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 Abstract—This paper proposes a novel framework for home 
energy management (HEM) based on reinforcement learning in 
achieving efficient home-based demand response (DR). The 
concerned hour-ahead energy consumption scheduling problem is 
duly formulated as a finite Markov decision process (FMDP) with 
discrete time steps. To tackle this problem, a data-driven method 
based on neural network (NN) and Q-learning algorithm is 
developed, which achieves superior performance on cost-effective 
schedules for HEM system. Specifically, real data of electricity 
price and solar photovoltaic (PV) generation are timely processed 
for uncertainty prediction by extreme learning machine (ELM) in 
the rolling time windows. The scheduling decisions of the 
household appliances and electric vehicles (EVs) can be 
subsequently obtained through the newly developed framework, 
of which the objective is dual, i.e. to minimize the electricity bill as 
well as the DR induced dissatisfaction. Simulations are performed 
on a residential house level with multiple home appliances, an EV 
and several PV panels. The test results demonstrate the 
effectiveness of the proposed data-driven based HEM framework. 
 
 

Index Terms—Reinforcement learning, data-driven method, 
home energy management, finite Markov decision process, neural 
network, Q-learning algorithm, demand response 

NOMENCLATURE 

𝑖𝑖/Ω𝑁𝑁𝑁𝑁 Index/set of non-shiftable appliances 
𝑗𝑗/Ω𝑃𝑃𝑁𝑁 Index/set of power-shiftable appliances 
𝑚𝑚/Ω𝑇𝑇𝑁𝑁 Index/set of time-shiftable appliances 
𝑛𝑛/Ω𝐸𝐸𝐸𝐸 Index/set of EVs 
𝑡𝑡/𝑇𝑇 Index of time slot  
𝜆𝜆𝑡𝑡𝐺𝐺  Electricity price in time slot 𝑡𝑡 

𝑃𝑃𝑖𝑖𝑡𝑡
𝑑𝑑,𝑁𝑁𝑁𝑁/𝑃𝑃𝑗𝑗𝑡𝑡

𝑑𝑑,𝑃𝑃𝑁𝑁/𝑃𝑃𝑚𝑚𝑡𝑡
𝑑𝑑,𝑇𝑇𝑁𝑁 Energy consumption of non-shiftable appliance 𝑖𝑖 

/power-shiftable appliance 𝑗𝑗/time-shiftable 
appliance 𝑚𝑚 in time slot 𝑡𝑡 

𝑃𝑃𝑛𝑛𝑡𝑡
𝑑𝑑,𝐸𝐸𝐸𝐸 Energy consumption of EV 𝑛𝑛 in time slot 𝑡𝑡 

𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸/𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸𝑃𝑃 Solar panel output/surplus solar energy in time 
slot 𝑡𝑡 

𝑃𝑃𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑,𝑃𝑃𝑁𝑁 /𝑃𝑃𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑,𝐸𝐸𝐸𝐸  Upper bound of Energy consumption for power-
shiftable appliance 𝑗𝑗/EV 𝑛𝑛 

I. INTRODUCTION 
ITH recent advances in communication technologies and 
smart metering infrastructures, users can schedule their 

real-time energy consumption via the home energy 
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management (HEM) system. Such actions of energy 
consumption scheduling are also referred to as demand 
response (DR), which balances supply and demand by adjusting 
elastic loads [1], [2]. 

Many research efforts have been paid on studying HEM 
system from the demand side perspective. In Ref. [3], a 
hierarchical energy management system is proposed for home 
microgrids with consideration of photovoltaic (PV)  energy 
integration in day-ahead and real-time stages. Ref. [4] studies a 
novel HEM system in finding optimal operation schedules of 
home energy resources, aiming to minimize daily electricity 
cost and monthly peak energy consumption penalty. Authors in 
Ref. [5] propose a stochastic programming based dynamic 
energy management framework for the smart home with plug-
in electric vehicle storage. The work presented in Ref. [6] 
proposes a new smart HEM system in terms of the quality of 
experience, which depends on the information of consumer’s 
discontent for changing operations of home appliances. In Ref. 
[7], for the smart home equipped with heating, ventilation and 
air condition, Yu et al. investigate the issue of minimizing 
electricity bill and thermal discomfort cost simultaneously from 
the perspective of a long-term time horizon. Ref. [8] proposes a 
multi-time and multi-energy building energy management 
system, which is modeled as a non-linear quadratic 
programming problem. Ref. [9] utilizes an approximate 
dynamic programming method to develop a computationally 
efficient HEM system where temporal difference learning is 
adopted for scheduling distributed energy resources. The study 
reported in Ref. [10] introduces a new approach for HEM 
system to solve a DR problem which is formulated using the 
chance-constrained programming optimization, combining the 
particle swarm optimization method and the two-point 
estimation method. Till now, most studies related to HEM 
system adopt centralized optimization approaches. Generally, 
due to the assumption of the accurate uncertainty prediction, the 
optimization method is able to show the perfect performance. 
However, this assumption is not very reasonable in reality since 
the optimization model knows all environment information 
meanwhile removing all prediction errors. Besides, due to a 
large number of binary or integer variables involved, some of 
these methods may suffer from expensive computational cost. 

