

1

* Orange Labs, 42 rue des Coutures, 14000 Caen, France.
+ Nominet, 6th Floor, 2 Kingdom Street, London, W2 6BD, UK.
‡ Orange Labs, 4 rue du Clos Courtel, 35510 Cesson-Sevigne,
France.

Abstract—The Internet of Things operates in a personal-data-rich
sector, which makes security and privacy an increasing concern for
consumers. Access control is thus a vital issue to ensure trust in the
IoT. Several access-control models are today available, each of them
coming with various features, making them more or less suitable for
the IoT. This article provides a comprehensive survey of these
different models, focused both on access control models (e.g., DAC,
MAC, RBAC, ABAC) and on access control architectures and
protocols (e.g., SAML and XACML, OAuth 2.0, ACE, UMA,
LMW2M, AllJoyn). The suitability of each model or framework for
IoT is discussed. In conclusion, we provide future directions for
research on access control for the IoT: scalability, heterogeneity,
openness and flexibility, identity of objects, personal data handling,
dynamic access control policies and usable security.

Index Terms—Access Control (AC), Internet of Things (IoT),

I. INTRODUCTION
he Internet of Things (IoT) is an enabler for improving
many different aspects of private and public
life. Its applications range from health-care to transport,

and from environment and energy to business and culture. IoT
platforms build on collecting data and often require users to
grant permissions to applications, such as the ability to control
lights in a house. In addition to monitoring and control, IoT
facilitates the rise of a “sharing economy,” as IoT objects
become a facility that may be used by many individuals.

The IoT offers an enormous market opportunity for
equipment manufacturers, Internet service providers, and
application developers. Gartner reported that 8.4 billion of
connected objects were in use in 2017 (up 31% from 2016)
and forecasted 20.4 billion for 2020, so more than 240% of
growth over the next three years [1]. Previously, traffic
monitoring of US cellular network already showed a year to
year increase of 250% for M2M traffic volume [2]. Vertical
businesses are the more impacted with a foreseen rise of IoT-
based healthcare applications (e.g., mobile health, telecare
enable medical wellness, prevention, diagnosis, treatment).

However, the only way to unleash this potential is through a
trustful framework for granting access to the things that
surround and make up the IoT environment. As it currently
stands, consumer trust in IoT systems is effectively not
improving, especially, it makes the news that unsecured IoT
devices enable new security attacks. These concerns about
security and privacy of IoT systems are not new. In 2015, 80%
of the 1000 Internet users surveyed did not believe IoT's

benefits outweigh any privacy concern about their personal
data [3].

Privacy risks of any system are produced by three factors:
personal data collected or generated, actions performed on that
data and the context surrounding its collection, generation,
processing, disclosure, and retention [8]. Some privacy
frameworks, standards, and legislation try to reduce the risk
from these factors to address privacy concerns. These include
Fair Information Practice Principles (FIPPs) [4], ISO/IEC
29100 Privacy Framework [5], Privacy by Design [6], and, for
European residents, General Data Protection Regulation
(GDPR) [7]. However, concerning IoT, while most of the
regulations mentioned above focus on the first two factors, we
believe that the third factor, “context,” is critical to ensure a
trustful Internet of Things. IoT systems thus need proper
access control to reduce their privacy risks [9][10].

This paper reviews and discusses the various requirements
and solutions to address the access control issue for the IoT.
The rest of the article is structured as follows. We first discuss
the main principles of access control in Section II. We present
access control as the exchange of and the reasoning on a set of
assertions to decide access to a resource in a given context.
We then detail the various methods for reasoning on the
provided assertions and taking an access control decision
(Section III). In Section IV, we introduce the various
protocols, languages, and architectures to build and convey
access control related assertions. Many of these works stem
from the Web. We finally discuss the future requirements to
drive the research on Access Control for the IoT and a
possible research agenda to address these open questions
(section V).

II. ACCESS CONTROL PRINCIPLES FOR THE IOT
In this section, we first discuss the main principles of Access
Control (AC) and various possible architectures when it comes
to the IoT.

A. Main Principles
AC enforces a selective restriction of access to protected

resources, including data, IoT objects, and services. In the IoT
context, access can mean performing a CRUD operation
(Create, Read, Update, Delete) on a given data resource, but
also performing operations on a physical resource (e.g.,
actuating). The decision to grant access to a resource is called
access control [11]. Note that we need to differentiate between
access control and authentication: the fundamental question of
authentication is “who is speaking?” while the one of access
control is “who is trusted?” (i.e., who is authorized to perform
a given action) [12]. In a distributed environment, these
questions can receive a variety of answers.

More precisely, Gusmeroli et al. [13] define AC as a
method for controlling who (i.e., subject) can perform which
access rights (i.e., actions) on which resource (i.e., object).

Access Control in the Internet of Things:
A Survey of Existing Approaches and Open Research Questions

Emmanuel Bertin*, Dina Hussein*, Cigdem Sengul+ and Vincent Frey‡

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362654805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Thus, AC is represented via a set of assertions involving
subjects, actions, and objects [13]. In other words, AC rules or
policies specify the conditions that must be fulfilled by a
subject (e.g., user, service, device) to access an object (e.g.,
service, device) to perform an action (e.g., read).

Figure 1: Overview of an AC system. The subject requests access to
perform an action or multiple actions over an access-controlled
project. The request is evaluated based on policies. The access
control decision - allow or deny access – is enforced by the object.

 The different steps that AC involves is shown in Figure 1.
First, the subject requests an action on the object to the AC
system (or the request might be directly targeted to the object
and intercepted by the AC system). This action may, for
example, be a request to access an object’s data or to actuate
this object. This requested action comes along with attributes
intended to assess the right of the subject to perform this
action. Based on these attributes, as shown in Figure 1, the AC
system realizes the authorization process with three following
logical steps. First, it selects the applicable rules or policies for
this request based on the context of the request and the
provided attributes. Second, it compares the provided
attributes with those policies and decides to grant access or
not. Third, it enforces this decision by transferring the
requested action to the object.

These steps are implemented in various ways in the
different AC architectures.

B. AC in Different IoT Architectures
From an architectural point of view, two main paradigms

exist in the literature for IoT systems: centralized and
distributed [14]. In the centralized IoT architecture, a central
entity handles acquiring, processing and transferring data
between networked nodes as well as decision making,
including authorization decisions. In the distributed IoT
architecture, entities at the edge of the network can exchange
data and dynamically collaborate. Roman et al. [15]
characterize distributed IoT by two main principles: (i) edge
intelligence, which is the ability to delegate decision making
to entities at a lower level and (ii) collaboration among diverse
entities to reach a particular goal.

The variations in IoT network structure, communication
patterns, heterogeneity, and potential mobility, may dictate
either a centralized or distributed AC implementation. Figure
2 shows the typical design patterns for IoT networking [16].
For instance, in Figure 2, (b), (c) and (d) have centralized
entities such as a service provider or a gateway. These entities
may authorize access requests centrally. Note that, in this case,
the endpoints (e.g., IoT devices) need to be able to connect to
the centralized authorization entity at all times. However, in
IoT networks connectivity may not always be guaranteed due

to mobility or for energy saving. Also, the centralized AC
approaches face the issues of having a Single Point of Failure
(SPOF) and scalability [17].
On the other hand, for the device-to-device communication
patterns shown in Figure 2 (a), distributed authorization
solutions would be needed. Distributed authorization in the
IoT context translates into pushing access control intelligence
to the edge of the network [17]. However, resource limitations
at the IoT edge are a significant challenge to achieve such
edge intelligence. Furthermore, the lack of trust in distributed
entities, enforcement of access control becomes a crucial
security issue.

