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ABSTRACT 

The buckling of square perforated plates is analyzed with the effect of shear deformation in the bending 

model. The relationship between the buckling load and the plate thickness is better assessed with this 

bending model instead of the classical model. The simply supported condition at all sides was adopted 

in the buckling problem such that opposite sides of the plates were uniformly compressed in one 

direction. The plates had a thickness to length ratio between 1/1000 and 1/5. This study adopted the 

Dual Reciprocity Method (DRM) to obtain a formulation without domain integrals. The numerical 

results obtained were compared with those available in the literature. 

Keywords: dual reciprocity method, plate buckling, perforated plates, Reissner plates, boundary 

elements. 

 

1 INTRODUCTION 

In-plane forces affect the bending of plates, and the reduction in plate thickness considerably 

strengthens the effect of the forces on the plate behavior. Buckling analysis is one of the ways 

to evaluate the effect of in-plane forces when the plate bending equilibrium includes the effect 

of geometrical non-linearity. The problem is geometrically nonlinear in the case of large 

deflections, i.e., the stretching and bending of the plate are coupled [1]. The buckling problem 

is considered when deflections remain small, and the in-plane forces are only related to in-

plane tractions.  

     Timoshenko [4] presented the basic equation that introduces the effect of geometric non-

linearity (GNL) for plate analyses using the classical bending model. Several researchers 

have shown that the introduction of shear deformation improves the bending model accuracy 

after the first studies presented by Reissner and Mindlin [2, 3]. The development in [4] was 

extended to bending models considering the effect of shear deformation in several studies 

that dealt with buckling analyses for thin or moderately thick plates. Dawe and Roufaeil [5] 

discussed the effect of GNL in the bending of plates with shear deformation and stressed the 

importance of using the derivatives of rotations as well as the derivatives of deflections in 

the potential energy density associated with in-plane forces. Mizusawa [6] showed the effect 

of the derivatives of rotations was greater for certain types of boundary conditions, whereas 

for others, it was not significant, i.e. the derivatives of deflection would be enough. 

     The classical bending model has been used in the literature to perform buckling analyses 

of perforated plates. Levy et al. [7] studied the instability of reinforced perforated plates with 

a central hole under a uniform compression force. Schlack and Alois [8] computed the critical 

edge displacement of a simply supported pierced plate under a uniform edge displacement. 

Yang [9] showed that the buckling load is reduced when a square hole is considered instead 

of a circular hole. Brown and Yettram [10] studied how the value of the buckling parameter 

for different load combinations changes with the ratio between the diameter of the hole and 

the plate side. Shakerley and Brown [11] studied the plate buckling with eccentrically 

positioned holes. El-Sawy and Nazmy [12] used the finite element method to assess the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362654583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


buckling parameter value for uniaxial loaded plates with different ratios between the diameter 

of the hole and the plate side. 

     The BEM formulation for plate bending including the effect of shear deformation does 

not require integration over the thickness, so the problem can be solved as a plane problem. 

An integral performed on the domain is included in the formulation to allow analyses with 

the GNL effect. The domain integral can be converted to one performed on the boundary 

with an additional numerical approach such as the multiple reciprocity method (MRM), the 

radial integration method (RIM) or the dual reciprocity method (DRM), which is adopted 

here. 

     The first time the name DRM was used to the conversion of the domain integral into 

equivalent boundary integrals was in studies on dynamic and heat transfer problems 

presented in [13]. Partridge, Brebbia and Wrobel gave a more detailed explanation of the 

DRM in a book [14], which included some computer codes used in the method. After the first 

studies, the DRM has been employed in several BEM formulations including those for plate 

analyses with the GNL effect as summarized next. Sawaki, Takeuche and Kamiya [15] 

studied the effect of finite displacements in the bending of thin plates. Elzein and Syngellakis 

[16] obtained the buckling parameters using the classical bending model. Lin, Duffield and 

Shih [17] performed studies on the buckling of rectangular and circular plates. Wang, Ji and 

Tanaka [18] presented the solution for the plate-bending problem considering the effect of 

finite displacements using the von Kärmán equations, similarly to Wen, Aliabadi and Young 

[19] who have also included the effect of shear deformation in the bending model. 