As an emerging type of machine learning, reinforcement 
learning (RL) [11] shows excellent decision-making capability 
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in the absence of initial environment information. The 
deployment of RL in decision-makings has considerable merits. 
Firstly, RL seeks the optimal actions by interacting with the 
environment so it has no requirement for initial knowledge, 
which may be difficult to acquire in practice. Secondly, RL can 
be flexibly employed to different application objects by off-line 
training and on-line implementation, considering relative 
uncertainties autonomously. Thirdly, RL is easier to implement 
in real-life scenarios as compared with conventional 
optimization methods. The reason is that RL can obtain the 
optimal results in a look-up table, so its computational 
efficiency is fairly high. In recent literature, the RL has received 
growing interests for solving energy management problems. 
Vázquez-Canteli, et al. comprehensively summarizes the 
algorithms and modeling techniques for reinforcement learning 
for demand response. Interested readers can further refer to Ref. 
[12]. Ref. [13] proposes a batch RL based approach for 
residential DR of thermostatically controlled loads with 
predicted exogenous data. In Ref. [14], Wan et al. use deep RL 
algorithms to determine the optimal solutions of the EV 
charging/discharging scheduling problem. In Ref. [15], RL is 
adopted to develop a dynamic pricing DR method based on 
hierarchical decision-making framework in the electricity 
market, which considers both profits of the service provider and 
costs of customers. Ref. [16] proposes an hour-ahead DR 
algorithm to make optimal decisions for different home 
appliances. Ref. [17] proposes a residential energy management 
method considering peer-to-peer trading mechanism, where the 
model-free decision-making process is enhanced by the fuzzy 
Q-learning algorithm. In Ref. [18], a model-free DR approach 
for industrial facilities is presented based on the actor-critic-
based deep reinforcement learning algorithm. Based on RL, 
Ref. [19] proposes a multi-agent based distributed energy 
management method for distributed energy resources in a 
microgrid energy market. Ref. [20] focuses on the deep RL 
based on-line optimization of schedules for the building energy 
management system. In Ref. [21], the deep neural network and 
the model-free reinforcement learning is utilized to manage the 
energy in a multi-microgrid system. Ref. [22] presents a novel 
RL based model for residential load scheduling and load 
commitment with uncertain renewable sources. In 
consideration of the state-of-the-art HEM methods in this field, 
there are still two significant limitations. Firstly, most HEM 
studies focus only on one category of loads, such as home 
appliance loads or electric vehicle (EV) loads, ignoring the 
coordinated decision-makings for diverse loads. This weakly 
reflects the operational reality. Secondly, the integration of 
renewables, especially solar PV generation, is rarely considered 
during the decision-making process. With the rapid growth of 
rooftop installation of residential PV panels [23], allocation of 
self-generated solar energy should be considered when 
scheduling residential energy consumption. 

To address the above issues, this paper proposes a novel 
multi-agent reinforcement learning based data-driven HEM 
method. The hour-ahead home energy consumption scheduling 
problem is formulated as a finite Markov decision process 
(FMDP) with discrete time steps. The bi-objective of the  

 
Fig. 1. Structure of our proposed HEM system (REFG: refrigerator; AS: alarm 
system; AC: air conditioner; H: heating; L: lighting; WM: washing machine; 
DW: dishwashing; EV: electric vehicle). 
 
formulated problem is to minimize the electricity bill as well as 
DR induced dissatisfaction cost. The main contributions of this 
paper are threefold. 
1) Under the data-driven framework, we propose a novel 

model-free and adaptable HEM method based on extreme 
learning machine (ELM) and Q-learning algorithm. To our 
best knowledge, such method is rarely investigated before. 
The test results show that the proposed HEM method can 
not only achieve promising performance in terms of 
reducing electricity cost for householders but also improve 
the computational efficiency. 

2) The conventional HEM methods are based on optimization 
algorithms with the assumption of perfect uncertainty 
prediction. However, this assumption is infeasible and 
unreasonable since the prediction errors are unavoidable. By 
contrast, our proposed model-free data-driven based HEM 
method can overcome the future uncertainties by the ELM 
based NN and discover the optimal DR decisions by the 
learning capability of the Q-learning algorithm. 

3) In confronting with different types of loads in a residential 
house (e.g. non-shiftable loads, power-shiftable loads, time-
shiftable loads and EV charging loads), a multi-agent Q-
learning algorithm based RL method is developed to tackle 
the HEM problem involved with multiple loads. In this way, 
optimal energy consumption scheduling decisions for 
various home appliances and EV charging can be obtained 
in a fully decentralized manner. 

The remainder of this paper is organized as follows. Section 
II models the home energy consumption scheduling problem as 
a FMDP. Then our proposed solution approach is presented in 
Section III. In Section IV, test results are given to demonstrate 
the effectiveness of our proposed methodology. Finally, Section 
V concludes the paper. 

II. PROBLEM MODELLING 
As illustrated in Fig. 1, this paper considers four agents in a 

HEM system, which correspond to non-shiftable appliance 
load, power-shiftable appliance load, time-shiftable appliance  
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TABLE I 
STATE SET, ACTION SET AND REWARD FUNCTION OF EACH AGENT 

Item ID State set Action set 
Reward 
function 

REFG {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} 1 - “on” Eq. (1) 
AS {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} 1 - “on” Eq. (1) 

AC1 {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} {0.7, 0.8, …, 1.4} - “power 
ratings” Eq. (2) 

AC2 {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} {0.7, 0.8, …, 1.4} - “power 
ratings” 

Eq. (2) 

H {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} 
{0.5, 0.6, …, 1.5} - “power 

ratings” 
Eq. (2) 

