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Abstract—The Internet of Things operates in a personal-data-rich 
sector, which makes security and privacy an increasing concern for 
consumers. Access control is thus a vital issue to ensure trust in the 
IoT. Several access-control models are today available, each of them 
coming with various features, making them more or less suitable for 
the IoT. This article provides a comprehensive survey of these 
different models, focused both on access control models (e.g., DAC, 
MAC, RBAC, ABAC) and on access control architectures and 
protocols (e.g., SAML and XACML, OAuth 2.0, ACE, UMA, 
LMW2M, AllJoyn). The suitability of each model or framework for 
IoT is discussed. In conclusion, we provide future directions for 
research on access control for the IoT: scalability, heterogeneity, 
openness and flexibility, identity of objects, personal data handling, 
dynamic access control policies and usable security. 

Index Terms—Access Control (AC), Internet of Things (IoT),  
 

I. INTRODUCTION 
he Internet of Things (IoT) is an enabler for improving 
many different aspects of private and public 
life. Its applications range from health-care to transport, 

and from environment and energy to business and culture. IoT 
platforms build on collecting data and often require users to 
grant permissions to applications, such as the ability to control 
lights in a house. In addition to monitoring and control, IoT 
facilitates the rise of a “sharing economy,” as IoT objects 
become a facility that may be used by many individuals. 

The IoT offers an enormous market opportunity for 
equipment manufacturers, Internet service providers, and 
application developers. Gartner reported that 8.4 billion of 
connected objects were in use in 2017 (up 31% from 2016) 
and forecasted 20.4 billion for 2020, so more than 240% of 
growth over the next three years [1]. Previously, traffic 
monitoring of US cellular network already showed a year to 
year increase of 250% for M2M traffic volume [2]. Vertical 
businesses are the more impacted with a foreseen rise of IoT-
based healthcare applications (e.g., mobile health, telecare 
enable medical wellness, prevention, diagnosis, treatment).   

However, the only way to unleash this potential is through a 
trustful framework for granting access to the things that 
surround and make up the IoT environment. As it currently 
stands, consumer trust in IoT systems is effectively not 
improving, especially, it makes the news that unsecured IoT 
devices enable new security attacks. These concerns about 
security and privacy of IoT systems are not new. In 2015, 80% 
of the 1000 Internet users surveyed did not believe IoT's 
 

 

benefits outweigh any privacy concern about their personal 
data [3].  

Privacy risks of any system are produced by three factors: 
personal data collected or generated, actions performed on that 
data and the context surrounding its collection, generation, 
processing, disclosure, and retention [8]. Some privacy 
frameworks, standards, and legislation try to reduce the risk 
from these factors to address privacy concerns. These include 
Fair Information Practice Principles (FIPPs) [4], ISO/IEC 
29100 Privacy Framework [5], Privacy by Design [6], and, for 
European residents, General Data Protection Regulation 
(GDPR) [7]. However, concerning IoT, while most of the 
regulations mentioned above focus on the first two factors, we 
believe that the third factor, “context,” is critical to ensure a 
trustful Internet of Things. IoT systems thus need proper 
access control to reduce their privacy risks [9][10].  

This paper reviews and discusses the various requirements 
and solutions to address the access control issue for the IoT. 
The rest of the article is structured as follows. We first discuss 
the main principles of access control in Section II. We present 
access control as the exchange of and the reasoning on a set of 
assertions to decide access to a resource in a given context. 
We then detail the various methods for reasoning on the 
provided assertions and taking an access control decision 
(Section III). In Section IV, we introduce the various 
protocols, languages, and architectures to build and convey 
access control related assertions. Many of these works stem 
from the Web. We finally discuss the future requirements to 
drive the research on Access Control for the IoT and a 
possible research agenda to address these open questions 
(section V).  

II. ACCESS CONTROL PRINCIPLES FOR THE IOT 
In this section, we first discuss the main principles of Access 
Control (AC) and various possible architectures when it comes 
to the IoT. 

A. Main Principles 
AC enforces a selective restriction of access to protected 

resources, including data, IoT objects, and services. In the IoT 
context, access can mean performing a CRUD operation 
(Create, Read, Update, Delete) on a given data resource, but 
also performing operations on a physical resource (e.g., 
actuating). The decision to grant access to a resource is called 
access control [11]. Note that we need to differentiate between 
access control and authentication: the fundamental question of 
authentication is “who is speaking?” while the one of access 
control is “who is trusted?” (i.e., who is authorized to perform 
a given action) [12]. In a distributed environment, these 
questions can receive a variety of answers.   

More precisely, Gusmeroli et al. [13] define AC as a 
method for controlling who (i.e., subject) can perform which 
access rights (i.e., actions) on which resource (i.e., object). 
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Thus, AC is represented via a set of assertions involving 
subjects, actions, and objects [13]. In other words, AC rules or 
policies specify the conditions that must be fulfilled by a 
subject (e.g., user, service, device) to access an object (e.g., 
service, device) to perform an action (e.g., read). 

 
Figure 1: Overview of an AC system. The subject requests access to 
perform an action or multiple actions over an access-controlled 
project. The request is evaluated based on policies. The access 
control decision - allow or deny access – is enforced by the object.  

