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ABSTRACT

We present a convolutional neural network design with additional branches after certain convolutions
so that we can extract features with differing effective receptive fields and levels of abstraction. From
each branch, we transform each of the final filters into a pair of homogeneous vector capsules. As the
capsules are formed from entire filters, we refer to them as filter capsules. We then compare three
methods for merging the branches—merging with equal weight and merging with learned weights,
with two different weight initialization strategies. This design, in combination with a domain-specific
set of randomly applied augmentation techniques, establishes a new state of the art for the MNIST
dataset with an accuracy of 99.84% for an ensemble of these models, as well as establishing a new
state of the art for a single model (99.79% accurate). These accuracies were achieved with a 75%
reduction in both the number of parameters and the number of epochs of training relative to the
previously best performing capsule network on MNIST. All training was performed using the Adam
optimizer and experienced no overfitting.

Keywords Capsules, Convolutional Neural Network (CNN), Homogeneous Vector Capsules (HVCs), Homogeneous
Filter Capsules (HFCs), MNIST

1 Introduction and Related Work

The best performing convolutional networks of the past several years have all explored multiple paths from input to
classification [1][2][3][4][5][6]. The idea behind multiple path designs is to enable one or more of the following to
contribute to the final classification: (a) different levels of abstraction, (b) different effective receptive fields, and (c)
valuable information learned early to flow more easily to the classification stage. In [1] and [2], the authors’ design
branched and merged by filter concatenation many times as well as producing two different classifications that were
summed together, each having been assigned predetermined weights. In this paper, we present a network design that
produces three classifications and we report the results of experiments that sum them together with both predetermined
equal weights and with weights learned via backpropagation.

Capsules (vector-valued neurons) have become a more active area of research since [7], which demonstrated near state
of the art performance on MNIST [8] classification (at 99.75%) by using capsules and a routing algorithm to determine
which capsules in a previous layer feed capsules in the subsequent layer. In [9], the authors extended this work by
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conducting experiments with an alternate routing algorithm. In [10], the authors presented a capsule network design
that used element-wise multiplication between capsules in subsequent layers with no routing mechanism, rather than
matrix multiplication with a routing mechanism. They referred to this capsule design as homogeneous vector capsules.
In this paper, we will be detailing a network design and experiments conducted with homogeneous vector capsules
applied to the MNIST classification task which achieved a single model accuracy of 99.79% and an ensemble accuracy
of 99.84%. Our design accomplishes this with a 75% reduction in both the number of parameters in the model and the
number of epochs used to train a single model (relative to [7]).

Most (but not all [11][12]) of the state of the art MNIST results achieved over the past decade have used data
augmentation [13][14][6]. In addition to the network design, a major part of our work involved applying an effective
data augmentation strategy that included transformations informed specifically by the domain of the data. For example,
we wanted to be sure we did not rotate our images into being more like a different class (e.g. rotating an image of the
digit 2 by 180 degrees to create something that would more closely resemble a malformed 5). Nor did we want to
translate the image content off of the canvas and perhaps cut off the left side of an 8 and thus create a 3.

2 Proposed Network Design

The starting point for our network design was a conventional convolutional neural network following many widely
used practices. These include stacked 3× 3 convolutions, each of which used ReLU [15] activation preceded by batch
normalization [16]. We also followed the common practice of increasing the number of filters in each subsequent
convolutional operation relative to the previous one. Specifically, our first convolution uses 32 filters and each
subsequent convolution uses 16 more filters than the previous one, resulting in 160 filters present in the final convolution.
Additionally, the final operation before classification was to softmax the logits and to use categorical cross entropy for
calculating loss.

One common design element found in many convolutional neural networks which we intentionally avoided was the
use of any pooling operations. We agree with Geoffrey Hinton’s assessment [17] of pooling as an operation to be
avoided due to the information it “throws away”. Effectively, pooling is a form of down-sampling and, in the presence
of sufficient computational power, should be avoided. With the MNIST data being 28 × 28, we have no need to
down-sample as there exists sufficient computational power for images of this size. In choosing not to down-sample, we
face the potential dilemma of how to reduce the dimensionality as we descend deeper into the network. This dilemma is
solved by choosing not to zero-pad the convolution operations and thus each convolution operation by its nature reduces
the dimensionality by 2 in both the horizontal and vertical dimensions. We deem choosing not to zero-pad as preferable
in its own right in that zero padding effectively adds information not present in the original sample.

