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Spaceborne Synthetic Aperture Radar (SAR) sensors obtain regular and frequent radar images from which
ground motion can be precisely detected using a variety of different techniques. The ability to measure slope
displacements remotely over large regions can have many uses, although the limitations of the most common-
place technique, differential InSAR (D-InSAR), must be considered prior to interpreting the final results. One
such limitation is the assumption that different rates of movement over a given distance cannot exceed a thresh-
old value, dependent upon the pixel spacing of the SAR images and the radar wavelength. Characteristic features
of landslides (i.e. the sharp boundary between stable/active ground and the range of temporally-variable veloc-
ities) can exhibit high spatial displacement gradients, breaking a fundamental assumption for reliable D-InSAR
analysis. Areas of low coherence are also known to hinder the exploitation of InSAR data. This study assesses
the capability of TerraSAR-X Spotlight, TerraSAR-X Stripmap and Envisat Stripmap images for monitoring the
slow-moving Shuping landslide in the densely vegetated Three Gorges region, China. In this case study, the epi-
sodic nature of movement is shown to exceed the measurable limit for regular D-InSAR analysis even for the
highest resolution 11-day TSX Spotlight interferograms. A Sub-Pixel Offset Time-series technique applied to cor-
ner reflectors (SPOT-CR) using only the SAR amplitude information is applied as a robust method of resolving
time-varying displacements, with verifiable offset measurements presented from TSX Spotlight and TSX
Stripmap imagery. Care should be exercisedwhenmeasuringpotentially episodic landslidemovements in dense-
ly vegetated areas such as the Three Gorges region and corner reflectors are shown to be highly useful for SPOT
techniques even when the assumptions for valid D-InSAR analysis are broken. Finally the capability to derive
two-dimensional movements from sub-pixel offsets (in range and along-track directions) can be used to derive
estimates of the vertical and northwards movements to help infer the landslide failure mechanism.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Satellite radar imagery has been recognised as a powerful tool formea-
suring surface motions over large regions and offers the capability to re-
motely monitor unstable slopes (Rott, Scheuchl, Siegel, & Grasemann,
1999; Tofani, Segoni, Catani, & Casagli, 2010). In the best cases of landslide
management, Early Warning Systems (EWS) have been developed and
employed tominimise harmand loss. The nature of EWS and the landslide
risk is strongly dependent upon landslide type, which is often classified by
the initial mechanism of motion and the associated velocity (Cruden &
Varnes, 1996). Whilst rapid landslides are the most dangerous, deep and
slow landslides are capable of destroying buildings and infrastructure
Singleton),

. This is an open access article under
particularly on reactivated ancient landslide deposits (Sassa, Picarelli, &
Yueping, 2009).

A well-developed EWS should include various elements such as
understanding the local knowledge of risks, communicating timely
and reliable warnings, and building local capacity to respond to
warnings (UN-ISDR, 2004). However, one other technical component
involves monitoring the hazard(s) which requires: (i) detection;
(ii) rapid mapping; (iii) characterisation; and, (iv) long-term monitor-
ing of landslides (Tofani et al., 2010). The generic benefits of using
remote sensing data are well known, and a sub-report from the
European SAFELAND Project (Stumpf, Kerle, & Malet, 2010) compares
the merits of numerous remote sensing techniques for monitoring dif-
ferent types of landslides. Airborne LiDAR surveys can provide useful
data in terms of spatial resolution, precision and the capacity tomeasure
a variety of displacement rates, although the cost and logistics required
for regular repeat acquisitions are barriers for its routine use. Synthetic
Aperture Radar (SAR) images from the most recent generation of SAR
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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satellite sensors (e.g. TerraSAR-X and COSMO SkyMed) can acquire reg-
ular data (up to every 4 days), over regional areas (e.g. 10–1000 km2),
at a high resolution (up to 1 m ground resolution) and in the case
of slow-moving landslides (i.e. several metres per year; Cruden &
Varnes, 1996), can meet the four requirements of landslide moni-
toring mentioned above. Whilst the repeat interval may not be
short enough to provide timely warnings to vulnerable popula-
tions, it is possible to detect individual landslide accelerations
over large regions and then direct monitoring equipment to areas
at risk. The ability to make numerous point measurements of dis-
placement over the landslide body can not only identify and map
the actively deforming slopes (significantly reducing uncertainty
in landslide inventory maps; e.g. Cascini, Fornaro, & Peduto,
2010), but also help to characterise the landslide mechanism
(Tofani, Raspini, Catani, & Casagli, 2013). Further interpretations
of landslide processes can then be inferred when comparing a
time-series of displacement with potential triggering factors such
as rainfall, seismicity and site-specific factors such as fluctuating
reservoir water-levels (e.g. Tolomei et al., 2013). Finally, historic
landslide movements can be measured from SAR satellite imagery
using archived data scenes.

Whilst differential InSAR (D-InSAR) analysis is capable of mapping
and measuring landslide movements, a major limitation is dense vege-
tation which can lead to rapid decorrelation between SAR acquisitions
even for the highest resolution TSX Spotlight imagemodewith a revisit
time of 11-days. Episodic and spatially variable landslide movements
can also lead to decorrelation between SAR acquisitions when the spa-
tial displacement gradient is exceeded. Determining the cause of
decorrelation is often difficult and whilst time-series InSAR techniques
have been developed to identify slowly decorrelating pixels in vegetat-
ed areas (e.g. Hooper, 2008; Hooper, Segall, & Zebker, 2007), resolving
episodic and time-varying displacements remains a difficult task.

In this paper, Sub-Pixel Offset Time-series techniques applied to
corner reflectors (SPOT-CR) using frequently acquired SAR images
from a variety of sensors are quantitatively evaluated and com-
pared for landslide monitoring. The measured landslide displace-
ments are then used to help judge the suitability of using more
precise D-InSAR time-series techniques in situations where as-
sumptions of conventional D-InSAR analyses can be broken by the
characteristic features of landslides (i.e. the sharp boundary between
stable/active ground, the non-linear nature of the displacements and
the range of temporally-variable velocities). The benefits and limita-
tions of SPOT-CR techniques are assessed for studying landslides on
densely vegetated slopes and their ability to monitor spatially large 2-
dimensional movements using the installed corner reflectors is shown
to infer a possible failure mechanism of the Shuping landslide within
the Three Gorges region, China.