 The different steps that AC involves is shown in Figure 1. 
First, the subject requests an action on the object to the AC 
system (or the request might be directly targeted to the object 
and intercepted by the AC system). This action may, for 
example, be a request to access an object’s data or to actuate 
this object. This requested action comes along with attributes 
intended to assess the right of the subject to perform this 
action. Based on these attributes, as shown in Figure 1, the AC 
system realizes the authorization process with three following 
logical steps. First, it selects the applicable rules or policies for 
this request based on the context of the request and the 
provided attributes. Second, it compares the provided 
attributes with those policies and decides to grant access or 
not. Third, it enforces this decision by transferring the 
requested action to the object. 

These steps are implemented in various ways in the 
different AC architectures. 

B. AC in Different IoT Architectures 
From an architectural point of view, two main paradigms 

exist in the literature for IoT systems: centralized and 
distributed [14]. In the centralized IoT architecture, a central 
entity handles acquiring, processing and transferring data 
between networked nodes as well as decision making, 
including authorization decisions. In the distributed IoT 
architecture, entities at the edge of the network can exchange 
data and dynamically collaborate. Roman et al. [15] 
characterize distributed IoT by two main principles: (i) edge 
intelligence, which is the ability to delegate decision making 
to entities at a lower level and (ii) collaboration among diverse 
entities to reach a particular goal.  

The variations in IoT network structure, communication 
patterns, heterogeneity, and potential mobility, may dictate 
either a centralized or distributed AC implementation. Figure 
2 shows the typical design patterns for IoT networking [16]. 
For instance, in Figure 2, (b), (c) and (d) have centralized 
entities such as a service provider or a gateway. These entities 
may authorize access requests centrally. Note that, in this case, 
the endpoints (e.g., IoT devices) need to be able to connect to 
the centralized authorization entity at all times. However, in 
IoT networks connectivity may not always be guaranteed due 

to mobility or for energy saving. Also, the centralized AC 
approaches face the issues of having a Single Point of Failure 
(SPOF) and scalability [17].  
On the other hand, for the device-to-device communication 
patterns shown in Figure 2 (a), distributed authorization 
solutions would be needed. Distributed authorization in the 
IoT context translates into pushing access control intelligence 
to the edge of the network [17]. However, resource limitations 
at the IoT edge are a significant challenge to achieve such 
edge intelligence. Furthermore, the lack of trust in distributed 
entities, enforcement of access control becomes a crucial 
security issue.  

Depending on the network structure, and the underlying 
application, it is also possible to consider a semi-distributed 
AC approach. In such an approach, AC responsibility is split 
between a centralized decision-making authority and several 
distributed decision enforcement authorities.  
 These challenges need careful attention from the IoT 
research community, and they form the main motivation of 
this paper. We present in the following section the various 
access control methods and how they fit with the IoT needs.   

 

 
Figure 2: Design patterns for IoT communication (Source: IETF 
[16]) Four patterns emerge in IoT communications: Device-to-
device, device-to-cloud, device-to-gateway, and back-end data 
sharing.  

III. ACCESS CONTROL MODELS FOR THE IOT 
In this section, we present current authorization solutions in 
practice and standardization and discuss them in the context of 
IoT. These solutions cover a broad range intentionally, to 
enable an extensive discussion on the various solutions. 
Therefore, while some of these solutions specifically address 
IoT scenarios, others also target more general scenarios. We 
first detail the various AC policies, corresponding to the 
evaluation and decision steps introduced in the previous 
section. We then detail AC mechanisms corresponding to the 
enforcement step. 

A. Evaluation and decision steps  
AC policies can rely on several different models to evaluate an 
access request and decide whether the request is or not 
authorized. The most known and widespread models are the 
following: Discretionary Access Control (DAC), Mandatory 
Access Control (MAC), Role-based Access Control (RBAC) 
and Attribute-based Access Control (ABAC). These main AC 
models can be compared based on the linkage done between 
subject and object by the policies, as shown in Table 1. 

d) c) 

b) a) 
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Table 1 Policy evaluation criteria of different AC models and 
applicability to IoT. 

AC 
model 

Policy evaluation 
criteria Applicability to IoT 

DAC Subject’s identifier 

Extensively used, but does not 
cover all IoT scenarios e.g., does 
not work for use-cases with no 
device identifiers. 

MAC Subject’s access to a 
security label 

Generally considered as too 
rigid for IoT scenarios 

RBAC Subject’s role 
Variations of this model (e.g., 
smart OrBAC) are used for IoT 
scenarios 

ABAC Subject’s attributes 
(inc. dynamic ones) 

The most suitable for IoT 
scenarios as it can support 
flexible attributes 

 
More precisely, in Discretionary Access Control (DAC), 

the owner of an object sets access control policies on an 
object. The AC decision is based on the access rights of 
subjects, characterized by an identifier, e.g., IP or physical 
address. These rights are typically represented by an access 
matrix or Access Control Lists (ACLs) assigned to each 
object, but DAC can also be implemented using capabilities 
(cf next section). Identity-based Access Control (IBAC) is a 
form of DAC, where the access control decision uses the 
authenticated identity of the subject. 

Because of its simplicity, DAC remains the most used 
method for real-life IoT deployments, and notably in the case 
where an IoT Object, identified by its physical address (i.e., 
Media Access Control Address) or by credentials stored 
within the object, can access to resources situated on a cloud 
platform. This method has also been used as a basis for 
research works. For example, [18] proposes to rely on physical 
addresses to build a virtual software-defined LAN between 
IoT objects that have to exchange information. As the access 
control is performed at the network level, this ensures 
extensive security, but at the apparent price of flexibility.  