Purbolaksono and Aliabadi [20] presented a comparison of the results obtained with the DRM 

versus domain integrations to account for the GNL effect in buckling analyses using the 

Reissner model. Supriyono and Aliabadi [21] solved plate bending problems with the effect 

of the shear deformation and included effects of geometrical and physical non-linarites. 

Purbolaksono and Aliabadi [22] analysed large deflections in plate bending considering the 

effect of shear deformation. 

     The BEM formulation for buckling analyses in [23] employed two integrals containing 

the GNL effect, with one computed in the domain and the other computed on the boundary. 

The use of first derivatives of the deflection in kernels of integrals related to the GNL effect, 

instead of the second derivatives, and the fact that there was no need of relating the 

derivatives of in-plane forces were the main features of the alternative formulation. This 

study employs the DRM to replace the domain integral by equivalent boundary integrals in 

the formulation presented in [23]. The numerical implementation employed quadratic shape 

functions to approximate displacements, plate rotations, distributed shears and moments in 

the boundary elements as implemented in [23], as well as the inverse iteration and Rayleigh 

quotient to compute the lowest eigenvalue with the corresponding eigenvector. The changes 

in the value of the buckling parameter according to the plate thickness of perforated plates 

are studied and compared to those in the literature. The simply supported condition at all 

sides was adopted in the buckling problem such that opposite sides of the plates were 

uniformly compressed in one direction. The square plates with a central square hole had a 

thickness to length ratio between 1/1000 and 1/5. 

 

2 BOUNDARY INTEGRAL EQUATIONS 

The buckling analysis considered an isotropic and homogeneous material in the perforated 

plate under in-plane forces distributed in the domain. The constitutive equations are written 

next with a unified notation for the Reissner and Mindlin bending models. The Latin indices 

take on values {1, 2 and 3} and Greek indices take on values {1, 2}. 

 



 𝑀𝛼𝛽 = 𝐷
(1−𝜈)

2
(𝑢𝛼,𝛽 + 𝑢𝛽,𝛼 +

2𝜈

1−𝜈
𝑢𝛾,𝛾𝛿á𝛽) + 𝛿𝛼𝛽𝑞𝑅𝐸 (1) 

 

 𝑄𝛼 = 𝐷
(1−𝜈)

2
𝜆2(𝑢𝛼 + 𝑢3,𝛼) (2) 

with 

𝜆2 = 12
𝜅2

ℎ2
; 𝑅𝐸 =

𝜈

𝜆2(1 − 𝜈)
 

 

D is the flexural rigidity, h is the plate thickness,  is Poisson’s ratio, q is the distributed load 

on the plate domain and δαβ is the Kronecker delta. The shear parameter 2 is equal to 5/6 and 

2/12 for the Reissner and Mindlin models, respectively. The product qRE in eqn. (2) 

corresponds to the linearly weighted average effect of the normal stress component in the 

thickness direction, which should be considered in the Reissner model [2] but not in the 

Mindlin model [3]. This term is null in the buckling problem because the distributed load q 

is equal to zero. 

     The displacement boundary integral equations (DBIEs) for the buckling problem used in 

[23] are given next: 

 

1

2
𝐶𝑖𝑗(𝑥′)𝑢𝑗(𝑥′) + ∫[𝑇𝑖𝑗(𝑥

′, 𝑥)𝑢𝑗(𝑥) − 𝑈𝑖𝑗(𝑥
′, 𝑥)𝑡𝑗(𝑥)]𝑑Γ(𝑥)

Γ

= ⋯. 