2. Investigating landslides using SAR observations

D-InSAR has been employed to monitor the slow motion of many
landslides and compared to (typically sparse) GPS point measurements
(e.g. Akbarimehr, Motagh, & Haghshenas-Haghighi, 2013; Wen-Yen,
Chih-Tien, Chih-Yuan, & Jyun-Ru, 2012), D-InSAR techniques are espe-
cially useful for providing spatially continuous coverage of surface dis-
placement which can help define the boundaries of active landslides
(Yin, Zheng, Liu, Zhang, & Li, 2010). Rott et al. (1999) used D-InSAR to
examine a slow moving landslide (up to 4 cm/yr) in the Austrian Alps
highlighting the inter-annual variability of displacements, and the limi-
tations of D-InSAR techniques for landslide monitoring were proposed
for the first time. Over the last decade, the number of InSAR applications
to landslide studies has grown significantly following initial studies (e.g.
Berardino et al., 2003; Fruneau, Achache, & Delacourt, 1996; Strozzi
et al., 2005), with comprehensive overviews of interferometric SAR
(InSAR) techniques for landslide studies presented by Colesanti and
Wasowski (2006) and Rott and Nagler (2006) for sensors such as
Envisat/ASAR and RADARSAT. However, it should be noted these re-
views pre-date the launch of the most recent commercial SAR sensors.
Rott (2009) provides a slightly updated summary with reference to
the TerraSAR-X and COSMO SkyMed satellites.

Despite the advantages of D-InSAR methods these continue to have
limitations that should always be considered, such as geometric
decorrelation, temporal decorrelation, atmospheric artefacts, scale
constraints, a limit on the spatial displacement gradient, geometric dis-
tortions and a 1-dimensional Line-of-Sight (LOS) measurement sensi-
tivity (Colesanti & Wasowski, 2006) and assumptions of linearity in
the displacement process. A range of techniques have been developed
to help minimise some of these effects (e.g. time-series analysis to esti-
mate various phase components; Berardino, Fornaro, Lanari, & Sansosti,
2002; Ferretti, Prati, & Rocca, 2001, using external data to reduce atmo-
spheric path delays; Foster et al., 2013; Li, Fielding, Cross, & Muller,
2006; Li, Muller, Cross, & Fielding, 2005; Onn & Zebker, 2006), although
fundamental theoretical constraints still exist. It has been suggested
that the inherent limitations of SAR data, coupled with the complexity
of landslides, may be insufficiently appreciated which results in the
misrepresentation of landslide measurements (Peduto, Cascini, &
Fornaro, 2010). Consequently, end-users can lack confidence in these
remotely-sensed results unless verified with ground data (thereby
negating some of the benefits of using remotely collected data).

To illustrate a potential problemwith D-InSAR analysis, consider the
loss of coherence which often occurs between two time-adjacent SAR
acquisitions in a densely vegetated region. This might be wrongly
interpreted to result from temporal decorrelation when the real reason
was a landslidemovement exceeding the spatial displacement gradient.
Subsequently, any D-InSAR time-series technique spanning this fast
event would erroneously underestimate the landslide displacement.
Such a scenario is shown to occur in the Three Gorges and motivates
this research to find a complimentary technique to extract verifiable
landslide measurements from SAR images.

A range offset map from SAR pixel offset methods contains the same
information as a differential interferogram (Yun, Zebker, Segall, Hooper,
& Poland, 2007) and being less restricted by the assumption of a low
spatial displacement gradient, provides a useful comparison with
InSAR results. Past studies using SAR pixel offset methods have been
dominated by co-seismic and glacial applications, due to the wide-
spread decorrelation in conventional interferograms from high defor-
mation gradients across ruptured faults or rapidly changing ice
surfaces. As such, accurate fault traces have been revealed using pixel
offset techniques (e.g. Funning, Parsons, Wright, Jackson, & Fielding,
2005; Jónsson et al., 2002; Li, Elliott, et al., 2011; Michel, Avouac, &
Taboury, 1999) along with the capability to remotely measure glacier/
rock glacier flow (e.g. Haug, Kääb, & Skvarca, 2010; Quincey et al.,
2005; Scambos, Dutkiewicz, Wilson, & Bindschadler, 1992).

To date, only a small number of studies have used pixel offset
techniques for monitoring slope movements, the majority using
optical imagery from airborne and spaceborne platforms
(Debella-Gilo & Kääb, 2011; Delacourt, Allemand, Casson, &
Vadon, 2004; Kääb, 2002; Leprince, Berthier, Ayoub, Delacourt, &
Avouac, 2008; Wangensteen et al., 2006; Yamaguchi, Tanaka,
Odajima, Kamai, & Tsuchida, 2003). The sensitivities of normalised
cross-correlation were considered by Delacourt et al. (2004) and
Debella-Gilo and Kääb (2011) which include: (i) noise in the im-
ages; (ii) rotation/shearing between the images to be correlated;
and (iii) the relationship between the pixel size and the precision
of measurements. However, optical images can only be used to as-
sess purely horizontal movements (north–south and east–west
directions) without consideration of the vertical component. A
sub-pixel offset technique was first applied to (TerraSAR-X Spot-
light) SAR data by Li, Muller, et al. (2011) with promising results
for monitoring the Shuping landslide, although only 4 sets of mea-
surements were shown in the paper (corresponding to 4 offset
pairs). This study attempts to recover landslide movements from
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TerraSAR-X data with a temporal resolution of up to every 11 days
over a time period of 15 months.