 
Mandatory Access Control (MAC) is a security policy, 

where a central authority makes access decisions [19]. 
MAC restricts access to objects based on the sensitivity of the 
information they contain, represented by a security label [20].  
The formal authorization of subjects (i.e., clearance, formal 
access approvals, and need-to-know) determines whether a 
subject can access information of such sensitivity (i.e., with 
this security label) [21]. A system administrator should 
perform the necessary labeling and clearance processes. 

MAC is suitable for centralized environments with rigid 
access control policies, and where it is possible to distinguish 
subjects and objects with the necessary security clearance. 
Therefore, simple MAC-based approaches are too constraining 
for IoT environments, and no significant results have been 
achieved for adapting the MAC approach to IoT. 

 
Role-based Access Control (RBAC) groups permissions 

into roles. Groups of permissions can then be provided to 
users with the simple operation of assigning roles [22]. A 
limited number of roles can represent many users or user 
types, and non-expert personnel can assign these roles to 
users. Therefore, it becomes easier to audit which users have 
specific permissions and what permissions have been granted 

to a given user. However, roles must be engineered before 
RBAC can be used [23]. Furthermore, RBAC must be 
constrained to handle dynamically changing attributes, such as 
time of day and location, as core RBAC cannot handle such 
attributes. Organization-based Access Control (OrBAC) [24] 
aims at simplifying the expression of security policies, by 
introducing a higher level of abstraction than RBAC. It allows 
modelling an AC policy independently of its contextual 
implementation within an organization. 

Many works adapt the RBAC model to IoT 
[25][26][27][28]. However, the use of resource-constrained 
devices is rarely addressed. In [29], the authors focus on this 
issue and propose an implementation of the OrBAC model 
named SmartOrBAC. For this purpose, SmartOrBac 
introduces different functional layers: 
• a Constrained Layer that groups the subjects and the objects 

(as defined in Figure 1) 
• a Less Constrained Layer that contains the AC system 
• an Organization Layer that is responsible for allocating 

roles and privileges. 
Also, SmartOrBAC introduces the concept of context for 
policy evaluation. 

 
Attribute-based Access Control (ABAC) grants or denies 

requests based on subject and resource attributes, 
environmental conditions, and a set of policies specified 
concerning those attributes and conditions [30]. With ABAC, 
dynamically changing attributes, such as time of day and 
location, can be accommodated in access control decisions. 
There is no need to engineer roles unless role names are used 
as attributes. Essentially, ABAC is capable of enforcing DAC, 
MAC, and RBAC. For instance, DAC is ABAC with the 
“identity” attribute and RBAC has “role” attribute. However, 
in ABAC a potentially large number of attributes must be 
managed, and expert personnel must select the attributes.  

Due to its flexibility, the ABAC model has been widely 
used for implementing access control for IoT 
[31][32][33][34]. Indeed, relying on identities for 
authenticating a subject is complex in IoT scenarios where 
device identities are hard to maintain and assert. Instead, in 
distributed environments, using a combination of several 
attributes for authenticating a subject may be more reliable. 
For instance, an IoT device has a manufacturer model number, 
a software product number, and an IP or physical Media 
Access Control address. Thus, identity may become a mere 
parameter in a list of attributes needed to evaluate an access 
request [35]. 

Also, this model has also been used for domain specific 
access control, for example, in [36], where an ABAC model is 
used for access control to a personal healthcare monitoring 
service. Attributes are here allocated to subjects as well as to 
objects (as defined in Figure 1). Subjects’ attributes mainly 
consist of the identity and the function of the subject, while 
objects’ attributes define the type of medical record (public 
information, physical or mental diseases). Rules are then built 
to correlate subjects’ and objects’ attributes for defining 
access rights. 
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B. Enforcement step 
Two main concepts enable the enforcement of the policy 
models: access control matrix and capabilities. These two 
different mechanisms can be compared based on the way AC 
policies are enforced, as shown in Table 2 below. 
 
Table 2 Policy enforcement criteria for different AC mechanisms 
and applicability to IoT. 

AC 
mechanisms 

Policy 
enforcement 

criteria 
Applicability to IoT 

AC Matrix 
based 

Mapping with a 
valid matrix 

entry 

Not suitable for decentralized IoT 
architecture. More suitable when 
access policies do not need to be 
updated often.  

Capability 
based 

Presenting a 
valid capability 

token 

Easier to decentralize. Tokens 
provide a more dynamic view of 
the access rights. 

 
Access Control Matrix specifies the rights each subject 

possesses for each object.  More precisely, this matrix 
specifies the linkages between three kinds of entities: a) 
protected objects, b) subjects and c) access rights 
(which specify the operations subjects can perform on 
objects). The access matrix [37][38] provides a useful 
framework for describing resource protection in any system. 
In its typical basic implementation, an object is associated 
with an ACL (Access Control List) storing all subjects that 
can access it and its access rights.  

This mechanism is easy to implement, especially in the case 
of a centralized approach where an access control system 
stores and enforces the access matrix. However, decentralized 
implementations have also been proposed for the IoT [39]. 

 
Capabilities are either a token, ticket, or key that grants to 

its owner the permission to access an entity or an object in a 
computer system [40]. The capability can be thought of as a 
pair (object, actions) stored by the subjects and presented with 
each access request. Capabilities need to be unforgeable, and 
the possession of a capability authorizes a subject for the 
actions on the object. With this mechanism, the access control 
system can be more easily distributed. The potential for a 
distributed implementation has raised a lot of interest in the 
IoT community [41][42][43][44].  