= ∫ 𝑛𝛼(𝑥)𝑁𝛼𝛽(𝑥)𝑢3,𝛽(𝑥)𝑈𝑖3(𝑥
′, 𝑥)𝑑Γ(𝑥)

Γ

−∬ 𝑁𝛼𝛽(𝑋)𝑢3,𝛽(𝑋)𝑈𝑖3,𝛼(𝑥
′, 𝑋)𝑑Ω(𝑋)

Ω

             (3) 

 

where Cij is an element of the matrix C related to the boundary geometry at the source point, 

which becomes the identity matrix when a smooth boundary is considered, u is the plate 

rotation in direction α, and u3 is the plate deflection. Uij represents the rotation (j=1, 2) or the 

deflection (j=3) due to a unit couple (i=1, 2) or a unit point force (i=3). T ij represents the 

moment (j=1, 2) or the shear (j=3) due to a unit couple (i=1, 2) or a unit point force (i=3). Uij 

and Tij are related to the fundamental solution. 

     According to the development in [23], the GNL effect in eqn. (3) is introduced with an 

integral performed on the domain and a boundary integral, which is related to the natural 

condition in the part of the boundary when the deflection (u3) is not prescribed. The result in 

eqn. (17) in [23] showed the boundary integral containing the GNL effect should only be 

computed along the boundary part with the prescribed deflection. The GNL effect requires 

the use of the BIE for the gradient of the deflection, which is written next for an internal 

collocation point: 

 

  



𝑢3,𝛾(𝑋
′) = ∫{𝑛𝛼(𝑥)𝑀3𝛼𝛽,𝛾(𝑋

′, 𝑥)𝑢𝛽(𝑥) + 𝑛𝛽(𝑥)𝑄3𝛽,𝛾(𝑋
′, 𝑥)𝑢3(𝑥) +⋯

Γ

 

…−𝑈3𝛽,𝛾(𝑋
′, 𝑥)𝑡𝛽(𝑥) − 𝑈33,𝛾(𝑋

′, 𝑥)𝑡3(𝑥)}𝑑Γ(𝑥)

− ∫ 𝑛𝛼(𝑥)𝑁𝛼𝛽(𝑥)𝑢3,𝛽(𝑥)𝑈𝑖3,𝛾(𝑋
′, 𝑥)𝑑Γ(𝑥)

Γ

+⋯ 

…+∬ 𝑁𝛼𝛽(𝑋)𝑢3,𝛽(𝑋)𝑈33,𝛼𝛾(𝑋
′, 𝑋)𝑑Ω(𝑋)

Ω

                       (4) 

 

     Eqn. (4) was written with kernels differentiated with respect to the field point coordinates. 

The tangential differential operator can be introduced in kernels of integrals in eqn. (4) to 

reduce the singularities resulting from the differentiation as shown in [24]. 

     The generalized plane stress problem is solved once to obtain the in-plane force 

distribution used in the buckling analysis. The in-plane force distribution is dependent of the 

shape and the dimensions of the hole in perforated plates beyond the in-plane tractions 

distribution on the boundary. 

 

3 APPLICATION OF THE DUAL RECIPROCITY METHOD 

The kernel in the domain integral of the DBIEs (eqn.3) contains the product between the 

gradient of deflection from the fundamental solution, the in-plane forces tensor and the 

gradient of the plate deflection. A vector function (b) resulting from the product between the 

in-plane forces tensor and the gradient of plate deflection can be defined, i.e.: 

 

𝑏𝜃(𝑋) = 𝑁𝜃𝛽(𝑋)𝑢3,𝛽(𝑋)      (5) 

 

     The DRM is introduced in the approximation of the vector function (b) using the following 

relation [14]: 

 

𝑏𝜃(𝑋) = ∑ 𝛼𝜃
𝑚𝑓𝑚

𝑁+𝐿

𝑚=1

             (6) 

 

     The summation in eqn. (6) is extended along all points employed in the DRM, i.e. the total 

number of points placed on the boundary (N) and in the domain (L), fm and m are sets of the 

approximating functions and weighting coefficients, respectively [14]. Furthermore, the 

application of the DRM employs the particular solution ûj
m [14], which is related to the 

approximating function fm according to following equations: 

 

∇2(∇2𝜙) =
1

𝐷
𝑓(𝑟)                                    (7) 

∇2(û3) =
2

𝐷(1 − 𝜐)𝜆2
𝑓(𝑟) − ∇2𝜙        (8) 

û𝛼 = 𝜙,𝛼                                                       (9) 
 