Beyond these design choices, we chose to employ two relatively novel design elements:

1) Rather than having a single monolithic design such that each operation in our network feeds into the next
operation and only the next operation, we chose to create multiple branches. After the first two sets of three
convolutions, in addition to feeding to the subsequent convolution, we also branched off the output to be
forwarded on to an additional operation (detailed next). Thus, after all convolutions have been performed, we
have three branches in our network.

a) The first of which has been through three 3× 3 convolutions and consists of 64 filters each having an
effective receptive field of 7 of the original image pixels.

b) The second of which has been through six 3× 3 convolutions and consists of 112 filters each having an
effective receptive field of 11 of the original image pixels.

c) The third of which has been through nine 3× 3 convolutions and consists of 160 filters each having an
effective receptive field of 15 of the original image pixels.

2) For each branch, rather than flattening the outputs of the convolutions into scalar neurons, we instead
transformed each filter into a vector to form the first capsule in a pair of homogeneous vector capsules. We
then performed element-wise multiplication of each of these vectors with a set of weight vectors (one for
each class) of the same length. This results in nxm weight vectors where n is the number of filters that were
transformed into the first set of capsules and m is the number of classes. We summed across the filters to
form the second capsule in the pair of homogeneous vector capsules. It is after this that we applied batch
normalization and then ReLU activation. Because these capsules are formed one-to-one from entire filters, we
see them as a sub-type of homogeneous vector capsules which we refer to as a Homogeneous Filter Capsules
(HFCs). We reduce each vector to a single value per class by summing the components of the vector. These
values can be thought of as the branch-level logits. As the filter size coming out of the first branch is 22× 22,
the length of the HFC vectors for this branch is 484. For the second branch, consisting of 16× 16 sized filters,
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the vectors are of length 256, and for the third branch, consisting of 10× 10 sized filters, the vectors are of
length 100. Figure 1a diagrams the transformation from filter maps through the homogeneous filter capsules to
the output logits.

Before classifying, we needed to reconcile the three branch-level sets of logits with each image only belonging to one
class. We accomplished this by stacking the branch-level logits into vectors of length 3, one for each class. We then
reduced by summation each vector to a single value to form the final set of logits to be classified from. Figure 1b shows
the high-level view of the entire network.

(a) The transformation from filter maps through
the homogeneous filter capsules to the output
logits. In this illustration, a single 3 × 3 fil-
ter map and 9-dimensional capsule are shown
and represent the n filter maps and capsules,
respectively.

(b) The entire network from input to classification.

Figure 1: Proposed Network Design

We used no weight decay regularization [18], a staple regularization method that improves generalization by penalizing
the emergence of large weight values. Nor did we use any form of dropout regularization [19][14] which are
regularization methods designed to stop the co-adaption of weights. This decision was made so that we could investigate
the generalization properties of our novel network design elements in the absence of other techniques associated with
good generalization. In addition, we intentionally left out any form of “routing” algorithm as in [7] and [9], preferring
to rely on traditional trainable weights (see Table 1) and back-propagation.

3 Experimental Setup

3.1 Merge Strategies

In [1] and [2], the authors chose to give static, predetermined weights to both output branches and then added them
together. In our case, we conducted three separate experiments of 32 trials each in order to investigate the effects of
predetermined equal weighting of the branch outputs compared to learning the branch weights via backpropagation:
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Table 1: Trainable Parameters
Parameter Type Count

Convolutional Filters 756,000
Capsules 756,480
Batch Normalization 1,707

Total 1,514,187

The experiments for which the branch weights were learned required
an additional 3 trainable parameters (one for each branch weight).

1) Not learnable. For this experiment, we merged the three branches together with equal weighting in order to
investigate the effect of disallowing any one branch to have more impact than any other.

2) Learnable with randomly initialized branch weights. (Abbreviated as Random Init. subsequently.) For
this experiment, we allowed the weights to be learned via backpropagation. We initialized the 3 trainable
parameters using a Glorot uniform distribution [20], which for the case of a vector of 3 trainable parameters
happens to be a random uniform distribution within the range [-1,1].