For example, the European FP7 IoT@Work project has 
developed a capability-based Access Control mechanism 
(CapBAC) for IoT [45]. Figure 3 presents an example use-
case. When Bob goes on a business trip for a long time, he 
asks Dave to house sit. However, Bob wants to limit Dave’s 
access to only housekeeping. At this time, Bob has issued a 
token with only the housekeeping permission, and the token 
can be used only during the period specified in the token. 
 

 
Figure 3: CapBAC home keeping use case (Source: [13]). Bob 
grants access to his neighbor Dave for housekeeping. The capability 
tokens allow Dave to enter Bob’s house only in designated hours with 
access limited to housekeeping functions (e.g., Dave cannot change 
settings for house alarms etc.)  

Moreover, the aforementioned AC models and mechanisms, 
that cover the evaluation/decision and the enforcement step, 
are not independent one from another. Table 3 synthesizes the 
usual mappings between both. 

 
Table 3 Mapping between AC models and mechanisms. 

AC mechanisms\models DAC MAC RBAC ABAC 
AC Matrix  x x x x 
Capability     x 

 
However, besides these AC models and mechanisms, new 

general-purpose identity management protocols and 
frameworks have emerged from the Web to implement end-to-
end AC architectures. 

IV. IDENTITY MANAGEMENT AND ACCESS CONTROL 
ARCHITECTURES: FROM WEB STANDARDS TO IOT 

While identity management is treated as a separate concern 
from access control in literature, it acts as a pillar that supports 
authorized access.  

Early approaches in the Web relied on site-specific identity 
management schemes where user identities were asserted via 
site-specific usernames and passwords. The vast proliferation 
of Web services, as well as the need to share and manage 
protected resources across several Web services, demanded 
building authentication mechanisms across security domains 
[46]. Federated Identity Management (FIdM) and Single Sign-
On / Single Log-Out (SSO/SLO) were introduced to address 
those problems [47]. 

In IoT, the challenge is not to access to one single physical 
object at a time but also to a mashup and composition of 
devices, services, and Web applications to accomplish a 
particular goal [48], in a context of complex relationships 
between objects and services as well as between owners and 
users.  

The adaptation of Web identity management and access 
control mechanisms for IoT have focused either on the SOAP-
based Security Assertion Markup Language (SAML) and 
eXtensible Access Control Markup Language (XACML) [49], 
on the RESTful-based OAuth 2.0 [50], or on the User-
Managed Access (UMA) [51]. 
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Table 4 provides an introduction to these mechanisms along 
with their applicability to IoT. These results are then detailed 
in the sections A to F below. 

 
Table 4 Various AC architectures and applicability to IoT. 

Architectural 
framework Definition and main use case Applicability to IoT 

SAML OASIS open standard for 
exchanging authentication and 
authorization data. Enables 
identity federation (i.e., Single 
Sign On) 

Too verbose and 
heavy-weight for most 
IoT scenarios.  

XACML OASIS standard which 
implements ABAC (Attribute-
based Access Control). Enables 
sophisticated access control 
policies.  

Too verbose and 
heavy-weight for most 
IoT scenarios. Still 
used as an architectural 
pattern. 

OAuth 2.0 
framework 

Enables a third-party to get 
limited and controlled access to 
a resource on behalf of the user. 
Widely used for web 
authorization. 

While traditional 
OAuth2.0 authorization 
flows are not very 
suitable for IoT, the 
OAuth2.0 device flow 
may apply to IoT use-
cases. 

ACE  Extends OAuth2.0 to 
constrained environments. 
IoT scenarios are the main 
driver for the work. 

This authorization 
solution is specifically 
developed to address 
various IoT use-cases.  

UMA Introduces a new OAuth2.0 
grant, so that a resource owner 
can grant access to a different 
requesting party. Designed for 
web authorization.  

While UMA is 
designed for web 
authorization, it may be 
adapted for some IoT 
use-cases.  

LMW2M Provides identity-based access 
control for machine-to-machine 
communication. 
Targets machine-to-machine 
communication environments. 

Presents a 
straightforward 
solution, but its ability 
to handle dynamic IoT 
environments is 
limited. 

AllJoyn Provides ACL-based access 
control. Applicable to device-
to-device and device-to-
gateway communication 
environments. 

Offer some flexibility 
in how many users 
control the same 
devices, but with 
increased complexity. 

 

A. SAML and XACML 
SAML is an OASIS open standard for 
exchanging authentication and authorization data between 
parties. One of its popular usages is for identity federation. 
Using SAML, clients need only to assert their identities once 
in a federated environment before accessing services across 
security domains [52].  

SAML is a markup language as well as a communication 
mechanism. SAML has four XML-based mechanisms: 
security assertions, protocols, bindings and profiles 
[53][54][55]. Figure 4 shows the main entities of SAML and 
relationships between these entities. An Asserting Party (AP) 
is the administrative domain that hosts one or more SAML 
authorities that issue assertions. A Relying Party (RP), which, 
as its name suggests, relies on AP for receiving assertions 
about a subject. The principal is an entity whose identity can 
be authenticated. In the Single Sign-On (SSO) profile, the AP 
is an Identity Provider (IdP), which manages identity 
information about principals and provides principal 
authentication.The Relying Party is a Service Provider (SP). It 
is assumed there's a trust relationship between RP and the AP.  
 

 
 

Figure 4: SAML main components include the Asserting Pary, the 
Relying Party and the Principal. The Asserting Party can 
authenticate the Principal to the Relying Party.   

SAML assertions relay security information about a 
particular subject or entities. There are three kinds of 
assertions: Authentication, Attribute, and Authorization 
decision. Assertions are secured using digital signatures and 
encryption.  

