
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

A Factorial Bayesian Copula Framework for Partitioning Uncertainties in 1 

Multivariate Risk Inference 2 

 3 

Y. Fan
1*

, K. Huang
2
, G.H. Huang

3,4*
, Y.P., Li

4
 

 
4 

 5 

1 
Department of Civil and Environmental Engineering, Brunel University, London, Uxbridge, 6 

Middlesex, UB8 3PH, United Kingdom 7 

2
 Faculty of Engineering and Applied Sciences, University of Regina, Regina, SK, Canada

 8 

3
 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, 9 

Saskatchewan, Canada S4S 0A2 10 
4 
School of Environment, Beijing Normal University, Beijing, China, 100875 11 

 12 

*Correspondence:  Dr. Y. Fan 13 

    Department of Civil and Environmental Engineering,  14 

Brunel University London,  15 

Uxbridge, Middlesex, UB8 3PH, United Kingdom 16 

Tel: +44 1895265717 17 

Email: yurui.fan@brunel.ac.uk 18 

 19 

Dr. G. H. Huang 20 

Institute for Energy, Environment and Sustainable Communities,  21 

University of Regina, Regina, Saskatchewan, Canada S4S 0A2,  22 

Tel: +1 306 585-4095;  23 

Fax: +1 306 585-4855;  24 

E-mail: huang@iseis.org  25 

 26 

  27 

*REVISED Manuscript (Clean version)
Click here to view linked References

http://ees.elsevier.com/er/viewRCResults.aspx?pdf=1&docID=22488&rev=1&fileID=458555&msid={A92A4492-59CE-44D3-BE0B-10274731BF8C}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Abstract: 28 

 29 

In this study, a factorial Bayesian copula (FBC) method is proposed to quantify 30 

parameter uncertainty in copula-based models and then reveal their contributions to 31 

the multivariate hydrologic risk inference. In detail, Bayesian inference and factorial 32 

analysis are integrated into copula-based multivariate risk models to (1) quantify 33 

parameter uncertainties, (ii) reveal their individual and interactive effects, and (iii) 34 

identify their detailed contributions on uncertain risk inference. Streamflow 35 

observations at Xiangxi and Wei River basins of China are used to illustrate the 36 

applicability of FBC. The results indicate that imprecise parameters in marginal 37 

distributions and the dependence structure would lead to extensive uncertainties in 38 

predictive joint return periods and failure probabilities. Also, individual and 39 

interactive effects of parameters are well revealed through multilevel factorial 40 

analysis, and the detailed contributions of one parameter to different failure 41 

probabilities under different service time scenarios are identified.   42 

 43 

Keywords: Flood risk; Copula; Markov chain Monte Carlo; Factorial Analysis; 44 

Uncertainty  45 

 46 

  47 
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 48 

1. Introduction 49 

 50 

Flooding, as one of the most frequently occurred natural hazards, has taken a 51 

devastating societal and economic toll over the world, leading to a large number of 52 

fatalities and property losses. (Kidson and Richards, 2005; Karmakar and Simonovic, 53 

2009; Fan et al., 2015a, b; Huang et al., 2019; Lindenschmidt and Rokaya, 2019; Wu 54 

et al., 2019). Assessment and management of flood risks concerns many government 55 

agencies, academic institutions as well as individual stakeholders. However, 56 

hydrometeorological processes are recognized as multivariate phenomena 57 

characterized by dependent multi-attribute properties (Sarhadi et al., 2016). 58 

Accordingly, a typical flood event generally presents multiple features such as peak 59 

discharge, hydrograph volume and duration. Univariate risk analyses, mainly focusing 60 

on flood peaks, cannot procure a full description of the probability of occurrence of 61 

the hydrological event (Chebana and Ouarda, 2011; Requena et al., 2013). 62 

Consequently, multivariate approaches are recommended by many studies since they 63 

can involve a number of non-independent variables for the characterization of a flood 64 

(The European Parliament and The Council, 2007; Li et al., 2015; Fan et al., 2016a, b; 65 

Salvadori et al., 2016). 66 

 67 

The applications of multivariate hydrologic risk analysis are growing dramatically 68 

since the introduction of copulas in hydrology and geosciences (Serinaldi, 2013). De 69 

Michele and Salvador (2003) initially introduced the concept of copulas into 70 

hydrological simulation to describe the dependence between storm duration and 71 

average rainfall intensity. After that, a great number of research works have been 72 

proposed for multivariate hydrologic simulation through copula functions, such as 73 

multivariate flood frequency analysis (Zhang and Singh 2006; Sraj et al., 2014); 74 

drought assessments (Song and Singh 2010; Kao and Govindaraju 2010); storm or 75 

rainfall dependence analysis (Zhang and Singh 2007; Vandenberghe et al. 2010); 76 
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streamflow simulation (Lee and Salas 2011; Kong et al., 2015; Fan et al., 2017). 77 

Copulas can model nonlinear dependence between two or more depended variables 78 

with different marginal distributions and relax assumptions of same family of 79 

distributions and linear relationship in traditional multivariate techniques (Zhang and 80 

Singh, 2006; Genest and Favre, 2007; Karmakar and Simonovic, 2009; Sraj et al., 81 

2014; Huang et al., 2017).  82 

 83 

One major issue in hydrologic risk analysis is the presence of uncertainties, resulting 84 

from model selection and parameter estimation. There are two primary sources of 85 

uncertainty: (1) natural uncertainty stemming from variability of the underlying 86 

stochastic process, and (2) epistemic uncertainty coming from incomplete knowledge 87 

about the system under study (Merz and Thieken, 2005). In particular, the limited 88 

sample size of hydrological data implies large uncertainty on the extreme quantiles 89 

(Serinaldi, 2013). Uncertainty assessment is a prominent aspect in univariate 90 

frequency analysis and it is also quite crucial in multivariate framework. Several 91 

research works have been proposed for evaluating uncertainties in copula-based 92 

multivariate risk framework (Serinaldi, 2013; Dung et al. 2015; Zhang et al., 2015). 93 

For instance, Serinaldi (2013) proposed a Monte Carlo-based approach to generate 94 

confidence intervals around p-level curves to account for uncertainties in joint 95 

quantile. These research works demonstrate that significant uncertainties exist in 96 

copula-based hydrologic risk assessment. However, one major issue to be addressed is 97 

to characterize the major sources that lead to uncertainties in multivariate risk 98 

predictions. In a multivariate framework, uncertainties in both marginal distributions 99 

and dependence structures may lead to varied risk predictions. However, few research 100 

studies have been reported to answer which source contributes most to the uncertainty 101 

in the resulting risk predictions.   102 

 103 

Consequently, this study aims to propose a factorial Bayesian copula (FBC) 104 

framework to quantify uncertainties in multivariate risk analysis and further partition 105 

sources in the uncertain risk inference. This approach integrates copula model, 106 
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Bayesian parameter estimation and multilevel factorial analysis into a framework. In 107 

detail, the multivariate risk inference models in terms of joint return periods and 108 

failure probabilities (FPs) are established based on copulas. Parameter uncertainties in 109 

marginal distributions and dependence structure are quantified by a Bayesian based 110 

