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Abstract

We propose a velocity-based moving mesh method in which werti@ nodes so as to preserve
local mass fractions. Consequently, the mesh evolves ta&efihere the solution presents rapid
changes, naturally providing higher accuracy without teechto add nodes. We use an integral
approach which avoids altering the structure of the origatpations when incorporating the
velocity and allows the solution to be recovered algebtgicé/e apply our method to a range of
one-dimensional moving boundary problems: the porous nmediquation, Richards’ equation,
and the Crank-Gupta problem. We compare our results to exautions where possible, or to
results obtained from other methods, and find that our ajgproan be very accurate (1% relative
error) with as few as ten or twenty nodes.

Keywords:, Time dependent partial fierential equations, Finite fierence methods,
Velocity-based moving meshes, Mass conservation
2010 MSC;, 65M06, 92-08, 92C99

1. Introduction

Time-dependent partial ierential equations (PDES) on moving domains, with knowneffux
across the boundaries, occur regularly in physical andgichl modelling, and must often be
solved numerically. The location of the moving boundaryfisicritical and may require special
numerical resolution. In particular, the solution may éxhsingular behaviour at the boundary
that is challenging to capture numerically.

Adaptive numerical schemes modify the mesh during the ecofrsomputation in response
to changes in the dependent variable (or its approximatioajder to achieve greater precision
andor greater #iciency. Generally, an adaptive mesh scheme becomes firefeécaa fixed
mesh scheme when areas of interest represent only a fraxfttbe domain being investigated.
Increasing the resolution in these areas may then be cotignaby less expensive than refine-
ment of the mesh over the entire grid. The most common formesinadaptivity is-refinement
which involves repeated subdivision of the intervals of @dixnesh. Other strategies include
p-refinement, in which the solution is represented locallyhigher order polynomials, and
refinement in which the mesh points are relocated at eachdiepe The use of-refinement
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has been stimulated by interest in geometric integratioparticular scale invariance (see, e.g.,
[8]). For scale invariant dierential equations, independent and dependent variat#eseated
alike. Anr-refinement method is able to vary the solution and the mestlsineously, meaning
that the scheme exhibits the same scale invariance as tleelyind differential equation. The
article by Budd, Huang and Russell [8] and the book by HuamgRumssell [15] describe many
theoretical and practical aspectsreddaptivity.

In this paper a patrticular-refinement adaptive scheme is described for the solutiamef
dimensional time-dependent PDEs on moving domains. Theapp relocates a constant num-
ber of nodes by moving the mesh points, keeping a node loedtedlch moving boundary. We
show that a mesh with as few as ten or twenty nodes ¢ a relative error of less than 1%
(see Tables 1-5 i§4). The work we present here preserves mass (or relative asaappro-
priate), causing the mesh to naturally refine where the isoldtas high relative density. This
is particularly useful for solutions with blow-up, or (asndenstrated here) infinite slope. At-
tractive aspects of the approach are that no interpolatidheoboundary is required, only the
moving domain need be discretised, and the continuous maveaf the mesh points allows
easier inclusion of time integrators.

Underr-refinement nodes may be relocated in many ways, accordihg tthoice of monitor
functions [8], and the solution is often found from a moviogh of the PDE. A mesh equation is
often solved simultaneously with the modified PDE so as tegee the node positions in tandem
with the solution, as in the Moving Mesh PDE approach [5, 14§ Moving Finite Element
method of Miller [19, 20], or the parabolic Monge-Ampere sggrh of Budd and Williams [6,
7]. By contrast, in the method described in this paper a sitigle-dependent equation is solved,
that of the mesh, the solution being determined algebitgifraim a conservation principle. The
approach is a finite tlierence version of the velocity-based moving mesh finite eféracheme
described by Baines, Hubbard and Jimack in [1, 2], in whighrttesh equation is based upon
conserving a proportion of the total integral (mass) of tepahdent variable in the domain. The
method in [1, 2] difers from methods depending on the technique of equidisiin{b, 14, 6, 7]
since equidistribution is not an integral part of the stygtebut is related to the Deformation
method of Liao and co-workers [17, 18] and to the Geometriog@ovation Law (GCL) method
of Cao, Huang and Russell [9]. The scheme described hersibd®n applied to a specific
tumour growth problem in [16]. Here we generalise the apgrda a wider class of problems,
provide key implementation details, and show numericalltesfor three diferent nonlinear
diffusion problems, each example demonstrating a key featsenafrom the problem in [16].
Moreover, we validate our results via comparison with kn@xact solutions and with results
from other (unrelated) approaches.

Throughout we only consider one-dimensional problemsrihciple the method can be gen-
eralised to higher dimensions, but there are speciétdities with finite diferences in higher
dimensions and the propensity for mesh tangling is gre&ieite elements are generally con-
sidered superior for two- and three-dimensional probleses,[1, 2].

