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Abstract

We present a new test of hypothesis in which we seek the probability of the null condi-
tioned on the data, where the null is a simplification undertaken to counter the intractability of
the more complex model, that the simpler null model is nested within. With the more complex
model rendered intractable, the null model uses a simplifying assumption that capacitates the
learning of an unknown parameter vector given the data. Bayes factors are shown to be known
only up to a ratio of unknown data-dependent constants—a problem that cannot be cured using
prescriptions similar to those suggested to solve the problem caused to Bayes factor computa-
tion, by non-informative priors. Thus, a new test is needed in which we can circumvent Bayes
factor computation. In this test, we undertake generation of data from the model in which the
null hypothesis is true and can achieve support in the measured data for the null by comparing
the marginalised posterior of the model parameter given the measured data, to that given such
generated data. However, such a ratio of marginalised posteriors can confound interpretation
of comparison of support in one measured data for a null, with that in another data set for a
different null. Given an application in which such comparison is undertaken, we alternatively
define support in a measured data set for a null by identifying the model parameters that are
less consistent with the measured data than is minimally possible given the generated data,
and realising that the higher the number of such parameter values, less is the support in the
measured data for the null. Then, the probability of the null conditional on the data is given
within an MCMC-based scheme, by marginalising the posterior given the measured data, over
parameter values that are as, or more consistent with the measured data, than with the gener-
ated data. In the aforementioned application, we test the hypothesis that a galactic state space
bears an isotropic geometry, where the (missing) data comprising measurements of some com-
ponents of the state space vector of a sample of observed galactic particles, is implemented to
Bayesianly learn the gravitational mass density of all matter in the galaxy. In lieu of an as-
sumption about the state space being isotropic, the likelihood of the sought gravitational mass
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density given the data, is intractable. For a real example galaxy, we find unequal values of the
probability of the null-that the host state space is isotropic—given téfierdnt data sets, im-
plying that in this galaxy, the system state space constitutes at least two disjoint sub-volumes
that the two data sets respectively live in. Implementation on simulated galactic data is also
undertaken, as is an empirical illustration on the well-known O-ring data, to test for the form
of the thermal variation of the failure probability of the O-rings.

Bayes Factors Hypothesis Testing Markov Chain Monte Carlo Bayesian P-Values
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1 Introduction

Model selection is a very common exercise faced by practitionersfidreit disciplines, and
substantial literature exists in this fieRhrbieri and Berge(2004); Berger and Pericch(200D);
Casella et al(2009; Chipman et al(2001); Ghosh and Saman{a001); Kass and Rafter{1995;
O’Hagan(1999. In this context, some advantages of Bayesian approaches, over frequentist meth-
ods have been report&krger and Pericch{2004); Robert(2001). Much has been discussed in

the literature to deal with the computational challenge of Bayes fadiarsq(la et a).2009 Chib

and Jeliazkoy2001 Han and Carlin200Q to name a few). At the same time, methods have been
advanced as possible resolutions when faced with the challenge of improper priors on the system
variablesAitkin (1991); Berger and Pericci{P969; O’Hagan(1995. Nonetheless, Bayes factor
computation persists as a challenge, especially in the context of non-parametric and multimodal
inference on a high-dimensional state sphicd and Barker(2006).

In this paper we discuss a new test of hypothesis that is aimed at finding support in the available
data for the null that the state space that the observed variable lives in, is endowed with a simple
symmetry, namely isotropy. In an isotropic state space, the density at a given point depends only
on the magnitude of the state space vector to that point, and not on the inclination of this vector
to a chosen direction. This assumption about the geometry of the state space is invoked to allow
us to refer to an application, in which the sought model parameter vector can be estimated from
the data, only under the simplistic assumption that the state space is isotropic. In lieu of such an
assumption, the likelihood of the unknown parameters given the data is rendered intractable. Upon
the estimation of the sought parameters, given the data at hand, we want to review how bad this
assumption of isotropy of the state space is, in the considered data.

The application we elude to above, involves the estimation of the density of all gravitating
matter in a real galaxy NGC 3379 for which multiple data sets are measured for two distinct types

of galactic particledBergond et al(2009; Douglas et al(2007. The sought model behaviour

ACCEPTED MANUSCRIPT
3



ACCEPTED MANUSCRIPT

function is the gravitational mass density function of all matter—dark as well as luminous—in this
real galaxy. One of the burning questions in science today is the understanding of dark matter. The
guantification of the distribution of dark matter in our Universe, #&itedént length scales, is of
major interest in Cosmologge Blok et al.(2003; Hayashi et al(2007); Roberts and Whitehurst
(1979; Salucci and Burkerf2000; Sofue and Rubi{200]). At scales of individual galaxies,

the relevant version of this exercise is the estimation of the density of the gravitational mass of
luminous as well as dark matter content of these systems. Readily available data on galactic im-
ages, can in principle be astronomically modelled to quantify the gravitational mass density of the
luminous matter in the galaxfell and de Jong2001); Gallazzi and Bel(2009; such luminous
matter is however, only a minor fraction of the total that is responsible for the gravitational field
of the galaxy since the major fraction of the galactic gravitational mass is contributed to by dark
matterKalinova(2014). Astronomical measurements that bear signature of the gravitatitieel e

of all (dark+luminous) matter in a galaxy are hard to achieve in “early-type” galaxies, the observed
images of which is typically elliptical in shapeOf some such astronomical measurements, noisy
and partially missing information on velocities of individual galactic particles have been imple-
mented to learn the density of all gravitating matter in the galakgkrabarty and Raychaudhury
(2008; Cote et al.(2001); Genzel et al(2003.

In this application, the null states that the native space of the data variable is isotropic. This
null is nested within a more complex model in which, the data lives in a state space that is not nec-
essarily isotropic. However, in this application, estimation of the model parameters is not possible
under this more complex model, given the data; in fact, even the formulation of the likelihood of
the unknown parameters given the data, is not possible unless the null is invoked. When we refer
below to the complex model being “intractable”, we imply the impossibility of both formulating

and computing the likelihood under this model. Given this nature of the complex model, we find

2The intrinsic global morphology of such “early-type” galaxies is approximated as a triaxial ellipsoid; in this paper
we discuss gravitational mass density determination of this type of galaxies that are more frequent.
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that the posterior odds of the null model given two independent data sets is known only upto a ratio
of unknown constants, where these constants are the uncomputable probabilities of the considered
data sets. In form, the indeterminacy of the posterior odds appears similar to that of the Bayes
Factor when non-informative priors are used on the model parameters—in that case, the priors are
known only upto an unknown constant, so that the the Bayes Factor is left indeterminate upto a
ratio of these unknown constants. However, unlike the indeterminacy caused by non-informative
priors, the indeterminacy of the posterior odds in the considered application is entirely data de-
pendent, motivating us to seek a new test that bypasses computation of Bayes Factors. This test
helps find support in a data set for a null, or can find the ratio of supports for two nulls given two
different data sets. When the application is in the latter context, the test permits usage of data sets
of widely different sizes, and the dimensionality of the model parameter vectors sought under the
different models could also be veryfdrent from each other. Lastly, very little prior information

may be available on the model parameter vectors in one or both models.

This new test involves generating data from the model in which the null is true. Though in
principle, it is possible to compare the marginalised posterior of the model parameter given mea-
sured data to that given generated data, a ratio of these posteriors may confound the comparison of
supports in two dferently sized data sets for respective nulls, with model parameterfefedit
dimensionalities. Such describes the galactic application discussed above. In such applications,
support in a data for a null is given by the probability of the null conditional on the data, which
in turn is the posterior of the model parameter marginalised over those parameter values that are
more or equally consistent with the measured data, than is minimally achieved given the data that
is generated when the null is true.

The paper is organised as follows. Sectiatiscusses the general background to the estimation
of the unknown model parameter vector and its specific formulation in the context of the applica-
tion undertaken in this work. Sectidhl clarifies the formulation of the null as the assertion that

the state space that the data variable lives in, is isotropic. In this same section we discuss the va-
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garies of an intractable alternative that the null is nested within and motivate the need for a new
test, which is introduced in Sectigh Differences between this new test and FBST are discussed
in Section4.1. An empirical illustration of this test on the well-known O-ring data is presented

in Section4.2. The implementation of this new test in the context of our galactic application is
discussed in Sectioh. Such implementation is illustrated on simulated and real data. The work
with the simulated data is presented in Sectiomhile the application to the data of a real galaxy

is included in Sectiod. The paper is concluded with a discourse on the implications of the results,

in Section8.

2 Case Study

In the application that we are interested in, the state space Watoh € R8, W = (Xq, X, X3, Vi, Vs, V)T,
where X = (X1, X5, X3)" andV = (V1, Vo, V3)T. In the application X is the three-dimensional
location andV the velocity vector of a particle in the system. The measurables include some com-
ponents ofX and some components ¥f-the measurable vector i$ = (X;, X,, V3)" so that the
data set i = {2 Thus,U € U c ‘W. We are interested in estimating the model parameter
vectorf € S. In the applicationd = (¥1, ..., Ynep £1. 02, - - - PN,) T Wherep = (p1, 02, .., n,) "
and¥ = (¥, ¥,,..., ‘PNeng)T which respectively, are the discretised versions of an unknown model
functionp(X) and the state spagm f. In our applicationp(X) is the density of gravitational mass
of all (dark+luminous) matter in the galaxy, in whidh has been observed for a sampleNgf;a
galactic particles.

The reason for reducing our ambition from learning the full functje(¥) and the state space
pdf, to their discretised forms—namewyand¥ respectively—is the lack of “training data”, which
in this context, is the data set comprising a set of values of the data vallaldenerated at
chosen values g#(X) and the state spaqal f. However, we do not know the physics underlying
the relation between the unknown functions dsésuch is the system at hand. This results in

the inability to generate the value bf at a chosen value gf(X) and the state spagadf, i.e.
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results in the unavailability of training data. In this situation, we cannot take the usual approach of
statistical learning using training data, to train a model of the relationship between the measurable
and unknown functions, to thereafter predict the unknown function by implementing the available
measurements (test data) in this modehl (1998.