3. Landslides in the Three Gorges region

Landslides, mainly deep and slow-moving, are the most frequent
and widespread geohazard in the Three Gorges region, predominantly
caused by high slope gradients, lithological susceptibilities, heavy sum-
mer rainfall and human activities (Liu et al., 2004). Over the last decade,
the construction of the Three Gorges project (TGP) has created a 600 km
long reservoirwith a bi-annuallyfluctuatingwater level (range≈ 25m)
which has been shown to reactivate ancient landslides (Wang, Zhang,
et al., 2008). The Three Gorges were formed by incision along narrow
fault zones of massive limestonemountains interbedded with siltstone,
shale andmudstone (Wang, Harvey, et al., 2008), although between the
gorges the lithologies are much less resistant. Dominated byweathered
mudstones, these inter-gorge areas favour river bank erosion, terrain
dissection and the development of slow-moving slope failures (Liu
et al., 2004).

This study focuses on the Shuping landslide located towards the
eastern end of the Three Gorges (Fig. 1), the toe of which is connected
to the Yangtze River. The Shuping landslide was selected as a case
study and regular SAR data were commissioned in three different
image modes over the landslide over the same time period. These data
allow robust comparisons between data modes and the application of
D-InSAR or sub-pixel offset techniques. The landslide is densely vegetat-
ed with orange trees, representative of the majority of hillslopes in the
Three Gorges region, which makes the application of D-InSAR tech-
niques very difficult. The north facing landslide orientation also makes
it insensitive to LOS measurements. Independent of this study, corner
reflectors have been installed over the landslide which aid the analysis
of SAR data.

Previous studies that havemonitored the Shuping landslide using
D-InSAR techniques have yielded highly varied results. Fu, Guo, Tian,
and Guo (2010) used 12 corner reflectors installed over the landslide
to obtain a single measurement of displacement between September
2005 and March 2006 using Envisat data. Good agreement with GPS
measurements was reported, although this result did not cover the
months of April–June where the fastest movements are normally ob-
served (and when the assumptions for reliable D-InSAR analysis are
most likely to be broken).

Extensometer measurements over the time period of September
2005 and June 2007 show minimal displacements until around May–
Fig. 1. Elevation of the eastern Three Gorges (TG) region. The star indicates the site of the Shu
coverage is shown by the solid box and TSX Stripmap data coverage is given by the dashed bo
June 2007 when there is a rapid increase of ~0.4 m in the accumulated
movements up to June 2007 (Wang et al., 2013). Whilst recognising
the different vectors of measurement sensitivity, this contradicts the
results of Xia (2010)whoused the same12 corner reflectors to calculate
a time-series of displacement over the same time period, presenting
very linear rates of downwards movement for all points.

This landslide has been divided into eastern and western parts with
the eastern block (also known as Block 1) shown to be most active
(Wang, Zhang, et al., 2008). The motion of Block 1 has been recorded
primarily using extensometers from 2004 until 2010 (Wang, Zhang,
et al., 2008; Wang et al., 2013) and these results display high spatial
variability along with a stepped behaviour in time. Particularly using
the longest record of movement, from August 2004 until May 2010,
the periods of greatest movement have been suggested to relate to the
drawdown of the Three Gorges Reservoir (Wang, Zhang, et al., 2008).
Liao, Tang, Wang, Balz, and Zhang (2012) used Persistent Scatterer
(PS) interferometry with TerraSAR-X Stripmap data to show move-
ments up and down in the LOS direction in the order of ±5 mm be-
tween February 2008 and January 2010 which is unusual given that
these measurements are an order of magnitude lower than the exten-
someter data. The highly non-linear velocity trend revealed by in-situ
measurements and the disparities between previous D-InSAR studies
prompts further analysis of the Shuping landslide using SAR data.

4. Methods

4.1. Data

The availability of 36 commissioned TerraSAR-X (TSX) Spotlight SAR
images, 23 TSX Stripmap images as well as 17 Envisat Stripmap images
all covering the same Shuping landslide (and significantly overlapping
in time; see Fig. 1 and Supplementary material Table S1), also enables
comparison of D-InSAR and SPOT-CR techniques which both aim to
remotely monitor the landslide without the use of ground data. All re-
sults presented below were produced using the SARscape® software
package (SARMAP, 2012), which includes an interferometry module
capable of processing the above image modes along with an amplitude
tracking tool for calculating sub-pixel offsets.

4.2. Maximum spatial displacement gradients and coherence analysis

One major limitation of D-InSAR techniques is their inability to
measure high spatial gradients of rapid deformation. To observe
ping landslide, ca. 45 km upstream of the Three Gorges Project (TGP). TSX Spotlight data
x. Envisat data covers the whole map.
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interferometric fringes without ambiguity, the maximum displacement
between two neighbouring pixels in a wrapped interferogrammust not
exceed λ / 2 (Massonnet & Feigl, 1998), with wavelengths (λ) typically
in the order of ~30–300 mm. However, from the viewpoint of phase
unwrapping, the maximum displacement gradient should be less than
0.5 fringes per pixel (Jiang, Li, Ding, Zhu & Feng, 2011; Spagnolini,
1995) making the limit of displacement between neighbouring pixels
λ / 4. As such, D-InSAR hasmost commonly been applied to deformation
phenomenameasureable within these limits, such as very slowmoving
landslides, city subsidence, volcanoes and far-field earthquake deforma-
tion patterns. This theoretical limit does not consider noise in the radar
observations caused by decorrelation effects (Zebker, Rosen, & Hensley,
1997) and hence reduces themaximum realistic measureable displace-
ment gradient (Baran, Stewart, & Claessens, 2005; Jiang et al., 2011). It is
therefore practically impossible to derivemeasurements of fast-moving
phenomena with sharp boundaries between stable and moving areas
such as glaciers, co-seismic deformation near faults and landslidesmov-
ing beyond a threshold limit. The capability of D-InSAR tomeasure such
movements is primarily determined by the pixel spacing and thewave-
length of the SAR sensor.