SAML defines a number of request/response protocols. 
Protocols specify how SAML elements (encompassing 
assertions) are requested and received. With specific bindings 
SAML protocol messages can be embedded and transported 
over protocols such as SOAP.  

A SAML profile describes how assertions, protocols, and 
bindings combine for specific business use cases. For security, 
PKI (Public Key Infrastructure) and TLS are recommended. 
Mutual authentication and digital signatures are also 
recommended measures. 

The initial purpose of SAML was to design a generic 
language for security assertions. However, SAML profiles 
have been practically oriented towards authentication and SSO 
use-cases, so authorization of entities and protocols remained 
out of the scope of SAML standardization process. This was 
the main driver for starting the XACML standardization.  

XACML [56] is an OASIS standard which implements both 
ABAC model (for policy evaluation) and Access-Control 
Matrix (for policy enforcement). It offers a language as well as 
a reference architecture, which includes functions such as 
Policy Decision Points (PDPs), Policy Enforcement Points 
(PEPs), Policy Administration Points (PAPs), and Policy 
Information Points (PIPs). As seen in Figure 5, in an XACML 
system, a request to, for instance, a file system or a web 
server, is made to the PEP protecting the resource. The PEP 
forms an XACML request based on the requester’s attributes, 
the resource in question, the action, and other information 
about the request. The PEP then sends this request to a PDP, 
which returns an answer to the PEP whether access should be 
granted based on policies that apply to the request. PEP 
respects this answer in allowing or denying access to the 
requester.  

 
Figure 5: XACML Architecture. Access request is made to PEP, 
which is relayed to PDP for decision making. PDP relies on the 
information from both PAP and PIP to grant or deny access to the 
requested resource.  

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Authorization
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XACML enables sophisticated policies that are formed by 
rules, obligations, and advice. In XACML, attributes (which 
are characteristics of the Subject, Resource, Action, or 
Environment in which the access request is made) form the 
basis of policies. For example, a user’s name, their group 
membership, a file they want to access, and the time of day are 
all attribute values. The access request sent from PEP to PDP 
is also formed almost exclusively of attributes, which are then 
compared to the attribute values in a policy to make the access 
decisions. The rule and policy combining algorithms define a 
procedure to reach an authorization decision given the 
evaluation results of a set of rules and policies. However, as a 
price of such expressiveness, XACML is quite complex.  

Various research works have proposed building an 
authorization framework for IoT devices upon SAML and 
XACML [57][58]. At the time of that research (mainly from 
2010 to 2013), SAML and XACML were indeed the most 
popular Internet and access control standards used in industry.  

Of significant interest, the Authorization Framework for the 
Internet-of-Things proposed by Ludwig Seitz et al. [58] allows 
fine-grained and flexible access control to connected devices 
with insufficient processing power and memory. To that end, 
authors have designed profiles and adaptations of XACML 
and SAML to enable or optimize their use with constrained 
devices. Their work includes a complete reference 
architecture, and some optimizations to adapt the protocols to 
constrained devices. As an example, one optimization 
addresses the verbosity of the full syntax of XACML 
responses and SAML assertions by defining a lightweight 
JSON-based notation for an authorization assertion. 

Similarly, more recent work focuses on defining a self-
understandable JSON authorization assertion [59] computable 
by a constrained device and compliant with an existing 
authorization protocol. Both approaches rely on IETF JSON 
Web Encryption (JWE) mechanisms [60]. However, the 
results of both research conclude JWE is adding too much 
overhead for payloads of only a few bytes, which are common 
in constrained IoT protocols such as CoAP. 

B. OAuth 
The OAuth 1.0 Protocol [61], and its successor, the OAuth 2.0 
Framework (RFC 6749) [50] and the OpenID Connect 
framework [62], are designed to solve authorization delegation 
issues in large-scale Internet applications, with the original 
design coming from Facebook. OAuth enables a third-party to 
get limited and controlled access to a resource on behalf of the 
user. This type of authorization facilitates use-cases where a 
person (e.g., Jane Doe) grants an authorization to access her 
personal data (e.g., photos stored at a drive) to another service 
(e.g., print service) that is also used by the same person.  

More precisely, as shown in Figure 6, OAuth defines four 
different roles: 
• The Resource Owner (RO) is the party capable of granting 

access to a protected resource. In the case of a person, the 
resource owner is the user.  

• The Resource Server (RS) hosts the protected resources and 
controls the access to these resources.  

• The Client (C) is an application making a request to a 
protected resource on behalf of the RO or its behalf.  

• The Authorization Server (AS) issues Clients access tokens 
to the protected resource after having authenticated the 
RO and having obtained its authorization.  

An access token is a string denoting a specific scope, lifetime 
and other access attributes. The token represents the subject’s 
capability and can also be interpreted as a summary of the RO 
policy on the resource. The client uses an access token to get 
access to protected resources on the resource server [63]. The 
resource server processes the access token and allows or 
denies access according to its contents.     

 

Figure 6: The abstract OAuth2.0 authorization flow [50] The Client 
(C) may make a direct authorization request to the Resource Owner 
(RO), and receive an Authorization Grant, which represents the RO’s 
authorization.  Next, C requests an access token by authenticating 
with the authorization server (AS) and presenting the authorization 
grant. AS authenticates C, validates the grant, and if valid, issues an 
access token. C uses this access token to request the protected 
resource from the Resource Server (RS). 

OAuth can, therefore, be considered as implementing a 
DAC model for policy evaluation (as the access is based on 
the consent of a validly identified RO) and a Capability-based 
mechanism for policy enforcement (access token). 