Markov Chain Monte Carlo (MCMC) algorithm. Finally, individual and interactive 111 

effects of parameter uncertainties are revealed by multilevel factorial analysis. Flood 112 

data at three hydrological gauge stations in China are used to illustrate the 113 

applicability of the proposed method.  114 

 115 

2. Methodology 116 

The proposed FBC approach mainly consists of three components, including: (i) 117 

establishment of copula-based multivariate risk assessment model, (ii) quantification 118 

of parameter uncertainties and (iii) characterization of contributions of parameters to 119 

uncertainties in risk inference. Figure 1 illustrates the detailed procedures for FBC.  120 

 121 

2.1. Copula-based Multivariate Risk Assessment  122 

 123 

In the hydrology context, many hazard events may present with multivariate 124 

characteristics. For instance, floods are generally characterized by its peak and 125 

volume values, while droughts have multi-attribute of severity and duration. Also, 126 

these multi-attributes in one hydrological hazard are usually correlated. To reveal the 127 

dependence among the multiple features in one hazard and characterize the associated 128 

risk in a multivariate framework, the copulas, initially introduced into hydrology by 129 

Favre et al. (2004), have been widely used. The applicability of copulas is mainly 130 

attributed to their flexibility in modelling dependence among correlated variables with 131 

different marginal distributions. Also, a variety of dependence structures, such as 132 

asymmetry, nonlinear and tail dependence, are able to be captured by copulas (Sarhadi 133 

et al., 2016).  134 

 135 
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Consider one hydrological hazard has d correlated attributes (e.g. peak, volume and 136 

duration for a flood) with each one denoted by a random variable Xi (i = 1, 2, …, d). If 137 

the corresponding probability distributions are denoted as F1(x1|γ1), F2(x2|γ2), …, 138 

Fd(xd|γd), where γ1, γ2, …, γd are parameters in probability distributions, the joint 139 

probability distribution of X1, X2, …, Xd can be expressed as (Nelsen, 2006):  140 

1 1 1 1 1( , ..., | ,..., , ) ( ( | ), ..., ( | ) | )d d d d dF x x C F x F x       (1) 141 

where C(.) is a copula function; θ is the parameter in the copula function describing 142 

dependence among those correlated variables. More details on theoretical background 143 

and properties of various copulas can be found in Nelsen (2006).  144 

 145 

Through the probability distribution in Equation (1), some features of the hazardous 146 

event can be revealed. Firstly, the concept of return period (RP) is of great importance 147 

in water resources and civil engineering for (i) designing and sizing hydraulic 148 

structures, (ii) identifying dangerous events, (iii) making rational making, and (iv) 149 

assessing related risk (Salvadori et al., 2013). In a multivariate context, the RP of one 150 

specific hazardous event should consider the interaction among different attributes in 151 

the hazardous scenarios, leading to multivariate RP. A number of literatures have been 152 

proposed to characterize multivariate RP in hydrologic issues (Salvadori et al., 2007; 153 

2011; 2013, 2016; Fan et al., 2016a, b). In general, consider one kind of hydrological 154 

extreme (denoted as X) with d attributes (i.e. X = (X1, X2, …, Xd)), three categories of 155 

multivariate RP are widely used for hydrologic risk assessment. 156 

 157 

(i) “OR” case:
* * *

1 2 1 1 2 2{( , ,..., ) : ... }OR d

d d dT x x x R x x x x x x        , which 158 

indicates at least one element surpass the predefined threshold. Based on the copula 159 

function, the multivariate RP in “OR” case can be expressed as: 160 

1 1 11 ( ( | ), ..., ( | ) | )

OR

d d d

T
C F x F x



  



 (2) 161 

where μ denotes the average time between two adjacent events under consideration.  162 

 163 
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(ii) “AND” case: 
* * *

1 2 1 1 2 2{( , ,..., ) : ... }AND d

d d dT x x x R x x x x x x         which 164 

indicates at all elements in the extreme events should exceed the corresponding 165 

thresholds. Based on the copula function, the multivariate RP in “AND” case can be 166 

expressed as: 167 

^

1 2 11 1 2 2( ( | ), ( | ), ..., ( | ) | )

AND

d d

T

C F x F x F x



   

  (3) 168 

where 
^

C  is multivariate survival function of the Xi’s proposed by Salvadori et al. 169 

(2013; 2016), and ( | ) ( ) 1 ( | )i i i i i i iF x P X x F x     . Following Salvadori et al. 170 

(2013; 2016), and the Inclusion-Exclusion principle proposed by Joe (2014), the 171 

multivariate survival function 
^

C  can be obtained by: 172 

^

( ) (1 )C C u u  (4) 173 

and 174 

#( )

1

( ) 1 ( 1) ( : )
d

S

i S i

i S

C u C u i S
 

     u   (5) 175 

 176 

(iii) “Kendall” case: The Kendall RP is to characterize the hydrologic disasters 177 

exceeding a critical layer defined by (Salvadori et al., 2011): { : ( ) }F d

tL R F t  x x . 178 

The Kendall RP can be expressed as (Salvadori et al., 2011): 179 

1 ( )

Kendall

C

T
K t





 (6) 180 

where KC is the Kendall’s distribution function associated with C, which can be 181 

expressed as: 182 

1 1 1( ) ( ( ( | ), ..., ( | ) | ) )C d d dK t P C F x F x t      (7) 183 

 184 

In addition to the multivariate RP, Serinaldi (2015) recently proposed the notion of 185 

failure probability (FP) to provide more coherent, general and well devised tools for 186 

risk assessment and communication. In general, the failure probability pM to indicate 187 
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the occurrence of a critical event for at least one time in M years of design life can be 188 

defined as (Serinaldi, 2015): 189 

1

1 (1 ) 1 ( ( ))
M

M

M j d

j

p p F x


       (8)  190 

Similar to the multivariate RP concept, the failure probability (FP) in a multivariate 191 

context can also be characterized in “OR”, “AND”, and “Kendall” scenarios 192 

expressed by the following equations. For a given critical threshold 193 

* * * *

1 2{ , ,..., }dx x xx , the failure probabilities violating this critical value can be 194 

expressed as (Salvadori et al., 2016): 195 

* * *

1 1 1 1 2 21 ( ( ( | ), ( | ),..., ( | ) | ))OR T

T d d dp C F x F x F x      (9) 196 

^
* * *

1 2 11 1 2 21 (1 ( ( | ), ( | ), ..., ( | ) | ))AND T

T d dp C F x F x F x       (10) 197 

* * *

1 1 1 1 2 21 ( ( ( ( | ), ( | ),..., ( | ) | ) ))Kendall T

T d d dp P C F x F x F x t       (11) 198 

where 
OR

Tp , 
AND

Tp , and 
Kendall

Tp respectively denote the failure probability in “AND”, 199 

“OR” and “Kendall” cases. T indicate the service time of the facilities under 200 

consideration.  201 

 202 

Focusing on a bivariate case, the joint RP and the associate failure probability in 203 

“OR”, “AND”, and “Kendall” scenarios can be formulated as (Salvadori et al., 2007, 204 

2011; Graler et al., 2013; Sraj et al., 2014; Serinaldi, 2015): 205 

1 2

1 2

,

1 21 ( , | )