Consequently, we are left with the possibility of discretising the support of the unknown func-
tions and estimate the values of the functions in each resulting grid cell, treating these values as
independent of each other without invoking a correlation structure. Thus we can only learn the
discretised forms of these unknown functions, i.e. learn the vecidrere tha-th component of
p is the value op(X) in thei-th grid cell that the support @f(X) is discretised into (and likewise
for the vecto¥, a component of which is the value of the state sgatéover a grid-cell, where
the support of thigpd f is discretised into grid-cells).

Details of the estimation gh and¥ from D is discussed in Sectio8-1 of the Supplemen-
tary Material. It is to be noted that this estimation is markedly non-trivial given that the mea-
surements are of parametetg X,, Vs while the sought unknown function(X) is defined over
X = (X1, X2, X3)" and the sought unknown state space density is defined over the state space vec-
tor W = (Xq, Xp, X3, V1, Vo, V3)T. Thus the measurables live only in a sub-volume inside the state
space, i.eU c W. In other words, the measurables are sampled from the dexisijyof the U
vector, where/(U) is achieved by marginalising the state space density over the non-measurables,
i.e. overXs, Vi, V,. The likelihood function is written in terms e{U) convolved with the density
of the errors in the measurables. Importantly, this likelihood is intractable unless the staté¥gpace
admits isotropy. So we assume an isotropic state space and achieve the likelihood of the unknowns
p, ¥ givenD. Relevant priors are invoked and we write the posterior of the unknowns given the
data; posterior inference is carried out using Metropolis-Hastings.

For NGC 3379, data include missing data on the three observable state space coordinates of 164
galactic particles called planetary nebulae (PNe)-that are the end states of certain massive stars—

as reported byouglas et al(2007). In addition, there is data on 29 of another type of galactic
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particles called globular clusters (GCs) that are clusters of stars—reporBatdiynd et al(2009.

NGC 3379, or M 105, seems to have initiated its journey within the observational domain, in
neglect - though Pierre Mechain is credited with its discovery in 1781, it did not initially make it
to Messier’s catalogue. Amends were made later in 1947, when it was among four new objects
that were “added to the accepted list of Messier’s catalogue as nos. 104, 105, 106 and 107" (from
Helen Sawyer, 1947). In spite of this early inattention, NGC 3379 has been studied carefully in
the past few yearsRomanowsky et al(2003 advanced the idea that NGC 3379 is one of the
five “naked galaxies”, that were tracked using the data on the observed PNe samples in these five
galaxies . Such claims were contestedd®kel et al. (2005, thoughDouglas et al(2007) defend
the earlier result oRomanowsky et al2003 by analysing the PNe data in NGC 3379. For this
galaxy,Douglas et al(2007) also reporbnevalue of gravitational mass at a chosen distance from
the galactic centre, obtained from using the GCs data in this g&daxyond et al(2006. This
single value obtained using the GC data, is shown to concur with the estimate based on PNe data,
within error barsWeijmans and et a(2009 cannot infer the distribution of the total gravitational
mass distribution in this galaxy since the halo contribution is an unknown model parameter for
them. Coccato et al(2009 andPierce and et a(2006 report the characterisation of this galaxy
using PNe and GC data respectively.

It is to be noted that by “training data” in the first part of this section, we imply data that
consists of pairs of design points and measurable values generated at this design point, while in
the context of Bayes Factor literature, “training samples” or “training data” typically imply data
that mimic the available set of measurements and can therefore be “real” (i.e. are samples of the
available measurements), or “imaginary” i.e. sampled from the posterior predictive under the null,

given the available measurements.

ACCEPTED MANUSCRIPT
8



ACCEPTED MANUSCRIPT

3 Testing for the assumption of an isotropic state space given
the data at hand

3.1 The null hypothesis

If the state spac®V is isotropic, the state space density is an isotropic functiok andV, where

the state space vector = (X, Xo, X3, V1, Vo, V3) .

Remark 3.1. If a real-valued function @, -) of two vectorsa,b € R™, is an isotropic function of

a, b, then da, b) = g(Qa, Qb), for any orthogonal transformation matri®Q € R™™ Truesdell

et al. (2004; Wang(1969. We recall from the theory of scalar valued functions of two vectors,
that if o(-, -) is an isotropic function, its set of invariants with respecQas Yo = {a-a,b-b,a- b}
where “” is the inner product of 2 vectors. Then, the isotropic function of two vectdes,bj,
admits the representatior(§p) = g(a-a,b - b,a- b) Liu (2002; Truesdell et al(2004).

In our applicationX - V=0 identically so that it follows from Remark 1 that if the state space
density f(X, V) is an isotropic function oX andV, then it will depend orX andV via the form
f(X-X,V-V), ie f(X3V?),sinceX X =|| X ||>= X2 = (X2 + X3 + X2), where|| - || is the
L2-norm of a vector. Similarlyy -V =|| V |[?= V2 = (VZ + VZ + V2). Thus, in this application, any
functionf (X2, V?) is an isotropic scalar-valued function ¥fandV. To summarise, any function
that depends o andV via theL2-norms of theX andV vectors, is an isotropic function of the 2
vectorsX andV.

In our application, it then follows that if we define a simple functiorXof:= VX2 = || X ||)
andV (= || V |) as: E(X, V) := ®(X) + n(V)?, the state space density that bears the f#(8) is
an isotropic function oX andV, implying that state spac#®’ is isotropic. Here¥(:) > 0 is any
function; (the constraint of non-negativity stems from non-negativity of the state space density).

Thus, the null that thé-th data set at handX) is sampled from an isotropic state space density

function f;(X, V), is expressed as:

HO @ fi(X,V) = i(E(X,V)), where ¥() >0, 3.1)

3In Section5 we will see thajp(X) being a known function o®(X), is embedded within the support of the state
spacepd f under the null model, i.e. within the support'®{-). We will then estimate the discretised versiom(X)
as the vectop (as well as the discretised versi#of the state space density under a null model, i.8V@&(X, V))).
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where in our application,= 1, 2. That the null model is élierent in the 2 cases suggests that while
dataD, lives in the isotropic state spad#’; under the nuIHc(,l), the dataD, does not necessarily
live in the same state space but rather inféedent state spac#®’, in general, which is isotropic
under the nulH{.

We have discussed in Secti@rihat lack of training data causes replacement of the learning of
the unknown gravitational mass density functigiX) by its discretised version, namely the vector
p = (o1,....pn)". Similarly, the state space density functib(X, V) = ¥(E(X,V)) under the
assumption of isotropy, cannot be learnt, but in its place, its discretised version is learnt, namely
the vector¥ = (¥4,...,¥n.)". Then the sought model parameter vector, learnt using Diais

6 =V, . v o0, i=12.
3.2 The alternative model is intractable

One would readily suggest that comparative support in dateDseasid D, for an isotropic state

_ _ . _PrHPID;)  PrH?ID,)
space (that the respective data lives in), be given by the postenoze;?ﬁ%m andm,

where the more complex modéﬂg), suggests that thieth data set lives in a state space that is
not necessarily isotropig;= 1,2. However, as we discussed above, the application is such that

posterior computation under the complex model is intractable. In that case we could compare

| PrHIDY) . PrHPIDy)
the posterior odds of the null and the alternative D with B
1-Pr(H;’|D,) 1-Pr(H;’ID,)

alternativeH” suggests that thiedata lives in an anisotropic state space, such tha\Rfg;) =

, Wwhere the

1- Pr(HS)|Di). Now, from Bayes rule, we can express the posteridﬂgﬂfgiven thei-th data set,

as proportional to the likelihood of this null given d@aand the prior on this null, so that

Pr(HolDi) @i Pr(DilHo) Pr(Ho)

T Pr(HoiD) ~ 1 PriHo) Pr(Ho) (3:2)

whereq; is defined as the reciprocal of Bxj, i.e.

a;' = Pr(D)) = PrO|HY) Pr(HY) + > ProH) Pr(H{), (3-3)
j
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showing the probability of the daf@ at hand as conditional upon an isotropic model for the state
space (1st term on RHS of Equati8rs), and upon all possible disjoint anisotropic modsisfor
the state space (2nd term on RHS). Thenannot be computed, since this 2nd term on the RHS of
Equation3.3 cannot be computed. This is because, likelihood under the anisotropic model given
the data is not computable due to the intractability of the anisotropic model. This then implies that
the posterior odds expressed in Equatiahis not known.

In fact, we find that if we express the posterior odds of i§il given dateD; to H givenDs,,

such an odds ratio is known only upto the ratio of the unknown consgémas in the following.
@z

PrH"ID) o y PrO4/HS) y PrH)
PrHPID,) a2 PrOJHY) ~ PrH?)’

(3.4)

whereq; is unknown| = 1, 2, so that the indeterminacy in the posterior odds in Equatiéis due

to the unknown ratia;/a,. (We stress that the 2nd factor on the RHS of Equakigns not the
Bayes Factor since it is the ratio of marginals of twiiehent data sets, given the respective null).
Yet, the form of this indeterminacy is reminiscent of the form of the indeterminacy in Bayes Factors
(BFs) when one uses non-informative priors on the unknown model parameter §actoh that

these priors are known only upto an unknown constant—we can then compute BFs in principle,
with posterior Bayes factowitkin (1997), intrinsic Bayes factorBerger and Periccl{P963ab) or

with fractional Bayes factor® Hagan(1995. We clarify this similarity in form between the two

indeterminacies in the following section.