The layout of the paper is as follows. §2 we describe the conservation approach, and its
finite difference implementation. First, §2.1, we consider mass conserving problems. Then
in §2.2 these ideas are extended to non mass-conserving pbkng a normalisation tech-
nigue. In§3 the schemes are applied to three moving boundary problegs)ning in§3.1 with
a mass-conserving problem governed by the porous mediuatieqPME) (see, e.g., [26]), for
which we consider a symmetrical test problem, treated wish pne moving boundary. §8.2
the method is applied to a test problem governed by Richagigation (see [24]). This prob-
lem also conserves global mass but the test problem coesideunsymmetrical, so there are

2



64

66

68

70

72

74

76

78

80

82

84

86

two moving boundaries. The third problem, detaile®3, is known as the Crank-Gupta or
diffusion-absorption problem [10], for which global mass iscarserved. We solve the Crank-
Gupta problem for two sets of boundary data, one correspgridithat of the original problem
(see [10]), and the other chosen so that we can easily vauifyasults against a known exact
solution. Numerical results for all our examples are prediih §4, and some conclusions are
presented ir§5.

We remark finally that our investigation is confined to inH@mundary-value problems for
which the solutioru(x, t) is one-signed in the interior of the domain, which is neags$or the
validity of the method.

2. Conservation-based moving mesh methods

Let u(x, t) be a positive solution of the generic time-dependent s¢¥lE

ou(x, t)
ot

where £ is a purely spatial dierential operator. In all of our examples we have a moving
boundary a = b(t) at which we impose the following Dirichlet and flux boundagnditions

u(b(t),t) = 0, (2)
u(b(t),t)‘;—? . ©)

= Lu(x t), t> 1%, x e (a(t), b(t)), (2)

The initial condition is
u(x t%) = u’(x), xe (a(t%,b(t%).

We introduce a time-dependent space coordir@tg)which coincides instantaneously with the
fixed coordinatex. Consider two such coordinategxs, t) andX{x., t), in (a(t), b(t)), abbreviated
to X1(t) and X5(t). The rate of change of the mass in the subinterxglt), %Xx(t)) is given by
Leibnitz’ Integral Rule in the form

d f)?z(t) Xo(t) au(S, t) 0
— uist)ds = f ( +—ustvs,t)ds, 4
& Jy USD N e ~CCLICL) )
where
dx
v(x.) = . (5)
is a local velocity. We denote the total (global) mass by
b(t)
ot) := f u(x, t) dx. (6)
a(t)

2.1. A method based on preservation of partial masses

We begin by describing a solution method for problems thaseove the total integral (global
mass) of the solution, i.e. for whid{t) remains constant for all> t°. Sincexi(t) andX(t) are
arbitrary, equation (4) demonstrates the equivalenceeof #ygrangian conservation law,

d *o
&f() u(s,t) ds=0, 7
X (t
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and the Eulerian conservation law,

ou(x, t) . 0
ot ox

From (8) and the PDE (1) we have

(u(x, t)v(x, t)) = 0. (8)

Lu(x,t) + O%(u(x, tv(x, 1)) = 0, (9)

which, givenu(x, t), may be regarded as an equation for the velogixyt). For a unique solution
of (9), the fluxu(x, t)v(x, t) must be imposed at one point which may be thought of as améahc
point. In the examples considered here it will be taken asumthary point. Integrating (9) from
a(t) to x, y
Lu(s 1) ds+ u(x t)v(x, t) = u(a(t), )v(a(t). t),
a(t)

whereu(x, t)v(x, t) is imposed at the anchor poirt= a(t). The velocityv(x, t) is then given by

~ ua(t). v v@at).y - Jay LU(s 1) ds

v(x,1) = o) , (10)

at all interior points, since(x,t) > 0 in the interior of the domain.
Our numerical method is based on the idea that poifitst) of the domain can be moved
with this velocity in a Lagrangian manner using

(%t + At) = K(x, 1) + At V(x, t) + O(A1)>. (11)

To recover the solutiom(X(t),t), given X (t) and X(t), we use the conservation law (7) in the
integrated form

Xa(t)
| ute ds= c(ra. %) 12)
Xa(t)
wherea(t) < % (t) < %(t) < b(t), and the constanttis given by the initial data’(x) as
%o (t0)
c(%a(t), %) = c(%a(t%), %(t%)) = f © u’(s) ds. (13)
)?1 t

A one point quadrature approximation to (12) leads to

o o C(%a(t0), %(t9)
" R0 R0

whereAX = X(t) — X, (t), for all X € (X1, X2). Boundary conditions may be imposed afX, t)
at this stage, care being needed to preserve global massreatisn. Examples are described
in §3 below.

We now define a finite dierence method based on this theory, with the following itat
Given a time step\t > 0 and a fixed numbeN + 1 of spatial nodes, choose discrete times
t™ = mAt, m=0,1,..., and discretise the interval at each discrete tithesing the nodal points

4

+0(A%), (14)
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X" = %), j = 0,1,....N, for which a(t™) = X§' < X" < ... < X{ = b(t™). Also define
apprOX|mat|on:*.Jm ~ u(x,,tm) andV{" ~ v(X;, t").