OAuth2.0 is designed for HTTP and may apply to web-
based IoT solutions. For instance, in a scenario, as shown in 
Figure 2 (d), where Alice grants access to a mobile health app 
to use data coming from her wearable and stored in another 
application.  

However, Web services rely mainly on user-owned 
credentials (e.g., username and password, hardware token or 
mobile phone) for asserting a user identity. These types of 
credentials may not exist in the IoT world where other sorts of 
identities for physical objects should be considered [64]. 
Moreover, provisioning user credentials to objects should be 
considered as a major security flaw, even though commonly 
done in IoT implementations. 

For IoT applications, ongoing IETF work on OAuth2.0’s 
Device Flow for Browserless and Input Constrained Devices 
[65] provides a solution for clients running on devices that do 
not have a straightforward data entry method. Figure 7 depicts 
this device authorization flow. When the device requests 
access from the authorization server, the authorization server 
returns a device code, a verification code and, a verification 
URI to the user. Visiting the verification URI, the user can 
grant access to the device by validating the verification code. 
Meanwhile, the device continually polls the authorization 
server to check whether its verification code has been 
validated. In the worst case, the device polls the authorization 
server until its device code expires. In the case of success, the 
authorization server returns an access token, which gives 
access to the protected resource. 
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Figure 7: OAuth 2.0 Device Flow (Source: [65]). The client request 
to the Authorization Server (AS) includes a client identifier. The AS 
issues a verification code, user code, and verification URI. The client 
instructs to user to visit the URI (elsewhere, not on the device) and 
use the user code to grant access. The AS authenticates the end-user, 
and the user grants access by providing the user code. Meanwhile, 
the device polls the AS with its verification code to check whether the 
authorization process has completed. If successful, the AS responds 
with an Access Token.  

This is quite a pragmatic approach, and its main drawback 
is its purely centralized model. 

C. ACE 
In addition, the IETF Authentication and Authorization in 
Constrained Environments (ACE) workgroup is working 
towards extending OAuth2.0 to provide a solution for IoT. 
The work considers the very different and limited capabilities 
of IoT devices concerning the available processing and 
message exchange, in supporting different authorization use 
cases [66]. The ACE group builds on: 
• CoAP for messaging (without excluding the possibility of 

using other protocols such as MQTT or QUIC),  
• Concise Binary Object Representation (CBOR) and CBOR 

Web Token (CWT) [67] for token representation,  
• and CBOR Object Signing and Encryption (COSE) and 

DTLS, for application and transport layer security, 
respectively.  

Interestingly, CWT solves the issue of the heaviness of 
JSON Web Encryption (JWE) for constrained devices i.e., 
objects of IoT. 

ACE also uses a different token type, PoP (Proof of 
Possession) tokens compared to OAuth 2.0 Device Flow. PoP 
tokens are access tokens with a PoP key associated with the 
token. A PoP token allows a client to prove to the RS that it is 
indeed the intended authorized owner of the token and not 
merely the bearer of the token.  

Assuming that the RS and client have registered with the 
authorization server (AS), the following sequence of events 
needs to occur in ACE for the client to access a resource 
hosted by the RS. First, the client makes a request to the AS. 
The AS evaluates the client token request and grants or denies 
access by either returning a PoP token or an error [68]. 

The client includes the PoP token in its resource request. 
Using the PoP token, RS authenticates the client using the PoP 
token. RS also may locally evaluate the token if it has the 

capability. Otherwise, it may contact the AS to validate the 
token. This process is called token introspection. Depending 
on the token result, the RS may grant or deny access to the 
resource [68]. 

ACE handles the different communication patterns shown 
in Figure 2, including some device-to-device communication 
support. Essentially, ACE expects that devices may frequently 
be offline, or they may not support IP-based communication, 
and therefore, they may not always be able to communicate 
with the AS [66]. Then, a more capable Client Authorization 
Server can request tokens from the AS.  

If a device is acting as an RS but does not have continuous 
Internet connectivity, then it may need to verify tokens locally. 
However, if the user policies have changed and the token is 
not valid anymore, there is no simple way to revoke the token. 
This issue may harm the entire security of the system, 
underlining the difficulty of providing meaningful 
authorization in limited and distributed IoT systems. 

D. UMA(User Managed Access) 
UMA working group has developed UMA (User Managed 

Access) under the Kantara Initiative [51]. UMA defines a new 
authorization grant which enables resource owners to manage 
access to their resources by clients operated by arbitrary 
requesting parties (e.g., Alice authorizing access to her 
resources by Bob’s services, compared to OAuth2 model 
where Alice may only authorize access to her resources by her 
services). It implements capability-based policy enforcement, 
while the policy evaluation phase remains out of its scope. 

Here, the resources may reside on any number of resource 
servers, and a centralized authorization server governs access 
to the resources based on user-defined policies. Compared to 
OAuth2.0 flows, these access policies are used to handle 
asynchronous authorization grants [17]. A typical example is 
the following: a web user (an end-user resource owner) can 
authorize a web or a native app (a client) to gain one-time or 
ongoing access to a protected resource containing his home 
address stored at a personal data store (a resource server). To 
do this, the user instructs the resource server to respect access 
entitlements issued by the authorization server. 

Figure 8 depicts the UMA flowchart. The resource owner 
manages online resources at the resource server. To protect 
these resources, the resource owner introduces the resource 
server to the authorization server. The resource server, then, 
registers resources to be protected with the authorization 
server. Also, out of band, the resource owner configures the 
authorization server with policies associated with these 
registered resources.  