Depending on the network structure, and the underlying
application, it is also possible to consider a semi-distributed
AC approach. In such an approach, AC responsibility is split
between a centralized decision-making authority and several
distributed decision enforcement authorities.
 These challenges need careful attention from the IoT
research community, and they form the main motivation of
this paper. We present in the following section the various
access control methods and how they fit with the IoT needs.

Figure 2: Design patterns for IoT communication (Source: IETF
[16]) Four patterns emerge in IoT communications: Device-to-
device, device-to-cloud, device-to-gateway, and back-end data
sharing.

III. ACCESS CONTROL MODELS FOR THE IOT
In this section, we present current authorization solutions in
practice and standardization and discuss them in the context of
IoT. These solutions cover a broad range intentionally, to
enable an extensive discussion on the various solutions.
Therefore, while some of these solutions specifically address
IoT scenarios, others also target more general scenarios. We
first detail the various AC policies, corresponding to the
evaluation and decision steps introduced in the previous
section. We then detail AC mechanisms corresponding to the
enforcement step.

A. Evaluation and decision steps
AC policies can rely on several different models to evaluate an
access request and decide whether the request is or not
authorized. The most known and widespread models are the
following: Discretionary Access Control (DAC), Mandatory
Access Control (MAC), Role-based Access Control (RBAC)
and Attribute-based Access Control (ABAC). These main AC
models can be compared based on the linkage done between
subject and object by the policies, as shown in Table 1.

d) c)

b) a)

3

Table 1 Policy evaluation criteria of different AC models and
applicability to IoT.

AC
model

Policy evaluation
criteria Applicability to IoT

DAC Subject’s identifier

Extensively used, but does not
cover all IoT scenarios e.g., does
not work for use-cases with no
device identifiers.

MAC Subject’s access to a
security label

Generally considered as too
rigid for IoT scenarios

RBAC Subject’s role
Variations of this model (e.g.,
smart OrBAC) are used for IoT
scenarios

ABAC Subject’s attributes
(inc. dynamic ones)

The most suitable for IoT
scenarios as it can support
flexible attributes

More precisely, in Discretionary Access Control (DAC),

the owner of an object sets access control policies on an
object. The AC decision is based on the access rights of
subjects, characterized by an identifier, e.g., IP or physical
address. These rights are typically represented by an access
matrix or Access Control Lists (ACLs) assigned to each
object, but DAC can also be implemented using capabilities
(cf next section). Identity-based Access Control (IBAC) is a
form of DAC, where the access control decision uses the
authenticated identity of the subject.

Because of its simplicity, DAC remains the most used
method for real-life IoT deployments, and notably in the case
where an IoT Object, identified by its physical address (i.e.,
Media Access Control Address) or by credentials stored
within the object, can access to resources situated on a cloud
platform. This method has also been used as a basis for
research works. For example, [18] proposes to rely on physical
addresses to build a virtual software-defined LAN between
IoT objects that have to exchange information. As the access
control is performed at the network level, this ensures
extensive security, but at the apparent price of flexibility.

Mandatory Access Control (MAC) is a security policy,

where a central authority makes access decisions [19].
MAC restricts access to objects based on the sensitivity of the
information they contain, represented by a security label [20].
The formal authorization of subjects (i.e., clearance, formal
access approvals, and need-to-know) determines whether a
subject can access information of such sensitivity (i.e., with
this security label) [21]. A system administrator should
perform the necessary labeling and clearance processes.

MAC is suitable for centralized environments with rigid
access control policies, and where it is possible to distinguish
subjects and objects with the necessary security clearance.
Therefore, simple MAC-based approaches are too constraining
for IoT environments, and no significant results have been
achieved for adapting the MAC approach to IoT.

Role-based Access Control (RBAC) groups permissions

into roles. Groups of permissions can then be provided to
users with the simple operation of assigning roles [22]. A
limited number of roles can represent many users or user
types, and non-expert personnel can assign these roles to
users. Therefore, it becomes easier to audit which users have
specific permissions and what permissions have been granted

to a given user. However, roles must be engineered before
RBAC can be used [23]. Furthermore, RBAC must be
constrained to handle dynamically changing attributes, such as
time of day and location, as core RBAC cannot handle such
attributes. Organization-based Access Control (OrBAC) [24]
aims at simplifying the expression of security policies, by
introducing a higher level of abstraction than RBAC. It allows
modelling an AC policy independently of its contextual
implementation within an organization.

Many works adapt the RBAC model to IoT
[25][26][27][28]. However, the use of resource-constrained
devices is rarely addressed. In [29], the authors focus on this
issue and propose an implementation of the OrBAC model
named SmartOrBAC. For this purpose, SmartOrBac
introduces different functional layers:
• a Constrained Layer that groups the subjects and the objects

(as defined in Figure 1)
• a Less Constrained Layer that contains the AC system
• an Organization Layer that is responsible for allocating

roles and privileges.
Also, SmartOrBAC introduces the concept of context for
policy evaluation.

Attribute-based Access Control (ABAC) grants or denies

requests based on subject and resource attributes,
environmental conditions, and a set of policies specified
concerning those attributes and conditions [30]. With ABAC,
dynamically changing attributes, such as time of day and
location, can be accommodated in access control decisions.
There is no need to engineer roles unless role names are used
as attributes. Essentially, ABAC is capable of enforcing DAC,
MAC, and RBAC. For instance, DAC is ABAC with the
“identity” attribute and RBAC has “role” attribute. However,
in ABAC a potentially large number of attributes must be
managed, and expert personnel must select the attributes.

Due to its flexibility, the ABAC model has been widely
used for implementing access control for IoT
[31][32][33][34]. Indeed, relying on identities for
authenticating a subject is complex in IoT scenarios where
device identities are hard to maintain and assert. Instead, in
distributed environments, using a combination of several
attributes for authenticating a subject may be more reliable.
For instance, an IoT device has a manufacturer model number,
a software product number, and an IP or physical Media
Access Control address. Thus, identity may become a mere
parameter in a list of attributes needed to evaluate an access
request [35].

Also, this model has also been used for domain specific
access control, for example, in [36], where an ABAC model is
used for access control to a personal healthcare monitoring
service. Attributes are here allocated to subjects as well as to
objects (as defined in Figure 1). Subjects’ attributes mainly
consist of the identity and the function of the subject, while
objects’ attributes define the type of medical record (public
information, physical or mental diseases). Rules are then built
to correlate subjects’ and objects’ attributes for defining
access rights.

4

B. Enforcement step
Two main concepts enable the enforcement of the policy
models: access control matrix and capabilities. These two
different mechanisms can be compared based on the way AC
policies are enforced, as shown in Table 2 below.

Table 2 Policy enforcement criteria for different AC mechanisms
and applicability to IoT.

AC
mechanisms

Policy
enforcement

criteria
Applicability to IoT

AC Matrix
based

Mapping with a
valid matrix

entry

Not suitable for decentralized IoT
architecture. More suitable when
access policies do not need to be
updated often.

Capability
based

Presenting a
valid capability

token

Easier to decentralize. Tokens
provide a more dynamic view of
the access rights.

Access Control Matrix specifies the rights each subject

possesses for each object. More precisely, this matrix
specifies the linkages between three kinds of entities: a)
protected objects, b) subjects and c) access rights
(which specify the operations subjects can perform on
objects). The access matrix [37][38] provides a useful
framework for describing resource protection in any system.
In its typical basic implementation, an object is associated
with an ACL (Access Control List) storing all subjects that
can access it and its access rights.