Our finite dfference moving mesh algorithm for mass-conserving probiertigeen as fol-
lows. Choose initial node positionﬁ’, j=0,1,..., N, with corresponding approximate solution
vaIuesUJQ > 0, and use them to determine the approximate masses
j+1

Cj:(x X?l)u?’ ji=1,...,N-1 (15)

Then attime™ form=1,2,..., givenX" andU}" we comput@(lf“+1 andUE“*1 as follows:

1. Evaluate the interior velocities {. (10))

umve - f Lu(stm) ds
X3 .
VAR o , j=1.,N-1,
J

where the integral is discretised, for example, by a comedsapezium rule. At the
boundaries extrapolate the velocity from interior values.

2. Evolve the nodal position?", j = 1,...,N -1, in time fromt™ to t™1 by the explicit
Euler timestepping schemef( (11))

XM= X+ At V] (16)

3. Recover the solutiod ?”1 at interior points asqf. (14))

Cj
m+1 m+1’
X1+1 XJ

UMt = j=1.,N-1, (17)

with UR*t = 0 from (2) andUJ** being updated either from given boundary conditions or
by extrapolation, depending on the nature of the problem§3g

2.2. A method based on preservation of relative partial @ass

For more general problems that do not conserve negggdefined by (6)) varies with time.
Hence (7) and (8) no longer hold. We may however make use ohitei Integral Rule applied
to thenormalisedfunctionu(x, t)/6(t), giving

E i Xo(t) 1 %o (t) 6U(S,t) 9 ~ ()
dt{Q(t) ffq(t) Hs0 ds} o) Jr ( ot ((st) (s.0) a(t)u(s’t) ds  (18)

for all a(t) < % (t) < %(t) < b(t), wherev(x, t) is the local velocity (5) and(t) = dg/dt. Since
X1 (t) andX>(t) are arbitrary, equation (18) shows that the Lagrangiasemation equation,

d{lfizm( )d} 0 (19)
— < — u(s,t) dsy =0,
dt {6(t) Js, o
is equivalent to the normalised Eulerian conservation gguia
aug: H —(u(x V(X 1)) = E;u(x 1). (20)
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We derive the velocity from this generalised form in the sananer that we used in (8). That
is, from (20) and the PDE (1) we derive

o(u(x, tv(x, 1)) H(t)

Lu(x,t) + X 70

—=u(x, t), (21)

which, givenu(x, t), can be regarded as an equationvigt t) in terms ofg(t) andé(t). As before,
for a unique solutioru(x, t)v(x,t) must be imposed at the anchor point= a(t), so that the
integral of (21) froma(t) to x gives

o(t)

9() " u(st) ds.

u(x, t)v(x, t) = u(a(t), t) v(a(t), t) - f Lu(s,t) ds+ —
Hence the velocity is given by

t),t t),t Lu(st) d [20) Hd
. u(a), ) @), ) - [ U(I)J((?)) s+ 59 [ u(s 1) ds o

at all interior points, since(x,t) > 0 in the interior of the domain.
To evaluated we integrate (21) frona(t) to b(t), assuming thati(x, t) andv(x, t) are continu-
ous up to the boundary, yielding

b(t) .
» Lu(s 1) ds+ [u(x, v(x, t)] a0 = 00, (23)

which determines explicitly (using (3)).
The pointsx(x, t) of the domain are now moved with the velocity (22) in a Lagjian man-
ner, again using (11), and we can also updaising

6(t + At) = 6(t) + At 6(t) + O(AL)%.

To recover the solution(X(t), t) we choosexs, X;, such that (19) holds, in which case

Xo(t) 1
70 J u(sit) ds= g(tO)C(Xl(tO) %2(t%), (24)

for a(t) < %1 (t) < %(t) < b(t), wherec is as defined in (13) and/6 is now the constant that is
preserved in time. Thus

a(t) c(%a(t%), %(t%)
6(t%  Xa(t) - Xa(t)
for all X € (X1, %2), as in (14). Again, the boundary conditions may be impoged(&, t) at this
stage.

The discretisations given §2.1 are augmented by the additional approximati®fis- o(t™)
and®™ ~ 4(t™), and then our finite dierence moving mesh algorithm for non mass-conserving
problems is as follows. Choose initial node positidf?swith corresponding approximate solu-

tion vaIuesUJQ >0,j=1,...,N—-1, and use them to calculate the approximate relative masses
C;/0° whereC; is given by (15) an®?, the initial value of®, is given by ¢f. (6))

=3 Z 01— XD)(U0+U0,),

6

(% t) = +0(AR) (25)



o Using a trapezium rule. Then at tinfé for m = 1,2,..., given®™, X" andU{" we compute
@™, X! andU™* as follows:
152 1. Evaluate the rate of chan@?" of the approximate total mag" in the form ¢f. (23))
. XN
0" = Lu(st™) ds+ UQVY - Ug'Vy,
X
where the integral is discretised using a trapezium rule;

154 2. Evaluate the discrete velocity at interior points@s (22)),

UPVE - fl Lu(stm) ds+ & [l u(s t) ds
J

where the integrals are discretised using a trapezium Atiéhe boundaries extrapolate
156 the velocity from interior values.