3) Learnable with branch weights initialized to one. (Abbreviated as Ones Init. subsequently.) For this
experiment, we also allowed the weights to be learned via backpropagation. The difference with the Random
Init. experiment being that we initialized the weights to 1. We conducted this experiment in addition to the
Random Init. experiment in order to understand the difference between starting with random weights and
starting with equal weights that are subsequently allowed to diverge during training.

3.2 Data Augmentation

By modern standards, in terms of dataset size, MNIST has a relatively low number of training images. As such,
judicious use of appropriate data augmentation techniques is important for achieving a high level of generalizability in a
given model. In terms of structure, hand-written digits show a wide variety in their rotation relative to some shared true
“north”, position within the canvas, width relative to their height, and the connectedness of the strokes used to create
them. Throughout training for all trials, every training image in every epoch was subjected to a series of four operations
in order to simulate a greater variety of the values for these properties.

1) Rotation. First, we randomly rotated each training image by up to 30 degrees in either direction. The amount
of rotation applied to each training image was chosen by multiplying the value 30 by a sample drawn from a
random normal distribution with mean 0 and standard deviation 0.33, clamped to a minimum of -1 (which
would result in a left rotation of 30 degrees) and a maximum of 1 (which would result in a right rotation of 30
degrees). Whether to actually apply this rotation was chosen by drawing from a Bernoulli distribution with
probability p of 0.5 (a fair coin toss).

2) Translation. Second, we randomly translated each training image within the available margin present in that
image. In [7], the authors limited their augmentation to shifting the training images randomly by up to 2
pixels in either or both directions. The limit of only 2 pixels for the translation ensured that the translation is
label-preserving. As the MNIST training data has varying margins of non-digit space in the available 28× 28
pixel canvas, using more than 2 pixels randomly, would be to risk cutting off part of the digit and effectively
changing the class of the image. For example, a 7 that was shifted too far left could become more appropriately
classed as a 1, or an 8 or 9 shifted far enough down could be more appropriately classed as a zero. The highly
structured nature of the MNIST training data allows for an algorithmic analysis of each image that will provide
the translation range available for that specific image that will be guaranteed to be label-preserving. Figure 2
shows an example of an MNIST training image that has an asymmetric translation range that, as long as any
translations are performed such that the digit part of the image is not moved by more pixels than are present in
the margin, will be label preserving. In other words, the specific training example shown in Figure 2 could
be shifted by up to 8 pixels to the left or 4 to the right and up to 5 up or 3 down, and after doing so, all of
the pixels belonging to the actual digit will still be in the resulting translated image. The amount within this
margin to actually translate a training image was chosen as follows:

a) Whether to translate up or down and whether to translate left or right were drawn independently from a
Bernoulli distribution with probability p of 0.5 (a fair coin toss).

b) The amount of translation across the margin in each chosen direction was determined from the absolute
values of two independent samples drawn from a normal distribution with mean 0 and standard deviation
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0.33 and clamped to a maximum translation of the entire margin as to avoid translating out of the image’s
bounds.

Figure 2: Example MNIST digit w/annotated margins.

3) Width. Third, we randomly adjusted each training image’s width. MNIST images are normalized to be within
a 20 × 20 central patch of the 28 × 28 canvas. This normalization is ratio-preserving, so all images are 20
pixels in the height dimension but vary in the number of pixels in the width dimension. This variance not only
occurs across digits, but intra-class as well, as different peoples’ handwriting can be thinner or wider than
average. In order to train on a wider variety of these widths, we randomly compressed each image’s width and
then added equal zero padding on either side, leaving the digit’s center where it was prior. This was inspired
by a similar approach adopted in [6]. In their work, they created 6 additional versions of the MNIST training
data set, where they normalized the width of the digits to 10, 12, 14, 16, 18, and 20 pixels. They then fed those
data sets as well as the original MNIST data into 7 columns in their architecture. In our work, we compressed
the width of each sample randomly within a range of 0–25%. The portion of that range of compression was
the absolute value of a sample drawn from a random normal distribution with mean 0 and standard deviation
0.33, clamped to a maximum of 100% (that is 100% of the 25%).