3.3 Indeterminacy of Bayes Factors given non-informative priors and irrel-
evance of prescribed cures to our posterior odds

The posterior odds of the two null models given the respective data sets, is expressed in Equa-

tion 3.4 Now, we can set the prior odds for the nub§” and H? to be unity and rewrite the

PrH{"ID
posterior oddsﬁ by expanding the marginal likelihood given data Betn terms of the
riA, 2

likelihood f;(D;|6;) of the unknown model paramet@rgiven this data, and the priag(6;) of 6;.
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Here we realise that the model parameter vector sought under the hﬂlgjbl'sl not equal to that

sought under the moddeléz); hence these parameters are distinguished in the notatiénaasl

0. Likewise, the notation acknowledges foffdrence between the likelihood function of the un-
known parameter given one data set in one case, and the other given the other dataset in the other
case. Thus under prior odds of unity, i.e. fori#{) = Pr(H{?),

PrH{"ID1) a1 PrO1JH") PrH”) a1 [ f1(Dal61)mo(6:)d6;
PrHE”ID2) a2 PrDaIHg”) PrHS) a2 [ f2(D2162)mo(62)d6;

(3.5)

Then Equatior8.5indicates that if the prior o#; is non-informative, so that it is known only upto
an unknown constar, then the indeterminacy in the posterior odds is compounded by the factor

C . " . . Q.
C—l in addition to the existing indeterminacy due to the unknown ratio
2 @2

The problem about BFs being known upto the ratio of the unknown constgictsthat stems
from the usage of non-informative priors on the model parameters, has been dealt with in the

literatureBerger and Periccl{004). In this situation, the BF is the ratio given the models 1 and
¢y [ f1(DI61)mo(61)d6: (We

C2 [ f2(DI62)mo(62)d82
note that the BF having been defined at a given data set, is not quite the ratio of the marginal

2 and is arbitrary in its scale; here this “arbitrary BF”@’? =

likelihoods given the 2 diierent data sets that we consider in Equafids). The suggestion that

is offered in the literature is tha"?, needs to be replaced by the fully computablek where

By, is defined asB, = 81 (BH (D)), wheres) is computed using the available d@avhile
<B(2’i)(D(f))> is the average computed using the new dat@®$gwith the averaging performed over

all such “new’—or training data. Indeed, the indeterminacy in the BF caused by thecyAtjo

is eliminated in this prescription. As mentioned in Sectiitraining data could typically imply

data that mimic the available set of measurements and can therefore be “reaD{(l.és one
partition of the available measurements), or “imaginary” i.e. sampled from the posterior predictive
under the null, given the available measurem@&asyer and Periccl{P969. The posterior of the

model paramete#; given an “imaginary’D®, averaged over aD(, is then referred to as the

“expected-posterior prior” of; under the nuIHg), and used in place of the prior @ according
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to f 7(6:D)m (DY) dD"—seeFouskakis et ak2015. Herem (D) = f f,(D10:)70(6:)d6;.
Irrespective of the nature of the training data, the prescription that helps cure the indeterminacy

caused by the usage of non-informative priorggn.e. the data-independent unknowsmsHow-

ever it is irrelevant to curing the indeterminacy in the posterior odds of Equatidhat is caused

by the uncomputable data-dependent r%{% = % , Where the uncomputable nature of this

probability owes to the intractable nature of tlhe cor;plex model thattieull is nested within,

i =1,2. Itis then clear that multiplying the ratio of the marginal likelihoods of the data under the

respective null, by its reciprocal computed at new dataB@tandD“), will only introduce a new

O]

ratio of unknowns——=— to compound the problem.
Proy)

3.4 Tractable alternative—numerical dfficulties in high dimensions

The new test that we discuss herein, is relevant even when the complex model that the simpler null
is nested within is tractable—unlike in the galactic application we consider here—though it is chal-
lenging in a high-dimensional non-parametric situation, to achieve intrinsic priors with imaginary
training data set8erger and Pericchi(9969, or where real training data are unachievable given
that the available measurements are under-abundant to begin with. Implementation of imaginary
training data sets may be hard whers high dimensional; the computational intricacy involved

in averaging over all possible imaginary samples would increase with increase in dimensionality
of 8. We would need to generate a large sample of training data sets, and for each these training
data sets, we would need to learn the high-dimensiépahder the nulH{" andé, underH?.

This suggests running twice as many, long MCMC chains to convergence, as there are training
data sets that are averaged over. This is required to be a large number, if we want to explore the
expected non-linearity in the joint posterior probability of the large number of components of the
high-dimensiona¥;. Given such a computationally intensive method, we seek a new method that

is numerically less cost intensive.
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4 The new test

In the new test we express the support in the measuredldta the null HS), without invoking

the ratio of posterior under the null and the more complex model-to be precise, we compute the
probability of the null hypothesis, conditional on the measured data, by marginalising the posterior
of the model paramet& givenD;, over all those); that are at least as consistent with the data, as

is minimally possible when the null is true. The posterior when the null is true, is computed as the
posterior off; given dateDi/, WhereDi/ is the data that is generated from the model in which the
null Hg) is true, and is referred to as the “generated data’—to be distinguished from the measured
dataD;, i.e. generated dalai/ is different from available measured d&ga in general. Then the
posterior probability density @, given the generated dalﬂi is its posterior if the null were true.
Hereafter, we refer to this model that the null is true in, as the “benchmark model” and denote it by
the notationM;. For example, in the galactic application considered in this paper, the benchmark
model is one in which the state spapdf is an isotropic function of the location and velocity
vectors.

When the posterior probability of theth model paramete; can be computed given theh
measured data, as well as given til generated data—even if the same non-informative prior is
invoked in each posterior computation—it may be possible to define the support in this measured
data for thei-th null, by comparing the marginalised posteriorpfjiven the measured dala,

to the marginalised posterior 6f when thei-th null is true, i.e. by comparingn(ailDi)dai, to
i

fn(0i|Di/)d0i. In other words, the support in this measured data for thisamuildin principle be

6

given by the odds ratio
[ =(6,|D;)de,
6;

RRETTST

0

(4.1)

(wherei = 1,2 in our galactic application). In that case, an odds r@ti@ 1 would imply that the
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support in the measured data for the null is high, with higher support for bigger values of the ratio.
Similarly, Q; < 1 would indicate lower support. However, such a definition of the support for the
nullin the data, could confound the interpretation of the comparison of support in measurBd data
for null H, with support in another measured dataBgtor null HY, where the two data sets are
differently sized and the model parameters areféédint dimensionalities—a comparative exercise

of this nature is the prime target in this work, insofar as the galactic application is concerned. Such
a comparison is easier to interpret if the defined support in a data for a null is bounded from
both ends. To achieve the same, we opt to define the support in the measured data for the null,
as the probability of the null conditional on the data, i.e. aﬂE’tDi). In this definition then,

there can be zero support in the data for the null while the maximal support is 1, s.t. there is no
distinction made in this definition, between models th&tioodds ratio (defined in Equatianl)

in excess of 1. Then the support By for H{" is easily compared to that iB, for HY, as
PrH{PID,1)/ Pr(H{?D,). However, when the application does not involve comparison of supports
in two different data sets, for respective nulls, the odds @td Equation4.1lis indeed applicable

(as in the example application on the O-ring data, presented in SecpnThe pursuit of the
definition of support as the probability of the null conditional on the data—as distinguished from
the odds ratio—may appear to resemble the Fully Bayesian Significance Test oFlEBSh et al.
(2008. FBST tests the sharp null hypothesis that the relevant model pargf)dtas a value

Bo, i.e. Ho : B = Bo. We discuss FBST in detail in Secti®2 of the attached Supplementary
Material. However, this new testftiers from FBST in both scope (allows for implementation to
non-sharp nulls, in high-dimensional, non-parametric contexts), as well as in structure (by invoking
posterior computation given the generated data, unlike by identifying the posterior computed at
the null-abiding valugg, of the model parameter, as in FBST). Thesedences are clarified in
Section4.1 In our definition of support as the probability of the null given the data, we partition
the native space of model paramefeinto the space& (D) that harbours parameters that are

more or equally consistent with the measured data than is minimally possible when the null is true,
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and compute P& € 7 »,(D;)). We discuss this construct in the following paragraphs.
Letd; € S; C RY. We begin by partitionings; into the data-dependent, disjoint and exhaustive

sub-space§ (Di) and 7T, (D), for a given benchmark mode¥t;, such thatS; = 7 (Di) U

T (Di) where foré, € Ty (Di), 7(6:|Dy), is less than the minimum value a{6|D/), i.e. the
minimum value of the posterior if the nUHIg) were true. Again, fol; € 7. (D), n(6|D), is
equal to, or in excess of the minimum valuea®|D/). In other words{T, (D;) contains allg
that are at least as consistent with the measured@jaa is minimally possible if the null were
trueand7 (i) contains alb that are less consistent with the measured Bathan is minimally
possible if the null were true. The larger the proportiom difiat livein 7 (D;), the smaller is the
support in dat®; towards the null. Then we can express the conditional probabililygiltm), as

1 - Pr(@ € T, (Di), which in turn is the probability tha lives inside7  (D;):

PrHYID) = Pr@ e 7h,(Di)) where (4.2)
Pr@ c 7,,(Dy)) = f 7(6;|D;)dg;  with (4.3)
Tm;(Di)
_ [, =™@D)) (6ID;)
Tm(Di) = {0. ) < @ [ (4.4)

wherex(™M"(,|D/) is the minimum value of the posterior probability density of the unknown
model parameter vectdk if the null were true, i.e. in the benchmark modef;. Actually, to
ensure invariance to a bijective and continuoustedentiable transformatio&(-) of 6;, in Equa-
tion 4.4, we define7 (D) as the set of ay’s, the normalised posterior density of which given
dataD; is greater than or equal to the normalised posterior under the benchmark model, with the
normalisation given by a reference densif;), r : Si — R. We choose to work with a reference
densityr(6;), that is uniform ing;, i = 1,2. Then using this normalisation, IPtg)|Di) is rendered
invariant to re-parametrisation 6fbrought about by the transformatian= =(6;), Madruga et al.
(2003; the authors presented this suggestion in the context of FBS@&ira et al(2008.

Thus Equationt.2, Equation4.3and Equationt.4 tell us that in this new test, the definition of
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the sub-spac@, (D;) follows from the identification of the minimal posterior probability density

of 6; given generated dalﬁi/, achieved if the null were true, i.e. achieved in the benchmark
model M;. Once the sub-spadg,, (D;) is identified for a choseM;, support inD; for null Hg) is
quantified by integrating the posterior density over all@hthat live inside7 5, (D;). Thus, unlike

in Bayes Factors—the computation of which involves integrating over the whole of the parameter
spaceS;—this test involves integrating over an identified subsp@gg(D;) of Si.