3. Evolve both the nodal positior)gm, j =1,...,N -1, and the total mas®™ from t™ to
158 time t™? by the explicit Euler time-stepping scheme (16) @' = @™ + AtO™.

4. Recover the solutioti;“ at interior points asdf. (25))

®m+l C:
U?le 0 m+1 : m+1° J:]" »N-1
() X — X
160 and atj = 0, j = N as in Step 3 of the algorithm ¢P.1.
3. Examples
162 In this section we apply the methods outlinedihto some specific moving boundary prob-

lems in one-dimension.

14 3.1. The Porous Medium Equation
The PME is the simplest nonlinearfilision problem which arises in a physically natural
16 Way, describing processes involving fluid flow, heat tranefediffusion. It also occurs in math-
ematical biology and other fields [26]. We assume the init&#h is symmetrical about its centre
s Of mass, taken to be the origin, in which case the PME takefothe

ou a [ 0u 0
R xe b,
with u(=b(t),t) = u(b(t),t) = 0 andu(xb(t), t)db/dt = 0. For this problem the total mass (6) is
o conserved and the centre of mass is fixed in time [26], fronchviti follows that the solution
retains the symmetry of the initial data for all time. We #ffere model only half of the region,
2 1.e. X(t) € [0, b(t)], with a(t) = 0 as the anchor point for &l For the half problem we have

ou
- = 2
I 0 at x=0, (26)

7
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by symmetry. From (10) the velocity in the interior is given b

V(X t) = —

1 (™o n0U o aa0u 19U o
u(x’t)fo a_s(“(s’t) a_s) ds = —uios = -2, t>1% xe[0,b(y). (27)

Given approximation&(;“ andu™ j=0,1,...,N,m=0,1,2,..., the finite diference algorithm
of § 2.1 is used, first, to calculate the veloc\'ly1 ateach nodg, j = 0,1,...,N, then the new
nodal positions)(}“*l, and finally the approximate solutichjf**l. A standard discretisation of the
velocity (27) at interior nodes is

Gty

m m
Xj+1 - Xj—l

V"=

" n

which, although of second order on a uniform mesh, is onlysa dirder discretisation on a non-
uniform mesh. An approximation which is second order on aumgiform mesh (i.e. exact for

guadratics) uses all three valudgl, UE“ andU?ll, and is

L (AU g (A
1| ax | axm )t axe (Taxm
Vm - _= ] ] ] ]

e , j=12.,N-1, (28)

where
A()j= =) and A_();=()j - ()j-1

(see [22]). We note that equation (28) is an inversely weidistum, or linear interpolation, of
the gradients\, (U ?‘)”/AiXE“. The velocity atx = 0 is zero and at the moving boundary= X{
the velocityV|] is extrapolated by a polynomial approximation using thréja@ent points. The
new mesh is obtained at tint&" = t™ + At by the explicit Euler time-stepping scheme (16).

The updated approximate solutid)r]ml is given by (17),j = 1,...,N-1. At j = 0 the
approximate solutiortlJ{,n+l is calculated using (28) with the reflection conditidn; = —Xg,
approximating the boundary condition (26). At the outerriminry,Uﬁ”l = 0 from (2). Results
are presented if4.

3.2. Richards’ Equation

Richards’ equation is a nonlinear PDE which models the m@&rerof moisture in an un-
saturated porous medium [24]. In the present paper we mogattecular form of Richards’
equation, where the solution describes liquid flowing doardg through an unsaturated porous
medium, making it applicable to the tracking of a contarmeddiquid. The equation is of the
form

ou 0 ( n—2@) ou" t> 10, xe (a(t), b(t)), (29)

o ox ax)  ax’
for some integen > 2, with u(a(t),t) = u(b(t),t) = 0 andu(a(t), t)da/dt = u(b(t), t)db/dt = O
at the boundaries. The total mass is again conserved in #4je The velocity is given by (10)
with Lu defined as the right-hand side of (29),

1 n-2
V(X t) = —u”‘3@ —url= __ﬁ(u ) —ut

0X 8 n-2 ox (30)
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In a similar way to (28) we discretise (30) as

L (AU (o
. O sl e Axm | Taxm - .
V= - — A - um, j=1..N-1
n- Aom T axm
7 |

Again, the outer boundary velocitiag, V' are extrapolated from interior points, using three
adjacent nodes. The new mexﬁ“l is obtained from\/}“ by an explicit Euler time-stepping

scheme, as in (16). The updated approximate soluulipﬁ, j=1,...,N—-1,is given by (17),
and at the boundarid${™*! = UT™*! = 0. Results for this example are showrgif

3.3. The Crank-Gupta problem

The Crank-Gupta problem was derived to model thtudion of oxygen through an absorb-
ing tissue [10], but also applies within the Black-Scholesrfework of financial modelling due
to the valuation of an American option being a similar freerary problem [12].

