the chain run with dataDB, π(θB|DB) ≥

π(min)(θB|D
(gen)
B ) for 83,780 samples ofθB where there are 200,000 iterations, post-burnin in the

chain. Thus, for this case, Pr(TMB|DB) =
87650
200000

≈ 0.5394, i.e. the support against the nullH(B)
0 is

1-0.5394= 0.4606. Thus, the hypothesis that the dataDB is sampled from an isotropic state space

density is rejected at probability 0.4606, given dataDB.

This corroborates the strength of our test as we chose to sample dataDB from the true state

space densityΨB(X,V) that is constructed as mildly anisotropic, compared to the strongly anisotropic

true densityΨA(X,V) that dataDA is sampled from.

We corroborate convergence within the parts of the chains that we refer to as “post-burnin” in

chains run withDB andD(gen)
B in Figure5, by overplotting histograms of values of joint posterior

probability density–ofθB given the data–generated over two distinct but equally long parts of such

post-burnin stage of the chains. Concurrence of these generated histograms offers confidence in the

convergence achieved in the post-burnin stage of the chains presented in the left panel of Figure4.

In Figure5, we also present the marginal densities of the parameterρ6, given synthetic dataDB
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(sampled from a chosen statepd f that is mildly anisotropic) and generated dataD(gen)
B (sampled

from the isotropicpd f that is learnt using dataDB).

7 Testing for isotropic nature of state space of a real galaxy

In Section2, we introduced the main application that we address in this work, namely that of

learning the density function of all gravitating mass in the real galaxy NGC 3379, using two in-

dependent real data setsD1 observed byBergond et al.(2006) andD2 observed byDouglas et al.

(2007). These are two distinct data sets that bear information about 3–out of the 6–state space

coordinates of two different kinds of galactic particles, referred to as planetary nebulae (PNe) and

globular clusters (GCs). The data used in the work include measurements ofX1, X2 andV3 of 164

PNe reported byDouglas et al.(2007) and of 29 GCs byBergond et al.(2006). From the estimate

of (the discretised versionρ of) the gravitational mass density function of all types of matter in

the galaxy, the mass density function of luminous matter in the galaxy can be subtracted, leav-

ing us the mass density of the dark matter in the galaxy, which is a crucially important input into

cosmological models. See Section2 for details.

As the learning ofρ is possible only under the assumption that the available data is sampled

from an isotropic state space density function, in this section, we discuss finding the probability of

the null that the state space of this example real galaxy is isotropic, conditional on the measured

data setsD1 andD2. Having estimatedρ usingD1 and then usingD2, each time assuming that the

galactic state space is isotropic, we want to know in which case this assumption was more invalid,

given the data. In other words, we want to find the comparative support for the null in these two

data sets.

The physical implications of unequal supports for the assumption that the state space of a given

galaxy is isotropic, can be most interesting–such would then imply that different sub-volumes of

the galactic state space are differently anisotropic. This in turn implies that the state space of the
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galaxy is marked by at least two non-interacting sub-volumes, the dynamical structures of which

are different, i.e. the distribution of the locationX and velocityV vectors of the galactic particles

in which are different. The non-linear dynamical implications of such difference is that the motions

of particles in these sub-volumes do not communicate. Physical processes that cause such a split

nature of the galactic state space will then be sought, and importantly, it will then be acknowledged

that estimating the mass density of dark matter in a real galaxy using the available measurements

on X1,X2,V3 of one set of galactic particles–as is the usual practice in astrophysics–can be risky.

The nullH(i)
0 , that dataDi is sampled from an isotropic state space density functionΨi(E(X,V))

is defined in Statement3.1; i = 1,2. Our new test, as described in Section5, is implemented to

estimate the conditional probability Pr(H0|Di) of the null H(i)
0 given the dataDi. To compute this,

we generate dataD(gen)
i by rejection sampling from the discretised state spacepd f that is itself

learnt using measured dataDi) under the benchmark modelMi (in which H(i)
0 is true).