This mechanism is easy to implement, especially in the case
of a centralized approach where an access control system
stores and enforces the access matrix. However, decentralized
implementations have also been proposed for the IoT [39].

Capabilities are either a token, ticket, or key that grants to

its owner the permission to access an entity or an object in a
computer system [40]. The capability can be thought of as a
pair (object, actions) stored by the subjects and presented with
each access request. Capabilities need to be unforgeable, and
the possession of a capability authorizes a subject for the
actions on the object. With this mechanism, the access control
system can be more easily distributed. The potential for a
distributed implementation has raised a lot of interest in the
IoT community [41][42][43][44].

For example, the European FP7 IoT@Work project has
developed a capability-based Access Control mechanism
(CapBAC) for IoT [45]. Figure 3 presents an example use-
case. When Bob goes on a business trip for a long time, he
asks Dave to house sit. However, Bob wants to limit Dave’s
access to only housekeeping. At this time, Bob has issued a
token with only the housekeeping permission, and the token
can be used only during the period specified in the token.

Figure 3: CapBAC home keeping use case (Source: [13]). Bob
grants access to his neighbor Dave for housekeeping. The capability
tokens allow Dave to enter Bob’s house only in designated hours with
access limited to housekeeping functions (e.g., Dave cannot change
settings for house alarms etc.)

Moreover, the aforementioned AC models and mechanisms,
that cover the evaluation/decision and the enforcement step,
are not independent one from another. Table 3 synthesizes the
usual mappings between both.

Table 3 Mapping between AC models and mechanisms.

AC mechanisms\models DAC MAC RBAC ABAC
AC Matrix x x x x
Capability x

However, besides these AC models and mechanisms, new

general-purpose identity management protocols and
frameworks have emerged from the Web to implement end-to-
end AC architectures.

IV. IDENTITY MANAGEMENT AND ACCESS CONTROL
ARCHITECTURES: FROM WEB STANDARDS TO IOT

While identity management is treated as a separate concern
from access control in literature, it acts as a pillar that supports
authorized access.

Early approaches in the Web relied on site-specific identity
management schemes where user identities were asserted via
site-specific usernames and passwords. The vast proliferation
of Web services, as well as the need to share and manage
protected resources across several Web services, demanded
building authentication mechanisms across security domains
[46]. Federated Identity Management (FIdM) and Single Sign-
On / Single Log-Out (SSO/SLO) were introduced to address
those problems [47].

In IoT, the challenge is not to access to one single physical
object at a time but also to a mashup and composition of
devices, services, and Web applications to accomplish a
particular goal [48], in a context of complex relationships
between objects and services as well as between owners and
users.

The adaptation of Web identity management and access
control mechanisms for IoT have focused either on the SOAP-
based Security Assertion Markup Language (SAML) and
eXtensible Access Control Markup Language (XACML) [49],
on the RESTful-based OAuth 2.0 [50], or on the User-
Managed Access (UMA) [51].

5

Table 4 provides an introduction to these mechanisms along
with their applicability to IoT. These results are then detailed
in the sections A to F below.

Table 4 Various AC architectures and applicability to IoT.

Architectural
framework Definition and main use case Applicability to IoT

SAML OASIS open standard for
exchanging authentication and
authorization data. Enables
identity federation (i.e., Single
Sign On)

Too verbose and
heavy-weight for most
IoT scenarios.

XACML OASIS standard which
implements ABAC (Attribute-
based Access Control). Enables
sophisticated access control
policies.

Too verbose and
heavy-weight for most
IoT scenarios. Still
used as an architectural
pattern.

OAuth 2.0
framework

Enables a third-party to get
limited and controlled access to
a resource on behalf of the user.
Widely used for web
authorization.

While traditional
OAuth2.0 authorization
flows are not very
suitable for IoT, the
OAuth2.0 device flow
may apply to IoT use-
cases.

ACE Extends OAuth2.0 to
constrained environments.
IoT scenarios are the main
driver for the work.

This authorization
solution is specifically
developed to address
various IoT use-cases.

UMA Introduces a new OAuth2.0
grant, so that a resource owner
can grant access to a different
requesting party. Designed for
web authorization.

While UMA is
designed for web
authorization, it may be
adapted for some IoT
use-cases.

LMW2M Provides identity-based access
control for machine-to-machine
communication.
Targets machine-to-machine
communication environments.

Presents a
straightforward
solution, but its ability
to handle dynamic IoT
environments is
limited.

AllJoyn Provides ACL-based access
control. Applicable to device-
to-device and device-to-
gateway communication
environments.

Offer some flexibility
in how many users
control the same
devices, but with
increased complexity.

A. SAML and XACML
SAML is an OASIS open standard for
exchanging authentication and authorization data between
parties. One of its popular usages is for identity federation.
Using SAML, clients need only to assert their identities once
in a federated environment before accessing services across
security domains [52].

SAML is a markup language as well as a communication
mechanism. SAML has four XML-based mechanisms:
security assertions, protocols, bindings and profiles
[53][54][55]. Figure 4 shows the main entities of SAML and
relationships between these entities. An Asserting Party (AP)
is the administrative domain that hosts one or more SAML
authorities that issue assertions. A Relying Party (RP), which,
as its name suggests, relies on AP for receiving assertions
about a subject. The principal is an entity whose identity can
be authenticated. In the Single Sign-On (SSO) profile, the AP
is an Identity Provider (IdP), which manages identity
information about principals and provides principal
authentication.The Relying Party is a Service Provider (SP). It
is assumed there's a trust relationship between RP and the AP.

Figure 4: SAML main components include the Asserting Pary, the
Relying Party and the Principal. The Asserting Party can
authenticate the Principal to the Relying Party.

SAML assertions relay security information about a
particular subject or entities. There are three kinds of
assertions: Authentication, Attribute, and Authorization
decision. Assertions are secured using digital signatures and
encryption.

SAML defines a number of request/response protocols.
Protocols specify how SAML elements (encompassing
assertions) are requested and received. With specific bindings
SAML protocol messages can be embedded and transported
over protocols such as SOAP.

A SAML profile describes how assertions, protocols, and
bindings combine for specific business use cases. For security,
PKI (Public Key Infrastructure) and TLS are recommended.
Mutual authentication and digital signatures are also
recommended measures.

The initial purpose of SAML was to design a generic
language for security assertions. However, SAML profiles
have been practically oriented towards authentication and SSO
use-cases, so authorization of entities and protocols remained
out of the scope of SAML standardization process. This was
the main driver for starting the XACML standardization.

XACML [56] is an OASIS standard which implements both
ABAC model (for policy evaluation) and Access-Control
Matrix (for policy enforcement). It offers a language as well as
a reference architecture, which includes functions such as
Policy Decision Points (PDPs), Policy Enforcement Points
(PEPs), Policy Administration Points (PAPs), and Policy
Information Points (PIPs). As seen in Figure 5, in an XACML
system, a request to, for instance, a file system or a web
server, is made to the PEP protecting the resource. The PEP
forms an XACML request based on the requester’s attributes,
the resource in question, the action, and other information
about the request. The PEP then sends this request to a PDP,
which returns an answer to the PEP whether access should be
granted based on policies that apply to the request. PEP
respects this answer in allowing or denying access to the
requester.

Figure 5: XACML Architecture. Access request is made to PEP,
which is relayed to PDP for decision making. PDP relies on the
information from both PAP and PIP to grant or deny access to the
requested resource.