To get authorization, the client issues a request for a 
resource at the resource server. In case of an unauthorized 
access attempt, the resource server registers a permission with 
the authorization server and returns a permission ticket to the 
client. To trigger the authorization process, the client must 
present this permission ticket to the authorization server. If 
successful, the authorization server returns a requesting party 
token (RPT) to the client. To access the protected resource, the 
client presents this RPT to the resource server. After the 
resource server verifies the token, the client gains access to the 
protected resource.  

UMA is a centralized solution allowing complex and 
attribute-based policies. The solution is appropriate for back-
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end data sharing, as shown in Figure 2. UMA has several IoT 
case studies that focus on health-care scenarios [69].  

 

Figure 8: UMA (User Managed Access) flowchart [51]. The 
Resource Owner (RO) manages its resources in a Resource Server 
(RS).RO introduces RS to the Authorization Server (AS), as the entity 
for the RS to register protected resources. RO also sets policies at the 
AS. The requesting party approaches the RS to access the resources. 
RS registers the access attempts without a token as permission 
requests at the AS. The Client next approaches AS, which uses the 
permission request and the RO policies to issue a Requesting Party 
Token (RPT) to the client.  

E. Lightweight Machine to Machine Protocol (LWM2M)  
LWM2M is developed by OMA (Open Mobile Alliance) and 
provides identity-based access control for machine-to-machine 
communication [70]. LWM2M is principally a device 
management solution but includes authorization, 
authentication, and channel security protocols. It implements 
the DAC model for policy evaluation and Access Matrix 
mechanism for policy enforcement. 

LWM2M follows a gateway-based communication pattern, 
shown in Figure 2(b) and (c). The LWM2M Server is typically 
located in a private or public data center, and the LWM2M 
Client resides on the device. M2M applications may contain 
multiple servers and clients. Also, LWM2M Clients may 
become LWM2M Servers in different communication set-ups, 
which may enable distributed scenarios.  

LWM2M defines objects as collections of resources. A 
resource is an atomic piece that can be read, written and 
executed. For instance, a Location object may have multiple 
resources, including latitude, longitude, altitude, uncertainty, 
velocity, and timestamp. Each resource can have multiple 
instances.  

LWM2M uses Access Control List object instances that 
contain ACLs. These ACLs define which operations are 
allowed on a given object Instance for which LWM2M 
Server(s). Bootstrap servers distribute ACLs to LWM2M 
clients. Predefined ACLs work well when the future 
interactions with objects are known. LWM2M also provides 
some dynamicity to authorization decisions by provisioning 
ACLs real-time from the LWM2M bootstrap server. This 
capability may allow for more complex authorization policies. 

F. AllJoyn 
AllJoyn is an open source software framework, aiming to 
facilitate discovery and communication between devices and 

applications [71]. It is developed by the AllSeen Alliance, 
which merged with the Open Connectivity Foundation in 
2016. Similar to LWM2M, AllJoyn has ACL-based security 
features worth discussing in this section.  

AllJoyn caters to the device-to-device communication 
pattern and optionally, supports the device-to-gateway 
communication pattern (Figure 2 (a) and (b)). To enable peer-
to-peer communication, AllJoyn implements a “distributed 
software bus” that enables AllJoyn devices to advertise and 
share their abilities with other devices around them [72].  

The Security 2.0 feature of AllJoyn allows an application to 
validate access to interfaces or objects based on the ACLs 
installed by the owner. In the AllJoyn framework, the security 
manager plays a similar role to the Authorization Server in 
OAuth-based systems. It is the entity that provides certificates, 
and maintains ACLs, and enables managing security groups, 
identities, and keys [73]. The owners (i.e., “administrators”) 
define the ACLs. They can also create security groups which 
allow multiple users to control the same devices. The 
complexity of this solution increases with how fine-grained 
the desired access control is. More groups need to be created 
for more levels of access. 

 

V. OPEN PROBLEMS FOR RESEARCH 
While there is much work on access control, IoT-specific 
solutions are still in their infancy. In this section, we discuss 
future directions for research needed to address the unique 
challenges of IoT.  

1) Scalability 
IoT systems proliferate. Hence, an IoT system must be able to 
handle a large number of users, applications, and policy 
enforcement and decision points. An effective way of dealing 
with scale is decentralization of management and delegation 
of authority. Thus, an access control management system for 
large networks must be able to adapt to different management 
structures (web of trust, hierarchical management.). 

However, the majority of the works covered in this paper 
rely on a centralized entity for AC, which may include 
administering policies, handing out and introspecting 
credentials for authorization decisions (e.g., the AS in case of 
OAuth2.0, UMA, and ACE or the centralized PDP/PEP in the 
case of XACML). This centrality raises concerns regarding the 
scalability and Single Point of Failure (SPOF) issues. In 
contrast, a semi-distributed AC architecture delegates some of 
the responsibility to the edge: while a central authority may 
still provide a certificate or an access token to access a device 
or group of devices, these are enforced locally at the at the 
point of access (e.g., ACE and UMA provide these options). 
Concerning fully distributed approaches, a significant 
challenge lies in the resource limitations at the edge in IoT 
systems. 

2) Managing Heterogeneity 
New AC protocols get deployed without necessarily 
deprecating old ones. Daily objects have a longer life cycle 
than tech objects, extending the duration where backward 
compatibility will be required from new objects. 