L1 {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} 
{0.2, 0.3, …, 0.6} - “power 

ratings” 
Eq. (2) 

L2 {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} 
{0.2, 0.3, …, 0.6} - “power 

ratings” 
Eq. (2) 

WM {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} 
0 - “off” 
1 - “on” Eq. (3) 

DW {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} 
0 - “off” 
1 - “on” 

Eq. (3) 

EV {(𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) , (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸)} {0, 3, 6} - “charging rates” Eq. (4) 
REFG: refrigerator; AS: alarm system; AC: air conditioner; H: heating; L: light; WM: wash machine; DW: dishwashing; EV: electric vehicle 

 
load, and EV load, respectively. In this paper, we envision the 
proposed HEM system includes multiple agents, which are 
virtual to control different kinds of smart home appliances in a 
decentralized manner. It should note that smart meters are 
assumed to be installed on smart home appliances to monitor 
the devices and receive the control command given by the 
agents. In each time slot, we determine the hour-ahead energy 
consumption actions for home appliances and EVs. 
Specifically, in time slot 𝑡𝑡, the agent observes the state 𝑠𝑠𝑡𝑡 and 
chooses the action 𝑎𝑎𝑡𝑡 . After taking this action, the agent 
observes the new state 𝑠𝑠𝑡𝑡+1 and chose a new action 𝑎𝑎𝑡𝑡+1 for the 
next time slot 𝑡𝑡 + 1 . This hour-ahead energy consumption 
scheduling problem can be formulated as a FMDP, where the 
outcomes are partly controlled by the decision-maker and partly 
random. The FMDP of our problem contains five tuples, i.e., 
(𝑺𝑺,𝑨𝑨,𝑹𝑹(∙,∙),𝛾𝛾,𝜃𝜃), where 𝑺𝑺 denotes the state set, 𝑨𝑨 denotes the 
finite action set, 𝑹𝑹(∙,∙) denotes the reward set, 𝛾𝛾  denotes the 
discount rate and 𝜃𝜃 denotes the learning rate. The details about 
the FMDP formulation are described as follows. 

A. State 
The state 𝑠𝑠𝑡𝑡 can describe the current situation in the FMDP. 

In this paper, the state 𝑠𝑠𝑡𝑡 in time slot 𝑡𝑡 can be defined as a vector, 
defined as, 

1 1{( , ,..., ), ( , ,..., )}G G G PV PV PV
t t t T t t Ts E E Eλ λ λ+ +=  

where 𝑠𝑠𝑡𝑡 consists of two types of information, 
1) (𝜆𝜆𝑡𝑡𝐺𝐺 , 𝜆𝜆𝑡𝑡+1𝐺𝐺 , … , 𝜆𝜆𝑇𝑇𝐺𝐺) indicate the current electricity price 𝜆𝜆𝑡𝑡 in 

and predicted future electricity prices from the next time slot 
𝑡𝑡 + 1 to the end time slot 𝑇𝑇. In each time slot, the hour-ahead 
electricity price can be informed by a service provider. 

2) (𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸) indicate the current solar panel output 
𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸 and predicted future solar panel outputs from the next time 
slot 𝑡𝑡 + 1 to the end time slot 𝑇𝑇. In this paper, we assume that 

the householder owns a residential solar system, including the 
solar panels and the inverter systems [24], operating at the 
maximum power point (MPP) [25]. In each intraday time slot, 
the householder needs to allocate the generated solar energy to  
 
the home appliances sequentially. Consider that non-shiftable 
appliances always consume fixed energy and play an important 
role in ensuring the convenience and safety of the living 
environment, so these appliances are served first. Also, the 
comfort level of the living environment should be taken into 
account, so the surplus self-generated solar energy 𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸𝑃𝑃  is 
delivered according to the descending order of the 
dissatisfaction coefficients of the remaining home appliances. 
Finally, the surplus solar energy will be curtailed or sold to the 
utility grid with wholesale market clearing price. 

B. Action 
In this study, the action denotes the energy consumption 

scheduling of each home appliance as well as EV battery 
charging, described as follows. 

1) Action set for non-shiftable appliance agent:  Non-
shiftable appliances, e.g., refrigerator and alarm system, require 
high reliability to ensure daily-life convenience and safety, so 
their demands must be satisfied and cannot be scheduled. 
Therefore, only one action, i.e., “on”, can be taken by the non-
shiftable appliance agent. 

2) Action set for power-shiftable appliance agent: Power-
shiftable appliances, such as air conditioner, heating and light, 
can operate flexibly by consuming energy in a predefined 
range. Hence, power-shiftable agents can choose discrete 
actions, i.e., 1,2,3, …, which indicate the power ratings at 
different levels. 

3) Action set for time-shiftable appliance agent: The time-
shiftable loads can be scheduled from peak periods to off-peak 
periods to reduce the electricity cost and avoid peak energy 
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usage. Time-shiftable appliances, including wash machine and 
dishwasher, have two operating points, “on” and “off”. 

4) Action set for EV agent: As the EV user, the householder 
would like to reduce electricity cost by scheduling EV battery 

charging. It should be noted that in this paper, EV battery 
discharging is not considered since it can significantly shorten 
the useful lifetime of EV battery [26]. As suggested by Ref. 
[27], the EV charger can provide discrete charging rates. 

 
Fig. 2. Schematic of the reinforcement learning based data-driven HEM system. 

C. Reward 
The reward represents the inverse utility cost of each agent, 

described as follows. 
 