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Authorization

6

XACML enables sophisticated policies that are formed by
rules, obligations, and advice. In XACML, attributes (which
are characteristics of the Subject, Resource, Action, or
Environment in which the access request is made) form the
basis of policies. For example, a user’s name, their group
membership, a file they want to access, and the time of day are
all attribute values. The access request sent from PEP to PDP
is also formed almost exclusively of attributes, which are then
compared to the attribute values in a policy to make the access
decisions. The rule and policy combining algorithms define a
procedure to reach an authorization decision given the
evaluation results of a set of rules and policies. However, as a
price of such expressiveness, XACML is quite complex.

Various research works have proposed building an
authorization framework for IoT devices upon SAML and
XACML [57][58]. At the time of that research (mainly from
2010 to 2013), SAML and XACML were indeed the most
popular Internet and access control standards used in industry.

Of significant interest, the Authorization Framework for the
Internet-of-Things proposed by Ludwig Seitz et al. [58] allows
fine-grained and flexible access control to connected devices
with insufficient processing power and memory. To that end,
authors have designed profiles and adaptations of XACML
and SAML to enable or optimize their use with constrained
devices. Their work includes a complete reference
architecture, and some optimizations to adapt the protocols to
constrained devices. As an example, one optimization
addresses the verbosity of the full syntax of XACML
responses and SAML assertions by defining a lightweight
JSON-based notation for an authorization assertion.

Similarly, more recent work focuses on defining a self-
understandable JSON authorization assertion [59] computable
by a constrained device and compliant with an existing
authorization protocol. Both approaches rely on IETF JSON
Web Encryption (JWE) mechanisms [60]. However, the
results of both research conclude JWE is adding too much
overhead for payloads of only a few bytes, which are common
in constrained IoT protocols such as CoAP.

B. OAuth
The OAuth 1.0 Protocol [61], and its successor, the OAuth 2.0
Framework (RFC 6749) [50] and the OpenID Connect
framework [62], are designed to solve authorization delegation
issues in large-scale Internet applications, with the original
design coming from Facebook. OAuth enables a third-party to
get limited and controlled access to a resource on behalf of the
user. This type of authorization facilitates use-cases where a
person (e.g., Jane Doe) grants an authorization to access her
personal data (e.g., photos stored at a drive) to another service
(e.g., print service) that is also used by the same person.

More precisely, as shown in Figure 6, OAuth defines four
different roles:
• The Resource Owner (RO) is the party capable of granting

access to a protected resource. In the case of a person, the
resource owner is the user.

• The Resource Server (RS) hosts the protected resources and
controls the access to these resources.

• The Client (C) is an application making a request to a
protected resource on behalf of the RO or its behalf.

• The Authorization Server (AS) issues Clients access tokens
to the protected resource after having authenticated the
RO and having obtained its authorization.

An access token is a string denoting a specific scope, lifetime
and other access attributes. The token represents the subject’s
capability and can also be interpreted as a summary of the RO
policy on the resource. The client uses an access token to get
access to protected resources on the resource server [63]. The
resource server processes the access token and allows or
denies access according to its contents.

Figure 6: The abstract OAuth2.0 authorization flow [50] The Client
(C) may make a direct authorization request to the Resource Owner
(RO), and receive an Authorization Grant, which represents the RO’s
authorization. Next, C requests an access token by authenticating
with the authorization server (AS) and presenting the authorization
grant. AS authenticates C, validates the grant, and if valid, issues an
access token. C uses this access token to request the protected
resource from the Resource Server (RS).

OAuth can, therefore, be considered as implementing a
DAC model for policy evaluation (as the access is based on
the consent of a validly identified RO) and a Capability-based
mechanism for policy enforcement (access token).

OAuth2.0 is designed for HTTP and may apply to web-
based IoT solutions. For instance, in a scenario, as shown in
Figure 2 (d), where Alice grants access to a mobile health app
to use data coming from her wearable and stored in another
application.

However, Web services rely mainly on user-owned
credentials (e.g., username and password, hardware token or
mobile phone) for asserting a user identity. These types of
credentials may not exist in the IoT world where other sorts of
identities for physical objects should be considered [64].
Moreover, provisioning user credentials to objects should be
considered as a major security flaw, even though commonly
done in IoT implementations.

For IoT applications, ongoing IETF work on OAuth2.0’s
Device Flow for Browserless and Input Constrained Devices
[65] provides a solution for clients running on devices that do
not have a straightforward data entry method. Figure 7 depicts
this device authorization flow. When the device requests
access from the authorization server, the authorization server
returns a device code, a verification code and, a verification
URI to the user. Visiting the verification URI, the user can
grant access to the device by validating the verification code.
Meanwhile, the device continually polls the authorization
server to check whether its verification code has been
validated. In the worst case, the device polls the authorization
server until its device code expires. In the case of success, the
authorization server returns an access token, which gives
access to the protected resource.

7

Figure 7: OAuth 2.0 Device Flow (Source: [65]). The client request
to the Authorization Server (AS) includes a client identifier. The AS
issues a verification code, user code, and verification URI. The client
instructs to user to visit the URI (elsewhere, not on the device) and
use the user code to grant access. The AS authenticates the end-user,
and the user grants access by providing the user code. Meanwhile,
the device polls the AS with its verification code to check whether the
authorization process has completed. If successful, the AS responds
with an Access Token.

This is quite a pragmatic approach, and its main drawback
is its purely centralized model.

C. ACE
In addition, the IETF Authentication and Authorization in
Constrained Environments (ACE) workgroup is working
towards extending OAuth2.0 to provide a solution for IoT.
The work considers the very different and limited capabilities
of IoT devices concerning the available processing and
message exchange, in supporting different authorization use
cases [66]. The ACE group builds on:
• CoAP for messaging (without excluding the possibility of

using other protocols such as MQTT or QUIC),
• Concise Binary Object Representation (CBOR) and CBOR

Web Token (CWT) [67] for token representation,
• and CBOR Object Signing and Encryption (COSE) and

DTLS, for application and transport layer security,
respectively.

Interestingly, CWT solves the issue of the heaviness of
JSON Web Encryption (JWE) for constrained devices i.e.,
objects of IoT.

ACE also uses a different token type, PoP (Proof of
Possession) tokens compared to OAuth 2.0 Device Flow. PoP
tokens are access tokens with a PoP key associated with the
token. A PoP token allows a client to prove to the RS that it is
indeed the intended authorized owner of the token and not
merely the bearer of the token.

Assuming that the RS and client have registered with the
authorization server (AS), the following sequence of events
needs to occur in ACE for the client to access a resource
hosted by the RS. First, the client makes a request to the AS.
The AS evaluates the client token request and grants or denies
access by either returning a PoP token or an error [68].

The client includes the PoP token in its resource request.
Using the PoP token, RS authenticates the client using the PoP
token. RS also may locally evaluate the token if it has the

capability. Otherwise, it may contact the AS to validate the
token. This process is called token introspection. Depending
on the token result, the RS may grant or deny access to the
resource [68].

ACE handles the different communication patterns shown
in Figure 2, including some device-to-device communication
support. Essentially, ACE expects that devices may frequently
be offline, or they may not support IP-based communication,
and therefore, they may not always be able to communicate
with the AS [66]. Then, a more capable Client Authorization
Server can request tokens from the AS.