The limits on the spatial displacement gradient are the theoretical
maxima when the radar observations are unaffected by noise.
Decorrelation between SAR acquisitions can be a major problem in the
use of D-InSAR techniques particularly in densely vegetated regions
(Ahmed, Siqueira, Hensley, Chapman, & Bergen, 2011) such as the
Three Gorges. To assess the decorrelation effects, interferometric coher-
ence was analysed for all three image modes. Differential interfero-
grams were generated with a multi-look factor of 2 applied in both
range and azimuth, and the topographic phase component was re-
moved using the ASTER GDEM v2, a product of METI and NASA, with a
RMSE of 12.1 m compared to 121 GPS benchmarks in the Three Gorges
area (Li et al., 2012). To measure the interferometric coherence, a
Fig. 2. (a) Coherence of temporally-adjacent SAR images showing highest values between Nove
ograms plotted against perpendicular baseline showing no significant patterns. (c) Coherenc
Spotlight data (ii) TSX Stripmap data (iii) Envisat data.
sample estimate using a 9 × 9 window was employed for an area of
5 km2 adjacent to but excluding the landslide body, from which a
mean coherence could be obtained. Seasonal patterns were assessed
by plotting the mean coherence for every 11-day (TSX) or 35-day
(Envisat) pair over time. Effects of the perpendicular baselines were
considered by plotting the mean coherence for the same pairs with re-
spect to the baseline and to assess the temporal decorrelation, the
mean coherence for all pairs with a baseline less than 25 m (TSX data)
or 50m (Envisat data) was plotted with respect to the time interval be-
tween image acquisitions (Fig. 2). For the generation of the final inter-
ferograms, a spectral shift filter accounting for the difference in
incidence angles between master and slave images (Gatelli et al.,
1994) was applied, along with a Doppler filter to remove the non-
overlapping azimuth spectra between the master and slave images.

4.3. Sub-pixel offset techniques

Although less precise than conventional InSARmethods, pixel offset
techniques using SAR amplitude images can overcome the D-InSAR lim-
itation on the spatial displacement gradient and are far more robust
(not requiring phase unwrapping, not strongly limited to regions of
high coherence and significantly less affected by atmospheric water
vapour due to an independence on the use of phase values). Additional-
ly, pixel offset data can provide complimentary information since con-
ventional interferograms are only sensitive to displacements in the
sensor's LOS direction (Michel et al., 1999). Using just two images ac-
quired at different times, displacement vectors can be measured in the
sensor look direction (range) as well as the satellite flight (along-
track, or ‘azimuth’) direction. The 2-dimensional measurements are
obtained bymeasuring the row and columnoffsets between the two ac-
quisitions at defined intervals in range/azimuth in order to generate
sufficient coverage of offset measurements (Pathier et al., 2006).
mber and February each year. (b) Coherence of 11-day (TSX) or 35-day (Envisat) interfer-
e of interferograms with respect to time interval showing a decline by ~30 days. (i) TSX

image of Fig.�2
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SPOT-CR techniques are capable of measuring more spatially vari-
able movements than D-InSAR although the results from pixel offset
methods are highly dependent upon the various processing parameters
(notably the cross-correlation window size and oversampling factor)
which should be carefully tunedwith regard to the scale of the deforma-
tion feature(s) and the pixel size of the SAR images (Bechor & Zebker,
2006; Yun et al., 2007). Consequently, the size of the moving window
should be large enough to maximise the signal-to-noise ratio whilst
minimising the spatial velocity gradient. The search area size must
also be large enough to include the fastest moving distance whilst
minimising the computational cost of the process (Debella-Gilo &
Kääb, 2011). Following an approach outlined by Yun et al. (2007), the
cumulative distribution for an area of 2 km2 (adjacent to the landslide
site and assumed to be stable) was analysed with a combination of dif-
ferent parameters. Visual inspection from these tests provides a heuris-
tic way of tuning the moving window size and the oversampling
parameters, considering the data characteristics and the phenomenon
under study. However, contrary to Yun et al. (2007), no piecewise linear
fit was used to exclude any offset value since valid landslide offsets
would be concentrated in one tail of the distribution when considering
the stable ground also within the offset map.

Prior to generating the sub-pixel offset measurements, SAR images
were aligned using a simple translational shift based on the orbital
data and the digital elevation model. A standard normalised cross-
correlation procedure based on the optimal window size and over-
sampling factor was then applied without any filtering in any part
of the processing, and the final offset values used to generate the
time-series curves were taken as the mean from a small window of 10
× 10 pixels at various locations around the landslide. The samewindow
position in rows/columns was used to extract measurements from
every subsequent slave image for the time-series.

5. Results and analyses

5.1. Maximum spatial displacement gradients and coherence analysis

For the three different image modes employed in this study, the
spatial displacement gradients were considered. Table 1 displays the
displacement gradients for an interferogram produced at the original
SLC resolution and when considering a small multi-look factor of two.
The pixel size controls the maximum measurable displacement and,
even for the highest resolution TSX Spotlight imagery, it would not be
possible tomeasure a difference in the displacement between image ac-
quisitions of more than 0.12 m (or 0.06 m after multi-looking) over a
distance of 10 m. Despite the slightly longer wavelength of Envisat
data, the greater pixel size is a significant disadvantage for measuring
spatially variable movements over short distances.

The results of the coherence analysis are presented in Fig. 2. The co-
herence between temporally-adjacent SAR images over the time period
of available acquisitions for all imagemodes (Fig. 2: left hand column) is
low throughout the 1.5 years, although a consistent seasonal pattern is
shown for the TSX imagery whereby coherence increases between
November and February each year. Given the sensitivity of radar back-
scatter to the dielectric effects of changing the surface moisture content
Table 1
isplacement gradients (m/m) for original resolution interferograms and for
interferograms with a small multi-look factor of 2. The data used in these calculations
are shown in the Supplementarymaterial (Table S1).Multiply these values by the distance
between two points to calculate the maximum detectable difference in the rates of dis-
placement.