4) Random Erasure. Fourth, we randomly erased (setting to 0) a 4× 4 grid of pixels chosen from the central
20× 20 grid of pixels in each training image. The X and Y coordinates of the patch were drawn independently
from a random uniform distribution. This was inspired by the random erasing data augmentation method in [21].
The intention behind this method was to expose the model to a greater variety of (simulated) connectedness
within the strokes that make up the digits. An alternative interpretation would be to see this as a kind of
feature-space dropout.

3.3 Training

In [10], the authors show that Homogeneous Vector Capsules (HVCs) enable the use of adaptive gradient descent
methods in convolutional neural networks, a practice previously deemed sub-optimal and prone to extreme overfit-
ting. We followed the training methodology they used and trained with the Adam optimizer [22] using all of the
default/recommended parameter values, including the base learning rate of 0.001. Also, as in both [10] and [7], we
exponentially decayed the base learning rate. For our experiments, which trained for 300 epochs, we applied an
exponential decay rate of 0.98 per epoch, clamped to a minimum of 1 × 10−6. And like in [10], we were able to
continue to train for many epochs without experiencing overfitting. (See Figure 3 and Figure 4.)

Test accuracy was measured using the exponential moving average of prior weights with a decay rate of 0.999. [23]

4 Experimental Results

4.1 Individual Models

For each of our three experiments, we ran 32 trials, each of which with weights randomly initialized prior to training
and, due to the stochastic nature of the data augmentation, a different set of training images. As a result, training
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progressed to different points in the loss surface resulting in a range of values for the top accuracies that were achieved
on the test set. See Table 2.

Table 2: Individual Models
Experiment Min Max Mean SD

Not Learnable 99.71% 99.79% 0.997500 0.0002190
Random Init. 99.72% 99.78% 0.997512 0.0001499
Ones Init. 99.70% 99.77% 0.997397 0.0001885

32 trials of each individual model showed no statistically significant difference
between the approach where the branch weights were not learnable and when
the branch weights were learnable and randomly initialized. The approach with
learnable branch weights initialized to one was inferior to the approach that did
not use learnable branch weights (p-value 0.024045) as well as being inferior
to the approach with learnable weights initialized randomly (p-value 0.004449).
(SD is standard deviation)

The trial that achieved 99.79% test accuracy establishes a new state of the art for a single model where the previous
state of the art was 99.77% [13]. 4 additional trials achieved 99.78% test accuracy, also surpassing the previous state of
the art.

Although all three experiments produced similar results, the experiment that initialized the learnable branch weights
randomly had a higher average accuracy across a greater number of epochs than the experiment that used non-learnable
and equal branch weights and higher than all epochs of the experiment that initialized the learnable branch weights to
one (see Figure 3). Additionally, the experiment that initialized the learnable branch weights randomly had a lower loss
than either of the other two experiments across all epochs (see Figure 4).

4.2 Ensembles

Ensembling multiple models together and predicting based on the majority vote among the ensembled models routinely
outperforms the individual models’ performances. Ensembling can refer to either completely different model archi-
tectures with different weights or the same model architecture after being trained multiple times and finding different
sets of weights that correspond to different locations in the loss surface. The previous state of the art of 99.82% was
achieved using an ensemble of 30 different randomly generated model architectures [5]. Our ensembling method used
the same architecture with different sets of weights learned during different trials. We matched the previous state of the
art with 4,544 ensembles. We surpassed this with 44 ensembles that achieved an accuracy of 99.83% and established a
new state of the art of 99.84% with one ensemble. See Table 3.

In order to find these ensembles, we ran 32 trials for each of the three experiments. For each trial, we saved the weights
that were used to achieve the highest test accuracy throughout the 300 epochs of training. We then calculated the
majority vote for all possible combinations of those weights across trials.

Table 3: Ensembles
Accuracy: 99.84% 99.83% 99.82%

Not Learnable 0 4 1,183
Random Init. 0 21 2,069
Ones Init. 1 19 1,292

Shown here are the number of ensembles that were generated that either
matched the previous state of the art of 99.82% or exceeded it.
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Figure 3: The average test accuracies of the trials
for all three experiments across epochs.