In practice, P&, € 7(D;)) is approximated as the proportion of sampleg,ojenerated in
the MCMC chain run with measured ddig that exceed the minimal posterior attained in the
MCMC chain run with generated dalx. It is this proportion of parameter values that reside in
the subspac&,,(D;), and so, this is the proportion of valueséfthat are at least as consistent
with dataD;, than is minimally possible if the null were true. The conditional probability of the
null given the measured data, is then the computed| Br{y(D;)).

Once we know how to compute the probability of a null conditional on the measured data, we
can compute probability of nulll{? andH{? respectively, given dat®; andD,. To do this we
would need to generate daﬂé and Dé from benchmark modela1; and M, respectively, where,
the benchmark modeW; is defined such that in it nulHél) is true, while modeM, can be defined
so that nullHY is true. Then we can finally compare RfY|D1) with Pr(H?|D,). In fact in our
galactic application—as we shall see belﬁ!/i(Hs the data generated by sampling from the isotropic
state spacedf that is learnt using the measured dBai = 1,2. The benchmark modeV{; is
then the model in which theth state spac@df is isotropic, i.e. nuIIHg) is true;i = 1,2. As
mentioned at the end of Secti@nl, in this application, we learn the unknown model parameter
vector, := (¥0,.... L. pY.....p)", using the datd®;, i = 1,2. Then the support in the data
D; for the null that state spac#’; is isotropic, is given by PH{|D;) = Pr(p, ¥; € T, (D),

i = 1,2. In Sectiorb we discuss the implementation of this new test to find such support in

e 2 data sets of disparate sizes,
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e when it is not possible to learé, under the consideration that theh data lives in an

anisotropic state space foe 1, 2 (since such an alternative model is intractable),
e when#; and, have diferent dimensionalities, and
e the error distributions of the measurabl@s X,, Vs in dataD; andD, are not the same.

It is to be noted that marginalisation is undertaken in this new test, as in Bayes factor computa-
tion, but unlike with BFs, the marginalisation is not over the full parameter space. Instead the
marginalisation is over that sub-space of the parameter space that harbours those model parameter
values that are more or equally compatible with the available data, than with the generated data,
i.e. than when the null is true. In seeking such a sub-space, there is a motivational similarity in this
procedure with FBST, though there are structurfedences between FBST and the computation
of support in our test. These are discussed in the next subsection.

Before proceeding to discuss thosé@liences, we note that definition for support in the data
for a null as per Equatiod.2, is not an approximation for Bayes factors in any sense. One worry
about this implementation—alluded to early in this section—is that there is no distinction made
between models that enjoy support of 1 in the data given the null. On the contrary, the odds
ratio computed as marginalisation over the full parameter space given the measured and generated
data (Equationt.1), when applicable, is capable of distinguishing between all models that are
differently compatible with the data. In applications that cannot be addressed by Bayes factors, or
by the odds ratio computation, computation of support as per Equatios a good way out, but

there may remain worries about its asymptotic consistency.

4.1 Differences with FBST

This new test dters from FBST as far as its remit as well as its structure is concerned.
In FBST, one seeks the maximum value of the posterior of the model pargsngitean the

available dat®, computed at the valyg of the model parameter, since the (sharp) null states that
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B = Bo. Then the probability that the posterior of the model parameter diverceeds or equals

this identified maximal value, is used to compute the support in the null given the data. However,
in our new test, the instrument of use is the “generated data”, i.e. the data that is generated from
the model in which the null is true. With the generated data in hand, there is no need to evaluate the
posterior of the model parametgpgiven the measured data, at chosen valuds Bfather, it is the
posterior of@ givenD, that is dfectively compared to the posterior @Qiven the generated data.
Consequently, even if the null is not sharp, but states that the data is chosen from a density with a
certain symmetrform, we can still test for such a null . An example of this is the very galactic
application that we address in this paper. We recall from Seé&ibthat in this application, the

null states that the host space of the state space V&tter(Xy, X, X3, V1, Vo, V3)T is isotropic.

This is inherently a non-sharp hypothesis—we express this null in a form that may appear sharp,
but only speciously so, by stating that the state space dehiftyV) is an isotropic function of

X andV under the null, i.eHp : f(X,V) = ¥(E(X, V)), where¥(-) can be any function, as long
as¥(-) > 0 (see Equatio3.1). Thus, in contrast to the sharp hypothesis that states that the model
parameteB equals a known valyg,, our null states that the state space density enjoys a prescribed
symmetry, namely isotropy, and not a particular value, since the value of the fultgns not

fixed. The benchmark model in which this null is true, is then one in which the state space density
is assumed to be an isotropic functionXfandV, without any further specification. In fact, we
undertake an empirical illustration of our test in the following subsection, to demonstrate that the
new test can compute support in a measured data set fdiugetl null that states that the data is
described by a model function that is an approximation for a known descriptor of the data, where
the quality of this approximation is given. Such applications are outside the remit of FBST in its
current form. Thus, one prime ftierence between the new test and FBST is that this test finds
support in the measured data for a hypothesis that is not necessarily sharp, while FBST is limited
to hypothesis of the typE : 6 = 6o, i.e. sharp hypotheses.

In this test we can even compute support in the measured data for the null as the ratio of the
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marginalised posteriors computed given the measured and generated data—except, such a construct
is difficult to interpret when we seek to compare support in one data for a given null, to supportin
another data for another null. Indeed, in applications that do not involve such a comparison, using
our test, we can compute support in the data for a null either #&sdP{(,((D)), or as the odds

ratio Q defined in Equatiod.1. This is undertaken in our empirical illustration discussed in the
following section. However, in the galactic application, we do undertake a comparison of supports
for different nulls in respective data sets, and therefore, support irttth@ata for tha-th null is
computed only as P¥( € T, (D;)).

In such applications, we identify the minimal posterior attained if the null were true, i.e. given
the generated data, and compute the probability that this minimal value is equalled or exceeded
by the posterior o) givenD. In this pursuit, there is a motivational similarity between our test
and FBST. However, unlike in FBST, computation of this probability is performed by counting the
fraction of samples o generated in the MCMC chain run wilhy, for which the posterior exceeds
the minimal posterior attained in the MCMC chain run with the generated data—thus avoiding an
explicit arg(max{)) of the posterior given the generated data. Importantly, avoiding such optimisa-
tion then helps us to extend the applicability of this test to contexts in whisthigh-dimensional
(as borne by the galactic application). In contrast, undertaking such optimisation under the null in
FBST, will get more diicult with increasing dimensionality of the model parameter, thus limiting
the applicability of FBST to low-dimensional contexts.

Implementation in this new test also helps enhance its applicability over FBST, to non-parametric
situations, i.e. when the posterior probability@§iven data (measured giod generated) is not
closed-form, as well as when the model in which the null is true, is not parametric, as demonstrated
by our galactic application—such a non-parametric application is outside the scope of FBST in its

current form.
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4.2 lllustration using standard data for a diffused null

We illustrate the new test using a simple and standard data set, before moving on to implement-
ing it on galactic data. For the purposes of this illustration, we invoke the well-known (though
potently morbid) data on the failure of O-rings with temperatiralal et al.(1989; Robert and
Casella(2004. The “O-rings” are the rubber rings that were used to seal the joints in a part of the
Challenger space shuttle, that exploded on the 28th of January, 1986, within a little more than the
first minute of its flight. The explosion was attributed to the failure of an O-ring in this part, where
O-ring failure is now known to be induced at low temperatures, such as the very low temperature
of 31° F at the time of the Challenger launch.

The data that we use here is the same given on page 15 of the bde&lsyt and Casella
(2004. This data set includes the temperattiréin ° F) at the time of the flight and the cor-
responding O-ring failure or success—given as 1 or 0, respectively—in 23 shuttle flights. Logistic
regression is a natural choice to model tlkeet of the predictor variabl& on this binary pre-
dictor Y of O-ring failure. Robert and Casell@2004) treatY ~ Bernoulli(p(T)), where the rate
p(T) of this Bernoulli distribution is temperature dependent, With(l?g%) = a + BT, so

+8T

e . - .
thatp(T) = 1 wherea, 8 are the parameters of this logistic regression model, to be learnt

given the O-ring data. Then the likelihood function is
23

tep) = [ [y @-py, (4.5)
i=1

where in the O-ring data, at the temperatilire= t; in thei-th row, Y = y; with probability of
failure given byp;; i = 1,...,23. (Temperaturd € v c R; by writing T = t, we imply a
temperature in the-neighbourhood of;, in the limit of e approaching zero). With this likeli-
hood, and chosen priors @nhandpg, Robert and Casell@2004) express the posterior probability
density of these parameters given the O-ring data, from which they perform posterior sampling
using Metropolis-Hastings (independent sampler), to leaandg. At the modes of the marginal

posterior probability olx andg, (at approximately 15.25 and -0.24 respectively), thealues
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computed in this logistic model for= 1, ..., 23, are plotted in filled black circles in Figuteand
the learnt functiomp(T) in this model is depicted by the solid black line that connects these points
in this figure. We refer to this model qi(T) as pmogd T)—t0 signify that this model is achieved
using the modal values af andg learnt byRobert and Casellé2004), given the O-ring data
D ={yi,..., Y23}

Then pnoad T) is the variation in the failure probability with temperature that describes the
measured datB. We approximate.qd T) with model functionp,(T), wherek is a string-valued
variable,k =" red”,“blue’, “greert, with the quality of the approximation parametrised by the

constant mean square distarnge

2231 (Pmoadti) — P(t))?
ag = = 53 .

(4.6)

The variation of failure probability witf, as displayed in Figurg&, reminds us of the shape of a
(scaled) folded-normal density functitkieone et al(1961). This motivates us to choose a scaled-
folded-normal functional form fopy(T), as follows.