If a device is acting as an RS but does not have continuous
Internet connectivity, then it may need to verify tokens locally.
However, if the user policies have changed and the token is
not valid anymore, there is no simple way to revoke the token.
This issue may harm the entire security of the system,
underlining the difficulty of providing meaningful
authorization in limited and distributed IoT systems.

D. UMA(User Managed Access)
UMA working group has developed UMA (User Managed

Access) under the Kantara Initiative [51]. UMA defines a new
authorization grant which enables resource owners to manage
access to their resources by clients operated by arbitrary
requesting parties (e.g., Alice authorizing access to her
resources by Bob’s services, compared to OAuth2 model
where Alice may only authorize access to her resources by her
services). It implements capability-based policy enforcement,
while the policy evaluation phase remains out of its scope.

Here, the resources may reside on any number of resource
servers, and a centralized authorization server governs access
to the resources based on user-defined policies. Compared to
OAuth2.0 flows, these access policies are used to handle
asynchronous authorization grants [17]. A typical example is
the following: a web user (an end-user resource owner) can
authorize a web or a native app (a client) to gain one-time or
ongoing access to a protected resource containing his home
address stored at a personal data store (a resource server). To
do this, the user instructs the resource server to respect access
entitlements issued by the authorization server.

Figure 8 depicts the UMA flowchart. The resource owner
manages online resources at the resource server. To protect
these resources, the resource owner introduces the resource
server to the authorization server. The resource server, then,
registers resources to be protected with the authorization
server. Also, out of band, the resource owner configures the
authorization server with policies associated with these
registered resources.

To get authorization, the client issues a request for a
resource at the resource server. In case of an unauthorized
access attempt, the resource server registers a permission with
the authorization server and returns a permission ticket to the
client. To trigger the authorization process, the client must
present this permission ticket to the authorization server. If
successful, the authorization server returns a requesting party
token (RPT) to the client. To access the protected resource, the
client presents this RPT to the resource server. After the
resource server verifies the token, the client gains access to the
protected resource.

UMA is a centralized solution allowing complex and
attribute-based policies. The solution is appropriate for back-

8

end data sharing, as shown in Figure 2. UMA has several IoT
case studies that focus on health-care scenarios [69].

Figure 8: UMA (User Managed Access) flowchart [51]. The
Resource Owner (RO) manages its resources in a Resource Server
(RS).RO introduces RS to the Authorization Server (AS), as the entity
for the RS to register protected resources. RO also sets policies at the
AS. The requesting party approaches the RS to access the resources.
RS registers the access attempts without a token as permission
requests at the AS. The Client next approaches AS, which uses the
permission request and the RO policies to issue a Requesting Party
Token (RPT) to the client.

E. Lightweight Machine to Machine Protocol (LWM2M)
LWM2M is developed by OMA (Open Mobile Alliance) and
provides identity-based access control for machine-to-machine
communication [70]. LWM2M is principally a device
management solution but includes authorization,
authentication, and channel security protocols. It implements
the DAC model for policy evaluation and Access Matrix
mechanism for policy enforcement.

LWM2M follows a gateway-based communication pattern,
shown in Figure 2(b) and (c). The LWM2M Server is typically
located in a private or public data center, and the LWM2M
Client resides on the device. M2M applications may contain
multiple servers and clients. Also, LWM2M Clients may
become LWM2M Servers in different communication set-ups,
which may enable distributed scenarios.

LWM2M defines objects as collections of resources. A
resource is an atomic piece that can be read, written and
executed. For instance, a Location object may have multiple
resources, including latitude, longitude, altitude, uncertainty,
velocity, and timestamp. Each resource can have multiple
instances.

LWM2M uses Access Control List object instances that
contain ACLs. These ACLs define which operations are
allowed on a given object Instance for which LWM2M
Server(s). Bootstrap servers distribute ACLs to LWM2M
clients. Predefined ACLs work well when the future
interactions with objects are known. LWM2M also provides
some dynamicity to authorization decisions by provisioning
ACLs real-time from the LWM2M bootstrap server. This
capability may allow for more complex authorization policies.

F. AllJoyn
AllJoyn is an open source software framework, aiming to
facilitate discovery and communication between devices and

applications [71]. It is developed by the AllSeen Alliance,
which merged with the Open Connectivity Foundation in
2016. Similar to LWM2M, AllJoyn has ACL-based security
features worth discussing in this section.

AllJoyn caters to the device-to-device communication
pattern and optionally, supports the device-to-gateway
communication pattern (Figure 2 (a) and (b)). To enable peer-
to-peer communication, AllJoyn implements a “distributed
software bus” that enables AllJoyn devices to advertise and
share their abilities with other devices around them [72].

The Security 2.0 feature of AllJoyn allows an application to
validate access to interfaces or objects based on the ACLs
installed by the owner. In the AllJoyn framework, the security
manager plays a similar role to the Authorization Server in
OAuth-based systems. It is the entity that provides certificates,
and maintains ACLs, and enables managing security groups,
identities, and keys [73]. The owners (i.e., “administrators”)
define the ACLs. They can also create security groups which
allow multiple users to control the same devices. The
complexity of this solution increases with how fine-grained
the desired access control is. More groups need to be created
for more levels of access.

V. OPEN PROBLEMS FOR RESEARCH
While there is much work on access control, IoT-specific
solutions are still in their infancy. In this section, we discuss
future directions for research needed to address the unique
challenges of IoT.

1) Scalability
IoT systems proliferate. Hence, an IoT system must be able to
handle a large number of users, applications, and policy
enforcement and decision points. An effective way of dealing
with scale is decentralization of management and delegation
of authority. Thus, an access control management system for
large networks must be able to adapt to different management
structures (web of trust, hierarchical management.).

However, the majority of the works covered in this paper
rely on a centralized entity for AC, which may include
administering policies, handing out and introspecting
credentials for authorization decisions (e.g., the AS in case of
OAuth2.0, UMA, and ACE or the centralized PDP/PEP in the
case of XACML). This centrality raises concerns regarding the
scalability and Single Point of Failure (SPOF) issues. In
contrast, a semi-distributed AC architecture delegates some of
the responsibility to the edge: while a central authority may
still provide a certificate or an access token to access a device
or group of devices, these are enforced locally at the at the
point of access (e.g., ACE and UMA provide these options).
Concerning fully distributed approaches, a significant
challenge lies in the resource limitations at the edge in IoT
systems.

2) Managing Heterogeneity
New AC protocols get deployed without necessarily
deprecating old ones. Daily objects have a longer life cycle
than tech objects, extending the duration where backward
compatibility will be required from new objects.

Moreover, the same IoT networks may continue to be used
in increasingly more complicated ways (e.g., from Intranet to

9

Internet of Things [74]). AC mechanisms should thus be
flexible enough to adapt to unplanned cases.

In addition, cross-domain resource sharing and
collaborations have become pervasive in today's service-
oriented organizations. However, cross-domain access control
remains a research challenge for the IoT, with a lack of
concrete implementation mechanisms to provide a sufficiently
flexible framework.

3) Openness and Flexibility
A general requirement for IoT is to support the integration

of solutions from different industry players and third parties.
For an example of an integrated infrastructure, consider the
novel home automation solution "Celiane with Netatmo" [75]
developed by Legrand along with Netatmo. This solution
allows the control of a group of connected objects at home
from a common controller. Additionally, users can personalize
event-based scenarios. For example, turning on the TV may
set off a dim light in the living room or the opening of the
front door may control that of rolling shutters. In this example,
the IoT architecture design should be an open framework to
accommodate compatible components. Such openness is also
necessary to achieve AC in IoT, enabling cross-application
authorizations for services providers. This could also present
an excellent opportunity for third-party developers to integrate
their solutions into an open AC architecture. In the enterprise
context, this openness will ease the integration of IoT devices
in the corporate business processes [81].