The diferential equation is

ou 4%
E—W—l, 0< X<b(t), (31)
with boundary conditions

ou
— = =0, f 2
Ix 0 at x=0, fort>0, (32)
ou

u=0, 6_x:0 at x=Db(t), fort > 0. (33)

For this problem the total magt) decreases with time due to the negative source term in (31).
The initial condition at® = 0 is taken as

u(x,0) = %(1 - x)?

for x € [0,1], as in [10], giving initial total mas8(0) = 1/6. Similarly, we can determine the
normalised partial integrals from 0 10 defined by

¥(X) = %foxé(l—s)z ds = x3 - 3x% + 3x. (34)

The rate of changé of the total mas$ is given by substituting the PDE (31) and the boundary
conditions (32)—(33) into (23), yielding

. b(t) [ 52 b(®)
e(t):fo (a” 1) dx:[%{— } = -bo(t). (35)

— -
X 0

The velocityv(x, t) is obtained by substituting the PDE (31) and the boundangitions (32)—
(33) into (22) and evaluating the integral, giving $o€ [0, b(t))

1 . *(8%u 1 du
V(X, t) = m (H(t)y(x) - fov {6_329_ 1} dS) = m (—’y(X) b(t) - 5( + X) (36)
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(substituting fom(t) from (35) and using the boundary conditionxat 0).
We use the algorithm df2.2. The discrete forri; of y(x) at interior points is¢f. (34))

I} = X3 - 3X? + 3X;, j=1....N,
while the discrete forn®(t™) of 6(t™) is (cf. (35))
0 =-XI.
Also the discrete forn‘a/jm of the velocityv(x, t) at interior points is¢f. (36))
1 (AR 1 (AVP
[ (B0 o (5

m_ _— J_1T.xym_ )
V"= g T . -
j X T XD

+ X0 ¢, i=1...,N
+

At the outer boundary our previous strategy, to extrapdlaeboundary velocity/[ from
velocities at internal points, gives physically incorrégbsitive) values. An alternative is to
exploit the asymptotic behaviour of the solution at the phundary by assuming the form

u(x, t) ~ %(x— b(t))? asx — b(t),
following from (31) and (33). Therefore, in the discreteeas make the approximation
UTE ~ S0 - X2

which leads to

XTH = XL 4+ J2umed (37)

(taking the positive square root).
The new node position&™*, j = 0,...,N at timet™* as well as the new total ma@s™*
are obtained by the explicit Euler time-stepping scheme.

3.4. The Crank-Gupta problem with a modified boundary coofit

There is no known analytical solution for the Crank-Guptalylem although approximate
solutions have been given in [11]. Hence, in order to compareresults to an exact solution
we have modelled the Crank-Gupta PDE with a modified bounciamgition for which an exact
solution is known, which can then be used for comparison [lje one-dimensional Crank-
Gupta problem with a modified boundary condition

% =g1- at x=0, t>t°, (38)
replacing (32), and initial conditions
u(x,0) = e - x, =0, xe[0,1], (39)

10
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has solution

el x_t x<1-t,
u(x, t) ={ 0 x> 1t (40)

(see, e.g., [1]). By applying the conservation based momegh method to this modified prob-
lem we can investigate the accuracy of the scheme for a nos-omserving problem. The
normalised partial integralg(x) (see (34)) are

1, eler-1)-%
Y(X):mﬁ (e l—S)dSZ %_—e—lz’ (41)

whereg(0) = 1/2 — e from (6) and (39). The rate of changeof the approximate total mass
0 (23), and the velocity of the interior nodes (22), are
o) = 1-€"t—nh(t). (42)

V(x, t) (é(t)y(x) - % +Xx-1+ et‘l), (43)

u(x, t)

from (31), (33) and (38). Equations (42)—(43) are equivatiei35)—(36), but with an additional
(1 - &) term from the modified boundary condition. We again apply gtgorithm of§2.2
using discrete forms of (41)—(43). At the fixed boundarf§, = 0. At the moving boundary,
equation (37) is again employed since the moving boundangditions are the same as for the
original problem. The new node positio$**, as well as the new total mag&™*, are obtained
from V]T“ by the explicit Euler time-stepping scheme. The solutioneisovered in the same
manner as for the original Crank-Gupta problem modelle§Bi3.

4. Numerical results

In this section we present results from applying the movirggimmethod to the four prob-
lems described above: the PME, Richards’ equation, theénaligCrank-Gupta problem, and
the Crank-Gupta problem with modified boundary conditiolmseach case the initial mesh is
equally spaced. For each problem we examine the convergéhbe finite diference moving
mesh method as the number of nodescreases and a decreases. We solve fok [t%, T]
and compute results fod = 10x 21 N = 1,2,.... In order to compare results forfiérent
values ofN, we denote the points of the mesh for a particular valus bf/ X, i=0,....N.