OR

u u

U U

T
C u u







 (12) 206 

1 2

1 2

,

1 2 1 21 ( , | )

AND

u u

U U

T
u u C u u






  
 (13) 207 

1 2

1 2

, * *

1 21 ( ( , ) )

Kendall

u u

U U

T
P C u u t




 
 (14) 208 

1 2

* *

1 21 ( ( , | ))OR T

T U Up C u u    (15) 209 

1 2

^
* * * *

1 2 1 21 ( ( , | ))AND T
U UTp u u C u u      (16) 210 
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1 2

* *

1 21 ( ( ( , | ) ))Kendall T

T U Up P C u u t    (17) 211 

where 1 1 1 1( | )u F x  , 2 2 2 2( | )u F x  , 
* *

1 1 1 1( | )u F x  ,
* *

2 2 2 2( | )u F x  , (
*

1x ,
*

2x ) 212 

means the bivariate threshold.  213 

 214 

2.2. Uncertainty Quantification of Parameters by Bayesian Inference 215 

 216 

From Section 2.1, it is noticed that in the multivariate risk analysis framework 217 

through copulas, parameters in both marginal distributions and copulas may produce 218 

significant impacts on the resulting multivariate RPs and failure probabilities. In 219 

particular, extensive uncertainties may be involved in the copula-based multivariate 220 

risk assessment framework due to: (i) the inherent uncertainty in the flooding process, 221 

(ii) uncertainty in the selection of appropriate marginal functions and copulas and (iii) 222 

statistical uncertainty or parameter uncertainty within the parameter estimation 223 

process (e.g. the availability of samples) (Serinaldi, 2013; Zhang et al., 2015). In this 224 

study, the inherent uncertainty in the copula-based multivariate model will be 225 

quantified by Bayesian analysis. The Bayesian approach has been widely applied for 226 

uncertainty quantification since it can incorporate various sources of information into 227 

a singly analysis through Bayes’ theorem. Given the prior probability density and 228 

observations, the posterior distribution can be derived through Bayes’ theorem, which 229 

is expressed as: 230 

0

0

( | ) ( )
( | )

( | ) ( )

L X
X

L X d

  
 

   



 (18) 231 

 232 

where 0 ( )   signifies the prior parameter distribution, and ( | )L X  denotes the 233 

likelihood function. 0( | ) ( )L X d    is the normalization constant. ( | )X   is the 234 

posterior probability density function. X = (x1, x2, …, xd) is the observation vector. 235 

 236 

Consider the multivariate distribution expressed by Equation (1), it is noticed that the 237 

posterior distribution for the parameters in marginal distributions (i.e. γi, i = 1, 2, …, d) 238 
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and copula (i.e. θ) can be derived as follows: 239 

1 2 1 2 0 1 2( , , ..., | ) ( , , ..., | ) ( , , ..., )L          x x240 

1 2

1 2 0 1 0 2 0 0( , , ..., | ) ( ) ( )... ( ) ( )d c

dL            x  (19) 241 

where 1 2( , , ..., | )L    x is the likelihood function of the observation x (x = x1, x2, …, 242 

xd), 0 ( )i

i  are the prior distributions for parameters in marginal distribution, and 243 

0 ( )c   indicates the prior for parameters in the copula. 244 

 245 

For the probability distribution expressed by Equation (1), the corresponding 246 

probability density function (PDF) can be derived as (Aas et al., 2009): 247 

1 1 1 2 1 1 1( , ..., | ,..., , ) ( , ,..., | ) ( | ) ... ( | )d d d d d df x x c u u u f x f x       (20) 248 

where c(.) indicate the copula density, fi(.) means the PDF of marginal distribution, 249 

and ( | )i i i iu f x  . Consequently, the likelihood function 1 2( , , ..., | )L    x can be 250 

formulated as:  251 

 1 2 1 2 1 1 1

1

( , , ..., | ) ( , ,..., | ) ( | ), ..., ( | )
n

j j j j j

d d d d

j

L c u u u f x f x     


x  (21) 252 

where n is the total number of observations.  253 

 254 

In spite of the likelihood function, the determination of prior distributions is an 255 

essential step in any Bayesian analysis, as shown in Equations (18) and (19). The key 256 

issues in setting up a priori distribution include (i) the information going into the prior 257 

distribution; (ii) the properties of the resulting posterior distribution (Gelman, 2002). 258 

In general, uninformative and informative priors are the two types of widely used 259 

prior distributions, in which uninformative priors are adopted for the situation of no 260 

information available for the prior and informative priors can provide some specific 261 

information about the variable. However, with well-identified parameters and large 262 

sample sizes, reasonable choices of prior distributions will have minor effects on 263 

posterior inferences (Gelman, 2002). In this study, the normal informative priors are 264 

assumed in terms of the parameters in marginal distribution and dependence structure.  265 
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 266 

In many situations, analytic solutions for Equation (18) are not possible. Thus, the 267 

Markov chain Monte Carlo (MCMC) techniques are used to approximate sampling 268 

realizations of the posterior distribution. A number of MCMC algorithms have been 269 

proposed in both statistical and hydrological literatures. In this study, the 270 

Metropolis-Hastings (MH) algorithm will be adopted for quantifying the posterior 271 

distributions of the parameters in the copula-based multivariate hydrologic risk 272 

framework. The MH algorithm, initially proposed by Metropolis et al. (1953) and 273 

then extended by Hastings (1970), is widely used in hydrologic context (e.g. Viglione 274 

et al., 2013; Zhang et al., 2016). In MH algorithm, a proposal density q(.) is used to 275 

generate a new sample Θ’, given the current state Θ. Such a new sample is either 276 

accepted or rejected through the Metropolis acceptance probability: 277 

( ') ( ' | )
( , ') min[ ,1]

( ' ) ( | )

q

q











  
 

  

x

x
   (22) 278 

where is the posterior distribution and q(.) is the proposal density function. Θ is the 279 

parameters to be quantified. In this study, the parameters in both marginal 280 

distributions and copulas are estimated simultaneously, and thus Θ = (γ1, γ2, …, γd, θ). 281 

Based on the sampling realizations from MCMC, the uncertainty and credibility 282 

intervals can be analyzed. Also, the uncertainties in the resulting multivariate RP and 283 

failure probabilities will be characterized.  284 

 285 

In the copula-based multivariate risk assessment framework, there are several options 286 

for both the marginal distributions (e.g. Lognormal, Pearson Type III, and generalized 287 

extreme value distributions) and copula model (i.e. Gaussian, Archimedean copulas). 288 

An essential step before inferencing hydrologic risk is to choose the most appropriate 289 

model (i.e. marginal distribution and copula) to match the observed flood data. In this 290 

study, the Deviance Information Criterion (DIC) will be employed to help choose the 291 

most appropriate model. The index of DIC is developed by Spiegelhalter et al. (2002), 292 

which is a specific measure designed for model selection under Bayesian inference 293 

and can be thought of as a Bayesian alternative to the standard Akaike information 294 
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criterion (AIC) (Sarhadi et al., 2016). In the Bayesian inference through MCMC, the 295 