4) Resolving object identities
A crucial part of proposed systems involves asserting the
identities of access requesters, subjects. However, a pure ID-
based approach may not be entirely suited for IoT. This is
because the identity information may be hard to assert or may
not be known or a device may not hold any identity.

Issues for establishing device identity are making Attribute-
based Access Control more interesting for IoT. This way a
combination of attributes for asserting the authenticity of the
requester, e.g., current location, owner or manufacturer may
be used. For instance, an IoT device may have a model
number, or a product key, an IP or physical address. These,
when used in combination, may identify the device more
reliably than a single attribute. UMAv2.0 with its claims-
based approach allows this type of subject authentication.

However, identifying the user behind the device is still
challenging. Today there is little clarity as to who owns or
should own an IoT device and its data [9]. Moreover, IoT
devices will generally not be single-user devices. A device
will be controlled by a group of users, and administrators, with
different, and potentially, competing claims over its data.

5) Managing personal data

End users should be put in charge of their personal data,
whether or not it is machine-generated. IoT systems should be
able to manage conflicting interests. Especially, when using
the location information from devices, it must be remembered
that location is also personal data. For consent-based personal
data collection, the EU GDPR [7] requires consent to be as
easy to withdraw as to give it, where consent is considered as
valid only if the user has sufficient knowledge of the risks and
benefits of disclosing information to make a reasonable
evaluation [76]. Enabling dynamic consent may be a challenge
in IoT-based systems where devices are embedded to the

user’s environment and interactions with an IoT system may
be implicit by design.

6) Providing Dynamic AC policies
A privacy policy needs to point out precisely who interacts

with what data, when, where, how, and to what end. This may
conflict with the usability of these systems. The aim should be
here to build easy-to-understand policies, which is challenged
with the increased combination of options for many data flows
in an IoT context. Pointing out all possible interactions
appears challenging at best, and detrimental to understanding
at worst.

IoT systems, therefore, will need to be configured
dynamically to provide the necessary middle ground between
expressivity and simplicity by constraining initial policies to a
small set of rules. Although there are not many examples in
literature, an inspiring example of a dynamic policy is
presented in [77] for RFID systems. The proposed system uses
physical access control rules to ensure that (1) locations of
users are revealed to one another if only they are co-located
and (2) the location of an RFID object is revealed to its owner
only when the object and its owner are co-located. These rules
are relaxed by enabling scenario-specific rules. For instance,
in a scenario, where the RFID object is borrowed by a user,
the owner of the object may check whether the RFID object is
carried by this user. Then, the system returns the information
that “user x carries the object” without disclosing the location
of user x. While this research constitutes a step in the right
direction, IoT systems need ‘just-in-time’ policies that resolve
access control requests to a multiplicity of IoT objects.

7) Usable security
It is well-known that IoT has several security challenges.

Securing the access to and usage of a vast number of
vulnerable, connected objects are understudied [78]. Hence, to
some, it was no surprise, when a botnet of thousands of
connected cameras was used in a denial of service (DDoS)
attack on the French host OVH in September 2016 [79].

Current security solutions apply cryptographic methods and
disclose keys only to authorized users to protect sensitive IoT
data against cyber-attacks. However, these solutions are
susceptible to many types of cyber-attacks. They also do not
prevent authorized entities from performing certain actions on
the connected objects in question. Additionally, the
cryptographic methods introduce a heavy computation
overhead on the device as well as issues with key distribution
and management. Automated and self-contained AC is
therefore required in IoT, as recently exemplified in [80]. Such
AC should reduce the computational load on IoT devices and
usability issues such as password fatigue for the device
owners.

VI. CONCLUSIONS
Compared to other domains, IoT introduces specific
challenges concerning access control. While in this paper, we
surveyed several outstanding contributions for implementing
AC in IoT, much work still remains to be done. None of the
proposals presented in this paper is indeed able to cope with
all the numerous challenges raised by the IoT. New research
programs on innovative AC mechanisms are therefore
required to provide a set of suitable solutions for deploying
IoT services at a global scale.

10

XII. REFERENCES
[1] [online] https://www.gartner.com/newsroom/id/3598917
[2] C. Shang, M. C. Zhou, C. Chen, "Cellphone data and
applications", Int. J. Intell. Control Syst., vol. 19, no. 1, pp. 35-45,
Mar. 2014.
[3] TRUSTe, “2015 US IoT privacy infographic,” availabile online:
https://www.truste.com/ resources/privacy-research/us-internet-of-
things-index-2015/, 2015.
[4] C. P. O. Hugo Teufel III, “Fair information practice principles:
Framework for privacy,” Privacy Policy Guidance Memorandum,
Dec. 2008.
[5] International Organization for Standardization (ISO), “Iso/iec
29100:2011, information technology, security techniques, privacy
framework,” Dec. 2011.
[6] A. Cavoukian, “Privacy by design and the emerging personal data
ecosystem,” accessible online: https://www.ipc.on.ca/wp-
content/uploads/Resources/pbdpde.pdf, Oct. 2012.
[7] “General data protection regulation,” Regulation (EU) 2016/679
of the European Parliament and of the council, Official Journal of the
European Union, Apr. 2016.
[8] S. Brooks, M. Garcia, N. Lefkovitz, S. Lightman and E. Nadeau,
"An Introduction to Privacy Engineering and Risk Management in
Federal Systems," National Institute of Standards and Technology
Internal Report 8062, 2017.
[9] V. G. Cerf, "Access Control and the Internet of Things", IEEE
Internet Computing, vol. 19, no. 5, pp. 96, 2015.
[10] S. Sicari et al., "Security Privacy and Trust in Internet of Things:
The Road Ahead", Computer Networks, vol. 76, pp. 146-64, 2015.
[11] Ronald Fagin. 1978. On an authorization mechanism. ACM
Trans. Database Syst. 3, 3 (September 1978), 310-319.
[12] Martín Abadi, Michael Burrows, Butler Lampson, and Gordon
Plotkin. 1993. A calculus for access control in distributed systems.
ACM Trans. Program. Lang. Syst. 15, 4 (September 1993), 706-734.
[13] S. Gusmeroli, S. Piccione, D. Rotondi, "A capability-based
security approach to manage access control in the internet of things",
Mathematical and Computer Modelling, vol. 58, no. 5, pp. 1189-
1205, 2013.
[14] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M,
Picone, & L. Veltri, (2014). A scalable and self-configuring
architecture for service discovery in the internet of things. IEEE
Internet of Things Journal, 1(5), 508-521.
[15] R. Roman, J. Zhou, J. Lopez, "On the Features and Challenges
of Security and Privacy in Distributed Internet of Things", Computer
Networks, vol. 57, no. 10, pp. 2266-79, 2013.
[16] H. Tschofenig, J. Arkko, D. Thaler, and D. R. McPherson,
“Architectural Considerations in Smart Object Networking,” RFC
7452, IETF, Mar. 2015.
[17] Ouaddah A, Mousannif H, Abou Elkalam A, Ouahman AAIT.
Access control in The Internet of Things: Big challenges and new
opportunities, Computer Networks (2016).
[18] D. T. Bui, R. Douville and M. Boussard, "Supporting multicast
and broadcast traffic for groups of connected devices," 2016 IEEE
NetSoft Conference and Workshops (NetSoft), Seoul, 2016, pp. 48-
52.
[19] D.E. Bell and L.J. La Padula. Secure Computer System: Unified
Exposition & Multics interpret, at, ion. Technical report, Technical
Report MTIS AD-A023588, MITRE Corporation, 1975.
[20] Denning, D. E. 1976. A lattice model of secure information
flow. Commun. ACM 19, 2, 236–243.