Sensor/image mode Displacement gradient
(DG)

DG after multi-looking
(using a small factor of 2)

TerraSAR-X/Spotlight 0.01177 0.00589
TerraSAR-X/Stripmap 0.00394 0.00197
Envisat ASAR/Stripmap 0.00070 0.00035
(Smith, 2002), the seasonal coherence pattern could be attributable to
the heavy summer rainfall after comparing the coherence trends with
the mean monthly rainfall values for the winter (~19 mm/month for
November–February) and the rest of the year (~100 mm/month for
March–October). The seasonality in coherence and rainfall may also be
interrelatedwith the dense orange trees in the area since the canopy re-
flectance can change significantly over the year even if the orange trees
are evergreen (Dzikiti et al., 2011).

Despite its shorter wavelength, the TSX data display higher coher-
ence than the Envisat data due to its higher resolution and shorter re-
peat interval. Coherence for each 11-day (TSX) or 35-day (Envisat)
interferogramwith respect to the perpendicular baseline (Fig. 2:middle
column) shows no definitive trend over the relatively short range of
baselines (up to 400 m), and the coherence values N 0.2 are from inter-
ferograms created in the dry winter period. The right hand column of
Fig. 2 shows coherence for all interferograms with a baseline of less
than 25 m (TSX) or 50 m (Envisat) in relation to the time-interval be-
tween acquisitions. A relatively fast fall in coherence is seen with the
TSX data until the interval exceeds ~33 days where it remains at a con-
stant non-zero level. This constant value is considered to represent the
natural bias in estimating the coherence correlation magnitude (Touzi,
Lopes, Bruniquel, & Vachon, 1999). The almost complete loss of coher-
ence beyond 33 days also explains why no significant seasonal coher-
ence pattern is observed from the Envisat data. The low coherence
throughout the time period suggests that the maximum measurable
spatial displacement gradient is below the theoretical values presented
in Table 1.

5.2. D-InSAR analysis

To remotely monitor landslides with high precision, the optimal ap-
proach would use high coherence interferograms with minimal geomet-
ric distortionswhich cover thewhole time period. Given that the shortest
time intervals gave the best coherence, every 11-day TSX Spotlight pair
was processed using a Goldstein filter (Goldstein & Werner, 1998) prior
to geocoding. Fig. 3 shows three of these (wrapped) interferograms for
adjacent 11-day intervals. The landslide boundary is indicated by the
sharp colour changes as shown by the black line, and this boundary is
consistent over the 33-day period (3 × 11-day interferograms).

Assuming a purely translational failure mechanism parallel to the
slope surface, sliding velocities can be projected into the downslope
sliding direction (e.g. Hilley, Bürgmann, Ferretti, Novali, & Rocca,
2004) although using a scaling factor impacts on the precision of mea-
surements (Colesanti &Wasowski, 2006). The SAR geometry is typically
incapable of measuring translational movements on ascending or de-
scending orbits for slope aspects close to 0° and 180° (Cascini et al.,
2010) and for Envisat ascending data a scaling factor threshold of 3.3
was used to select suitable ‘projectable’ PS points (Cascini et al., 2013).
Projection of the TSX Spotlight D-InSAR data in Fig. 3 was not undertak-
en primarily due to the high scaling factor (9.8 for the north-facing
Shuping landslide).

In Fig. 3 an increase in the fringe rate can also be observed from left
to right, which relates to an increase in the landslide movement over
each interval. However, Fig. 3b and c shows a loss of coherence particu-
larly towards the head of the landslide that is most likely due to the dis-
placements exceeding the maximummeasurable limit of 0.00589 m/m
(see Table 1). The sole use of these TSX Spotlight images (or lower res-
olution X-band or C-band SAR images) for any D-InSAR time-series
analysis would subsequently underestimate landslide displacement
and a technique is required to verify whether this coherence is lost
due to the fast landslide movement or other factors.

5.3. Sub-pixel offset observations

Over a completely stable area, the offset value should be randomly
distributed around amean of zero, althoughwith small movingwindow



Fig. 3.Wrapped, 11-day TSX Spotlight interferograms covering the time periods: (a) 09/05/09–20/05/09; (b) 20/05/09–31/05/09; and (c) 31/05/09–11/06/09. Colour cycles represent
modulo-2π phase changes and therefore each cycle represents ~0.016mof displacement in the radar Line-of-Sight (LOS) direction. Assuming themain landslidemovement is northwards
(downslope towards the river), the LOS direction is perpendicular to the landslide direction and must be most sensitive to vertical surface changes, shown by the unit vector defining
the look direction of the TSX Spotlight imagery u = [dE dN dU] = [−0.68 0.12 −0.72] (positive up, left-handed coordinate system). This shows only around 12% of possible north–
south displacement is recorded by TSX Spotlight D-InSAR data. The white arrow shows the flow direction of the Yangtze River.
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sizes and no oversampling, the distribution of values is determined by
the size of the moving window (Fig. 4) due to spurious correlation. As
the oversampling factor increases for the small window sizes, the
range of possible offset values increases to eradicate the step-like be-
haviour of the cumulative distribution, but the linear trend shows no
concentration around zero. For a window size of 32 × 32 pixels, ~75%
of the offset values are between ±0.5 pixel units and the oversampling
factor was increased until no observable improvement is seen (an
oversampling factor of 16 is identical to an oversampling factor of 24).
As the window size and oversampling factors are increased, the results
improve but the processing time should also be considered. For exam-
ple, doubling the window size from 32 × 32 pixels to 64 × 64 pixels in-
creases the processing time for each offset pair from 01:41 h to nearly
05:37 h (detailed processing timings shown in Supplementary material
Table S2). Given the associated times for generating one offsetmeasure-
ment using different parameters, the final selection of a 32 × 32 pixel
window size and an oversampling factor of 16 was deemed preferable.