DIC value can be formulated as (Spiegelhalter et al., 2002): 296 

( ) 2 DDIC D p   (23) 297 

where  298 

( ) 2log ( | )D L data    (24) 299 

( )Dp D D    (25) 300 

 301 

2.3. Uncertainty Partition through Multilevel Factorial Analysis  302 

 303 

Due to the uncertainties existing in the parameters in the copula-based multivariate 304 

risk assessment model, the predictive risk (e.g. multivariate RP or failure probabilities) 305 

values for a give hazardous event also present uncertain features. However, in the 306 

copula-based multivariate risk assessment model, there are two kinds of parameters, 307 

including the parameters in marginal distributions describing randomness of attributes 308 

in the hazardous event and the parameters in copulas describing dependence 309 

structures among attributes. Moreover, uncertainties in these parameters interact 310 

among each other, leading to intensified uncertainty in predictive risk. Therefore, 311 

multilevel factorial analysis will be used to characterize the contributions of 312 

parameters in marginal distribution, copula and their interactions to the uncertainty in 313 

the resulting risk inference values.   314 

 315 

In factorial analysis, an experimental design is employed to account for all 316 

combinations of the levels of factors to help visualize the single effects of factors with 317 

discrete values (or levels) and their interactive effects on a response variable (Wang et 318 

al., 2015). For instance, consider a copula-based bivariate risk assessment model 319 

which has two marginal distributions (A and B) and one copula (C). The parameters in 320 

the two marginal distributions are assumed to be respectively denoted as γ
A
 with a 321 

levels and γ
B
 with b levels and the parameter in the copula is denoted with θ

C
 with c 322 

levels. The predictive risk (denoted as R) of the copula model can be fitted in response 323 
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to the parameters γA, γB, θC and replicates n, which can be expressed as: 324 

1,2,...,

1,2,...,
( ) ( ) ( ) ( )

1,2,...

1,2,...,

C A B C A C B A B C A B

ijkl i j k ij ik jk ijk ijkl

i c

j a
R

k b

l n

             





         


 

325 

 (26) 326 

where μ denotes the overall mean effect; C

i ,
A

j , B

k respectively indicate the effect 327 

for parameter θ
C
 in the copula at the ith level, parameter γ

A
 in the first marginal 328 

distribution at the jth level, and parameter γ
B
 in the first marginal distribution at the 329 

kth level; ( )C A

ij  , ( )C B

ik  and ( )A B

jk  indicate interactions between factors θ
C
 and 330 

γ
A
, θ

C
 and γ

B
, as well as γ

A
 and γ

B
, respectively; ( )C A B

ijk   denotes the interaction of 331 

factors θ
C
 , γ

A
 and γ

B
; εijkl means the random error component.  332 

 333 

Based on Equation (26), the total variability of the predictive risk can be decomposed 334 

into its components parts as follows: 335 

 336 

C A B C A C B A B C A BT eSS SS SS SS SS SS SS SS SS
           

         (27) 337 

and  338 

2
2 ....

1 1 1 1

c a b n

T ijkl

i j k l

R
SS R

abcn   

   (28) 339 

2
2 ....
...

1

1
C

c

i

i

R
SS R

abn abcn


   (29) 340 

2
2 ....
. ..

1

1
A

a

j

j

R
SS R

bcn abcn


   (30) 341 

2
2 ....
.. .

1

1
B

b

k

k

R
SS R

acn abcn


   (31) 342 

2
2 ....
..

1 1

1
C A C A

c a

ij

i j

R
SS R SS SS

bn abcn   
 

     (32) 343 
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2
2 ....
. .

1 1

1
C B C B

c b

i k

i k

R
SS R SS SS

an abcn   
 

     (33) 344 

2
2 ....
. .

1 1

1
A B A B

a b

jk

j k

R
SS R SS SS

cn abcn   
 

     (34) 345 

2
2 ....

.

1 1 1

1
C A B C A B C A C B A B

c a b

ijk

i j k

R
SS R SS SS SS SS SS SS

n abcn           
  

         (35) 346 

2 2

.

1 1 1 1 1 1 1

1c a b n c a b

e ijkl ijk

i j k l i j k

SS R R
n      

    (36) 347 

 348 

where . 1

n

ijk ijkll
R R


 , .. 1 1

b n

ij ijklk l
R R

 
  , . . 1 1

c n

jk ijkli l
R R

 
  , . . 1 1

a n

i k ijklj l
R R

 
  , 349 

... 1 1 1

a b n

i ijklj k l
R R

  
   , . .. 1 1 1

c b n

j ijkli k l
R R

  
   , .. . 1 1 1

c a n

k ijkli j l
R R

  
  350 

.... 1 1 1 1

c a b n

ijkli j k l
R R

   
    . Then the contributions of parameter uncertainties in 351 

marginal distributions and dependence structures can be calculated as: 352 

(1) Contributions of parameters in marginal distributions A and B 353 

/AA TSS SS


    (37) 354 

/BB TSS SS


   (38) 355 

(2) Contribution of parameter in the dependence structure 356 

/CC TSS SS


   (39) 357 

(3) Contributions of parameter interactions 358 

/C AAC TSS SS
 

   (40) 359 

/C BBC TSS SS
 

   (41) 360 

/A BAB TSS SS
 

   (42) 361 

/C A BABC TSS SS
  

   (43) 362 

(4) Contribution of internal variability  363 

/e e TSS SS   (44) 364 

 365 
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3. Applications 366 

 367 

The proposed FBC approach is applied for hydrologic risk analysis at three locations 368 

in China, one at the Xingxi River and two at the Wei River. The detailed descriptions 369 

for these two catchments are provided in the Supplementary Materials. Observed 370 

daily streamflow data Xingshan station (at Xiangxi River) and Xianyang and 371 

Zhangjiashan gauging stations (at Wei River) are applied for hydrologic risk analysis. 372 

Figure 2 show the locations of these three gauging stations. Although a flood is 373 

generally characterized by its peak, volume and duration, the multivariate flood risk in 374 

terms of peak and volume will be applied to demonstrate the applicability for the 375 

proposed FBC method. Other multivariate risk indices for peak-duration, 376 

volume-duration and peak-volume-duration can similarly be characterized by the 377 

developed FBC method. Based on the daily stream flow data, the flood peak applied 378 

is defined as the maximum daily flow over a period and the associated flood volume 379 

is considered as the cumulative flow during the flood period. In current study, the 380 

flood characteristics are obtained based on the annual scale. This means that one flood 381 

event is identified in one year. The detailed method to identify the flood peak and the 382 

associated flood volume can be found in studies by Yue (2000, 2001). Table 1 shows 383 

some descriptive statistics values of the considered variables (peak discharge, Q; 384 

hydrograph volume, V). In detail, the daily discharge data from 1961 to 2010 are used 385 

to analyze the potential flooding risk in Xiangxi River, which means 50 flood peak 386 

and volume values (i.e. one flood peak and volume in each year) are generated. 387 

Similarly, 47 and 55 flood events are characterized at the Xianyang and Zhangjiashan 388 

station, respectively. 389 

 390 

-------------------------------- 391 

Place Figure 2 and Table 1 here 392 

-------------------------------- 393 

 394 

4. Results Analysis 395 
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4.1. Parameter Estimation and Model Selection 396 