[21] R. S. Sandhu and P. Samarati, "Access control: principle and
practice," in IEEE Communications Magazine, vol. 32, no. 9, pp. 40-
48, Sept. 1994.
[22] R.S. Sandhu, Role-based access control, Adv. Comput. 46
(1998) 237–286.
[23] P. Samarati, S.D.C. Di Vimercati, Access control: policies,
models, and mechanisms, Found. Secur. Anal. Des. 2171 (2001)
137–196.
[24] A. Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y.
Deswarte, A. Miege, C. Saurel, G. Trouessin, Organization based
access control, in: Proc. POLICY 2003. IEEE 4th Int. Work. Policies
Distrib. Syst. Networks, IEEE Comput. Soc, 2003, pp. 120–131.
[25] G. Zhang , J. Tian , An extended role based access control model
for the internet of things, 2010 International Conference on
Information, Networking and Automation (ICINA), 1, IEEE, 2010,
pp. V1–319 .
[26] J. Jindou, Q. Xiaofeng, C. Cheng, Access control method for
web of things based on role and SNS, in: 2012 IEEE 12th Int. Conf.
Comput. Inf. Technol.,IEEE, 2012, pp. 316–321.
[27] E. Barka, S.S. Mathew, Y. Atif, in: Securing the Web of Things
with Role-Based Access Control, Springer International Publishing,
2015, pp. 14–26.
[28] J. Liu, Y. Xiao, C.P. Chen, Authentication and access control in
the internet of things, in: 2012 32nd Int. Conf. Distrib. Comput. Syst.
Work., IEEE, 2012, pp. 588–592
[29] I. Bouij - Pasquier, A. Ait Ouahman, A. Abou El Kalam and M.
Ouabiba de Montfort, "SmartOrBAC security and privacy in the
Internet of Things," 2015 IEEE/ACS 12th International Conference
of Computer Systems and Applications (AICCSA), Marrakech, 2015,
pp. 1-8.
[30] E. Yuan, J. Tong, Attributed based access control (ABAC) for
Web services, in: IEEE Int. Conf. Web Serv., IEEE, 2005.
[31] N. Ye , Y. Zhu , R.-c. Wang , R. Malekian , L. Qiao-min , An
efficient authentication and access control scheme for perception
layer of internet of things, Appl. Math. Inf. Sci. An Int. J. 1624 (4)
(2014) 1617–1624 .
[32] M. Hemdi and R. Deters, "Using REST-based protocol to enable
ABAC within IoT systems," 2016 IEEE 7th Annual Information
Technology, Electronics and Mobile Communication Conference
(IEMCON), Vancouver, BC, 2016, pp. 1-7.
[33] Sciancalepore S. et al. (2017) Attribute-Based Access Control
Scheme in Federated IoT Platforms. In: Podnar Žarko I., Broering A.,
Soursos S., Serrano M. (eds) Interoperability and Open-Source
Solutions for the Internet of Things. InterOSS-IoT 2016. Lecture
Notes in Computer Science, vol 10218. Springer, Cham
[34] H. Ouechtati, N. Ben Azzouna and L. Ben Said, "Towards a self-
adaptive access control middleware for the Internet of Things," 2018
International Conference on Information Networking (ICOIN),
Chiang Mai, Thailand, 2018, pp. 545-550.
[35] D. Hussein, E. Bertin and V. Frey, "Access control in IoT: From
requirements to a candidate vision," 2017 20th Conference on
Innovations in Clouds, Internet and Networks (ICIN), Paris, 2017, pp.
328-330.
[36] U. Salama, L. Yao, X. Wang, H. Y. Paik and A. Beheshti,
"Multi-Level Privacy-Preserving Access Control as a Service for
Personal Healthcare Monitoring," 2017 IEEE International
Conference on Web Services (ICWS), Honolulu, HI, 2017, pp. 878-
881.
[37] R. Sandhu, The typed access matrix model, in: Proc. 1992 IEEE
Comput. Soc. Symp. Res. Secur. Priv., IEEE Comput. Soc. Press,
1992, pp. 122–136.
[38] B. Lampson, Protection, ACM SIGOPS Oper. Syst. Rev. (1974).
[39] S. W. Oh and H. S. Kim, "Decentralized access permission
control using resource-oriented architecture for the Web of Things,"

11

16th International Conference on Advanced Communication
Technology, Pyeongchang, 2014, pp. 749-753.
[40] J.B. Dennis, E.C. Van Horn, Programming semantics for
multiprogrammed computations, Commun. ACM 9 (3) (1966) 143–
155.
[41] Anggorojati, B., Prasad, N.R. & Prasad, R., "Capability-Based
Access Control Delegation Model on the Federated IoT Network",
2012 15th Int'l. Symp. Wireless Personal Multimedia Commun., pp.
604-08, 2012.
[42] P. Mahalle, Identity authentication and capability-based access
control (IACAC) for the internet of things, J. Cyber Secur. Mobility 1
(2013) 309–348.
[43] J. L. Hernández-Ramos et al., “Distributed Capability-Based
Access Control for the Internet of Things,” J. Internet Services and
Info. Security, 2013, vol. 3, no. 3/4, pp. 1–16.
[44] J.L. Hernández-Ramos, A.J. Jara, L. Marín, A.F.S. Gómez,
DCapBac: embedding authorization logic into smart things through
ECC optimizations, Int. J. Comput. Math. (March 2015) (2014) 1–22.
[45] S. Gusmeroli, S. Piccione and D. Rotondi, "IoT Access Control
Issues: A Capability-Based Approach," 2012 Sixth International
Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, Palermo, 2012, pp. 787-792.
[46] L. Lynch, "Inside the Identity Management Game," in IEEE
Internet Computing, vol. 15, no. 5, pp. 78-82, Sept.-Oct. 2011.
[47] V. Beltran, E. Bertin and N. Crespi, "User Identity for WebRTC
Services: A Matter of Trust," in IEEE Internet Computing, vol. 18,
no. 6, pp. 18-25, Nov.-Dec. 2014.
[48] Dina Hussein, Son N. Han, Gyu Myoung Lee, Noel Crespi, and
Emmanuel Bertin. 2017. Towards a dynamic discovery of smart
services in the social internet of things. Comput. Electr. Eng. 58, C
(February 2017), 429-443.
[49] Armando, A., Carbone, R., Compagna, L., Cuellar, J., &
Tobarra, L. (2008, October). Formal analysis of SAML 2.0 web
browser single sign-on: breaking the SAML-based single sign-on for
google apps. In Proceedings of the 6th ACM workshop on Formal
methods in security engineering (pp. 1-10). ACM.
[50] D. Hardt, The OAuth2.0 Authorization Framework, IETF RFC
6749, Oct. 2012, IETF. [online] http://tools.ietf.org/html/rfc6749.
[51] "Home - WG – User-Managed Access - Kantara Initiative",
[online] Available at
https://kantarainitiative.org/confluence/display/uma/Home.
[52] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge
Cuellar, and Llanos Tobarra. 2008. Formal analysis of SAML 2.0
web browser single sign-on: breaking the SAML-based single sign-
on for google apps. In Proceedings of the 6th ACM workshop on
Formal methods in security engineering (FMSE '08). ACM, New
York, NY, USA, 1-10.
[53] G. Zhang and J. Liu, “A Model of Workflow-oriented Attributed
Based Access Control,” Int. J. Comput. Netw. Inf. Secur., vol. 1, no.
February, pp. 47–53, 2011.
[54] Hughes, J., & Maler, E. (2005). Security assertion markup
language (saml) v2.0 technical overview. OASIS SSTC Working
Group.
[55] John Hughes, Scott Cantor, Jeff Hodges, Frederick Hirsch,
Prateek Mishra, Rob Philpott, Eve Maler, Profiles for the OASIS
Security Assertion Markup Language (SAML) V2.0. OASIS
Standard, March 2005.
[56] Tim Moses, “eXtensible Access Control Markup Language
(XACML)”, Version 2.0, OASIS Standard, 1 Feb 2005.
[57] Guoping Zhang, Jing Liu, "The Study of Access Control for
Service-Oriented Computing in Internet of Things", International
Journal of Wireless and Microwave Technologies (IJWMT), vol. 2,
no. 3, pp. 62-68, 2012.