     Eqns. (7) to (9) are similar to those used to obtain the fundamental solution for the unit 

point load under the static condition in [25] and the dynamic condition in [26]. The well-



known radial basis function (1+r) is considered for fm. The corresponding particular solution, 

which is similar to that presented in [27], is given by: 

 

𝑓𝑚 = 1 + 𝑟 ⇒

{
 
 

 
 û𝛼

𝑚 =
1

𝐷
(
r3

16
+
r4

45
) 𝑟,𝛼

û3
𝑚 =

2

𝐷(1 − 𝑣)𝜆2
(
r2

4
+
r3

9
) −

1

𝐷
(
r4

64
+
r5

225
)

                                       (10) 

 

     The distributed shear and bending moments related to the particular solutions are obtained 

with the constitutive eqns. (1) and (2). The generalized tractions are obtained from the 

distributed shear and bending moments using the following relations: 

 

𝑡̂∝
𝑚 = 𝑀̂∝𝛽

𝑚 𝑛𝛽

𝑡̂3
𝑚 = 𝑄̂𝛽

𝑚𝑛𝛽
                                           (11) 

 

     The gradient of the deflection (Ui3,) from the fundamental solution multiplies the terms 

related to the GNL effect in the DBIEs (eqn. 3). The introduction of the DRM to replace the 

domain integral requires the use of the BIE for the gradient of the deflections. This equation 

is written next with the kernel of the domain integral containing the function fm and the 

boundary integrals using the displacements and tractions related to the particular solution ûj
m 

[14]: 

 

𝑐𝑢̂𝑖,𝜃
𝑚 (𝑥′) = ∫[𝑛𝛼(𝑥)𝑀𝑖𝛼𝛽,𝜃(𝑥

′, 𝑥)𝑢̂𝛽
𝑚(𝑥) + 𝑛𝛽(𝑥)𝑄𝑖𝛽,𝜃(𝑥

′, 𝑥)𝑢̂3
𝑚(𝑥)

Γ

+⋯ 

…−𝑈𝑖𝛽,𝜃(𝑥
′, 𝑥)𝑡̂𝛽

𝑚(𝑥) − 𝑈𝑖3,𝜃(𝑥
′, 𝑥)𝑡̂3

𝑚(𝑥)]𝑑Γ(𝑥) −∬ 𝑓𝑚(𝑋)𝑈𝑖3,𝜃(𝑥
′, 𝑋)𝑑Ω(𝑋)

Ω

     (12) 

 

     Eqn. (12) was written with kernels differentiated with respect to the field coordinates, the 

scalar c is equal to 1 in case of collocation points located inside the domain and 0.5 in case 

of points placed on smooth parts of the boundary. The continuity of the first derivative of 

displacements at x` is required to apply eqn. (12) at points on the boundary. The DBIE for 

the buckling problem using eqn. (12) to introduce the DRM is given by 

 

1

2
𝐶𝑖𝑗(𝑥′)𝑢𝑗(𝑥′) + ∫[𝑇𝑖𝑗(𝑥

′, 𝑥)𝑢𝑗(𝑥) − 𝑈𝑖𝑗(𝑥
′, 𝑥)𝑡𝑗(𝑥)]𝑑Γ(𝑥)

Γ

= ⋯. 

= ∫ 𝑛𝛼(𝑥)𝑁𝛼𝛽(𝑥)𝑢3,𝛽(𝑥)𝑈𝑖3(𝑥
′, 𝑥)𝑑Γ(𝑥)

Γ

+ ∑ 𝛼𝜃
𝑚 {𝑐𝑢̂𝑖,𝜃

𝑚 (𝑥′) + ⋯

𝑁+𝐿

𝑚=1

 

…… . . −∫[𝑛𝛼(𝑥)𝑀𝑖𝛼𝛽,𝜃(𝑥
′, 𝑥)𝑢̂𝛽

𝑚(𝑥) + 𝑛𝛽(𝑥)𝑄𝑖𝛽,𝜃(𝑥
′, 𝑥)𝑢̂3

𝑚(𝑥)