We then compute bothy ;g (t) and Uy (1) ~ U(Xa; (1), t) for eachi = 0,...,10; this
new notation allows comparison &f(t) andu; y(t) at eleven dierent points, determined by
j=2%%,i=0,...,10, for variousN. Where possible we compare the numerical outcomes
with the exact solution and boundary position. When such @isal is not known, we compare
with numerical results determined using other methods.abhecase we denote our reference
solution byu(x, t), and our reference boundary positionXfy).

Recalling that we have used explicit Euler time-steppingyrder to balance the spatial and
temporal errors for these second orddfusiion problems, we take (for most of our examples)
At=0 (1/N2), anticipating that the pointwise errgrgt)—xy g ()| andju(Xys-1; g (t), 1) Uiy g ()
will decrease adl increases, for each= 0,...,10. (Note that we take smaller time steps for
one of our examples in Section 4.1 for stability reasons.)
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As a measure of the errors, we calculate the relativeorm of the error in our solution, and
the relative error of our boundary position, as defined by

EU = i 100G, T) = Uiy (TP o X = xm (T
" S U(Xps4; 1 (T), T2 ’ N Ix(T)I ’
for N =1,2,3,4,... (i.e. N = 10,20,40,80, ...). We investigate the hypothesis that

1 M 1
T and ENNW’

for largeN, wherep andq are the estimated orders of convergence. If (44) holds theexpect
that py andapy defined by

=N (44)

Eon Eon
Pon = — IOgZ(E_“)’ On = — |092(§), (45)
N N

will approach the constant valupsandg asN increases. Since each step of our scheme is second
order in space and first order in time, and recalling thatr(fost of our examplest = O (1/N2),
we might expect to sep, q ~ 2.

4.1. Porous Medium Equation

We solve fort € [1,5] and compute results fod = 10 x 281 N =1,...,6. We use the
self-similar initial conditions at=1forn=1,2,3,

n=1: ux1l) = 1- %, b(1) = V6, (46)
n=2: uix,1) = (1 - XZZ)Z , b(1) =2, (47)
n=3: ux,1) = (1 - 31—);2)3 , b(1) = 1—30 (48)

see [4, 23]. The exact solution at the calculated mesh p@ints

_ 1 x2 \"

U(X, t) = tl/(Tn) (1 - W) N (49)
and the exact boundary position, is

X(t) = b(t) = t1/(n+2) @

As stated above, to balance the spatial and temporal errersseAt = O(l/NZ), precisely

At = 0.4(47N), forn = 1. Convergence results for = 1 are shown in Table 1. We see

that Ej, andE{ decrease abl increases. This suggests that as the number of nodes iesreas

our approximations to both the solution and the boundarjtipasare converging. The and

g values presented strongly indicate second-order cormeegef both the numerical solution
12
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N EX PN EX On
10 | 7.7156x 10°° - 1451x 1073 -
20 | 1.941x10° 2.0 3066x10* 2.2
40 | 4976x10* 2.0 7138x10° 2.1
80 | 1.259x10* 2.0 1730x10° 2.0
160 | 3.166x 10° 2.0 4262x10°% 2.0
320 | 7.937x10°% 2.0 1058x10° 2.0

Table 1: Relative errorky, andEY, for the porous medium equation with= 1 andAt = 0.4(4*“).

n| N EX PN EX On
2| 10 | 3.012x 103 - 3.072x 1073 -

20 | 5926x10* 2.3 6057x10* 2.3
40 | 1.181x10* 2.3 1208x10* 2.3
80 | 2.361x10°° 2.3 2414x10° 23
160 | 4722x10°% 2.3 4828x10° 2.3
320 | 9444x 107 2.3 9657x107 2.3
3] 10 | 2373x10°8 - 2.622x 1073 -

20 | 4.674x10* 2.3 5169x10* 2.3
40 | 9.320x10° 2.3 1031x10* 2.3
80 | 1.863x10° 2.3 2060x10° 2.3
160 | 3.725x10°% 2.3 4120x10°% 2.3
320 | 7451x 107 2.3 8240x107 2.3

Table 2: Relative errorky, andEY, for the porous medium equation with= 2, 3 andAt = 0.5(5*'(‘).

and numerical boundary position. For= 2,3, because of the infinite slope at the boundary
(see (49)) At = O(l/Nz) is not suficient for stability (non-tangling). We found that slightly
decreasing\t to At = O.SE‘N) (corresponding tat = O (1/N°%®) ~ 0(1/N2%)) avoids these
difficulties, suggesting that the time error is dominant, seéeTab The results from the self-
similar solutions fom = 1,2,3 andN = 20 are given in Figures 1-3. In each case we see that
with only twenty nodes in our mesh, the boundary positiogFés 1(b)—-3(b)) is computed very
accurately (better than 1% relative errottat 5 in each case). Figures 1(c)-3(c) show exactly
how the mesh moves. We observe a smooth even spread of thge mott@ut mesh tangling, in

all three cases.