To compute Pr(H0|Di), 3 chains: i − RUN I, i − RUN II and i − RUN III, that are distin-

guished by the seeds or initial guesses for the unknown parameters, are started with the available

galactic dataDi, for i = 1,2, with the aim of learning the unknown model parameter vectorθi =

(Ψ(i)
1 , . . . ,Ψ

(i)
NE
, ρ(i)

1 , . . . , ρ
(i)
Nx

)T , where the vectorρi = (ρ(i)
1 , . . . , ρ

(i)
Nx

)T is the discretised version of the

sought density function of gravitational mass of all matter in the galaxy andΨi = (Ψ(i)
1 , . . . ,Ψ

(i)
NE

)T

is the discretised version of the state space densityΨi(E), as learnt using the Bayesian scheme

detailed in SectionS-1 of the attached Supplementary Material, under the assumption thatDi is

sampled from an isotropic state space density. The chains are at least 800,000 iterations long, and

the unknown model parameterθi is estimated using uniform priors on each scalar unknown,Ψ
(i)
j

andρ(i)
k , are used,j = 1, . . . ,NE, k = 1, . . . ,Nx. From each chain, the identifiedΨi

(M,i) at the iden-

tified ρ(M,i)
i is used to generate a data setD(gen)

i (see Section5). A chain is run with this generated

data set, in order to compute the minimal value of the posterior when the null is true. For each

of the three chains initiated with different seeds and dataDi, we identify the fractional number of

samples ofθi for which π(θ(min)
i |D(gen)

i ) ≤ π(θi |Di), for eachi=1,2. The results for each chain are
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presented in Table3.

Traces of the log of the posterior probabiliy density ofθi given real dataDi in the chains

i − RUN I, for i = 1,2 are shown in Figure6. The minimum value of the posterior density under

the nullH(i)
0 is depicted in the solid line starting from the end of the burnin stage of the chain.

Basically, support in real dataD1 for the assumption of an isotropic state space, is distinct

from that inD2. This implies that thef1(x, v) , f2(x, v), where the true state spacepd f thatD1 is

sampled from isf1(x, v) andD2 ∼ f2(x, v). However, both data sets carry information on the state

space coordinates (X1,X2,X3,V1,V2,V3)T in the same galactic state space, i.e. both data sets are

sampled frompd fs that describe the state space structure of all or some volume inside the same

galactic state spaceW. Thus, f1(x, v) , f2(x, v) =⇒ W1 ,W2 where f1(x, v) is the pd f of the

state space vector that lives in volumeW1 ⊂ W and f2(x, v) is the density of the state space vector

in volumeW2 ⊂ W. In terms of the state space structure of this real galaxy NGC 3379, we can

then conclude that the state space of the system is marked by at least two distinct volumes, motions

in which do not communicate with each other, leading to distinct particle distributions being set up

in these two volumes, which in turn manifests in distinctpd fs for these subspaces (W1 andW2)

of the galactic state spaceW. DataD1 andD2 are respectively drawn from such distinctpd fs.

Comparing the computed Pr(H(1)
0 |D1) and Pr(H(2)

0 |D2), we can see that the assumption of isotropy

is more likely to be invalid for the state space density from which the dataD1 are sampled than

from which the dataD2 are drawn. Even beyond comparative terms, our results indicate that

Pr(H(2)
0 |D2) ≈ 1, i.e. we reject the isotropy of the state space density that the observed dataD2 in

this galaxy live in at nearly 0 probability.

8 Discussions

In the above test, a high support inD2 towards an isotropic state spacepd f, along with a moderate

support inD1 for the same assumption, indicate that the two samples are drawn from two distinct

state space densities.
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Any apriori expectation that the implementation of the PNe and GC data sets will lead to

concurring gravitational mass density estimates is foreshadowed by the assumption that both data

sets are sampled from the same - namely, the galactic - state space densityf (X,V). Such an

expectation can be understood to emanate from the argument that since both samples live in the

galactic phase spaceW, they are expected to be sampled from the same galactic state space density,

at the galactic gravitational potential. However, such does not necessarily follow if–for example–

the galactic state space densityf (X,V) is a non-analytic function withpmax branches:

f (X,V) = fp(X,V), ∀(X1,X2,X3,V1,V2,V3)
T ∈ Wp ⊆ W, p = 1, . . . , pmax. (8.1)

Then, if the dataD2 are sampled from the densityf2(∙) and dataD1 ∼ f1(∙), it follows thatD1 and

D2 are sampled from unequal state space densities. Qualitatively we understand that if the galactic

state spaceW is split into isolated volumes, such that the motions in these volumes do not mix

and are therefore distinctly distributed in general, the state space densities of these volumes would

be unequal. This is synonymous to saying thatW is marked by at least two distinct basins of

attraction and the two observed samples reside in such distinct basins.

One standard non-linear dynamical cause for the splitting ofW include the development of

basins of attraction, leading to attractors, generated in a multistable galactic gravitational poten-

tial. Basins of attraction could also be triggered around chaotic attractors, which in turn could be

due to resonance interaction with external perturbers or due to merging events in the evolutionary

history of the galaxy. Galactic state spaces can be split given that a galaxy is expectedly a complex

system, built of multiple components with independent evolutionary histories and distinct dynam-

ical timescales. As an example, at least in the neighbourhood of the Sun, the state space structure

of the Milky Way is highly multi-modal and the ensuing dynamics is highly non-linear, marked by

significant chaoticity.