Following the processing of the first offset pair, the correlation
values associated with each offset measurement (Fig. 5) show that
Fig. 4.Cumulative percentage of TSX Spotlight sub-pixel offset values in the azimuth direct
different pixel-oversampling factors and also different cross-correlation window sizes: (
assessed (Supplementary material Fig. S1). The final parameter set used a window size of
zero. A larger window size increases precision but the processing time is significantly long
above which no improvement is observed as shown by the inset of Fig. 4c.
points with very high correlations (N0.9) are distributed across the
landslide in positions which correspond to the corner reflector loca-
tions. Given the significant contrast in the radar backscatter between
the corner reflectors and the natural terrain, these points result in a
very high cross correlation value when they are within the total area
covered by the moving window used in the calculation. Following the
numbering scheme displayed on the right of Fig. 5, it is clear that most
are within the landslide boundary, although a number of points are sit-
uated outside the landslide on ground that is assumed to be stable
which can then help identify the potential noise level of the offset
measurements.

5.4. Results of Sub-Pixel Offset Time-series techniques applied to corner
reflectors (SPOT-CR)

A final step in the processing strategy considered how to generate
a time-series of measurements. The two simplest approaches are to:
(i) use the same master image with subsequent slave images; and,
(ii) process every 11-day offset pair to generate a cumulative time-
ion over a stable area of ground (1.75 km2) adjacent to the landslide. This is plotted for
a) 4 × 4, (b) 8 × 8, (c) 32 × 32, and (d) 64 × 64. A window size of 16 × 16 was also
32 × 32 since this results in N80% of the area being characterised with values around
er (see Supplementary material Table S2). An oversampling factor of 16 was chosen,
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Fig. 5. (a) The value of peak correlation used for the TSX Spotlight offset measurements (11-day pair, 21st Feb–4th Mar 2009, showing the minimum temporal decorrelation). The high
correlations (thewhite areas) are caused by a high-contrast feature (mostly corner reflectors) within the cross-correlation window. The same features are observed for the TSX Stripmap
offset measurements. (b) The numbering of corner reflectors used to extract time-series of displacement in Fig. 7(a–d), overlain on an interferogram showing the landslide
boundary (11-day pair, 9thMay–20thMay 2009). Point 1 is outside the landslide and used as the reference for all other points. Points 2–6 are also outside the landslide boundary. Points
7–11 ascend up the east part of the landslide. Points 12–17 ascend up the west part of the landslide. Point 3 was excluded from analysis after results suggested it had unnaturally shifted
(see Supplementary material Fig. S4).
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series of displacement. The first of these possibilities is preferred since
the temporal decorrelation from the corner reflector points is believed
to be very small, and this strategy ensures that errors in each offsetmea-
surement is independent from the results of previous image pairs. For
example using time-adjacent pairs, the first measurement would be
the result of just one offset pair whereas the last measurement would
be calculated as the sum of all previous offset measurements. An alter-
native to both the above strategies is to create a small-baseline (SBAS)
network of offset pairs, similar to that proposed by Casu, Manconi,
Pepe, and Lanari (2011). Using Envisat data, Casu et al. (2011)
attempted to reduce the perpendicular baselines of the offset pairs
which influenced the amount of reliable measurements generated.
When considering the TSX data used here, no significant dependence
upon the perpendicular baseline is observed (Fig. 6) most likely due to
the consistently short perpendicular baseline values which never ex-
ceed 300 m. Additionally, no significant decay in the amount of reliable
pixels is observed over time and so the benefit of inverting a SBAS net-
work of offsetmaps to generate a time-series of displacement is limited.
The simplest approach ((i) above) of using one constant master image
for all the offset pairs therefore meets the requirements of this
investigation.

The offset time-series graphs from TSX Spotlight and Stripmap
data (Fig. 7) show a significant step in landslide movement in
both the range and azimuth directions towards the end of May
and the start of June. Movements of more than 0.1 m recorded
Fig. 6. Percentage of pixels with a correlation above an arbitrary value of 0.25with respect to (a)
is shown for both the TSX Spotlight offsets (blue) and TSX Stripmap offsets (red). No obvious d
pattern shown by Envisat data in Casu et al. (2011), most likely due to the far smaller range in
towards the head of the landslide over an 11-day period further ex-
plain the loss of coherence from the interferograms presented in
Fig. 3. Additionally, considering the curves related to the points
outside the landslide boundary, it is noted that the noise in the
azimuth direction measurements exceeds that in the range direc-
tion, a result that is assumed to be caused by the larger azimuth
pixel spacing. Additionally, the variability in subsequent offset
values from the Stripmap data is greater than the Spotlight data
which is another likely consequence of the larger pixel spacing.

Considering the topographical locationof the corner reflectors, a strong
association is found between elevation and the range displacement. Dis-
placement in the LOS (which includes a vertical component ofmovement)
is up to ten times greater towards the head of the landslidewhichmay re-
flect the failure mechanism. No such topographic dependence is shown in
the azimuth offset results. These patterns in both range and azimuth are
very consistent between the Spotlight and Stripmap data and given the in-
dependence of the datasets, the duplicate measurements over the same
time period validate the results without the requirement for ground
data. Confidence in the SPOT-CR results is boostedby aqualitative compar-
ison to extensometer data over the same time period (Wang et al., 2013).
Themaximum step-like displacement of ~0.5moccurred inMay 2009 be-
fore stabilising for the remainder of the year. Despite this extensometer
measurement being taken at the eastern boundary of the landslide, the
magnitude and timing ofmovements recordedby the extensometer close-
ly follow the results presented here. Additionally, the magnitude and
the time interval betweenmaster and slave image and (b) the perpendicular baseline. This
eterioration is seenwith respect to increasing perpendicular baselines which contrasts the
perpendicular baselines of the TSX data.

image of Fig.�5
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Fig. 7.Offset displacement of the corner reflectors. (a–b) Range and azimuth offsetsmeasured fromTSX Spotlight data. (c–d) Range and azimuth offsetsmeasured fromTSX Stripmapdata.
The positive scale is away from the sensor in range dimension and the reverse along-track direction (i.e. predominantly northwards) in azimuth dimension.
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linearity of repeated GPSmeasurements closely follow the range offset re-
sults for the GPS survey period August 2009–April 2010 (Liao, Zhang, &
Balz, 2013).