Γ

+⋯ 

…−𝑈𝑖𝛽,𝜃(𝑥
′, 𝑥)𝑡̂𝛽

𝑚(𝑥) − 𝑈𝑖3,𝜃(𝑥
′, 𝑥)𝑡̂3

𝑚(𝑥)]𝑑Γ(𝑥)}                   (13) 

 



     The second derivatives of the deflection (U33,) of the fundamental solution multiply the 

terms related to the GNL effect in the BIE for the gradient of the deflection (eqn. 4). The 

introduction of the DRM also requires the BIE for the second derivative of the deflection, as 

explained to obtain eqn. (13). The BIE for the second derivative of the deflection with the 

kernel of the domain integral containing fm is given by: 

 

𝑐𝑢̂3,𝛾𝜃
𝑚 (𝑥′) + ∫[𝑛𝛼(𝑥)𝑀3𝛼𝛽,𝛾𝜃(𝑥

′, 𝑥)𝑢̂𝛽
𝑚(𝑥) + 𝑛𝛽(𝑥)𝑄3𝛽,𝛾𝜃(𝑥

′, 𝑥)𝑢̂3
𝑚(𝑥)

Γ

+⋯ 

…−𝑈3𝛽,𝛾𝜃(𝑥
′, 𝑥)𝑡̂𝛽

𝑚(𝑥) − 𝑈33,𝛾𝜃(𝑥
′, 𝑥)𝑡̂3

𝑚(𝑥)]𝑑Γ(𝑥)

= ∬ 𝑓𝑚(𝑋)𝑈33,𝛾𝜃(𝑥
′, 𝑋)𝑑Ω(𝑋)

Ω

     (14) 

 

     Eqn. (14) was written with kernels differentiated with respect to the field coordinates, the 

scalar c is equal to 1 in case of collocation points located inside the domain and 0.5 in case 

of points placed on smooth parts of the boundary. The continuity of the second derivative of 

the deflection at x` is required to apply eqn. (14) at points on the boundary. The BIE for the 

second derivative of the deflection using eqn. (14) to introduce the DRM is given by. 

 

𝑔𝑢3,𝛾(𝑥
′) = ∫{𝑛𝛼(𝑥)𝑀3𝛼𝛽,𝛾(𝑥

′, 𝑥)𝑢𝛽(𝑥) + 𝑛𝛽(𝑥)𝑄3𝛽,𝛾(𝑥
′, 𝑥)𝑢3(𝑥) +⋯

Γ

 

…−𝑈3𝛽,𝛾(𝑥
′, 𝑥)𝑡𝛽(𝑥) − 𝑈33,𝛾(𝑥

′, 𝑥)𝑡3(𝑥)}𝑑Γ(𝑥)

− ∫ 𝑛𝛼(𝑥)𝑁𝛼𝛽(𝑥)𝑢3,𝛽(𝑥)𝑈𝑖3,𝛾(𝑥
′, 𝑥)𝑑Γ(𝑥)

Γ

+⋯ 

…+ ∑ 𝛼𝜃
𝑚  {𝑐𝑢̂𝑖,𝛾𝜃

𝑚 (𝑥′) + ∫[𝑛𝛼(𝑥)𝑀𝑖𝛼𝛽,𝛾𝜃(𝑥
′, 𝑥)𝑢̂𝛽

𝑚(𝑥) + 𝑛𝛽(𝑥)𝑄𝑖𝛽,𝛾𝜃(𝑥
′, 𝑥)𝑢̂3

𝑚(𝑥)

Γ

+

𝑁+𝐿

𝑚=1

.. 

…−𝑈𝑖𝛽,𝛾𝜃(𝑥
′, 𝑥)𝑡̂𝛽

𝑚(𝑥) − 𝑈𝑖3,𝛾𝜃(𝑥
′, 𝑥)𝑡̂3

𝑚(𝑥)]𝑑Γ(𝑥)}                  (15) 

 

The scalar g in eqn. (15) has the same values explained to the scalar c in eqns. (12) and (14). 