 397 

There are a number of potential models for both marginal distributions and dependent 398 

structures. In this study, three models including generalized extreme value (GEV), 399 

lognormal (LN) and Pearson Type III (PIII) distributions are selected to fit the 400 

distributional characteristics of flood peak and volume at the Xingshan, Zhangjiashan 401 

and Xianyang stations. Meanwhile, three Archimedean copulas involving Joe, 402 

Gumbel and Frank copula are applied to reflect the dependence structure between 403 

those two flood attributes (i.e. peak and volume). The parameters in both marginal 404 

distributions and copula are quantified through MH-based MCMC approach and the 405 

most appropriate model is determined by the values of DIC. 406 

 407 

For each gauge station, the combinations of marginal distributions and copula 408 

functions will lead to a total number of 27 potential risk assessment models. For each 409 

model, the MH-based MCMC algorithm is run for 50,000 iterations in which the first 410 

30% samples are neglected as burn-in and the rest ones are used to quantify the 411 

posterior distributions of model parameters. The Geweke’s diagnostic is applied to 412 

guarantee the convergence of the Markov chain for each parameter (the absolute value 413 

of test statistic is less than 1.96) (Plummer et al., 2015). The associated DIC values 414 

are calculated based on the posterior samples in which the model with a minimum 415 

DIC value is chosen as the most appropriate one for further risk inference.  416 

 417 

Table 2 presents the results for model selection for the three streamflow gauge 418 

stations (i.e. Xinshan, Zhangjiashan and Xianyang). The results indicate that for each 419 

flood attribute (i.e. peak and volume), the lognormal distribution will be applied to 420 

quantify its distributional characteristic. In particular, the lognormal distribution will 421 

be used for all the two flood attributes at all three gauge stations. In terms of the 422 

dependence structure between flood peak and volume, the Gumbel copula will be 423 

used for the Xiangxi River (i.e. Xingshan station), while the Frank copula is chosen 424 

for Wei River (i.e. Zhangjiashan and Xianyang stations). Figure 3 shows the posterior 425 
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distributions for the parameters in the copula-based risk assessment model at the three 426 

gauge stations. The first row indicates the parameter posteriors for the lognormal 427 

distribution models for flood peak at the three stations while the second row presents 428 

the posterior distributions for the flood volume models. The last row in Figure 3 429 

shows the parameter posteriors in the copula functions. The results in Figure 3 suggest 430 

that the uncertainty in model parameters can be well reflected by the MCMC 431 

algorithm with relative small deviations. Such results can also be demonstrated by the 432 

95% predictive intervals (PIs) for each parameter as presented in Table 2.  433 

 434 

------------------------------------------- 435 

Place Figure 3 and Table 2 here 436 

------------------------------------------- 437 

 438 

4.2. Uncertainty in Risk Inferences 439 

 440 

Parameter uncertainties in both marginal distributions and the dependence structure 441 

will also lead to uncertainty in the risk inference results. Figure 4 describes the 442 

inferred flood peak and volume generated based on the lognormal model. Since 443 

parameters in all lognormal models have some degrees of uncertainty (as shown in 444 

Figure 3 and Table 2), the inferred flood peak and volume values with specific return 445 

periods exhibit obvious uncertainties. Particularly, these uncertainties would be more 446 

extensive as the increase in the predefined return period.  447 

 448 

-------------------------------------------- 449 

Place Figure 4 here 450 

-------------------------------------------- 451 

 452 

 453 

In addition to uncertainties in predictive flood peak and volume, parameter 454 

uncertainties in both marginal distributions and the copula function also lead to 455 

imprecise values for joint risks of peak and volume. Figure 5 describes uncertainties 456 
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for joint RP in OR at the three stations. It is observed that the predictive joint RP in 457 

OR has small uncertainty for a small flood event (i.e. small peak or small volume), 458 

while considerable uncertainties exist in the predictive joint RP of OR even for a 459 

flood with an actual joint RP of 20 years. For the predictive joint RP in AND, more 460 

extensive uncertainties exist than that for the joint RP in OR, as shown in Figure S1 in 461 

the Supplementary Materials. Noticeable uncertainties exist in the predictive joint RP 462 

of AND even for a minor flood event with a 5-year joint RP of AND. For some 463 

extreme flood events (e.g. with a 200-year joint RP of AND), the predictive joint RP 464 

in AND can be remarkably large. For the joint RP in Kendall, the uncertainties in the 465 

predictive values are not as remarkable as those for joint RP in AND, as presented in 466 

Figure S2 in the Supplementary Materials. However those uncertainties are still 467 

noticeable even for a moderate flood event with a 50-year joint RP in Kendall.  468 

 469 

-------------------------------------------- 470 

Place Figures 5 here 471 

-------------------------------------------- 472 

 473 

In additional to the joint RP in AND, OR and Kendall, the FP provides more 474 

consistent way for multivariate hydrological or environmental risks (Serinaldi, 2015; 475 

Salvodor et al., 2016). The formulations for calculating these FPs are expressed by 476 

Equations (9) – (11) and Equations (15) – (17). In this study, the critical thresholds for 477 

flood peak and volume are inferred based on their corresponding probability 478 

distributions with a predefined return period of 500 (i.e. p = 0.998) and the service 479 

time of one hydraulic infrastructure (e.g. a dam or river levee) ranges from 30 to 100 480 

years. The associated FPs in OR, AND and Kendall, corresponding to the above 481 

critical peak and volume thresholds as well as service time scenarios, are shown in 482 

Figure 6. It is observed that, as a result of uncertain parameters in both marginal 483 

distributions and the dependence structure, noticeable uncertainties exist in the 484 

predictive FPs of OR, AND and Kendall. More specifically, the degree of uncertain of 485 

FPs would increase significantly if the service time of one hydraulic infrastructure 486 
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increases.  487 

 488 

-------------------------------------------- 489 

Place Figure 6 here 490 

-------------------------------------------- 491 

 492 

4.3. Interactions of parameter uncertainties 493 

 494 

Great uncertainties exist in the inferred risk values (i.e. joint RP and FPs) due to 495 

imprecise estimations for the parameters in the copula-based risk assessment model. 496 

However, one unclear issue is that how the parameter uncertainties and their 497 

interactions impact the risk inference of the copula-based risk model. Therefore, a 498 

multilevel factorial design (expressed as Equations (26) – (36)) is proposed to 499 

characterize the main and interactive effects of parameters in marginal distributions 500 

and copula function on the resulting risk inference values. In detail, a 3
5
 factorial 501 

design is proposed in which the five parameters considered as the factors, in which 502 

two of them (denoted as P_par1, P_par2) are the parameters in the lognormal 503 

distribution for flood peak, two (denoted as V_par1, V_par2) are the parameters in the 504 

lognormal distribution for flood volume, and the last one is the parameter (i.e. 505 

Cop_par) in the copula function. Each factor has three levels (i.e. 0.05, 0.5, and 0.95) 506 

identifies as the 5%, 50% and 95% quantiles of its posterior samples from MCMC. 507 