(T - rm)z) (T+ ”\()2)]
2V ;

. 4.7)

P(T) = &[exp(— + exp(—

where the parameters of this function—the scaled-folded-normal (SFN) functiorSageR.,
M e r c RandV € R, which take values,, m, vg in the SFN-shaped variatiop(T) of
failure probability with temperature. Thus, in tkeh model, the model parameter vectopjis=
(s M, Vi)', k = “red”,“blue’, “greert. Table 1 includes the constant mean squared distance
parametergy, that defines the SFN functign(T), given pmogd T).

We want to test for the nuHY, given the O-ring data. Herd{" states that the measurable
Y—measurements of which compriBeis distributed as Bernoulli with probability for a “fail” that
is an SFN-shaped function @f, namelyp(T), that approximatepm.qd T) s.t. the mean squared
distance between these two functions computed at. , t,3 is a constanty, (presented in the 6-th

column of Tablel). Then if at temperatur@ = t, the measurable i¥ = y (=1 or O for fail or
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not-fail, respectively), th&-th null is

HY:PriY=y) = (p@®)’(1- pe(t)*Y, where

23
El (Pmoadti) — Pe(t))?

p«(T) is an SFN function of, s.t, - 73 = wy, (4.8)

k =" blue’, "red”, “greerf. Here the constanty,e = 0.00005657@eq = 0.001411agreen =
0.01234 and; is the temperature in theth row of the O-ring data. Thus, theth null is not sharp,
for anyk. By null Hg‘), the observed temperature variation of O-ring failure rate is described by
pc(T), wherep(T) is known to be an approximation m,,qd T) with the quality of the approx-
imation parametrised by the given distangebetween them. NowWpnoqd T) describedD well,
as learnt byRobert and Casell2004. Thus, the O-ring data is described approximately well
by p«(T), where the quality of such an approximation is given by how \egl) approximates
Pmodd T), I.€. how smalky is. Thus, the smaller they, the better doepy(T) describe the datB,
i.e. higher is the support i for HY. Then we expect high supportifor H™? asaye is small
(smallest of the three models considered). On the other hand, owing to the higher valug of
support inD for H{®? is expected to be less than fef”"?. Equally, support irD for H*® is
expected to be least, @ge.AT) is the worst of the three approximationsgg.qd T) (corroborated
in Figurel).

Values ofS, M, V that can define the SFN functigm(T) that approximatepmoqd T) according
to given distancey, are tabulated in Tablefor eachk. This table also includes R4{?|D), which
is the support for th&-th null in the measured O-ring dabathat comprises measured values of
Y. The last column of this table gives the logarithm of the r&tioof the marginalised posterior
of 6y, given dateD to the dataDﬁ that is generated from theth model of thermal variation in the
O-ring data (to be precisaﬁ comprises 23 random numbers, thd of which is sampled from a
Bernoulli distribution with ratep(ti), i = 1,...,23).

Here, the values ofy are not arbitrarily chosen, but very much motivated by aspects of
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this application. pyue(T) is the least squares fit of an SFN-shaped functio @b the sample
{(t;, pmodgti))}fjl taken frompnogd T) that is learnt byRobert and Casell@004) (the filled black
circles in Figurel); puue(T) is depicted in this figure in blue broken lines. The fit has a mean
square error (MSE) aty,,e of about 0.00005657. Figurkealso includes the SFN functigneq(T)

in dotted (red) linesp,eq(T) is only a moderately good fit with an MSE of about 0.001444.{g).

This SFN functionp,q(T) is parametrised by the modal valuespfM andV that are learnt using
dataD in an MCMC-based inference scheme. To achieve the modal valugdbfV, we model
p(T) as an SFN function with unknown paramet&s\, V, so that the likelihood is rendered as
in the RHS of Equationt.5 except nowp; is the value of the SFN functiop(T) computed at

T = t;. Using this likelihood and flat priors on all three unknown parameters, we generate pos-
terior samples fromx(S, M, V|D) using Random-Walk Metropolis-Hastings. Let us refer to this
MCMC chain as “Chain I” for future reference. The trace of this joint posterior probability in this
chain is shown in Figur& in the solid black line. The marginals & M andV are shown in
Figure2. So when the modal values of these marginals are employsdqsasieq andveq (See
columns 3,4,5 of Tablé), in an SFN function off (Equation4.7), preq(T) results, which iSyeq
distance away fronpmeadT). Pgreed T) is constructed by choosing a value &fM, V each from

the tails of their respective marginals learnt usihgFigure2). pyreenis a bad approximation of
Pmoad T), @s parametrised by a higly,een (0f about 0.01234).

The test is implemented using the following steps.

1. We consider the measurabfgo be a Bernoulli variate with rate parameter that varies with
temperature ap(T)—modelled as an SFN function with unknown model parameter vector
0 = (S, M, V)T. We perform Bayesian learning of these parameters given the measured data

D, in “Chain I". Trace ofz(6|D) is shown in Figure in the solid black line.

2. We identify the benchmark mod# in which thek-th nullis true k =" red”, “blue’, “greert’.

Then in modelMy, the variation of failure probability with temperature is an SFN-shaped
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function p(T), s.t. the mean squared distance between itselfpagg(T), computed at the
temperature values in each row of the O-ring datayisSuch a functiorp,(T) is achieved
usingé that is given in Tablé. Then we attain the generated d@(@by selecting a random
Bernoulli variate with rate given by thig(T). We then run an MCMC chain witDﬁ, to

obtain samples from(#|D’i). (This chain is of course fierent from “Chain I” that is run

with dataD). We employ this chain to identify the minimum value ®|D/,). Trace of

the posterior in this chain is shown in Figusen (colourk in the electronic version) dashed
lines fork =" blue’, dotted lines fokk =" red”, broad-dashed lines fér =" greer. The
minimum posterior in the post-burnin part of the chain is also presented in the figure as a

horizontal line in the corresponding line-type.

3. Next we identify the sub-spacgy, (D) that is the native space of those model parameter
vectors, for whichr(8|D) equals or exceeds the minimum posterior attained undek-the
null, i.e. whenpnogdT) is approximated by, (T), within a distance parameter of. Once

we identify this sub-space, we then need to comput@ Br{T,|D) = f n(6|D)de.

0T p, (D)
However, we avoid the computation of this integral, and instead approximate the probability
of membership in this sub-space via a simple case-counting scheme. Thus, we identify the
numberP, out of the total ofQ, # samples that are generated in the MCMC chain “Chain 1",

run with measured daf, for which posterior probability exceeds, or is equatf®” (6|D/)).

. : P : .
Then, Pr@ € Ty, |D) is approximated byQ—k. Then by Equatiort.2, the probability of the
k

" . P
k-th null conditional on the measured data, iséRE(T 5, |D) ~ K

Q

7-th column of Tablel for eachk =" red”, “blue’, “greerf’. The 8-th column contains the

This is tabulated in the

logarithm of the odds rati@y discussed in Equatiof. 1.

As said above in the paragraph following Equatib@ we expect high support in for H.
In fact, in the chain run with generated d@§, ., 7™ (0|D/p,e) is about -13.55, which is lower

thanz(6|D) obtained for allo samples generated in Chain | (in solid black line in Fig@yei.e.
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Pbive
leue

. . . P
Compared toH"®, support inD for H*? is expected to be less. Indeed we find th&¥ ~
red

0.8168 or equivalently, Pé(€ Ty /D) = Pr(H{*?|D) is about 0.8168. Here™M"(6D/eq) ~

~ Pr@ € Tp/D) = Pr(H"?|D) = 1-the highest support possible in the measured data.

—1114. For the crudest (out of the three models) approximatiopfgsd T), in the chain run with
generated dat@éreen, the minimum posterior probability exceeds the posterior achieved for every
0 sample generated in Chain | that is run with measured Bat&hen fraction of these samples

for which posterior exceeds of equals posterior achieved in chain run with generated data, is 0, i.e.

I:)green

Qgreen

As in this application we are not comparing support in one data set for a given null, to supportin

= 0 implying PrH"**’D) = 0.

another data for a fferent null, we could have computed the support in the measured O-ring data
D, for thek-th null, using the ratio of the marginalised posterior gi@to that giverD’ that is de-

fined in Equationt.1asQy. Inthis example, we can perform posterior computation given measured
and generated datgf;n(olD)dH approximated as the sum of the joint posterior probability density
of 6 givenD at eacfw iteration, over the converged part of the chain, normalised by the number of
iterations in this part, is aboutéx 1071, here we assume the converged part of the chain to have
attained ergodicity, so that averaging over valueg8 ahd over iteration numbers are held equiva-
lent. Similarly, f n(elDﬁ)do approximated as the average over iterations from the equilibrium part
of the chain is ;bout.ZX 10°°,1.6x107° 3.0x 10 fork =" greert, “red”, “blue’, so that sup-

port inD for thek-th model as in logQy), is about -8.53, -1.08, 2.89 f&r=" greert, “red”’, “blue’

respectively (see TablB.

5 Implementation of the new test to the galactic application

Following Section4, we implement the new test by finding the minimum posterior achieved under
the null, in order to identify the sub-spa€g, (D;), and then proceed to compute the probability of
the null given datd;, as the probability thad; € 74 (D;).
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Let the model parameter vector that minimises the posterior probability density under the null,

be referred to a8

5.1

(min)
i .

Identification of posterior-optimising model parameter vector, under
the null

In order to identify the vecto®™, the following scheme is used, where the scheme below is

expressed in the paradigm of the Bayesian method in which the discretised state space density

vector¥" and the discretised gravitational mass density vestbare learnt given the measured

dataD;, under the assumption that the state spgateis isotropic (see Sectigh 1). The benchmark

model M; is such, that under it, the state spauzkf is an isotropic function of the locatiod and

velocity V of a galactic particle, i.e. the I’ll,H'lg) is true in modelM;.

e We perform inference o6; given measured dat@;, with Metropolis-Hastings. During this

inference, let the state space vector in thih iteration bed®, ¢ = 1,..., No, where the

chain isNy steps long. Upon convergence, the unkndiyn.e. ¥; andp; in our application,

are learnt within 95% HPD credible regions. From a given chain, we identify the modal
(M) (M)

parameter vectod™ = (¥, P, oM, )T, corresponding to the mode of the

posterior densityr(6;|D;).