5.5. Accuracy assessment of SPOT-CR results

An assessment of the offset errors is undertaken using two indepen-
dent offset pairs significantly overlapping in time. The offsetsweremea-
sured between the first and penultimate available image, and compared
to offsets between the second and last image (~9 months for TSX Spot-
light and ~5 months for TSX Stripmap data). Since using these data to
assess errors assumes that the displacements in these two time periods
are equal, the two master images were chosen at the start of August
since this is when the landslide velocity had significantly reduced. The
differences between offset measurements from these overlapping
pairs for both the TSX Spotlight and TSX Stripmap imagery are shown
in Table 2. Using the corner reflector points to generate the offset mea-
surements, the RMS errors are all less than 0.038 m and 0.071 m in the
range and azimuth directions, respectively. The errors are significantly
Table 2
Comparison between two independent offset calculations from two image pairs significantly ov
the last two available images used as the respective slave images). This can help assess the error
reflectors and densely vegetated terrain (directly adjacent to the corner reflector points).

Range offsets

Sensor/image mode Mean difference (m) R

TSX Spotlight (corner reflectors) 0.008 0
TSX Stripmap (corner reflectors) 0.040 0
TSX Spotlight (vegetated terrain) 0.574 0
TSX Stripmap (vegetated terrain) 1.198 1
lower for the TSX Spotlight imagery than for the Stripmap imagery,
and the errors are also consistently lower for the range offsets than for
the azimuth offsets. In all cases, both range and azimuth error values
are an order of magnitude lower than the total accumulated landslide
displacement.

To assess offset errors from the natural terrain, areas of land adjacent
to the corner reflector points were used to carry out the same analysis.
Table 2 shows that the RMS errors for the two offset pairs from natural
terrain are at least 20 times higher than from the corner reflector points
and are the same order of magnitude as the recorded landslide move-
ments, which therefore suggests natural terrain areas of dense vegetation
are not optimal for generating reliable offset measurements in the Three
Gorges region. Regardless of the displacement magnitude, corner reflec-
tors remain beneficial for generating precise, 2-dimensional sub-pixel
offset measurements only using the SAR amplitude data. Envisat data
failed to produce successful offset results given its significantly larger
pixel spacing covering the relatively small landslide area. A far greater
contrast in the ground terrain backscatter, much faster ground move-
ments or consistent movements over a larger area would all increase
erlapping in time (thefirst two images in Augustwere used as the twomaster images, with
s between different SAR imagemodes and also between the offsets calculated from corner

Azimuth offsets

MS error (m) Mean difference (m) RMS error (m)

.011 0.055 0.060

.038 0.059 0.071

.912 1.146 1.478

.394 3.044 3.979
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the likelihood of obtaining reliable SPOT results fromnatural terrain in all
image modes.

6. Discussion

The movements of the Shuping landslide in May–June 2009, re-
vealed by the SPOT-CR results, demonstrate how the spatial
displacement gradient assumption is broken and invalidates long-
term D-InSAR analyses. It would be impossible to accurately un-
wrap any interferogram which spanned this movement episode
(without the use of in-situ data) and this issue can perhaps explain
the variety of D-InSAR measurements of the Shuping landslide
outlined in Section 3. Certainly this time-period should not be
analysed using D-InSAR time-series analyses since an even sparser
network of measurements (relative to the original interferograms)
generated from any form of persistent scatterer interferometry
would be less able to resolve such spatially variable measurements.

The SPOT-CR technique is robust when applied to corner reflectors,
although it is limited by the rate of movement in relation to the pixel
spacing of the SAR data, size of the search window used in the cross-
correlation calculation and any significant change in the surface reflec-
tance between image acquisitions. With the use of highly contrasting
ground features (i.e. installed corner reflectors in this case), verifiable off-
set measurements were generated from TSX Spotlight and TSX Stripmap
data. When such point-like targets exist over a landslide, it would be
beneficial to run SPOT-CR analysis for a stack of SAR images prior to any
D-InSAR analysis to assess if any movements exceed the spatial displace-
ment gradient.

Identified as an ancient landslide (Wang, Zhang, et al., 2008), the
Shuping landslide is underlain by sandy mudstones and muddy sand-
stones of the Triassic Badong Formation, a unit within which many land-
slides are concentrated (Wen, Wang, Wang, & Zhang, 2004). This
landslide has been divided into two parts: eastern and western blocks
with a combined width of about 600 m. A borehole towards the lower
part of Block-1 (eastern) indicated the surface of the rupture zone was
at a depth of 65 and 75 m, a zone where numerous slickensides were
evident (Wang et al., 2005).

Whilst the rates of displacement are different over the landslide body,
the timing of faster and slower episodes (Fig. 7) is very consistent which
suggests the same causal factors are affecting the whole landslide.
Another capability of sub-pixel offsetmeasurements is the ability to esti-
mate the displacement vectors from the range and azimuth directions to
resolve the purely northwards (dN) and vertical (dU) components of dis-
placement (Fialko, Simons, & Agnew, 2001). This derivation assumes
that landslide movement in the east–west direction (dE) is zero which
Fig. 8. Using the azimuth and range offset corner reflector measurements (calculate
decomposed to calculate the total accumulated vertical (a) and (b) northwards displac
in Supplementary material (Table S3).
is a relatively safe assumption given the orientation of the Shuping land-
slide with respect to the SAR sensor:

dRANGE ¼ −0:68 0:12 −0:72½ � dE dN dU½ �T
dAZIMUTH ¼ −0:17 0:98 0½ � dE dN dU½ �T

dE ¼ 0
:

By solving this system of equations, Fig. 8 shows the estimated accu-
mulated vertical and horizontal components of displacement for the
Shuping landslide between 21st Feb 2009 and 15th April 2010. A clear
topographic trend is visible for the vertical measurements with the
total accumulated displacement increasing with elevation. The head of
the landslide moved downwards at least 25 times more than the toe
of the landslide. The northwards displacement data does not show
this trend, but has the greatest movements towards the middle and
toe of the landslide. A rotational failure mechanism along a curved
plane would be consistent with these 2-dimensional movements and
is proposed as a first-order interpretation of the data.