1) The reward of non-shiftable appliance agent  
,[ ]   , {1,2,..., }NS G d NS PVs NS

it t it itr P E i t Tλ += − − ∈ Ω =  (1) 
The reward of non-shiftable appliance agent only concerns 

on electricity cost since the non-shiftable loads are immutable. 
Note that [∙]+ represents the projection operator onto the non-
negative orthant, i.e., [𝑥𝑥]+ = 𝑚𝑚𝑎𝑎𝑥𝑥 (𝑥𝑥, 0). 

2) The reward of power-shiftable appliance agent  
, , , 2

,max[ ] ( )

, {1,2,..., }

PS G d PS PVs PS d PS d PS
jt t jt jt j j jt

PS

r P E P P

j t T

λ α+= − − − −

∈ Ω =
 

(2) 
where the first term denotes the electricity cost and the second 
term is the dissatisfaction cost caused by reducing power ratings 
of power-shiftable appliances. This dissatisfaction cost is 
defined by a quadratic function [28] with an appliance-
dependent coefficient 𝛼𝛼𝑗𝑗𝑃𝑃𝑁𝑁, which can be adjusted to achieve a 
trade-off between the electricity cost and the satisfaction level. 

3) The reward of time-shiftable appliance agent  
, 2[ ] ( )

, [ , ]

TS G d TS PVs TS s ini
mt t mt mt mt m m m

TS ini end
m m

r u P E t t

m t t t

λ α+= − − − −

∈ Ω =
 

(3) 
where 𝑢𝑢𝑚𝑚𝑡𝑡  is the binary variable representing the operating 
point of the time-shiftable appliance 𝑚𝑚  in time slot 𝑡𝑡 , i.e., 
𝑢𝑢𝑚𝑚𝑡𝑡 = 1 (on) or 𝑢𝑢𝑚𝑚𝑡𝑡 = 0 (off). When the time-shiftable loads 
are scheduled, dissatisfaction cost of householder would be 
raised due to the waiting time for them to start. Therefore, 
electricity bill (first term) and dissatisfaction cost (second term) 
should be taken into account simultaneously for operating time-
shiftable appliances. 𝛼𝛼𝑚𝑚𝑇𝑇𝑁𝑁  is the dissatisfaction coefficient 
describing the tolerance of waiting time for the appliance 𝑚𝑚 and 
it is determined by personal dependence on devices. Thus, a 
higher 𝛼𝛼𝑚𝑚𝑇𝑇𝑁𝑁 means that the waiting for appliance 𝑚𝑚 start is more 
likely to cause dissatisfaction. Note that time-shiftable 
appliance 𝑚𝑚 should start to operate during its normal working 
period [𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 , 𝑡𝑡𝑚𝑚𝑒𝑒𝑛𝑛𝑑𝑑]. 

4) The reward of EV agent 
, , , 2

,max( )

, [ , ]

EV G d EV EV d EV d EV
nt t nt n n nt

EV arr dep
n n

r P P P

n t t t

λ α= − − −

∈ Ω ∈
 

(4) 

where the first two terms of (4) describe that the EV owner 
needs to pay the electricity cost (𝜆𝜆𝑡𝑡𝐺𝐺𝑃𝑃𝑛𝑛𝑡𝑡

𝑑𝑑,𝐸𝐸𝐸𝐸) during the period 
[𝑡𝑡𝑛𝑛𝑚𝑚𝑎𝑎𝑎𝑎 , 𝑡𝑡𝑛𝑛

𝑑𝑑𝑒𝑒𝑑𝑑]. Besides, the second term of (4) represents the cost  
 
of “charging anxiety” with the dissatisfaction coefficient 𝛼𝛼𝑛𝑛𝐸𝐸𝐸𝐸, 
which describes the fear that the EV has insufficient energy to 
get its destination without underfilled EV battery. 

D. Total Reward of HEM System 
After giving the rewards (see Eqs. (1)-(4)) of all agents in the 

proposed HEM system, the total reward 𝑅𝑅  can be acquired, 
described as follows, 

  

, ,

, ,

, , 2 2
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, , 2
,max

[ ] [ ]
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( ) ( )
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d NS PVs d PS PVs
it it jt jtG

t d TS PVs d EV
mt mt mt nt

PS d PS d PS TS s ini
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R
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P P

λ

α α

α

+ +
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∈

  − − −
    − − −   = −  

 − − − 
 −  − −   

∑  

(5) 

E. Action-value Function 
The quality of the action 𝑎𝑎𝑡𝑡  under the state 𝑠𝑠𝑡𝑡 , i.e., energy 

consumption scheduling in time slot 𝑡𝑡, can be evaluated by the 
the expected sum of future rewards for the horizon of 𝐾𝐾 time 
steps, given as follows, 

1
0

( , ) | ,
K

k
t t t

k
Q s a r s s a aπ π γ +

=

 
= Ε ⋅ = = 

 
∑  (6) 

where 𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) represents the action-value function and 𝜋𝜋  is 
the policy mapping from a system state to an energy 
consumption schedule. 𝛾𝛾 ∈ [0,1] is the discount rate denoting 
the relative importance of future rewards for the current reward. 
When 𝛾𝛾 = 0, the agent seems to be shortsighted since it only 
cares about the current reward, while 𝛾𝛾 = 1 indicates that the 
agent is foresighted and it considers future rewards. To balance 
the trade-off between current reward and future reward, setting 
a fraction in the range [0,1] for 𝛾𝛾 is suggested. 