 

4 NUMERICAL IMPLEMENTATION 

The discretization of the BIEs employed quadratic isoparametric boundary elements and the 

collocation points were always placed on the boundary. The same mapping function was used 

for conformal and non-conformal interpolations. The collocation points were placed at 

positions (-0.67 and 0.0), in the range ( 1, 1), in the case of continuous elements and at 

positions (-0.67, 0.0, +0.67) in the case of discontinuous elements, i.e. the collocation points 

were always shifted inside the boundary elements. The singularity subtraction [28] and the 

transformation of variable technique [29] were employed for the Cauchy and weak-type 

singularities, respectively, when integrations were performed on elements containing the 

collocation points. Hyper- and super-singular integrals in elements containing the collocation 

points were numerically evaluated using the computer code presented in [30]. The standard 

Gauss-Legendre scheme was employed for integrations on elements not containing the 

collocation points.  



     The DRM considered points distributed in the domain and on the boundary. The points 

on the boundary were placed at the positions of the collocation points. The first boundary 

integral on the left-hand side (LHS) of eqn. (13) is not related with the DRM, as well as the 

second boundary integral on the LHS of eqn. (15). The discretization of those boundary 

integrals assumed a constant value along each boundary element for the sum of products 

between the gradient of the deflection and the in-plane forces, which values were obtained at 

the central node. The values of derivatives of the deflection computed at the central node 

used by the DRM were also used in the computation of those boundary integrals. 

The eigenvalue analysis used the basic inverse iteration with the Rayleigh quotient [31] as 

employed in [23] and written next: 

 

𝐴𝑥(𝑘+1) = 𝐵𝑥𝑘                      (16) 

𝜆𝑘 =
(𝑥(𝑘+1), 𝑥𝑘)

(𝑥(𝑘+1), 𝑥(𝑘+1))
             (17) 

 

     The vector xk in eqns. (16) to (17) is related to values of the gradient of the deflection at 

the DRM points. The discretized forms of eqns. (13) and (15) were used instead of eqn. (16) 

as done in [23]. Starting with an eigenvector x1 with elements equal to 1.0, the values of the 

displacements and tractions at the boundary nodes are found with eqn. (13); these values are 

introduced in eqn. (15) to obtain the gradient of the deflection (elements of the eigenvector 

x2). The elements of  are recalculated at each iteration step according to values of the 

gradient of the deflection introduced in eqn. (5). After the computation of elements b, the 

solution of the system of equations given by eqn. (6) carries the values of 
m as explained 

in detail in [14}. The index  in elements of b and  requires eqns. (5) and (6) to be used 

twice and one set of  is obtained for each direction  of the plate. 

 

5 NUMERICAL EXAMPLES 

 

   

Figure 1 – Square plate containing a square hole at the center 

The perforated plate shown in Fig. 1 was studied in [12] where a correction was suggested 

for the buckling parameters presented in [32] for cases of large dimension holes. The results 

obtained in [23] for this problem were very close to those in [12], and were considered here 

to evaluate the application of the DRM. The buckling parameter k is a non-dimensional value 



related to the critical load of the plate (Ncr), the length of the plate side (a) and the flexural 

rigidity (D), which is obtained according to following expression: 

 

𝑘 =
𝑎2𝑁𝑐𝑟
𝜋2𝐷

                           (18) 

 

     The simply supported condition at all sides was adopted in the buckling problem such that 

opposite sides of the plates were uniformly compressed in one direction. The plates had a 

thickness to length ratio between 1/1000 and 1/5. The normalized square hole dimensions 

(d/a) were in the range 0.1 to 0.7. The Young’s modulus (E) and Poisson’s ratio () were 

206.9 GPa and 0.3, respectively. The value of the shear parameter 2 was 2/12. The 

comparison between values for the buckling parameter obtained with the DRM and those 

presented in [23], in which the GNL effect was introduced with domain integration using 

cells, are presented in Tables 1 to 5. 