4.2. Richards’ Equation

In this section we present results from applying the movimgimmethod to Richards’ equa-
tion, as described i§3.2. To test that the numerical solution from the moving mestthod
converges we compare the solution with that from a very firedfixesh. All numerical results
presented here are far= 3. In the absence of an exact reference solution we do notaemp
the position of the boundary. R

We solve fort € [0,0.5] and compute results fod = 10x 21, N = 1,...,4. We compare
the numerical solutions with a reference solution computét N = 6. We take the initial

13
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(a) The approximate solution.
4.2
a
3.8
3.6
=
g 3.4r-
N
(=}
< 32F
3l
2.8
2.6
‘ ‘ ‘ ‘ ‘ ‘ - --Numerical
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t
(b) The boundary position (relative errortat 5 is 0.0015).
25
20 -
15 -
-
10 A
sk |
0 L L L L L L
0 1 2 3 4 5 6 7

Xj,2(t)

(c) The mesh trajectory.

Figure 1: The PME with self-similar initial conditions far= 1 (46),N = 20 (N =2),At = 0.025.
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1
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(a) The approximate solution.

(b) The boundary position (relative errortat 5 is 0.0037).

2.5
Xj,2(t)

(c) The mesh trajectory.

Figure 2: The PME with self-similar initial conditions for= 2 (47),N = 20 (N = 2), At = 0.02.
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(b) The boundary position (relative errortat 5 is 0.0064).
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(c) The mesh trajectory.

Figure 3: The PME with self-similar initial conditions far= 3 (48),N = 20 (N = 2), At = 0.02.
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conditions to be
u(x,0) = 1 -2, x e [-1,1].

To balance the spatial and temporal errors weAtse O(1/N?), preciselyAt = 0.4(4‘”) (as
with the PME whem = 1).

Computed values dEy, andE}| for N =1,...,4 (i.e. N = 10, 20,40, 80) are shown in Ta-
ble 3. Again, thep andqvalues strongly suggest second-order convergence of v@thumerical
solution and numerical boundary position. The numerichltsm as computed wittN = 40 is

N EX P EX aN
10 | 3.030x 102 - 1.800x107% -

20 | 8676x10°% 1.8 4575x10° 2.0
40 | 2119x10°% 2.0 1161x10°% 2.0
80| 5114x10* 2.0 2857x10* 2.0

Table 3: Relative errorky, for Richards’ equatiom = 3.

plotted in Figure 4. We see from Figure 4(b) that the mesh mewenothly and does not tangle.

4.3. The Original Crank-Gupta problem

In this section we present results from applying the moviegimmethod to the Crank-Gupta
problem as described i$3.3. The boundary position was calculated using (37). Eidi(g)
shows the numerical solution at various times fog [0,0.19]. We note that the solution is
behaving as expected; the outer boundary is moving in, wthiésinner boundary is levelling out
to satisfy the boundary condition.

There is no known analytical solution to the Crank-Guptabpm but, as a comparison, we
may use the results of Dahmardah and Mayers [11] who deriealigier Series solution (also
see [21]). By comparing their results with earlier work ir3[they concluded that their method
is very accurate. To check whether our method convergésiasreases andt decreases, we
comparel, (0.1) andxy (0.1) to the results given in [11] far= 0.1, which are

0(0,01) = 0143177
X(0.1) 0.935018

We solve fort € [0,0.1] and compute results fod = 10 x ZN‘}, N = 1,...,6. To balance the
spatial and temporal errors we use= ()(1/N2) = 1/[1600(4")]. As a measure of the relative
pointwise errors, we calculate

Eu _ [u(0,0.1) — ug i (0.2)l Ex _ X(0.1) — X\ 1 (0.1)l
N ’ N VI

|u(o, 0.1)|
forN=1,...,6 (i.e. N = 10, 20,40, 80, 160). We investigate the same hypothesis (44) as in the
two previous sections (though note that our measure of eygdightly diferent here). We again
computepay anddy Via (45), but withEY, andEY, replaced byEY, andEY, respectively.
It appears that the non mass-conserving moving mesh metltbdexplicit Euler time-
stepping has second-order convergence. The movement wbttes folN = 20,t € [0,0.19], is
17
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0.9 ---t=02
““““ t=0.4
o8 SN e t=0.6
—t=08
0.7 t=1
t=1.2
0.6 -=t=14
—t=16
051 t=18
--t=2
0.4
0.3
0.2
0.1
0
=3
Xj,3(t)
(a) The approximate solution.
P
1.8F
16F
141
1.2
1
0.8
0.6/
0.4f
0.2
% 2 =) 0 2
Xj,3(t)
(b) The mesh trajectory.
Figure 4: Richards’ equation with= 3, N = 40 (N = 3), At = 0.00625.
N | uyg(0.1) Ey pn - Xy (0.1) (= aN
10 [ 0.142791 Zx103% - 0.935761 MPx10* -
20 | 0.142721 2x10°% -0.2 0.935385 B®»x10* 1.0
40 | 0.143040 $Hx10* 1.7 0.935120 1LAx10* 1.8
80 | 0.143141 Bx10* 19 0.935043 ZIx10° 2.0
160 | 0.143168 @&x10° 2.0 0.935024 @x10° 2.0

Table 4: Relative erroré‘,{l and Eﬁ, for the original Crank-Gupta problem.
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(b) The mesh trajectory.