The objective of the energy consumption scheduling problem 
is to find the optimal policy 𝜋𝜋∗ , i.e., a sequence of optimal 
operating actions for each home appliance and EV battery, to 
maximize the action-value function. 
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III. PROPOSED DATA-DRIVEN BASED SOLUTION METHOD 
In this paper, the proposed reinforcement learning based 

data-driven method is comprised of two parts (see Fig. 2), (i) an 
ELM based feedforward NN is trained for predicting the future 
trends of electricity price and PV generation, (ii) a multi-agent 
Q-learning algorithm based RL method is developed for 
making hour-ahead energy consumption decisions. Details of 
this data-driven based solution method are given in the 
following subsections. 

A. ELM based Feedforward NN for Uncertainty Prediction 
As a well-studied training algorithm, ELM algorithm has 

become a popular topic in the fields of load forecasting [29], 
electricity price forecasting [30] and renewable generation 
forecasting [31]. Since the input weights and biases of the 
hidden layer are randomly assigned and free to be tuned further 
when using ELM algorithm, some exceptional features can be 
obtained, e.g., fast learning speed and good generalization. To 
deal with the uncertainties of electricity prices and solar 
generations, we propose an ELM based feedforward NN to 
dynamically predict future trends of these two uncertainties. 
Specifically, at each hour, the inputs of the trained feedforward 
NN are past 24-hour electricity price data and solar generation 
data, and its outputs are the forecasted future 24-hour trends of 
electricity prices and solar generations. This predicted 
information will be fed into the decision-making process of 
energy consumption scheduling, as described in the following 
subsection. 

B. Multi-agent Q-learning Algorithm for Decision-making 
After acquiring the predicted future electricity prices and 

solar panel outputs, we employ the Q-learning algorithm to use 
this information to find the optimal policy 𝜋𝜋∗. As an emerging 
machine learning algorithm, Q-learning algorithm is widely 
used for the decision-making process to gain the maximum 
cumulative rewards [32]. The basic mechanism of this 
algorithm is to construct a Q-table where Q-value 𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) of 
each state-action pair is updated in each iteration until the 
convergence condition is satisfied. In this way, the optimal 
action with optimal Q-value in each state can be selected. The 
optimal Q-value 𝑄𝑄𝜋𝜋∗ (𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) can be obtained by using Bellman 
equation [33], given as below, 

*
1 1( , ) ( , ) max ( , )t t t t t tQ s a r s a Q s aπ γ + += + ∗  (7) 

The Q-value can be updated in terms of reward, learning rate 
and discount factor, described as follows, 

1 1

( , )
( , ) ( , ) max( ( , ))

( , )

t t

t t t t t t

t t

r s a
Q s a Q s a Q s a

Q s a
θ γ + +

 
 ← + + ∗ 
 − 

 (8) 

where 𝜃𝜃 ∈ [0,1] denotes the learning rate indicating to what 
extent the new Q-value can overturn the old one. When 𝜃𝜃 = 0, 
the agent exploits the prior information exclusively, whereas 
𝜃𝜃 = 1  indicates that the agent considers only the current 
estimate and overlooks the prior information. A value of a 
decimal between 0 and 1 should be applied to 𝜃𝜃, trading off the 
new Q-value and old Q-value. 

C. Implementation Process of Proposed Solution Method 
Algorithm 1 demonstrates the implementation process of our 

proposed solution approach for solving the FMDP problem as 
described in Section II. Specifically, in the initial time slot, i.e., 
𝑡𝑡 = 1, the HEM system initializes power rating, dissatisfaction 
coefficient, discount rate, and learning rate. In each time slot, 
the trained DFM is used to forecast future 24-hour electricity 
prices as well as solar panel outputs, as shown in Algorithm 2. 
Upon obtaining the predicted information, the multi-agent  
Algorithm 1 Proposed Data-driven based Solution Method 
1. Initialize power rating, using time, dissatisfaction coefficient 𝛼𝛼, 
discount factor 𝛾𝛾 and learning rate 𝜃𝜃 
2. For time slot 𝑡𝑡 = 1:𝑇𝑇 do 
3.      For HEM system do 
4.          Execute Algorithm 2 
5.      End for 
6.      Receive extracted information about future electricity prices  
                       and solar generations 
7.       For each agent do                                 ⊳ Sort descending by 
𝛼𝛼 
8.          Execute Algorithm 3 
9.      End for 
10. End for 

 
Algorithm 2 Feedforward NN (Features Extraction) 
1. Update the input electricity price data {𝜆𝜆𝑡𝑡−23𝐺𝐺 , … , 𝜆𝜆𝑡𝑡𝐺𝐺} and solar 
generation data {𝐸𝐸𝑡𝑡−23𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸} 
2. Extract the future trends of electricity prices and solar 
generations 
           {𝜆𝜆𝑡𝑡+1𝐺𝐺 , 𝜆𝜆𝑡𝑡+2𝐺𝐺 , … ,𝜆𝜆𝑇𝑇𝐺𝐺} ← NN ({𝜆𝜆𝑡𝑡−23𝐺𝐺 , … ,𝜆𝜆𝑡𝑡𝐺𝐺}) 
           {𝐸𝐸𝑡𝑡+1𝑃𝑃𝐸𝐸 ,𝐸𝐸𝑡𝑡+2𝑃𝑃𝐸𝐸 … ,𝐸𝐸𝑇𝑇𝑃𝑃𝐸𝐸} ← NN ({𝐸𝐸𝑡𝑡−23𝑃𝑃𝐸𝐸 , … ,𝐸𝐸𝑡𝑡𝑃𝑃𝐸𝐸}) 
3. Output the extracted information  