We learn the discretised state space denBi¥y®) and gravitational mass densjg{") given

D;, in the aforementioned Bayesian method, where the learnt state space density is isotropic
by construct, (since isotropy of the state space density is the basic underlying assumption
of the Bayesian method). From this learnt isotropitf, at the learnp™), we simulate an

NY) -sized data set of the observed variabigsX, andVs. Let this generated data set be

@0 . (o R R N
Di T {(Xl, ger XZ, ger Vé gen)}kjlt ’

where the size ob; is NV

data
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e Importantly, generated daa.(ge”) is simulated from an isotropic state space function (the
discretised form of which isf™?9 at o™, using rejection sampling, according to the

following algorithm.

1. We solve for the functio®(X) that relates to the sought unknoy§X) via the Poisson
equation: V2®(X) = —4nGp(X), whereX :=|| X ||. The relevance of(X) is that it
is part of the functionE(X,V) (= ®(X) + n(V)) that was introduced in Sectioh ],
where the functiork(., ) forms the argument of state space density(E(X, V)). By
its dependence oX andV, (via E(X,V)), this model of the state spagalf is an
isotropic function ofX andV (see Sectior3.1). Then isotropic state spagel f bears
the formW¥;(E(X, V)) or equivalently, the forn¥;(®(X), n(V)) which is again equivalent
in form to W;(o(X),n(V)), by invoking Poisson equation. In this way, the discretised
versionp, of p(X), can be embedded into the argument of the state space density that is
modelled as isotropig thereby enters the likelihood of the unknowns given the data,

thus allowing for inference on the unknowwn

2. In our applicationE(X, V) is identified with the total energy of a galactic particle, with
®(X) the potential andy(V) = V?/2 identified with the kinetic energy. In fact in our
application,®(X) < 0 for p(X) > 0 and the minimum value ob(X) is ®(0). We
consider only those galactic particles that are bound to the galaxy; the energy of any
such bound particle is negative. Thus, in this applicati(X, V) can at most approach

0, and at least b@(0). Thus, the value of E(X, V) normalised byd(0), lies in (0,1].

3. Since the value 0E(X,V) (= ®(X) + V2/2) is minimally ®(0), and maximally ap-

proaches 0, the range of values\ofs [- v-2®(0), vV-2(0)].

4. We discretisg(X) by discretising the range thatlies in, and discretis&#(E) by dis-
cretising the range thatlies in. Thus,p, = p(X) if X € [(p — 1), ps) and¥; = ¥(e)

if € € [(t—1)5g,t6g), forp = 1,...,Ny, t = 1,...,Ne. (Though we use uniform
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binning in this application—with constant bin widtis- 0 andég > O—other forms of

discretisation can be potentially implemented within this scheme).

~GM(X) Nod

5. We computeb(x) via M(X) where®d(x) = — 4G p(s)sds with M(x) =

S=X

X
f 4np(9)sPds and G is a known (Universal Gravitational) constant. For computa-
s=0

tional ease we discretise these integrals, to define

p-1

4 4
25108 = (- 176%0q + 5 [~ (p- 157y for xe [(p— 1), po). p>1

a=1

M(X)

M(X)

Il
k
2
)
e

for xe€|[0,9),

4
MO = ) s - @-1P6lpq for x= N,
g=1

Nxd
f p(s)sds
s=X a=p+1
Ny
f p(s)sds
S=X

HereN,s is the maximum radius to which data are available sophati, ..., Ny, and

Nx
> 65 - (@ 17675 + (%% - 12, for xe [(p- 1)6, po)

0 for x> Ny (5.1

pq Is the gravitational mass density in theth radial bin. This define(x) for any

x > 0, given the identifiegh™),

6. Next, we sample, i.e. the value ofE(-,-) normalised by®(0). Ase € (0,1], we
choosee randomly from/[0, 1], whereU[a, b] is the uniform distribution over the
range B, b], a, b € R. Let the sampled be such that it lies in theth energy bin, i.e.

€ € [(t - 1)e,t5e], t = 1,..., Ng; let thet-th component o™ by,

7. The 3 components of the location vector are continuousMd, N,5]. So we sample,
X1, Xa, X3 ~ U[-Ny0, Nyd] and using these sampled valugsx,, x3, obtain the value
of | x = x = /x{+x5+x5. Let x be such that it lies in the-th radial bin, i.e.

1

xe[(q—1)5,06], g=1,..., Ny For this chosernx, we then computé&(x) usingM(X)
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-G M(x)
X

from Equation5.1 and the definitionb(x) = . We normaliseb(x) by ®(0), so

that®(x) now lives in the range (@].

8. Check if the chosea > ®(x). If not, go back to step number 6. If yes, then recall that

the components of the velocity vectbh, V,, Vs is each continuous inr{+/-2®(0), v-2®(0)],

to suggest thaV/, V,, V3 be each sampled a4, V,, V3 ~ U[- vV-2D(0), v-2D(0)].

So we drawvy, V,, vz individually from this uniform distribution.

9. In this step, we sample froH‘lEM’i) using rejection sampling. Here the chogasin the
t-th energy-bin so tha#{"" is the value of the state spapd f in our discretised model.
The rejection sampling is done by checking—gﬁ(‘(':—’l) > u or not, whereu is a random
number in [Q1], u ~ U[O, 1]. Hereg(e) is the proposal density function that is chosen
to envelope oveW(e), Ve, and is defined ag(e) = 1.05Ve. This is an adequate choice
because the state spaoef ¥ (¢) is normalised to be in (A]. If the above inequality
holds, we allow an integer-valued flag,an increment of 1 and accept the valugs,

andvs as chosen in steps 7 and 8 respectively, agitiedata point irDi(ge”). We iterate

over points 4 to 9, untiy equalsN?’

data’

¢ Now that we have discussed the algorithm used to sample the generatélﬂgﬁ?itm order
to estimated; using this generated data, we start a new MCMC chain. We remind ourselves
that unlike the measured ddba that may live in an anisotropic state space, the generated
dataDi(ge') is sampled from an isotropic state space density (rather its discretised¥prm
i.e. posterior of¢; given dataDi(ge”) is the posterior when the null is true. Post burn-in,
samples o#, vectors generated in each iteration are recorded. In this recorded sample of
values ofg, that which minimises the posterior densil, ..., ¥\, p{.....o{ D], is

the posterior-minimising parameter in the benchmark madel

gi(min) = (\Pg,min)’ L \Pﬂl,énin)’pg,min)’ o ’pg\il,xmin))T. (5.2)
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Let the minimum posterior of given the generated data & (6;D%").

5.2 Probability of membership in subspacer (D)

We need to identify the sub-spa@g, (D;) in which live model parameter vectors, the posterior
of which equals or exceeds the minimal posterior probability density attained under the null,
i.e. 2(M(6;D). We are required to integrate the posterior probability density; afiven
measured dat®;, over all such values of; that live in the subspac®&,(D;), i.e. compute

7(6:|D;)dé;. This integral is then equal to Brg T, |D;).
HiGTMi(Di)
Thus, in this approach, it is possible to implementH¥HD;), even in a high-dimensional

state space, by approximating this probability of membership of the model parameteréyactor
7 m (Di), with a case-counting scheme. In other words, we compute the proportion of the model
parameter vectors for whic™"(6,|D*) < =(6;D;), as recovered in the post-burnin stage of
chains run with measured ddia

Thus, let there be a total @; number of samples d; vectors recovered in the post-burnin
stage in chains run with measured dBia Out of these, leP; number ofé; vectors be such that
n(mi”)(eilDi(ge”)) < n(6;|D;). Here,Q;, P; € Z,, P, < Q.. Then the fractiorP;/Q; is an approximation
to the probability thad; € 7, (D;). Then recalling Equation.2, we state that

PrHID) = % (5.3)

i=1,2.

6 Testing with synthetic galactic data

In this section, we implement this new test to find the probability of the null (that the state space
of a toy galaxy is isotropic), given the (simulated) data at hand. For this simulation exercise, we
use synthetic data that is sampled from chosen state space density models, constructed to simulate

real galactic state space density functions. To be precise, we sample d@a aatdDg from two

ACCEPTED MANUSCRIPT
31



ACCEPTED MANUSCRIPT

chosen state space density functiéfl$'?(X, V) and f{™9(X, V) respectively, that are anisotropic

to different extents, as parametrised by an anisotropy parameter that we discuss below. We realise
that a state space density that is a functioX@ndV via a function such ag(X, V), is an isotropic
function of vectorsX andV. On the other hand, a density function that dependX@mdV via

any form of these vectors, other than thigirnorm, is not an isotropic function of andV.

The model state spaqml f that we sample the synthetic d&da andDg from, are

rue _ 1 €(X, V) [P(x,V)]?
f09(x, v) = oo exp( 5z )exp(—@T) (6.1)
where e(xV) = @, (6.2)
0
and P(X,V)]? = (XoVz— XaVo)? + (XaV1 — X1V3)? + (XaVo — XoV1)?, (6.3)

andr, ando are parameters of this density. The first exponential term in the RHS of Eqéation
manifests the purely isotropic dependenceXoandV, while the second exponential term man-
ifests dependence o andV via a form that is dferent from thel.?-norm of these vectors, i.e.
this second exponential term manifests anisotropic dependen¢@aondV. Thus, the chosen state
space density functions of the type in Equattf, are anisotropic in general, with the strength
of the (anisotropic) second exponential factor on the RHS of Equétigrparametrised by the
parameter,; the bigger is the value af, higher is the relative amplitude of the anisotropic factor
to the isotropic factor (that is parametrised onlydy Equally, forr, approaching 0, the con-
structed state spaqad f in Equation6.1 approaches an isotropic form. The parametds then
the anisotropy scale length. It is measured in the astronomical unit of length on galactic scales:
“kiloparsec”, abbreviated to “kpc”.