Supplementary material
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Details of the Bayesian learning of the gravitational mass density and state spacepd f of the galaxy

are provided in SectionS-1of the attached supplementary material. SectionS-2discusses details

of the Fully Bayesian Significance Test.
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Casella, G., Giŕon, F. J., Mart́ınez, M. L., and Moreno, E. (2009). Consistency of bayesian proce-

dures for variable selection.Annals of Statistics, 37, 3:1207–1228.

Chakrabarty, D. and Raychaudhury, S. (2008). The Distribution of Dark Matter in the Halo of the

Early-Type Galaxy NGC 4636.Astronomical Journal, 135:2350–2357.

Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the metropolis-hastings output.Journal

of the American Statistical Association, 96, 453:270–281.

40
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

Chipman, H., George, E., and McCulloch, R. E. (2001). The practical implementation of bayesian

model selection (with discussion). In Lahiri, P., editor,Model Selection, IMS Lecture Series

- Monograph Series, volume 38, pages 67–134. Beachwood, OH: Institute of Mathematical

Statistics.

Coccato, L., Gerhard, ., Arnaboldi, M., and et al. (2009). Kinematic properties of early-type galaxy

haloes using planetary nebulae.Monthly Notices of the Royal Astronomical Society, 394:1249.
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Table 1:

k SFN functionused sk mk vk αk Pr(H(k)
0 |D) lg (Ωk)

red pred(T) 0.91 53.4 98.1 0.001411 0.8168 -1.0814
blue pblue(T) 0.97 51.7 99.0 0.00005657 1 2.8893

green pgreen(T) 1.02 48.0 96.5 0.01234 0 -8.5292
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Table 2: Table displaying conditional probability of nullH(i)
0 (Statement6.5) given synthetic data

Di that is simulated from true anisotropic state space densityf (True)
i (X,V), where the density for

i = A is more anisotropic than fori = B. Column 2 shows the valuera of the anisotropy parameter
that parametrises the deviation off (True)

i (X,V) from an isotropic function ofX andV. Column 3
shows the numberPi of generated samples ofθi for which the posterior probability density given
dataDi, exceeds the minimum values of the posterior density under the null; column 4 gives the
total numberQi of samples ofθi generated in the chain. The ratio of the entries in Column 3 to
that in Column 4 is in Column 5–it is taken to approximate Pr(θi ∈ TMi (Di)) which in turn is equal
to Pr(H(i)

0 |Di) (see Equation4.4 and Equation4.2). Column 6 delineates the probability at which
null H(i)

0 can be rejected, given dataDi.

i r a (kpc) Pi Qi Pr(θi ∈ TMi (Di)) ≈ Pi/Qi H(i)
0 rejected atprobability

A 4 0 2×105 0 1
B 0.2 87,650 2×105 0.5394 0.4606
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Table 3: Table showing support in dataDi for null H(i)
0 , i = 1,2, computed using 3 different chains

i − RUN j for eachi; i = 1,2, j = I , II , III .

Chainname Data setused Pr(Hi |Di)
1− RUN I D1 0.6202
1− RUN II D1 0.5862
1− RUN III D1 0.6269
2− RUN I D2 0.9617
2− RUN II D2 0.9650
2− RUN III D2 0.9348
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Figure 1: The solid black line shows failure probability variationpmode(T) with temperatureT,
as learnt using the modal values of the parameters of the logistic regression model considered by
Robert and Casella(2004), given the O-ring dataD. The filled black circles representpmode(ti),
whereT = ti is the temperature in thei-th row of the O-ring data,i = 1, . . . , 23. Thee distinct
SFN-shaped functions ofT, that approximatepmode(T) differently, i.e. are differently distant from
pmode(T), are depicted:pblue(T) in the broken (blue in the e-version) lines,pred(T) in dotted (red in
the e-version) lines andpgreen(T) in the long-dashed (green in the e-version) lines.
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Figure 2: Panels show marginals of the unknown parametersS,M,V that parametrise an SFN
function p(T) that models the variation of failure probability with temperatureT. These marginals
are learnt using an MCMC chain, with the O-ring data.
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Figure 3: In solid black: trace of the joint posterior probability densityπ(S,V,M|D) of the un-
known model parametersS,M,V, given measured dataD, from the MCMC chain Chain I. In
broken (blue) lines: trace of the posterior ofS,V,M given generated dataD/blue that is randomly
sampled from a Bernoulli distribution with rate given by the SFN functionpblue(T). This chain cor-
responds to the lowest posterior values amongst the four chains shown here.π(min)(S,V,M|D/blue)
is depicted in the broken (blue) lines. In dotted (red) lines: trace ofπ(S,V,M|D/red) whereD/red is
generated usingpred(T) as the variation in failure probability withT; minimum of this posterior
is shown in (red) dots. In (green) long dashes: trace ofπ(S,V,M|D/green) whereD/green is generated
using pgreen(T). This chain occurs at the highest posterior density values out of the four chains
shown here.
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Figure 4: Figure showing log of the posterior probability densityπ(θA|DA) (right) andπ(θB|DB)
(left), in grey (or red in the electronic version), for chains that were run for 8×105 and 5×105