 
Algorithm 3 Q-learning Algorithm (Decision-making) 
1.   Initialize Q-value 𝑄𝑄 arbitrarily 
2.   Repeat for each episode 𝜎𝜎 
3.      Initialize the state 𝑠𝑠𝑡𝑡 
4.      Repeat 
5.         Choose the action 𝑎𝑎𝑡𝑡 for the current state 𝑠𝑠𝑡𝑡 by using 
            𝜀𝜀-greedy policy 
6.         Observe the current reward 𝑟𝑟𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) and the next state 𝑠𝑠𝑡𝑡+1 
7.         Update the Q-value 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) via Eq. (8) 
8.      Until 𝑠𝑠𝑡𝑡+1 is terminal 
9.   Until termination criterion, i.e., |𝑄𝑄(𝜎𝜎) − 𝑄𝑄(𝜎𝜎−1)| ≤ 𝜏𝜏, is 
satisfied  
10. Output the optimal policy 𝜋𝜋∗, i.e., {𝑎𝑎𝑡𝑡∗, 𝑎𝑎𝑡𝑡+1∗ , … , 𝑎𝑎𝑇𝑇∗ } 
11. Execute the optimal action 𝑎𝑎𝑡𝑡∗ for current time slot 𝑡𝑡 
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Fig. 3. Flowchart of implementing our proposed solution method for each agent. 
 
Q-learning algorithm is adopted to make ideal energy 
scheduling decisions for different residential appliances and EV 
battery charging iteratively, as shown in Algorithm 3. 
Specifically, in each episode 𝜎𝜎, the agent observes the state 𝑠𝑠𝑡𝑡 
and then chooses an action 𝑎𝑎𝑡𝑡  using the exploration and 
exploitation mechanism. To realize the exploration and 
exploitation, the 𝜀𝜀-greedy policy (𝜀𝜀 ϵ [0,1]) [34] is adopted so 
the agent can either execute a random action form the set of 
available actions with probability 𝜀𝜀 or select an action whose 
current Q-value is maximum, with probability 1 − 𝜀𝜀 . After 
taking an action, the agent acquires an immediate reward 
𝑟𝑟(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡), observes the next state 𝑠𝑠𝑡𝑡+1 and updates the Q-value 
𝑄𝑄(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) via Eq. (8). This process is repeated until the state 
𝑠𝑠𝑡𝑡+1 is terminal. After one episode, the agent checks the episode 
termination criterion, i.e., |𝑄𝑄𝜎𝜎 − 𝑄𝑄𝜎𝜎−1| ≤ 𝜏𝜏 , where 𝜏𝜏  is a 
system-dependent parameter to control the accuracy of the 
convergence. If this termination criterion is not satisfied, the 
agent will move to the next episode and repeat the above 
process. Finally, each agent will gain optimal actions for each 
coming hour, i.e., ℎ = 1, 2, … , 24. Note that only the optimal 
action for the current hour is taken. The above procedure will 
be repeated until the end hour, namely,  ℎ = 24. Besides, the 
flowchart in Fig. 3 clearly depicts the process. 

IV. TEST RESULTS 

A. Case Study Setup 
In this study, real-world data is utilized for training our 

proposed feedforward NN. The hourly data electricity prices 
and solar generations from January 1, 2017 to December 31, 
2018 lasting 730 days are collected from PJM [35]. After a 
number of accuracy tests, the trained feedforward NN for 
electricity price data consists of three layers, i.e., one input layer 
with 24 neurons, one hidden layer with 40 neurons and one 
output layer with 24 neurons, and the trained feedforward NN 
for solar generation data also includes three layers, i.e., one 

input layer with 24 neurons, one hidden layer with 20 neurons 
and one output layer with 24 neurons. The number of training 
episode is 50,000. As for the parameters related to the Q-
learning algorithm. The discount rate 𝛾𝛾  is set to 0.9, so the 
obtained strategy is foresighted. To ensure that the agent can 
call all state-action pairs and learn new knowledge from the 
system, the learning rate 𝜃𝜃 as well as turning parameter 𝜀𝜀 are 
both set to 0.1. 
 

TABLE II 
PARAMETERS OF EACH HOUSE APPLIANCE AND EV BATTERY 

Item ID Dissatisfaction 
coefficient 

Power rating 
(kWh) Using time 

REFG - 0.5 24h 
AS - 0.1 24h 

AC1 0.05 0- 1.4 24h 
AC2 0.08 0 - 1.4 24h 

H 0.12 0 - 1.5 24h 
L1 0.02 0 - 0.6 6pm - 11pm 
L2 0.03 0 - 0.6 6pm - 11pm 

WM 0.1 0.7 7pm - 10pm 
DW 0.06 0.3 8pm - 10pm 
EV 0.04 0 - 6 11pm - 7am 

REFG: refrigerator; AS: alarm system; AC: air conditioner; H: heating; L: light; 
WM: wash machine; DW: dishwashing; EV: electric vehicle. 

In this paper, simulations are conducted on a detached 
residential house with two same solar panels, two non-shiftable 
appliances (REFG and AS), five power-shiftable appliances 
(AC1, AC2, H, L1 and L2), two time-shiftable appliances (WM 
and DW) and one EV. Detailed parameters of these home 
appliances and the EV battery are listed in Table II. Besides, 
our proposed HEM method can be applied to residential houses 
with more home appliances and renewable resources. All 
simulations are implemented by using MATLAB with an Intel 
Core i7 of 2.4 GHz and 12GB memory. 