[58] L. Seitz, G. Selander and C. Gehrmann, "Authorization
framework for the Internet-of-Things," 2013 IEEE 14th International
Symposium on "A World of Wireless, Mobile and Multimedia
Networks" (WoWMoM), Madrid, 2013, pp. 1-6.
[59] D. Hussein, E. Bertin and V. Frey, "A Community-Driven
Access Control Approach in Distributed IoT Environments," in IEEE
Communications Magazine, vol. 55, no. 3, pp. 146-153, March 2017.
[60] M. Jones, J. Hildebrand, “JSON Web Encryption (JWE)”,
Request for Comments: 7516, May 2015
[61] E. Hammer-Lahav, E.: The OAuth 1.0 Protocol. RFC 5849,
IETF (April 2010), available at http://tools.ietf.org/html/rfc5849
[62] [online] http://openid.net/specs/
[63] B. Leiba, "OAuth Web Authorization Protocol," in IEEE
Internet Computing, vol. 16, no. 1, pp. 74-77, Jan.-Feb. 2012.
[64] P. Fremantle, B. Aziz, J. Kopecký and P. Scott, "Federated
Identity and Access Management for the Internet of Things," 2014
International Workshop on Secure Internet of Things, Wroclaw,
2014, pp. 10-17.
[65] W. Denniss, J. Bradley, M. Jones, H. Tschofenig, “OAuth 2.0
Device Flow for Browserless and Input Constrained Devices”,
Internet-draft, IETF, draft-ietf-oauth-device-flow-09
[66] L. Seitz, S. Gerdes, G. Selander, M. Mani, S. Kumar, “Use
Cases for Authentication and Authorization in Constrained
Environments”, RFC 7744, January 2016, IETF.
[67] M. Jones, E. Wahlstroem, S. Erdtman, H. Tschofenig, “CBOR
Web Token (CWT)”, RFC 8392, May 2018, IETF.
[68] Beltran, V., Skarmeta, A.F.: An overview on delegated
authorization for CoAP: authentication and authorization for
constrained environments (ACE). In: 2016 IEEE 3rd World Forum
on Internet of Things (WF-IoT), pp. 706–710 (2016).
[69] X. Su et al., "Privacy as a Service: Protecting the Individual in
Healthcare Data Processing," in Computer, vol. 49, no. 11, pp. 49-59,
Nov. 2016.
[70] OMA, “Lightweight Machine to Machine Requirements”,
Candidate Version 1.1 – 08 Dec 2017, Open Mobile Alliance.
[71][online] https://openconnectivity.org/developer/reference-
implementation/alljoyn
[72] D. Costa, E. Mingozzi, G. Tanganelli and C. Vallati, "An
AllJoyn to CoAP bridge," 2016 IEEE 3rd World Forum on Internet
of Things (WF-IoT), Reston, VA, 2016, pp. 395-400.
[73] E. Fernandes, A. Rahmati, J. Jung and A. Prakash, "Security
Implications of Permission Models in Smart-Home Application
Frameworks," in IEEE Security & Privacy, vol. 15, no. 2, pp. 24-30,
March-April 2017.
[74] M. Zorzi, A. Gluhak, S. Lange and A. Bassi, "From today's
INTRAnet of things to a future INTERnet of things: a wireless- and
mobility-related view," in IEEE Wireless Communications, vol. 17,
no. 6, pp. 44-51, December 2010.
[75] R. Dillet (2017). Netatmo is trying really hard to make the smart
home happen. January 3, 2017, Techcrunch. Available at:
https://techcrunch.com/2017/01/03/netatmo-is-trying-really-hard-to-
make-the-smart-home-happen.
[76] R. H. Sloan and R. Warner, “Beyond notice and choice: Privacy,
norms, and consent,” Suffolk University Journal of High Technology,
vol. 14, no. 2, pp. 370–412, 2014.
[77] V. Rastogi, E. Welbourne, N. Khoussainova, T. Kriplean, M.
Balazinska, G. Borriello, T. Kohno, and D. Suciu, “Expressing
privacy policies using authorisation views,” in Proc. of the 5th
International Workshop on Privacy in UbiComp (UbiPriv’07), 2007.
[78] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in
the IoT: Mirai and Other Botnets,” IEEE Computer, vol. 50, no. 7,
pp. 80–84, July 2017.

12

[79] E. Kovacs (2016, September 23). Hosting Provider OVH Hit by
1 Tbps DDoS Attack. Retrieved from
http://www.securityweek.com/hosting-provider-ovh-hit-1-tbps-ddos-
attack
[80] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase
Ur, XianZheng Guo and Patrick Tague. SmartAuth: User-Centered
Authorization for the Internet of Things. USENIX security
conference. 2017.
[81] E. Bertin and N. Crespi, "Service business processes for the next
generation of services: a required step to achieve service
convergence." Annals of telecommunications 64.3-4 (2009): 187-
196.

	I. Introduction
	II. Access Control principles for the IoT
	A. Main Principles
	B. AC in Different IoT Architectures

	III. Access Control Models for the IoT
	A. Evaluation and decision steps
	B. Enforcement step

	IV. Identity management and Access Control Architectures: From Web Standards to IoT
	A. SAML and XACML
	B. OAuth
	C. ACE
	D. UMA(User Managed Access)
	F. AllJoyn

	V. Open Problems for Research
	1) Scalability
	2) Managing Heterogeneity
	3) Openness and Flexibility
	4) Resolving object identities
	7) Usable security

	VI. Conclusions
	XII. References
	[9] V. G. Cerf, "Access Control and the Internet of Things", IEEE Internet Computing, vol. 19, no. 5, pp. 96, 2015.
	[10] S. Sicari et al., "Security Privacy and Trust in Internet of Things: The Road Ahead", Computer Networks, vol. 76, pp. 146-64, 2015.
	[12] Martín Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. 1993. A calculus for access control in distributed systems. ACM Trans. Program. Lang. Syst. 15, 4 (September 1993), 706-734.
	[13] S. Gusmeroli, S. Piccione, D. Rotondi, "A capability-based security approach to manage access control in the internet of things", Mathematical and Computer Modelling, vol. 58, no. 5, pp. 1189-1205, 2013.
	[15] R. Roman, J. Zhou, J. Lopez, "On the Features and Challenges of Security and Privacy in Distributed Internet of Things", Computer Networks, vol. 57, no. 10, pp. 2266-79, 2013.