Figure 4: The average test losses of the trials for
all three experiments across epochs.

4.3 Branch Weights

What follows are visualizations of the final branch weights (after 300 epochs of training) for each of the branches in all
32 trials of the experiment wherein the branch weights were initialized to one (see Figure 5) and of the experiment
wherein the branch weights were initialized randomly (see Figure 6).

In Figure 5, we see that for all trials, the ratio between the learned branch weights is consistent, demonstrating that the
amount of contribution from each branch plays a significant role. In Figure 6, as the weights were initialized randomly,
the initial weights for some trials’ branches were negative, leading the backpropagation algorithm to learn a negative
weight for that specific weight of the branch. This does not mean that the branch prediction was consistently poor and
thus down-weighted, but rather, the backpropagation algorithm copes with the initial negative value of the branch by
learning the inverse relationship between weight of detected features and the predicted class. Regardless of the sign of
the branch weight, the magnitude of each branch’s weight is consistent across trials and consistent with the trials from
the experiment in which the weights were initialized to one.

Figure 5: Final branch weights (after 300 epochs)
for all 32 trials (across the x-axis) of the experi-
ment for which the branch weights were initial-
ized to one.

Figure 6: Final branch weights (after 300 epochs)
for all 32 trials (across the x-axis) of the experi-
ment for which the branch weights were initial-
ized randomly.

4.4 Troublesome Digits

Across all 96 trials, there was total agreement on 9,907 out of the 10,000 test samples. There were 48 digits that were
misclassified more often than not across all 96 trials, but only 21 digits were misclassified more often than not within
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the 32 trials of any one experiment. This shows that although the accuracies of the models in the three experiments
were quite similar, the different merge strategies of the three experiments did have a significant effect on classification.

Across all 96 trials, only 4 samples were misclassified in all models. Those samples, as numbered by the order they
appear in the MNIST test dataset (starting from 0) are 1901, 2130, 2293, and 6576. The Not Learnable experiment
had no trial that correctly predicted sample 3422. The Random Init. experiment had no trial that correctly predicted
sample 2597 correctly. The Ones Init. experiment had no trial in which either 2597 or 3422 were predicted correctly. It
is interesting that, in addition to the 4 that no trial predicted correctly, the 2 that the Ones Init. experiment predicted
incorrectly were the fifth digits not predicted by the Not Learnable and Random Init. experiments.

9 4 9 5 6 7
1901 2130 2293 2597 3422 6576

Figure 7: The Most Troublesome Digits

4.5 MNIST State of the Art

In Table 4 we present a comparison of previous state of the art MNIST results for both single model evaluations and
ensembles along with the results achieved in our experiments.

Table 4: Current and Previous MNIST State of the Art Results
Paper Year Accuracy

Single Models

Dynamic Routing Between Capsules[7] 2017 99.75%
Lets keep it simple, Using simple architectures to outperform deeper and more complex
architectures[11]

2016 99.75%

Batch-Normalized Maxout Network in Network[12] 2015 99.76%
APAC:Augmented PAttern Classification with Neural Networks[13] 2015 99.77%
Multi-Column Deep Neural Networks for Image Classification[6] 2012 99.77%
Using the method proposed in this paper (Branching & Merging CNN w/HFCs) 2020 99.79%

Ensembles

Regularization of Neural Networks using DropConnect[14] 2013 99.79%
RMDL:Random Multimodel Deep Learning for Classification[5] 2018 99.82%
Using the method proposed in this paper (An ensemble of Branching & Merging CNN
w/HFCs)

2020 99.84%

How long a model takes to train is an important factor to consider when evaluating a neural network. Indeed, it is an
enabling factor during initial experimentation as faster training leads to a greater exploration of the design space. In
Table 5 we present a comparison of the number of epochs of training used in experiments for the results achieved in the
networks shown in Table 4. Across all trials, our design achieved peak accuracy in an average of 88.35 epochs, with a
minimum peak achieved in 25 epochs and a maximum peak achieved at epoch 266. One trial achieved an accuracy of
99.78%, surpassing the previous state of the art, in 56 epochs. Since, we allowed all trials to run for up to 300 epochs,
that is the number we report in Table 5.