Moreover, the same IoT networks may continue to be used 
in increasingly more complicated ways (e.g., from Intranet to 
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Internet of Things [74]). AC mechanisms should thus be 
flexible enough to adapt to unplanned cases.  

In addition, cross-domain resource sharing and 
collaborations have become pervasive in today's service-
oriented organizations. However, cross-domain access control 
remains a research challenge for the IoT, with a lack of 
concrete implementation mechanisms to provide a sufficiently 
flexible framework. 

3) Openness and Flexibility 
A general requirement for IoT is to support the integration 

of solutions from different industry players and third parties. 
For an example of an integrated infrastructure, consider the 
novel home automation solution "Celiane with Netatmo" [75] 
developed by Legrand along with Netatmo. This solution 
allows the control of a group of connected objects at home 
from a common controller. Additionally, users can personalize 
event-based scenarios. For example, turning on the TV may 
set off a dim light in the living room or the opening of the 
front door may control that of rolling shutters. In this example, 
the IoT architecture design should be an open framework to 
accommodate compatible components. Such openness is also 
necessary to achieve AC in IoT, enabling cross-application 
authorizations for services providers. This could also present 
an excellent opportunity for third-party developers to integrate 
their solutions into an open AC architecture. In the enterprise 
context, this openness will ease the integration of IoT devices 
in the corporate business processes [81].     

4) Resolving object identities  
A crucial part of proposed systems involves asserting the 
identities of access requesters, subjects. However, a pure ID-
based approach may not be entirely suited for IoT. This is 
because the identity information may be hard to assert or may 
not be known or a device may not hold any identity. 

Issues for establishing device identity are making Attribute-
based Access Control more interesting for IoT. This way a 
combination of attributes for asserting the authenticity of the 
requester, e.g., current location, owner or manufacturer may 
be used. For instance, an IoT device may have a model 
number, or a product key, an IP or physical address. These, 
when used in combination, may identify the device more 
reliably than a single attribute. UMAv2.0 with its claims-
based approach allows this type of subject authentication.   

However, identifying the user behind the device is still 
challenging. Today there is little clarity as to who owns or 
should own an IoT device and its data [9]. Moreover, IoT 
devices will generally not be single-user devices. A device 
will be controlled by a group of users, and administrators, with 
different, and potentially, competing claims over its data.  

 
5) Managing personal data 

End users should be put in charge of their personal data, 
whether or not it is machine-generated. IoT systems should be 
able to manage conflicting interests. Especially, when using 
the location information from devices, it must be remembered 
that location is also personal data. For consent-based personal 
data collection, the EU GDPR [7] requires consent to be as 
easy to withdraw as to give it, where consent is considered as 
valid only if the user has sufficient knowledge of the risks and 
benefits of disclosing information to make a reasonable 
evaluation [76]. Enabling dynamic consent may be a challenge 
in IoT-based systems where devices are embedded to the 

user’s environment and interactions with an IoT system may 
be implicit by design.  

6) Providing Dynamic AC policies 
A privacy policy needs to point out precisely who interacts 

with what data, when, where, how, and to what end. This may 
conflict with the usability of these systems. The aim should be 
here to build easy-to-understand policies, which is challenged 
with the increased combination of options for many data flows 
in an IoT context. Pointing out all possible interactions 
appears challenging at best, and detrimental to understanding 
at worst.  

IoT systems, therefore, will need to be configured 
dynamically to provide the necessary middle ground between 
expressivity and simplicity by constraining initial policies to a 
small set of rules. Although there are not many examples in 
literature, an inspiring example of a dynamic policy is 
presented in [77] for RFID systems. The proposed system uses 
physical access control rules to ensure that (1) locations of 
users are revealed to one another if only they are co-located 
and (2) the location of an RFID object is revealed to its owner 
only when the object and its owner are co-located. These rules 
are relaxed by enabling scenario-specific rules. For instance, 
in a scenario, where the RFID object is borrowed by a user, 
the owner of the object may check whether the RFID object is 
carried by this user. Then, the system returns the information 
that “user x carries the object” without disclosing the location 
of user x. While this research constitutes a step in the right 
direction,  IoT systems need ‘just-in-time’ policies that resolve 
access control requests to a multiplicity of IoT objects. 

7) Usable security 
It is well-known that IoT has several security challenges. 

Securing the access to and usage of a vast number of 
vulnerable, connected objects are understudied [78]. Hence, to 
some, it was no surprise, when a botnet of thousands of 
connected cameras was used in a denial of service (DDoS) 
attack on the French host OVH in September 2016 [79].  

Current security solutions apply cryptographic methods and 
disclose keys only to authorized users to protect sensitive IoT 
data against cyber-attacks. However, these solutions are 
susceptible to many types of cyber-attacks. They also do not 
prevent authorized entities from performing certain actions on 
the connected objects in question. Additionally, the 
cryptographic methods introduce a heavy computation 
overhead on the device as well as issues with key distribution 
and management. Automated and self-contained AC is 
therefore required in IoT, as recently exemplified in [80]. Such 
AC should reduce the computational load on IoT devices and 
usability issues such as password fatigue for the device 
owners.  

VI. CONCLUSIONS 
Compared to other domains, IoT introduces specific 
challenges concerning access control. While in this paper, we 
surveyed several outstanding contributions for implementing 
AC in IoT, much work still remains to be done. None of the 
proposals presented in this paper is indeed able to cope with 
all the numerous challenges raised by the IoT. New research 
programs on innovative AC mechanisms are therefore 
required to provide a set of suitable solutions for deploying 
IoT services at a global scale. 
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