B. Performance of the Proposed Feedforward NN 
Fig. 4 and Fig. 5 show performance of the proposed 

feedforward NN for extracting features of electricity prices as 
well as solar generations, respectively. For the hour-ahead 
horizon, the mean absolute percentage error (MAPE) of the 
forecasted PV output is 8.82%, and the MAPE of the forecasted 
electricity price is 9.34%. In these two figures, the blue line 
represents the extracted future values, and the red line indicates 
the actual values. It can be observed that both extracted trends 
of electricity prices and solar generations are generally similar 
to actual ones, though small errors can be observed from some 
time slots. Therefore, the proposed feedforward NN can 
generate accurate and reasonable forecasting values, which can 
benefit the following decision-making process for energy 
consumption scheduling. 
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Fig. 4. Comparison of the actual and predicted electricity prices on January 1-
4, 2019. 
 

 
Fig. 5. Comparison of the actual and predicted solar generations on January 1-
4, 2019. 
 

To investigate the impact of the prediction accuracy on the 
solution results, we compare the performance on operation cost 
between case 1-3 and optimal solution. Note that the optimal 
solution can be obtained by conventional optimization method 
based on the perfect prediction. Each case includes two kinds 
of predicted information, e.g. PV generation and electricity 
price. Table III lists the MAPE of the prediction result in case 
1-3. Fig. 6 is plotted to demonstrate the comparison result. As 
shown in this figure, with the increase of the prediction 
accuracy, the operation cost obtained by the Q-learning 
algorithm based RL method is lower, which becomes closer to 
the optimal solution. Therefore, the prediction accuracy has a 
direct effect on the optimal result. In this paper, we introduce 
the ELM based NN to dynamically produce the future 
uncertainties to provide state statues for the agent in Q-learning 
algorithm. However, developing more accurate prediction 
model to reduce the prediction error is out of the scope of this 
paper, since more explanatory variable should be included, e.g., 
load demand, historical data, power trading direction, energy 
policy, etc. 
 

TABLE III 
MAPE OF PREDICTION RESULT IN CASE 1-3 

 Case 1 Case 2 Case 3 
MAPE of PV generation prediction 4.41% 8.82% 17.64% 

MAPE of electricity price prediction 4.67% 9.34% 18.68% 
 

 
Fig. 6. Comparison of operation cost with different prediction accuracy. 

C. Performance of Multi-agent Q-learning Algorithm 
 

TABLE IV 
COMPUTATIONAL EFFICIENCY PERFORMANCE WITH DIFFERENT NUMBER OF 

STATE-ACTION PAIR 

No. of state-action pair 
(No. of state status * No. of action 

status) 
Computation time (s) 

3.6*102 (24*15) 1.315 
3.6*103 (24*150) 2.067 

3.6*104 (24*1,500) 7.385 
3.6*105 (24*15,000) 317.992 

 
Table IV lists the performance on computation time, 

considering a different number of state-action pair. As shown 
in this table, with the increase of the state-action pair, the Q-
learning algorithm takes more time to fill up the Q-table and 
find the optimal Q-value. It should be noted that the state space 
is fixed (24 state statuses), so the state-action pair increases with 
larger considered action space (power ratings of home 
appliance). For example, 15 action statues correspond to 15 
power ratings, i.e., 0 kWh, 0.1 kWh, 0.2 kWh, …, 1.4 kWh, and 
150 action statues correspond to 150 power ratings, i.e., 0 kWh, 
0.01 kWh, 0.02 kWh, …, 1.4 kWh. Therefore, more accurate 
energy consumption scheduling poses a minor effect on optimal 
results. Besides, it is difficult to achieve precise control of the 
power rating for most home appliances. In this regard, it is 
reasonable to consider a small number of state-action pairs for 
each home appliance in each time slot, resulting in short search 
time. 

Fig. 7 depicts the convergence of the Q-value for each power-
shiftable agent on January 1, 2019. It can be seen from this 
figure that each power-shiftable appliance agent converges to 
the maximum Q-value. In the beginning, the Q-value is low 
since the agent takes poor actions, then it becomes high as the 
agent discovers the actions by learning them through trials and 
errors, finally reaching the maximum Q-value. 

To illustrate the effectiveness of our proposed HEM 
algorithm, Fig. 8 is plotted to show the energy consumption of 
all power-shiftable appliances in each time slot. As shown in 
this figure, the energy consumption is high during the first five 
time slots. Then these five appliances reduce their energy 
consumption since the electricity price increases from the time 
slot 6. As the electricity price reaches its maximum in around 
time slot 13, the energy consumption of each appliance 
decreases to its minimum value. Finally, with the price goes 
down, the energy consumption starts to increase. 
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Fig. 7. The convergence of Q-value for power-shiftable agents on January 1, 
2019. 
 

 
Fig. 8. Energy consumption of five power-shiftable appliances in each time slot. 
 

 
Fig. 9. Energy consumption of AC1 with changing dissatisfaction coefficient 𝛼𝛼 
during 24-time slots without consideration of solar generation. 
 