4.6 Experiments With and Without Branching and Merging and Homogeneous Filter Capsules

In order to understand the effect of the novel design elements we introduced, we ran additional sets of paired experiments
wherein the first set of experiments in a pair used the network design as described in this paper and the second set of
experiments excludes the branching and merging and capsules. This second network design is the same network design
described in this paper and as shown in 1b excluding the the first two branches, the stacking operation that combines
the branches, and the homogeneous filter capsules in the main branch which were replaced with the typical flattening of
the final convolution and a fully connected layer of neurons, one for each output class. This results in a very typical
convolutional neural network with 9 3× 3 convolutions. In our experiments, we labeled these two models M1 and M2,
respectively (see Table 6).
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Table 5: Epochs of Training
Paper Epochs

Dynamic Routing Between Capsules[7] 1,200
APAC:Augmented PAttern Classification with Neural Networks[13] 15,000
Multi-Column Deep Neural Networks for Image Classification[6] 800
Regularization of Neural Networks using DropConnect[14] 1,200
RMDL:Random Multimodel Deep Learning for Classification[5] 120
Branching & Merging CNN w/HFCs 300

Neither [11] nor [12] report on how many epochs their designs were trained for.

Then, in addition to performing these sets of paired experiments on MNIST, we performed them on Fashion-MNIST [24],
CIFAR-10, and CIFAR-100 [25].

For the MNIST and Fashion-MNIST experiments, we used the same augmentation strategy as described in this paper.
For the CIFAR-10 and CIFAR-100 experiments, the augmentation strategy was as described in this paper with the
exception of the translation operation (described in section 3), which works by detected the empty space around
the MNIST and Fashion-MNIST images. There is no such empty space in the CIFAR-10 and CIFAR-100 images.
Additionally, since CIFAR-10 and CIFAR-100 images are 32× 32 pixels, are full color, and are comprised of more
complex features, we ran an additional pair of experiments for each of these datasets that used additional convolutions.
We labeled these two additional models M3 and M4 (see Table 6).

For all four datasets, a model that included the branching and merging and HFCs achieved the highest mean
accuracy with statistical significance.

For MNIST, the higher accuracy was statistically significant with a p-value of 0.000757. For Fashion-MNIST, the higher
accuracy was statistically significant with a p-value of 0.000003. Given that both of these datasets are monochromatic
images with a size of 28 × 28 and our network was designed with those properties in mind, this is not especially
surprising. The fact that the accuracy for Fashion-MNIST was not competitive with current state of the art for that dataset
is also not surprising as our network design was optimized for accuracy on classification of the Arabic numerals in the
MNIST dataset. This design encompasses the number of parameters used as well as the domain specific augmentation
strategy, both of which would quite likely be different for achieving state of the art Fashion-MNIST accuracy.

For CIFAR-10, model M2 (without branching and merging and HFCs) achieved a statistically significant higher accuracy
than M1 with a p-value of 0.027646, while model M3 achieved a statistically significant higher accuracy than M4 with
a p-value of 0.018672. The higher accuracy of model M3 relative to M2 was statistically significant with a p-value of
0.049882.

For CIFAR-100, model M1 (with branching and merging and HFCs) achieved a statistically significant higher accuracy
than M2 with a p-value of 0.000196, and model M3 achieved a statistically significant higher accuracy than M4 with
a p-value of 0. The higher accuracy of model M3 relative to M1 was not statistically significant after 5 trials with a
p-value of 0.094366.

Table 6: Models Used for Experiments With and Without Branching and Merging and Homogeneous Filter Capsules
Model Description

M1 The model described in this paper
M2 M1 without branching and merging and HFCs
M3 M1 with 5 additional 3× 3 convolutions and branches after convolutions 5, 9, and 13
M4 M2 with 5 additional 3× 3 convolutions

5 Conclusion

In this paper, we proposed using a simple convolutional neural network and established design principles as a basis for
our architecture. We then presented a design that branched out of the series of stacked convolutions at different points
to capture different levels of abstraction and effective receptive fields, and from these branches, rather than flattening to
individual scalar neurons, used capsules instead.
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Table 7: Experiments With and Without Branching and Merging and Homogeneous Filter Capsules
Accuracy