Three responses are considered in the factorial design, which are corresponds to the 508 

three failure probabilities (i.e. OR, AND, and Kendall). A multi-way analysis of 509 

variance (ANOVA) is further employed to identify the statistical significance of all 510 

parameters and their interactions in the copula-based risk assessment model.   511 

 512 

Figure 7 presents the main effect plots and full interactions plot matrices for 513 

parameters on the FP in OR at Xingshan, Xianyang and Zhangjiashan stations. It is 514 

noticed that both the main effect plots and the interaction plot matrices at the three 515 

stations have similar patterns, implying that the parameters’ individual and interactive 516 
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effects on the FP are nearly independent with the location of one gauge station. More 517 

specifically, the changes of the two scale parameters (i.e. P_par2 and V_par2) lead to 518 

more changes in response (i.e. FP in OR) than the changes of the two location 519 

parameters (i.e. P_par1 and V_par2). This indicates that the scale parameter in 520 

lognormal distribution has a more effect on the inferred FP of OR than the location 521 

parameter. Moreover, the resulting failure probability does not have a visible change 522 

as the copula parameter change from its low level to its high level, suggesting that the 523 

parameter in the copula function may has insignificant effect on the prediction of 524 

failure probability in OR. For the interactive effects among the five parameters, the 525 

full interactions plot matrices show that the interactive curves between the copula 526 

parameter (i.e. Cop_par) and the location parameter of peak (i.e. P_par1) are parallel 527 

at the three levels, indicating an insignificant interaction of these two parameters on 528 

the inferred failure probability of OR. Similar characteristics are also observed for the 529 

interactions between the copula parameter and the other three parameters (i.e. P_par2, 530 

V_par1, V_par2). Other interactive curves are observed to be intersected at the three 531 

levels, implying significant interactive effects of those parameters on the results risk 532 

inference. Table 3 provides the results of ANOVA table for the failure probability in 533 

OR. The results indicate statistical insignificance for AE, BE, CE and DE, which is 534 

consistent with the full interaction plot matrices. The individual effect of the copula 535 

parameter (i.e. Cop_par) is statistical insignificant at the Xianyang and Zhangjiashan 536 

stations, while such an effect is statistical significant at the Xingshan station. However, 537 

this parameter leads to less sum of squares than the other four parameters at all three 538 

cases, implying a least main effect among those five parameters, which is also 539 

observed from Figure 7.  540 

 541 

-------------------------------------------- 542 

Place Figure 7 and Table 3 here 543 

-------------------------------------------- 544 

 545 

In terms of the FP in AND, the results in Figure S3 in the Supplementary Materials 546 
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indicate that both individual effects of the parameters and their interactions have 547 

similar features for all three stations, which is also observed in Figure 7. Also, for the 548 

individual effects, the two scale parameters (i.e. P_par2 and V_par2) lead to steeper 549 

lines than the lines corresponding to the two location parameters (i.e. P_par1 and 550 

V_par1), suggesting more significant effects of the scale parameters than those from 551 

the location parameters. It is also noticed that among the five parameters, the copula 552 

parameter (i.e. Cop_par) contributes least individual effects on the variation of FP in 553 

AND. Furthermore, significant interactive effects are observed among the parameters 554 

in the two marginal distributions (i.e. P_par1, P_par2, V_par1, and V_par2) which 555 

are indicated by intersecting lines in Figure S3. Some interactions also occur between 556 

the copula parameter and the parameters in marginal distributions, which are different 557 

from those for the FP in OR described in Figure 7. These interactions may probably 558 

because that, besides the joint probability values, the cumulative probabilities of flood 559 

peak and volume are also used to derive the FP in AND (i.e. Equations (10) and (16)). 560 

This leads to more chances for occurrence of visible interactions between the copula 561 

parameter and others. The above findings can be further demonstrated by the results 562 

of ANOVA for failure probability in AND. As presented in Table S1 in the 563 

Supplementary Materials, the copula parameter results into least sum of squares, 564 

suggesting least individual effects among the five parameters. Also, statistical 565 

significance for parameter interactions can be observed except to the interactions of 566 

AE and CE.  567 

 568 

Figure S4 in the Supplementary Materials presents the main effects plot and full 569 

interactions plot matrices for parameters on the FP in Kendall at the three gauge 570 

stations, and Table S2 gives the associate ANOVA results. It can be found that the 571 

results of failure probability in Kendall have similar characteristics at the three sites, 572 

which are also found for the previous two failure probabilities (i.e. AND, OR). Also, 573 

the copula parameter results into least sloped curve and least sum of squares, implying 574 

least main effect on the inferred failure probability in Kendall. For the interactive 575 

effects among the five parameters, intersection lines are observed for all pairs of 576 
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parameters, suggesting apparent interactive effects, which are also demonstrated by 577 

the ANOVE results in Table S2. 578 

 579 

4.3 Contributions of Uncertainty Sources  580 

 581 

In the copula-based risk assessment model, parameters in marginal distributions pose 582 

significant individual and interactive effects on the inferred failure probabilities, while 583 

the parameter in the copula function has least main effects (e.g. statistical 584 

insignificance in some cases) and the interactions for this parameter and others are 585 

sometime insignificant. As a result of parameter uncertainties, the predictive failure 586 

probabilities exhibit noticeable uncertainties as shown in Figure 6. Such uncertainties 587 

become more significant with the increase in service time. However, two more issues 588 

to be explored are that (i) how much these parameters contribute to the variation of 589 

the inferred risk values and (ii) do these contributions change significantly for the 590 

failure probabilities with different service time scenarios. Consequently, further 591 

multi-level factorial analysis is conducted in response to failure probabilities with 592 

multiple service time scenarios in order to identify (i) the contributions of parameters 593 

and their interactions on the variations or uncertainties in predictive failure 594 

probabilities, and (ii) how these contributions change with the variation in service 595 

time. In detail, to get more reliable quantification, five levels are considered for each 596 

parameter which is identified as 5%, 25%, 50%, 75% and 95% quantiles of the 597 

parameter’s posterior samples. Four service time scenarios, namely 30, 50, 70, and 598 

100 years, are under consideration to answer the change of one contribution with 599 

varied service time scenario. Moreover, only a single replicate is conducted for the 600 

factorial analysis, in which three and higher-way interactions are combined to give an 601 

estimate of internal error in the associated ANOVA. Finally, the contributions of 602 

parameters in marginal distributions and copula are characterized based on Equations 603 

(37) – (39), and the interactive effects of these parameters are combined together by 604 

summing results of Equations (40) – (44).  605 

 606 

Figure 8 shows detailed contributions of model parameters on uncertainty in 607 
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predictive failure probabilities of OR at Xingshan, Xianyang and Zhangjiashan 608 

stations. It can be observed that, even though some discrepancies exist for 609 

contributions of model parameters at different stations, the results show similar 610 

features, in which the scale parameters (i.e. P_par2, and V_par2) give more 611 

contributions (larger than 25%) in risk inference than of the location parameters (i.e. 612 

P_par1 and V_par1), and the parameter in copula function pose least impact (less 613 

than 1%). However, in terms of the interaction of model parameters, parameter 614 

interactions provide more impact (more than 14%) at the Xiangshan station than that 615 