We choosef{"™?(X, V) to be more anisotropic thaf{' (X, V) by choosingr,=4 kpc and
ro=0.2 kpc in the two models respectively. In every other way, inpufga (¥, V) and fg(X, V) are

identical. We chooser = 220, in units of km st. To defineE(X, V) and thereby its value in
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Equation6.1, we need to choose the form @{X). We construct this to be

O(X) = — (6.4)

where we chose the parameters tdvhe= 4x10'" times the mass of the Sun aviy,” (astronomical
unit of mass on galactic scales) ang8 kpc. G is a known physical constant, (the Universal
Gravitational constant).

Having constructed| "“9(X, V) and f{'"™9(X, V), we simulate dat®, and Dg respectively
from these state space densities, where each data set contains informaXigrXgandVs. Size
of D is 710 while size oDg is 135. The sampleds; data is chosen to be characterised by Gaussian
noise~ N(0, 20%) which is typical of real-life galaxies that are neaibguglas et al(2007).

Thei-th null states that the da@ is sampled from an isotropic state space denfi{, V)
fori = A B, i.e. fi(X,V) = Yi(E(X,V)), Y¥i(-) > 0, whereX € X € RypandV € V C Ry,. To

condense,
HO @ (X, V) = Wi(E(X,V)), ¥i() >0, (6.5)

fori = A B. When the null is true, the state spaoef is an isotropic function oX andV. As
discussed above for our application, the intractability of the more complex model (anisotropic
state spacgdf) compels us to learn the model parameaieonly under the null model, i.e.
by assuming the state space to be isotropic. The model parameter vectoefdk is 05 =
(PP, Q0P )T is learnt using dat®, under the assumption that the galactic state
space is isotropic, wheye, := ({7, ...,p{")"T and¥, = (¥V,...,¥{)T. Similarly, we define
05, pg, Vs, learnt using dat®g, while assuming an isotropic galactic state space.

In Figure4 we present the posterior probability densitfa|Da) (right panel) andr(6g|Dg)
(left panel), in grey (or red in the electronic version). The posterior probability density attained
under the null, i.e. computed given the generated data, is shown in black in each(6a?*")
in the right andn(HngS’e”)) in the left panel. We recall that the generated data @éﬁ’ are

generated using rejection sampling frol(E)—or rather its discretised versiol that is learnt
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using available measuremems-at the estimategi. See Sectio’ for details of implementation
of this rejection sampling.

It is clear that for the case of the more anisotropic true state space density, i.e. fé; tase
posterior probability density of the model parameter vector falls below the minimal value of the
posterior under the null, i.ex(84Da) < 7M"(B2DY*Y), V6,, implying that the sub-spad8,, (Da)
is empty. It then follows that PH{”|Da) = 0, so that we reject nub{” with 100% probability.

In other words, the hypothesis that the dBtais sampled from an isotropic state space density is
rejected at probability of 1. This is indeed what we expect given that the true déﬁéﬁ‘@(X, V)
thatD, is sampled from is chosen to be strongly anisotropic.

For the case of the less anisotropic true state space density, i.e. fdB,dasthe post-burnin
part of the chain (beyond the 600,000-th iteration; in black in Figire™" (95ID9*") is depicted
in the solid black line. There are multiple valuesng#g|Dg) that exceed this minimal posterior
achieved under the null. In fact, in the post-burnin stage of the chain run wittibdatd6s|Dg) >

7" (9gID*Y) for 83,780 samples oz where there are 200,000 iterations, post-burnin in the
87650
200000
1-0.5394 0.4606. Thus, the hypothesis that the dagas sampled from an isotropic state space

chain. Thus, for this case, BT(,,|Dg) = ~ 0.5394, i.e. the support against the ritlgf) is
density is rejected at probability 0.4606, given data

This corroborates the strength of our test as we chose to sampl®gdtam the true state
space density¥g(X, V) thatis constructed as mildly anisotropic, compared to the strongly anisotropic
true densityPA(X, V) that dataD, is sampled from.

We corroborate convergence within the parts of the chains that we refer to as “post-burnin” in
chains run withDg andD¥®" in Figure5, by overplotting histograms of values of joint posterior
probability density—o8g given the data—generated over two distinct but equally long parts of such
post-burnin stage of the chains. Concurrence of these generated histoffiemsanfidence in the
convergence achieved in the post-burnin stage of the chains presented in the left panel of.Figure

In Figure5, we also present the marginal densities of the parampetegiven synthetic dat®g
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(sampled from a chosen stape f that is mildly anisotropic) and generated dm@e") (sampled

from the isotropicpd f that is learnt using dat@g).

7 Testing for isotropic nature of state space of a real galaxy

In Section2, we introduced the main application that we address in this work, namely that of
learning the density function of all gravitating mass in the real galaxy NGC 3379, using two in-
dependent real data sdds observed byBergond et al(200§ andD, observed bybouglas et al.
(2007. These are two distinct data sets that bear information about 3—out of the 6—state space
coordinates of two dierent kinds of galactic particles, referred to as planetary nebulae (PNe) and
globular clusters (GCs). The data used in the work include measuremetts>6fandV; of 164

PNe reported byouglas et al(2007) and of 29 GCs byBergond et al(2006. From the estimate

of (the discretised versiop of) the gravitational mass density function of all types of matter in
the galaxy, the mass density function of luminous matter in the galaxy can be subtracted, leav-
ing us the mass density of the dark matter in the galaxy, which is a crucially important input into
cosmological models. See Sectidfor details.

As the learning op is possible only under the assumption that the available data is sampled
from an isotropic state space density function, in this section, we discuss finding the probability of
the null that the state space of this example real galaxy is isotropic, conditional on the measured
data set®; andD,. Having estimateg usingD; and then usind,, each time assuming that the
galactic state space is isotropic, we want to know in which case this assumption was more invalid,
given the data. In other words, we want to find the comparative support for the null in these two
data sets.

The physical implications of unequal supports for the assumption that the state space of a given
galaxy is isotropic, can be most interesting—such would then imply tlfiagreint sub-volumes of

the galactic state space ardfdiently anisotropic. This in turn implies that the state space of the
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galaxy is marked by at least two non-interacting sub-volumes, the dynamical structures of which
are diferent, i.e. the distribution of the locatiofiand velocityV vectors of the galactic particles

in which are diterent. The non-linear dynamical implications of sudfiedence is that the motions

of particles in these sub-volumes do not communicate. Physical processes that cause such a split
nature of the galactic state space will then be sought, and importantly, it will then be acknowledged
that estimating the mass density of dark matter in a real galaxy using the available measurements
on Xy, X,, V3 of one set of galactic particles—as is the usual practice in astrophysics—can be risky.

The null Hg), that dateD; is sampled from an isotropic state space density fun¢tgB (X, V))
is defined in Statemer®.1; i = 1,2. Our new test, as described in Sectigns implemented to
estimate the conditional probability P{|D;) of the null Hg) given the datd;. To compute this,
we generate dati(gen by rejection sampling from the discretised state spadé that is itself
learnt using measured ddig) under the benchmark modaf(; (in which HS) is true).

To compute Pifg|D;), 3 chains:i — RUN I, i — RUN Il andi — RUN IlI, that are distin-
guished by the seeds or initial guesses for the unknown parameters, are started with the available
galactic dataD;, for i = 1,2, with the aim of learning the unknown model parameter vegter
(P9, .o, L e)T, where the vectop; = (o0, p))T is the discretised version of the
sought density function of gravitational mass of all matter in the galaxyfand (), ..., Q)T
is the discretised version of the state space densiflf), as learnt using the Bayesian scheme
detailed in Sectiors-1 of the attached Supplementary Material, under the assumptiomthst
sampled from an isotropic state space density. The chains are at least 800,000 iterations long, and
the unknown model parametéris estimated using uniform priors on each scalar unkndlf\%jﬁ,
andp{, are usedj = 1,...,Ng, k= 1,..., N,. From each chain, the identifié#4 ™ at the iden-
tified pi(M’i) is used to generate a data @éie”) (see Sectiom). A chain is run with this generated
data set, in order to compute the minimal value of the posterior when the null is true. For each
of the three chains initiated with fierent seeds and daiy, we identify the fractional number of

samples o#; for which n(oi(mi”)lDi(ge") < n(6|D;), for eachi=1,2. The results for each chain are
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presented in Tabl@.
Traces of the log of the posterior probabiliy densityépfgiven real dateD; in the chains
i —RUN |, fori = 1,2 are shown in Figuré. The minimum value of the posterior density under
the null Hg) is depicted in the solid line starting from the end of the burnin stage of the chain.
Basically, support in real datd, for the assumption of an isotropic state space, is distinct
from that inD,. This implies that thef;(x, v) # fo(X, v), where the true state spapdf thatD; is
sampled from isf;(x, v) andD, ~ f,(x,Vv). However, both data sets carry information on the state
space coordinates{(, X», X3, V1, V2, V3)' in the same galactic state space, i.e. both data sets are
sampled frompd fs that describe the state space structure of all or some volume inside the same
galactic state spac®’. Thus, f1(x,v) # fo(X,v) = Wi # W, wheref(x,V) is the pd f of the
state space vector that lives in volurié, c ‘W andf,(x, v) is the density of the state space vector
in volume W, c W. In terms of the state space structure of this real galaxy NGC 3379, we can
then conclude that the state space of the system is marked by at least two distinct volumes, motions
in which do not communicate with each other, leading to distinct particle distributions being set up
in these two volumes, which in turn manifests in distipdtfs for these subspace$(, andW,)
of the galactic state spadd’. DataD; andD, are respectively drawn from such distinpd fs.
Comparing the computed P#{?|D;) and Pri{?|D,), we can see that the assumption of isotropy
is more likely to be invalid for the state space density from which the Batare sampled than
from which the dateD, are drawn. Even beyond comparative terms, our results indicate that
Pr(H(()z)lDz) ~ 1, i.e. we reject the isotropy of the state space density that the observdd,data

this galaxy live in at nearly O probability.