Min Max Mean SD

MNIST

M1 99.74% 99.76% 0.997540 0.0000894
M2 99.66% 99.73% 0.996940 0.0002702

Fashion-MNIST

M1 93.42% 93.66% 0.935440 0.0008989
M2 92.85% 93.04% 0.929480 0.0008871

CIFAR-10

M1 84.57% 85.44% 0.849020 0.0033656
M2 85.01% 85.70% 0.853200 0.0024617
M3 85.36% 85.71% 0.855580 0.0014550
M4 85.09% 85.50% 0.853040 0.0017530

CIFAR-100

M1 50.42% 51.73% 0.512740 0.0051013
M2 49.07% 50.19% 0.495760 0.0040470
M3 51.41% 51.96% 0.516320 0.0022410
M4 46.27% 47.59% 0.469400 0.0053245

We conducted 5 trials of each unique type of experiment in order to establish statistical significance. (SD is standard
deviation)

We also investigated three different methods of merging the output of the branches back into a single set of logits.
Each of the three merge strategies generated models that could be ensembled to create new state of the art results.
Although the experiment that initialized the branch weights to ones produced an ensemble with a higher accuracy than
the other two experiments, the experiment that initialized the branch weights randomly produced the most ensembles
at or exceeding the previous state of the art, as well as having a slightly higher average and lower standard deviation
across the trials. This suggests that the random initialization method is preferred.

Beyond the network architecture, we proposed a robust and domain specific data augmentation strategy aimed at
simulating a wider variety of renderings of the digits.

In doing this work, we established new MNIST state of the art accuracies for both a single model and an ensemble. In
addition to the network design and augmentation strategy, the ability to use an adaptive gradient descent method [10]
allowed us to achieve this on consumer hardware (2x NVIDIA GeForce GTX 1080 Tis in an otherwise unremarkable
workstation) and was an enabling factor in both initial explorations and the training of the 96 trials.
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The code used for all experiments and summary level data is publicly available on GitHub at:
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A Appendix

A.1 Digits Disagreed Upon

What follows is the complete set of 93 digits that were predicted correctly by at least one model and incorrectly by at
least one model. These in combination with the digits from Figure 7 represent the complete set of digits that were not
predicted correctly by all 96 trials. Each image is captioned first by the class label in the test data set associated with the
image, then the number of trials that predicted it correctly, and last the index of the digit in the test data. For example,
the first image presented below has a class label of 9, 24 trials predicted that correctly, and it exists at index 193 in the
MNIST test data.
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9 4 2 9 1 5 6 4 8 6 2 4 1 7 3
24 31 6 77 31 33 85 76 59 74 70 30 31 31 88
193 247 321 359 409 412 445 447 582 625 659 708 716 846 938

8 6 4 4 6 9 4 7 5 1 0 2 5 6 8
62 91 18 91 29 18 31 31 20 82 62 62 53 31 89
947 1014 1112 1147 1182 1232 1242 1260 1393 1403 1438 1459 1737 1822 1878

7 1 5 5 4 2 0 1 9 6 2 5 6 9 4
93 31 31 88 31 31 61 31 61 34 44 1 76 58 9

1903 2018 2035 2040 2053 2098 2326 2355 2414 2454 2462 2597 2654 2720 2771

9 1 7 9 6 4 5 6 7 9 3 2 1 3 8
58 80 80 31 1 31 60 5 65 80 88 58 14 31 62

3005 3073 3225 3369 3422 3534 3558 3762 3808 3821 4018 4176 4201 4443 4497

2 1 6 6 3 9 9 4 7 3 3 0 8 1 1
79 77 31 88 29 72 23 86 43 61 91 31 40 31 30

4504 4507 4571 4699 4740 4761 4823 4860 5654 5955 6371 6597 6625 6783 6883

4 4 8 7 1 8 4 7 7 7 2 4 6 6 5
31 31 61 16 65 76 12 91 63 31 87 31 31 31 24

8081 8095 8279 8316 8376 8408 8527 9015 9505 9637 9664 9669 9679 9693 9729

3 2 0
31 61 93

9750 9839 9850
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