Additionally, the period of most rapid displacement around May–
June 2009 corresponds to the annual lowering of the Three Gorges Res-
ervoir (Fig. 9) which accommodates the heavy summer rainfall and
helps prevent flooding downstream. The faster the rate of change in
the reservoir level, the longer the water table levels take to adjust.
When thewater-level is lowered, drainage of the landslide lags the res-
ervoir drop which results in high hydraulic gradients and favours slope
instability (Shimei, Huawei, Yeming, & Jun, 2008). The biggest displace-
ments appear to correspond to the greatest rates of reservoir lowering,
whilst periods of slower reservoir lowering do not lead to an increased
propensity of slope failure. However, both the managed and natural
changes in the reservoir water-level are related to the seasonal varia-
tions in rainfall, so an analysis of landslide movement in relation to
both factors is required to fully understand the mechanisms of move-
ment for the Shuping landslide. Corroboration from the analysis of
other nearby landslide sites is a subsequent stage of this work.

7. Conclusions

Recognising that landslides often exhibit non-linear and complex
displacement patterns, this paper assesses the capability of various
SAR imagemodes (TSX Spotlight, TSX Stripmap and Envisat data) to re-
liably identify, map, monitor and characterise landslide movement
using D-InSAR and a Sub-Pixel Offset Time-series technique applied to
corner reflectors (SPOT-CR). The Shuping landslide within the densely
vegetated Three Gorges region (China) is used to test these methods
on account of the data availability from numerous SAR image modes
d from the first and last TSX Spotlight images), the displacement vectors can be
ement between 21st Feb 2009 and 15th April 2010. The exact values can be found

image of Fig.�8


Fig. 9.Range displacement from TSX Spotlight in relation to thewater-level changes of the
Three Gorges Reservoir.
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and the network of corner reflectors installed in and around the land-
slide body.

D-InSAR measurements can be successfully used to detect move-
ments of the Shuping landslide, although there are significant limita-
tions that prohibit long term D-InSAR monitoring using single-pair
and time-series techniques. Interferometric coherence in the Three
Gorges region is always low due to the density of vegetation and the
limited satellite revisit times, but there are seasonal signals (Fig. 2)
most likely caused by consistent annual variations in rainfall and soil
moisture. Particularly for TSX imagingmodes, it is found that the coher-
ence is highest between November and February each year when rain-
fall and vegetation coverage is at a minimum.

Despite the problems of low coherence, landslides can be reliably
identified and mapped using high resolution D-InSAR measurements
providing the movement does not exceed the spatial displacement gra-
dient. However, episodic and faster landslide movements can exceed
the displacement gradient (most likely around landslide boundaries)
due to the potentially high contrast in displacement rates between
stable and moving land (Fig. 3). High displacement gradients identified
for the Shuping landslide invalidate the use of D-InSAR time-series
approaches for the data stacks from all three SAR image modes used
in this study.

Subsequently, a Sub-Pixel Offset Time-series approach applied to
corner reflectors is used as a robust method to resolve time-varying
landslide displacements. A quantitative, heuristic approach shows
how the distribution of offset values for a stable reference area close
to the landslide can help reduce the likelihood of spurious correlation
and after considering the pixel spacing of SAR data aswell as the expect-
ed movement of the phenomenon under study, enables suitable sub-
pixel offset parameters to be selected (Fig. 4). Additionally the same
initial master image is chosen to calculate the displacement time-
series from subsequent slave images in order to avoid the propagation
of errors associated with an accumulative time-series curve from
time-adjacent image pairs. Given the small range in TSX perpendicular
baselines (Fig. 6), the use of a small baseline approach for generating
time-series displacement curves was not pursued.

Offset measurements from corner reflectors are shown to generate
verifiable cross-correlations when located amongst dense vegetation
(Fig. 5) and Table 2 shows the errors associatedwith the corner reflector
offsets from TSX data are at least an order of magnitude lower than the
landslide displacements. It is also clear that higher resolution SAR data
reduces the offset errors.

From the final SPOT-CR analysis, it is clear that large, episodic move-
ments are responsible for a loss of interferometric coherence and the
range offset displacement inMay 2009 towards the head of the Shuping
landslide (Fig. 7) is shown to exceed the displacement gradientmeasur-
able byD-InSAR. Assuming the E–Wcomponent of displacement is zero,
the range and azimuth offsets can be decomposed into estimates of the
vertical and horizontal measurements (Fig. 8) to help infer a rotational
component of the Shuping landslide and differences between the east-
ern and western sides of the landslide imply the movements are highly
variable and not moving in a uniform manner. Finally, the main epi-
sodes of landslide movement appear to occur at the same time as the
rapid drawdown of the Three Gorges Reservoir in May/June 2009
(Fig. 9).

This study has considered one landslide in a specific type of terrain.
Landslides with different surface features, orientated differently with
respect to the SAR sensor and with different movement behaviours,
may require different forms of analysis. Areas with less vegetation
(either with more buildings or bare rock) which move at slower
rates may be more successfully monitored using D-InSAR time series
techniques. Larger landslides with displacements spread over a big-
ger area or moving less episodically would also be more suited for
D-InSAR time series analysis. SPOT techniques should achieve better
results for landslides withmore contrasting surface features (natural
or man-made) or where the movement is greater with respect to the
SAR image pixel size, up to the point whenmovement induces signif-
icant change in the Earth's surface (and therefore change in the radar
backscatter). The application of SPOT techniques to more landslide
sites using different SAR data types should be the focus of future
studies, and the use of time-adjacent (or small baseline) pairs may
be optimal for extracting time-series data from areas of lower corre-
lation. Independent verification of the SAR-derived displacements
for the CRs should also be conducted once such data becomes avail-
able along with comparing the observed displacement patterns of
the Shuping landslide to potential causal factors such as rainfall,
groundwater and reservoir water-levels.
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