8 Discussions

In the above test, a high supportin towards an isotropic state spage f, along with a moderate
support inD; for the same assumption, indicate that the two samples are drawn from two distinct

state space densities.
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Any apriori expectation that the implementation of the PNe and GC data sets will lead to
concurring gravitational mass density estimates is foreshadowed by the assumption that both data
sets are sampled from the same - namely, the galactic - state space déKsMy). Such an
expectation can be understood to emanate from the argument that since both samples live in the
galactic phase spad#’, they are expected to be sampled from the same galactic state space density,
at the galactic gravitational potential. However, such does not necessarily follow if—for example—

the galactic state space densi{yX, V) is a non-analytic function witlp,.x branches:
f(X,V) = fo(X,V), V(Xg, X2, X3, V1, Vo, Va) € W, C W, p=1,..., Prax (8.1)

Then, if the datd, are sampled from the densify(-) and dataD; ~ f;(-), it follows thatD; and

D, are sampled from unequal state space densities. Qualitatively we understand that if the galactic
state spacé¥ is split into isolated volumes, such that the motions in these volumes do not mix
and are therefore distinctly distributed in general, the state space densities of these volumes would
be unequal. This is synonymous to saying tfiltis marked by at least two distinct basins of
attraction and the two observed samples reside in such distinct basins.

One standard non-linear dynamical cause for the splittingdbfnclude the development of
basins of attraction, leading to attractors, generated in a multistable galactic gravitational poten-
tial. Basins of attraction could also be triggered around chaotic attractors, which in turn could be
due to resonance interaction with external perturbers or due to merging events in the evolutionary
history of the galaxy. Galactic state spaces can be split given that a galaxy is expectedly a complex
system, built of multiple components with independent evolutionary histories and distinct dynam-
ical timescales. As an example, at least in the neighbourhood of the Sun, the state space structure
of the Milky Way is highly multi-modal and the ensuing dynamics is highly non-linear, marked by

significant chaoticity.

Supplementary material
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Details of the Bayesian learning of the gravitational mass density and stateggplafthe galaxy
are provided in SectioB-1 of the attached supplementary material. Sec8eadiscusses details

of the Fully Bayesian Significance Test.
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Table 1:
k SFN functionused| s | m¢ | W K PriHID) | 1g ()
red Bea(T) 091|534 98.1| 0001411 | 0.8168 | -1.0814
blue iue(T) 0.97 | 51.7| 99.0| 0.00005657 1 2.8893
green Rreed T) 1.02| 48.0| 96.5| 0.01234 0 -8.5292
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Table 2: Table displaying conditional probability of nlﬂg) (Statement.5) given synthetic data

D; that is simulated from true anisotropic state space deriﬁfﬁ‘/e)(x,V), where the density for

i = Alis more anisotropic than for= B. Column 2 shows the valug of the anisotropy parameter
that parametrises the deviation 8f (X, V) from an isotropic function oKX andV. Column 3
shows the numbd?; of generated samples @f for which the posterior probability density given
dataD;, exceeds the minimum values of the posterior density under the null; column 4 gives the
total numberQ; of samples o#); generated in the chain. The ratio of the entries in Column 3 to
that in Column 4 is in Column 5—it is taken to approximatedPe(7 », (D;)) which in turn is equal

to Pr(H(()')lDi) (see Equatior.4 and Equationt.?2). Column 6 delineates the probability at which
null HY can be rejected, given daia.

i [[ra(kpc)| P Q | Pre € T, (D)) ~ Pi/Q | HY rejected aprobability
A 4 0 2<10P 0 1
B 0.2 87,650 X1CP 0.5394 0.4606
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Table 3: Table showing support in dddafor null Hg), i = 1,2, computed using 3 fferent chains
i —RUN jforeachi;i=12,j=1,II,1I.

Chainname || Data saised| Pr{;|D;)
1-RUNI D, 0.6202
1-RUNII D; 0.5862
1-RUN I D, 0.6269
2-RUNI D, 0.9617
2-RUNII D, 0.9650
2-RUN I D, 0.9348
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Figure 1: The solid black line shows failure probability variatipm,gdT) with temperatureT,

as learnt using the modal values of the parameters of the logistic regression model considered by
Robert and Casell2004), given the O-ring dat®. The filled black circles represept,oqdti),

whereT = t; is the temperature in thieth row of the O-ring data, = 1,...,23. Thee distinct
SFN-shaped functions @f, that approximatgn.qd T) differently, i.e. are dierently distant from

Pmodd T), are depictedppue(T) in the broken (blue in the e-version) lingsey(T) in dotted (red in

the e-version) lines anpyee(T) in the long-dashed (green in the e-version) lines.
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Figure 2: Panels show marginals of the unknown paramé&gekg V that parametrise an SFN
function p(T) that models the variation of failure probability with temperattlirel hese marginals
are learnt using an MCMC chain, with the O-ring data.
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Figure 3: In solid black: trace of the joint posterior probability densif$, V, M|D) of the un-
known model parameterS, M, V, given measured data, from the MCMC chain Chain I. In
broken (blue) lines: trace of the posterior&fV, M given generated dala()Iue that is randomly
sampled from a Bernoulli distribution with rate given by the SFN funcpgi.(T). This chain cor-
responds to the lowest posterior values amongst the four chains shownfPes, V, M|D1/3|ue)

is depicted in the broken (blue) lines. In dotted (red) lines: trace(®fV, M|D/_,) whereD/_, is
generated usin@eq(T) as the variation in failure probability witl; minimum of this posterior

is shown in (red) dots. In (green) long dashes: trace(8fV, MlDéree,) WhereDgreenis generated
using pgree(T). This chain occurs at the highest posterior density values out of the four chains

shown here.
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Figure 4: Figure showing log of the posterior probability densii§a|Da) (right) andn(6g|Dg)

(left), in grey (or red in the electronic version), for chains that were run $at® and 5<10°
iterations respectively. The log of the posterior probability densit§,cdindfg, given generated
dataD¥*" andD*" respectively, represent the posterior densities of the model parameters in the
benchmark models in which the null is true; the traces of these posteriori are shown in black in
the right and left panels. Here simulated dataBBgtis about 5.3 times bigger in size than data
Dg. D, is sampled from a true state space density that is constructed as strongly anisotropic, as
distinguished from the mildly anisotropic true state space density that simulatddgiatsampled

from. In the right panel, the minimum value of the posterior when themj,’ifl IS true, is in excess

of the posterion(falD,a) at all iterations, i.e. for no value @ doest(@alDa) > 7(62DY*"). Thus,

the null H(()A) is rejected at a probability of 1. On the other hand, from the post-burnin part of the
chain (beyond the 600,000-th iteration) we find that the minimum value of the posterior under the
benchmark modeMg (shown in the black solid line) falls short a{@g|Dg) at 87,650 number of
iterations, out of the 200,000 samplesigfgenerated in the post-burnin part of the chain run with
Dg. The nullH{® is then rejected at a probability of 1 - 876300,000~ 0.4606.

ACCEPTED MANUSCRIPT
50



ACCEPTED MANUSCRIPT

4x10%
1= 1 . R ]
> B . i i
0 - . i _
g 08 T o 3x10% | -
> ’ \ 1o L ]
L — [ r N
£ 06 | 7 ° B i
s | | 3 20 :
0} =
2 04 — — a0 - _
— r N ~ — N
© + e g L _
"0z I — 10* - 7
o - i
z B ] - ]
O ‘ | | O L | | | ‘ | | | I | | ‘ | |
—-1600 —1580 2x108 4x108 6x10%8 8x108
Value of jt. posterior density ps (M kpe3)

Figure 5: Left: figure showing histograms of the logarithm of the values(@f|Dg) generated

in two distinct 30,000 iteration-long, post-burnin parts of the chain run with syntheticRiata
(histograms of values of the posterior in the two distinct parts, are shown in solid and broken lines
coloured grey—or red in the e-version). Similar histograms of valueséang(Bge@) generated in

two distinct 30,000 iterations-long, post-burnin parts of the chain run with generatela(B&eé?t,aare
shown in solid and broken, black lines. Right: figure showing the marginal posterior probability of
the parametepg, given synthetic datB®g, plotted in grey, (or in red in the electronic version) and
the marginal ops given and dat®*" (in black), whereD®" is sampled from the isotropic state
spacepd f that is itself learnt usin®s.
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Figure 6: Trace of logarithm of the posterior probability density of the model parameter véctoight

panel) andd, (left) given the two sets of real dafy (size 164) and- (size 29) respectively, in chains
1-RUN land 2- RUN I. The minimal value of the posterior under the benchmark model (when the null is
true given the corresponding generated data set), from the post-burnin stage of that chain (iteration 300,000
onwards), is shown in the solid grey (or red in the e-version) line.
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Figure 7: Right panel: logarithm of gravitational mass density vegioi(in black, with modal values

shown in open circles) learnt from chair-RUN | that is run using datR», andp; from chain 1- RUN |

that is run usind; (modal values shown in filled circles; in red in the e-version). These gravitational mass
density results were obtained under the assumption of an isotropic state space, the support for which in the
two data sets is indicated in Tabbe Overlaid on these are the identified vectp[f?i”) (modal values in
crosses; in blue in the e-version) apgi"”) (modal values in triangles; in green in the e-version), which are
respectively, the posterior-minimising, null-abiding, gravitational mass density vectors identified in chains
run with the generated daD(lge') and D(der). The concurrence gb, andpi™” is noted, along with the

lack of consistency betwegn andp(lmi”). The error bars represent the 95% HPD credible regions on the
estimatedo. parameter. In the left panel, the state space density ve¥tpisnodal values in filled red
circles) and¥, (modal values in open black circles), learnt from the chairsRUN | and 2— RUN |,

are shown, compared respectively‘l'é’”i”) (modal values in blue crosses) a\ﬂé“i”) (in green triangles).
Again, the overlap o ;) and'¥>(min) is noted, as is the discord betwe¥n and‘I’(lmi“), especially at high

and low energies. Th¥ vectors are normalised to unity at= 1 wheree is the value of the normalised

energy.
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