 

Table 1– Critical loads for the perforated plate obtained with DRM 

 

Boundary 

Elements 

Domain 

Points 
d/a 

h/a = 0.001 

DRM [23] Diff. (%) 

480 1564 0.1 3.7975 3.7994 -0.05 

480 1500 0.2 3.4442 3.4494 -0.15 

480 1568 0.3 3.1854 3.1883 -0.09 

480 1536 0.4 3.0194 3.0297 -0.34 

480 1533 0.5 2.9066 2.9310 -0.84 

480 1548 0.6 2.8431 2.8664 -0.82 

1280 1632 0.7 2.8168* 2.8449 -1.00 

 

Table 2 – Critical loads for the perforated plate obtained with DRM 

 

Boundary 

Elements 

Domain 

Points 
d/a 

h/a = 0.01 

DRM [23] Diff. (%) 

480 1564 0.1 3.7909 3.7932 -0.06 

480 1500 0.2 3.4343 3.4412 -0.20 

480 1568 0.3 3.1723 3.1782 -0.18 

480 1536 0.4 3.0012 3.0153 -0.47 

480 1533 0.5 2.8879 2.9096 -0.75 

480 1548 0.6 2.8198 2.8352 -0.55 

480 1632 0.7 2.8131 2.7998 0.47 

 

  



Table 3 – Critical loads for the perforated plate obtained with DRM 

 

Boundary 

Elements 

Domain 

Points 
d/a 

h/a = 0.05 

DRM [23] Diff. (%) 

480 1564 0.1 3.7284 3.7313 -0.08 

480 1500 0.2 3.3659 3.3747 -0.26 

480 1568 0.3 3.0957 3.1034 -0.25 

480 1536 0.4 2.9028 2.9207 -0.62 

480 1533 0.5 2.7565 2.7820 -0.92 

480 1548 0.6 2.6412 2.6625 -0.81 

480 1632 0.7 2.5730 2.5629 0.39 

 

Table 4 – Critical loads for the perforated plate obtained with DRM 

 

Boundary 

Elements 

Domain 

Points 
d/a 

h/a = 0.10 

DRM [23] Diff. (%) 

480 1564 0.1 3.5780 3.5819 -0.11 

480 1500 0.2 3.2222 3.2344 -0.38 

480 1568 0.3 2.9471 2.9577 -0.36 

480 1536 0.4 2.7247 2.7495 -0.91 

480 1533 0.5 2.5346 2.5670 -1.28 

480 1548 0.6 2.3614 2.3884 -1.14 

480 1632 0.7 2.2611 2.2716 -0.47 

 

Table 5 – Critical loads for the perforated plate obtained with DRM 

 

Boundary 

Elements 

Domain 

Points 
d/a 

h/a = 0.20 

DRM [23] Diff. (%) 

480 1564 0.1 3.0798 3.1043 -0.79 

480 1500 0.2 2.7555 2.8052 -1.81 

480 1568 0.3 2.4799 2.5138 -1.37 

480 1536 0.4 2.2025 2.2235 -0.95 

1280 1533 0.5 1.6960* 1.7185 -1.33 

1280 1548 0.6 1.2087* 1.1755 2.75 

1280 1632 0.7 0.7813* 0.7263 7.04 

 

  



6 CONCLUSIONS 

The results obtained with the application of the DRM in the formulation presented in [23] 

were close to the solution with the domain integration using cells. Most solutions employed 

480 quadratic boundary elements (384 elements on the external boundary and 96 elements 

along the boundary of the hole) while a few cases required 1280 quadratic boundary elements 

(1024 elements on the external boundary and 256 elements along the boundary of the hole). 

A simple radial basis function (1+r) for fm was used and no shape parameter was adopted. 

No additional tools were employed to improve the convergence or the integrations over the 

boundary elements in the numerical implementation of the DRM. The authors believe this 

DRM formulation for buckling analysis presented accurate results and a consistent behavior 

with reference to that shown in [23].  

 

 
Figure 2 – The effect of the hole dimension on the value of the buckling parameter 

 

The differences in the variation of the buckling parameter according to the thickness to plate 

side ratio shown in Figure 2 could only be identified when the effect of shear deformation 

was included in the bending model. The next step in the study of the buckling of perforated 

plates will be the analysis of circular holes in square and rectangular perforated plates, which 

will be presented soon. 
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