Fig. 9 demonstrates the results of daily energy consumption 
for AC1 with different five dissatisfaction coefficients. We can 
see that as the dissatisfaction coefficient increases, the daily 
energy consumption goes up since the dissatisfaction 
coefficient can be regarded as a penalty factor. This creates a 
trade-off between saving electricity bill and decreasing 
dissatisfaction caused by reducing power rating of AC1. 
Besides, this figure also shows that the agent leans to increase 
energy consumption for low dissatisfaction during the off-peak 
time slots and decrease energy consumption for low electricity 
cost during the on-peak time slots. These observations verify 
that the proposed method can be applied to consumers for 
helping them manage their individual energy consumption. 
 

 
(a) with DR 

 
(b) without DR 

Fig. 10. Energy consumption of all appliances on January 1, 2019, (a) with and 
(b) without DR. 
 

TABLE V 
COMPARISON OF ELECTRICITY COST WITH AND WITHOUT DR 

Item ID Electricity cost ($) 
With DR Without DR 

REFG 0.492 0.492 
AS 0.098 0.098 

AC1 0.836    1.378 
AC2 0.942 1.378 

H 0.731 1.476 
L1 0.301 0.591 
L2 0.223 0.591 

WM 0.023 0.051 
DW 0.012 0.012 
EV 0.399 1.262 

Total 4.057 7.329 
REFG: refrigerator; AS: alarm system; AC: air conditioner; H: heating; L: light; 
WM: wash machine; DW: dishwashing; EV: electric vehicle 

 
Fig. 10. gives the daily energy consumption of each home 

appliance and EV in two different cases with and without DR, 
along with the electricity prices and solar panel outputs. With 
DR mechanism, more energy is consumed when the price is 
low, and the load demand is reduced when the price is high, as 
shown in Fig. 10(a). Thus, the power-shiftable or time-shiftable 
loads can be reduced or scheduled to off-peak periods, 
maintaining the overall energy consumption at a low level 
during the on-peak periods. By contrast, for the case without 
DR, as shown in Fig. 10(b), no reduction or shift on energy 
consumption can be observed. The comparison of electricity 
costs in these two cases is listed in Table V, which shows that 
the electricity cost can be significantly reduced with DR. 

D. Numerical Comparison with Genetic Algorithm 
To evaluate the performance of our proposed Q-learning 

algorithm-based solution method, the genetic algorithm (GA) 
[36] based solution method is compared as a benchmark. The 
benchmark problem is a mixed-integer nonlinear programming 
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problem, and its objective function is to minimize the electricity 
cost and dissatisfaction cost, as given by equations (1)-(4). We 
can see from Fig. 11 that our proposed solution method (red 
line) shows a poor performance at the initial training stage since 
it is undergoing trials and errors. However, after experiencing 
more iterations, our method adapts to the learning environment 
and adjusts its policy via exploration and exploitation 
mechanism. For a longer time, it outperforms the GA based 
solution method (blue line). The reason is that the RL agent not 
only considers the current reward but also the future rewards so 
it can learn from the environment while the GA algorithm has 
low learning capability. Note that the black dashed line in Fig. 
11 is plotted as the benchmark to show the optimal result 
obtained by the conventional optimization method, which 
knows all environment information and removes prediction 
errors. 
 

 
Fig. 11. Optimization performance comparison of the three methods for 
scheduling AC1 loads. 

TABLE VI 
COMPARISON ON COMPUTATION EFFICIENCY BY GA OPTIMIZATION METHOD 

AND Q-LEARNING ALGORITHM BASED RL METHOD 

 Average computation time 
of running 1000 times 

GA based optimization method 46.296 s 
Q-learning algorithm based RL method 1.107 s 

 
Besides, Table VI is added to compare the computation 

efficiency between the proposed solution method and 
benchmark. It can be observed that our proposed solution 
method is able to significantly reduce the computation time. 
The reasons can be summarized into two aspects: 1) GA 
algorithm is based on Darwin’s theory of evolution, which is a 
slow gradual process that works by making changes to the 
making slight and slow changes. Moreover, GA usually makes 
slight changes to its solutions slowly until getting the best 
solution. 2) In the Q-learning algorithm, the agent chooses an 
action using the exploration and exploitation mechanism, so it 
is fast by employing the ε-greedy policy to explore and exploit 
the optimum from the look-up table. Note that only a small 
number of state-action pairs need to be searched by the Q-
learning algorithm, resulting in a high computation efficiency. 
In this regard, considering the adaptivity of model-free RL to 
the external environment, it is suggested to accept our proposed 
well-performing solution method for HEM system. 

V. CONCLUSION 
Based on a feedforward NN and Q-learning algorithm, this 

paper proposes a new multi-agent RL based data-driven method 
for HEM system. Specifically, ELM is employed to train the 
feedforward NN to predict future trends of electricity price and 
solar generation according to real-world data. Then, the 
predicted information is fed into the multi-agent Q-learning 
algorithm based decision-making process for scheduling the 
energy consumption of different home appliances and EV 
charging. To implement the proposed HEM method, the FMDP 
is utilized to model the hour-ahead energy consumption 
scheduling problem with the objective of minimizing the 
electricity bill as well as DR included dissatisfaction. 
Simulations are performed on a residential house with multiple 
home appliances, an EV and several PV panels. The test results 
show that the proposed HEM method can not only achieve 
promising performance in terms of reducing electricity cost for 
householders but also improve the computational efficiency. In 
the future, energy storage for rooftop solar PV systems will also 
be considered in the HEM system. Besides, more effective 
uncertainty prediction model will be developed to facilitate the 
decision-making process of DR. 
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