(less than 8%) at the Xianyang and Zhangjiashan stations. This may be probably 616 

because that the Xingshan station is located in the Xingxi River basin with a northern 617 

subtropics climate while the Xianyang and Zhangjiashan stations are located Wei 618 

River basin experienced a semi-arid and sub-humid continental monsoon climate. 619 

Moreover, the detailed contribution of one parameter would not change significantly 620 

for different service time scenarios. For instance, as the service time changes from 30 621 

to 100 years, the contribution of P_par1 at Xingshan station ranges from 7.93% to 622 

8.42%.  623 

 624 

For the failure probability in AND, the parameters in marginal distributions and the 625 

copula function have different effects with those parameters’ impacts on the failure 626 

probability in OR. As presented in Figure S5 in the Supplementary Materials, the 627 

scale parameters (i.e. i.e. P_par2, and V_par2) in marginal distributions also pose 628 

significant impacts on uncertainties in the failure probabilities in AND. However, the 629 

detailed contributions are less than those parameters on the failure probabilities in OR 630 

shown in Figure 8. For instance, the scale parameters contribute 30.51% and 26.91% 631 

respectively to the predictive uncertainty in failure probability in AND with a service 632 

time of 30-year at Xingshan Station, while these two parameters give contributions of 633 

39% and 28.56% respectively for the failure probability in OR. Such decreases of 634 

individual effects of scale parameters are mainly due to the remarkable increasing 635 

effects of interactions, which increase from about 15% to more than 25% at Xingshan 636 

station and from less than 10% to more than 30% at Xianyang and Zhangjishan 637 
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stations. The significant increase of the interactive effect also leads to visible decrease 638 

in the contributions of location parameters (i.e. P_par1 and V_par1). The 639 

contributions of the copula parameter are still neglectable even though they increase 640 

slightly from less than 0.1% for failure probabilities in OR to about 1% for the failure 641 

probabilities in AND. 642 

 643 

For the uncertainty partition in the failure probability of Kendall, it can be noticed 644 

from Figure S6 in the Supplementary Materials that the scale parameters have most 645 

significant contributions on the failure probabilities in Kendall, followed by the 646 

interaction of model parameters, the location parameters, and the copula parameter. 647 

Moreover, such contribution partition does not change explicitly in response to the 648 

change in service time scenarios. However, compared with parameters’ contributions 649 

to the failure probabilities in OR and AND, the contributions of parameters in 650 

marginal distributions (i.e. P_par1, P_par2, V_par1, and V_par2) to the failure 651 

probabilities of Kendall are generally larger than those contributions to failure 652 

probability in AND but less than the contributions to failure probability in OR. In 653 

comparison, the contribution of parameters’ interaction to the failure probability in 654 

Kendall is less than the contribution to the failure probability in AND but larger than 655 

its contribution to the failure probability in OR. This is probably due to the differences 656 

in calculation of failure probabilities in OR, AND, and Kendall (i.e. Equations (9) – 657 

(11) and Equations (15) – (17)), in which parameters’ interaction has more chance to 658 

pose a significant impact on the variations of the inferred risks in OR and AND than 659 

the risk in OR.  660 

 661 

5. Conclusions  662 

 663 

In this study, a factorial Bayesian copula (FBC) approach has been proposed to 664 

quantify parameters’ uncertainties, reveal individual and interactive effects of 665 

parameters and further characterize contributions of these parameters on the inferred 666 
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risk values. The developed FBC approach integrates copula-based risk assessment 667 

model, Bayesian inference and factorial analysis into a general framework. In detail, a 668 

Bayesian-based Markov chain Monte Carlo approach is employed to quantify 669 

parameter uncertainties in the copula-based risk inference model; multi-level factorial 670 

analysis is proposed to reveal individual and interactive effects of model parameters 671 

on risk inference, and the associated analysis of variance (ANOVA) is further 672 

proposed to identify the contributions of model parameters and their interaction on the 673 

predictive risk values.  674 

 675 

To illustrate the applicability of the proposed FBC approach, flood observations at 676 

three gauge stations have been used to reveal parameters’ uncertainty and their 677 

contributions to the joint risk of flood peak and volume. The joint RPs and the 678 

associated FPs in OR, AND and Kendall are considered as the risks of interest. Based 679 

on those case studies, some findings can be concluded: 680 

1. Parameter uncertainty is one of the unavoidable factors to be well identified in 681 

multivariate risk analysis, and imprecise parameters in copula-based models can lead 682 

to great uncertainties in all inferred joint RPs and FPs in OR, AND and Kendall.  683 

2. For different risk indices, the main and individual effects of parameters have some 684 

different features. In general, the scale parameters in the lognormal distributions of 685 

peak and volume have more individual effects than the location parameters for all 686 

three failure probabilities, followed by the location parameters and the parameter in 687 

copula function. But all interactive effects of the copula parameter and other 688 

parameters in marginal distributions are generally statistical insignificant for the FP in 689 

OR, while some of them are statistical insignificant for the FP in AND, and all of 690 

them are significant for the FP in Kendall. Moreover, such features are almost 691 

independent with the location of a gauge station.  692 

3. For the detailed contributions, parameters in marginal distributions of peak and 693 

volume pose most contributions for the FP in OR, followed by their contributions to 694 

FPs in Kendall and AND. In contrast, the parameters’ interaction has a more impact 695 

for FP in AND than its contributions to Kendall and OR. The copula parameter has 696 
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least contributions for all three FPs even through it increases from less than 0.1% to 697 

about 2% for FPs of OR to Kendall. The above contribution characterization does not 698 

change visibly for FPs with different service time scenarios.  699 

 700 

The presence of uncertainties would pose significant impact on risk inferences within 701 

both univariate and multivariate contexts. Many studies have been reported to 702 

quantify uncertainties in hydrological risk analysis (e.g. Serinaldi, 2013; Zhang et al., 703 

2015; Dung et al., 2015; Fan et al., 2018). However, as an extension of previous 704 

studies, the major contributions in this study is that the proposed FBC method cannot 705 

effectively quantify parameter uncertainties in the copula-based multivariate risk 706 

inference model, but also characterize the individual and interactive effects of those 707 

uncertainties on the resulting risk inferences. Also, the develop FBC approach can 708 

help track the major contributors (e.g. parameter uncertainties in marginal 709 

distributions) to the resulting uncertainties in risk inferences. Such results would be 710 

helpful to find potential pathways for uncertainty reduction in hydrological risk 711 

inferences.  712 

 713 

The applicability of FBC has been illustrated through multivariate flood risk inference 714 

under consideration of the dependence between flood peak and volume. Nevertheless, 715 

this method can also be applied for other risk assessment issues such the compound 716 

hydroclimatic extremes (e.g. drought and heat waves (Sun et al., 2019), soil moisture 717 

and precipitation (AghaKouchak, 2015)), water quality (Shi and Xia, 2017), air 718 

pollution (Sak et al., 2017), and so on. 719 
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Appendix A. Abbreviation 727 

AIC 

AND 

 

ANOVA 

FBC 

DIC 

FP 

GEV 

LN 

MCMC 

MH 

OR 

PDF 

PI 

PIII 

RP 

TGR 

Akaike information criterion
 
 