Figure 5: The Crank-Gupta problem solved using relativéiglanass conservatiotN = 20 (N = 2), At = 3.9x 1075,

shown in Figure 5(b). The nodes are moving smoothly and mafiitag, with the ratio between

the nodes remaining roughly constant. We observe that tdéepg boundary moving in, the
nodes still cluster towards the boundary, where higheluésa allows greater accuracy to track
the boundary movement.

4.4. The Crank-Gupta problem with modified boundary coongi

As mentioned before, we were unable to compare the origirahkGupta problem to an
analytical solution. However, by imposing an alternatiegibdary condition (38) we can exam-
ine convergence &s increases andt decreases over the whole region. We solvé {0, 0.1]
and compute results fod = 10x 2N-1, N = 1,...,6. We compare the numerical outcomes with
the exact solution (40), at= 0.1,

U(x(0.1).01) = ewOD09_x (01)-01
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To balance the spatial and temporal errors weatse O (1/N?) = 0.02(4‘“).
Numerical results are shown in Table 5. We see HBjatecreases a increases, and the

N EX PN
10 | 7581x10° -
20 | 2502x10° 1.6
40 | 6.796x10% 1.9
80 | 1.825x10* 1.9
160 | 4879x10° 1.9
320 | 1.235x10° 2.0

Table 5: Relative errorky, for the Crank-Gupta problem with modified boundary condiion

values ofpy suggest second-order convergence.

Figures 6(a)-6(b) show the results from imposing the matilfieundary condition, as com-
puted withN = 20. The solution to the original problem is very small foe 0.19, see Fig-
ure 5(a), whereas the modified problem decays more slowlys iStpartly because the outer
boundary moves in at a slower rate for the modified problenichvban be seen by comparing
the movement of the last node in Figures 5(b) and 6(b) (wher®bserve that the boundary
moves in linearly). Lastly, from Figure 6(b) we note that timdes move in a fairly uniform
manner, without tangling.

5. Conclusions

Work on moving meshes has evolved considerably over re@arsybecoming a versatile
tool to accurately simulate a wide range of problems. Theddaantage of a moving mesh is its
ability to adjust its distribution to focus on areas of ilgt; such as a moving boundary or blow-
up. In this paper we have discussed one such method, a fiffiéeestice moving mesh method
which is well-adapted to solving one-dimensional nonlmiedial boundary value problems.
The velocity was determined by keeping the relative painitgigrals of the solution,

% (t)
I o U dx

I lzt()t) u(x, t) dx
constant. This strategy is related to the GCL method andnidlasi to that used by Baines,
Hubbard and Jimack for their moving mesh finite element dtigor[1, 2].

We applied these methods to a number of moving boundary gmabto investigate the ef-
fectiveness of this moving mesh approach. The problems Wwedomumerically increased in
complexity, initially problems which conserve mass: thelPkhd Richards’ equation (both of
which are fluid flow problems). Then we looked at a problem vaittariable total mass: the
Crank-Gupta problem, which models oxygeffasion through tissue. We examined the accu-
racy in all cases and found that the numerical solution ag®ae with roughly second-order
accuracy. Furthermore, for the Crank-Gupta problem, waddhat preservation of mass frac-
tions can lead to higher resolution at the boundary, duegtintrease in relative density near the
boundary as time advances, which is desirable. In generahgure a higher resolution near the
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Figure 6: The Crank-Gupta problem with modified boundary dtémms, N = 20 (N = 2), At = 1.25x 1073,

21



368

370

372

374

376

378

380

boundary, it may be advantageous to use a non-uniformlinitgsh with nodes clustered near
the boundary.

Throughout this paper we have used an explicit Euler tirapghg scheme. Other time-
stepping schemes we experimented with are the higher oreloahs built into Matlab (ODE23,
ODEA45, ODE15s); see [16] for details. There was littl&atence in the results from all the
Matlab solvers, indicating that none of the problems leaal $tif system of ODEs for the;(t).
We found that all the time-stepping schemes produced aecanal stable results, with no mesh
tangling, provided that ghiciently small time-steps were taken. It has been shown 253,
that the PME can also be solved by this moving mesh methodangémi-implicit time-stepping
scheme using larger time steps.

We conclude that this moving mesh approach with an explitietstepping scheme is ac-
curate for a range of moving boundary problems. In particaaly twenty nodes (and in most
cases only ten nodes) wereffitient to achieve better than 1% accuracy for every examgle pr
sented here.
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