iterations respectively. The log of the posterior probability density ofθA andθB, given generated
dataD(gen)

A andD(gen)
B respectively, represent the posterior densities of the model parameters in the

benchmark models in which the null is true; the traces of these posteriori are shown in black in
the right and left panels. Here simulated data setDA is about 5.3 times bigger in size than data
DB. DA is sampled from a true state space density that is constructed as strongly anisotropic, as
distinguished from the mildly anisotropic true state space density that simulated dataDB is sampled
from. In the right panel, the minimum value of the posterior when the nullH(A)

0 is true, is in excess
of the posteriorπ(θA|DA) at all iterations, i.e. for no value ofθA doesπ(θA|DA) ≥ π(θA|D

(gen)
A ). Thus,

the null H(A)
0 is rejected at a probability of 1. On the other hand, from the post-burnin part of the

chain (beyond the 600,000-th iteration) we find that the minimum value of the posterior under the
benchmark modelMB (shown in the black solid line) falls short ofπ(θB|DB) at 87,650 number of
iterations, out of the 200,000 samples ofθB generated in the post-burnin part of the chain run with
DB. The nullH(B)

0 is then rejected at a probability of 1 - 87650/200,000≈ 0.4606.
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Figure 5: Left: figure showing histograms of the logarithm of the values ofπ(θB|DB) generated
in two distinct 30,000 iteration-long, post-burnin parts of the chain run with synthetic dataDB

(histograms of values of the posterior in the two distinct parts, are shown in solid and broken lines
coloured grey–or red in the e-version). Similar histograms of values ofπ(θB|D

(gen)
B ) generated in

two distinct 30,000 iterations-long, post-burnin parts of the chain run with generated dataD(gen)
B , are

shown in solid and broken, black lines. Right: figure showing the marginal posterior probability of
the parameterρ6, given synthetic dataDB, plotted in grey, (or in red in the electronic version) and
the marginal ofρ6 given and dataD(gen)

B (in black), whereD(gen)
B is sampled from the isotropic state

spacepd f that is itself learnt usingDB.
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Figure 6: Trace of logarithm of the posterior probability density of the model parameter vectorθ1 (right
panel) andθ2 (left) given the two sets of real dataD1 (size 164) andD2 (size 29) respectively, in chains
1−RUN I and 2−RUN I. The minimal value of the posterior under the benchmark model (when the null is
true given the corresponding generated data set), from the post-burnin stage of that chain (iteration 300,000
onwards), is shown in the solid grey (or red in the e-version) line.
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Figure 7: Right panel: logarithm of gravitational mass density vectorρ2 (in black, with modal values
shown in open circles) learnt from chain 2−RUN I that is run using dataD2, andρ1 from chain 1−RUN I
that is run usingD1 (modal values shown in filled circles; in red in the e-version). These gravitational mass
density results were obtained under the assumption of an isotropic state space, the support for which in the
two data sets is indicated in Table3. Overlaid on these are the identified vectorsρ(min)

1 (modal values in

crosses; in blue in the e-version) andρ(min)
2 (modal values in triangles; in green in the e-version), which are

respectively, the posterior-minimising, null-abiding, gravitational mass density vectors identified in chains
run with the generated dataD(gen)

1 andD(gen)
2 . The concurrence ofρ2 andρ(min)

2 is noted, along with the

lack of consistency betweenρ1 andρ(min)
1 . The error bars represent the 95% HPD credible regions on the

estimatedρ∙ parameter. In the left panel, the state space density vectorsΨ1 (modal values in filled red
circles) andΨ2 (modal values in open black circles), learnt from the chains 1− RUN I and 2− RUN I,
are shown, compared respectively toΨ(min)

1 (modal values in blue crosses) andΨ(min)
2 (in green triangles).

Again, the overlap ofΨ(2) andΨ2(min) is noted, as is the discord betweenΨ1 andΨ(min)
1 , especially at high

and low energies. TheΨ vectors are normalised to unity atε = 1 whereε is the value of the normalised
energy.
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