All elements in the extreme events should exceed the corresponding 

thresholds 

Analysis of variance
  

Factorial Bayesian copula
  

Deviance Information Criterion 
 

Failure probabilities
  

Generalized extreme value distribution  

Lognormal distribution
  

Markov chain Monte Carlo
  

Metropolis-Hastings algorithm  

At least one element surpass the predefined threshold 

Probability density function
  

Predictive interval
  

Pearson Type III distribution 

Return period
  

Three Gorges Reservoir
 

 728 
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Table 1. Flood characteristics for different stations 

Station name period 

 

flood variable 

   

Peak (m
3
/s) Volume (m

3
/(s day)) 

  

Minimum 91 72 

Xingshan 1961-2010 Median 451.5 713.3 

  

Maximum 1050 2430 

  

Minimum 139 317 

Xianyang 1960-2006 Median 1350 2491 

  

Maximum 12380 17802 

  

Minimum 217 303.7 

Zhangjiashan 1958-2012 Median 775 1365.3 

  

Maximum 3730 7576.1 
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Table 2. Model selection results by DIC and parameter estimation by MCMC 

Stations Attributes Selected Distribution 
 

Parameters 
  DIC 

α β θ 

Xingshan 

Peak LN 
Mean 6.13 0.51 - 

1403.77 

95% PI [5.99, 6.27] [0.43, 0.60] - 

Volume LN 
Mean 6.67 0.62 - 

95% PI [6.49, 6.85] [0.52, 0.72] - 

Copula Gumbel 
Mean - - 2.34 

95% PI - - [1.86, 2.73] 

Zhangjiashan 

Peak LN 
Mean 6.63 0.65 - 

1677.35 

95% PI [6.48, 6.79] [0.58, 0.76] - 

Volume LN 
Mean 7.20 0.86 - 

95% PI [7.00, 7.41] [0.75, 0.98] - 

Copula Frank 
Mean - - 11.13 

95% PI - - [8.49, 13.15] 

Xianyang 

Peak LN 
Mean 7.17 0.86 - 

1583.36 

95% PI [6.93, 7.40] [0.74, 0.99] - 

Volume LN 
Mean 7.79 0.94 

 
95% PI [7.52, 8.06] [0.84, 1.10] - 

Copula Frank 
Mean - - 10.67 

95% PI - - [8.08, 13.61] 

Note: 95%PI: 95% predictive interval 
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Table 3. ANOVA table for failure probability in OR  

 Parameter 
Xiangshan Xianyang Zhangjiashan 

 
SS DF MS F-Value P-value SS DF MS F-Value P-value SS DF MS F-Value P-value 

A 9679.0 2 4839.5 927.7 < 0.0001 11330.0 2 5665.0 2108.7 < 0.0001 7916.5 2 3958.2 1579.8 < 0.0001 

B 46186.7 2 23093.3 4427.0 < 0.0001 47547.6 2 23773.8 8849.4 < 0.0001 55688.1 2 27844.1 11112.7 < 0.0001 

C 10355.3 2 5177.7 992.6 < 0.0001 11306.2 2 5653.1 2104.3 < 0.0001 8649.6 2 4324.8 1726.1 < 0.0001 

D 35232.7 2 17616.3 3377.1 < 0.0001 49436.6 2 24718.3 9200.9 < 0.0001 64601.5 2 32300.8 12891.4 < 0.0001 

E 78.6 2 39.3 7.5 0.0007 1.2 2 0.6 0.2 0.7988 1.2 2 0.6 0.2 0.7862 

AB 5529.8 4 1382.5 265.0 < 0.0001 3055.0 4 763.7 284.3 < 0.0001 2381.7 4 595.4 237.6 < 0.0001 

AC 278.3 4 69.6 13.3 < 0.0001 180.7 4 45.2 16.8 < 0.0001 101.4 4 25.4 10.1 < 0.0001 

AD 1061.0 4 265.2 50.8 < 0.0001 799.6 4 199.9 74.4 < 0.0001 768.9 4 192.2 76.7 < 0.0001 

AE 1.4 4 0.4 0.1 0.9914 0.1 4 0.0 0.0 0.9999 0.1 4 0.0 0.0 0.9999 

BC 1558.3 4 389.6 74.7 < 0.0001 765.8 4 191.4 71.3 < 0.0001 722.5 4 180.6 72.1 < 0.0001 

BD 6481.6 4 1620.4 310.6 < 0.0001 3392.9 4 848.2 315.7 < 0.0001 5489.1 4 1372.3 547.7 < 0.0001 

BE 19.1 4 4.8 0.9 0.4568 0.5 4 0.1 0.0 0.9964 0.5 4 0.1 0.1 0.9946 

CD 4967.3 4 1241.8 238.1 < 0.0001 3226.5 4 806.6 300.3 < 0.0001 2589.4 4 647.3 258.4 < 0.0001 

CE 2.3 4 0.6 0.1 0.9780 0.1 4 0.0 0.0 0.9999 0.0 4 0.0 0.0 1.0000 

DE 17.3 4 4.3 0.8 0.5088 0.5 4 0.1 0.0 0.9961 0.5 4 0.1 0.1 0.9945 

Error 1001.6 192 5.2   515.8 192 2.7   481.1 192 2.5   

Total SS 122450.3 242    131559.0 242    149392.2 242    

Note: SS, DF, MS represent sum of squares, degrees of freedom, mean square, respectively; A and B denote the two parameters in lognormal distribution (i.e. 

P_par1 and P_par2) for flood peak; C and D denote the two parameters in lognormal distribution (i.e. V_par1 and V_par2) for flood volume; E indicates the 

parameter in the copula (i.e. Cop_par). P-values greater than 0.05 are highlighted in this table. 
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Figure 1. Framework of the proposed factorial Bayesian copula approach 
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Figure 2. The location of the studied watersheds. Wei River is the largest tributary of Yellow river, 

with a drainage area of 135,000 km
2
. The historical flood data from Xianyang and Zhangjiashan 

stations on the Wei River are analyzed through the proposed FBC approach. The Xiangxi River is 

located in the Three Gorges Reservoir area with a drainage area of 3,200 km
2
. The historical data 

from Xingshan station is used in this study. 
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Figure 3. Posterior distributions of parameters in the copula models for different gauge statioins  
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Figure 4. Uncertainty in flood peak and volume inference at the three gauge stations: both inferred flood peak and volume contain extensive 

uncertainties due to randomness in model parameters; such uncertainties increase significantly the increase in predefined return period 
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Figure 5. Uncertainty quantification of the joint return period in “OR”: the blue dash lines 

indicate the predictive means and the red dash lines indicate the 5% and 95% quantiles. 
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Figure 6. Uncertainty quantification for the failure probabilities in OR, AND and Kendall at 

the Xingshan, Xianyang and Zhangjiashan stations: Considerable uncertainties are observed 

in all failure probabilities and such uncertainties would increase with the increase in service 

time 
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Figure 7. Main effects plot and full interactions plot matrix for parameters on the failure 

probability in OR at the three gauge stations 
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Figure 8. Contributions of model parameters on uncertainty in predictive failure probabilities of OR at the three gauge stations 
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