
A finite difference moving mesh method based on conservation for
moving boundary problems

T. E. Leea,b,1, M. J. Bainesa, S. Langdona

aDepartment of Mathematics and Statistics, University of Reading, UK
bMathematical Institute, University of Oxford, UK

Abstract

We propose a velocity-based moving mesh method in which we move the nodes so as to preserve
local mass fractions. Consequently, the mesh evolves to be finer where the solution presents rapid
changes, naturally providing higher accuracy without the need to add nodes. We use an integral
approach which avoids altering the structure of the original equations when incorporating the
velocity and allows the solution to be recovered algebraically. We apply our method to a range of
one-dimensional moving boundary problems: the porous medium equation, Richards’ equation,
and the Crank-Gupta problem. We compare our results to exactsolutions where possible, or to
results obtained from other methods, and find that our approach can be very accurate (1% relative
error) with as few as ten or twenty nodes.

Keywords:, Time dependent partial differential equations, Finite difference methods,
Velocity-based moving meshes, Mass conservation
2010 MSC:, 65M06, 92-08, 92C99

1. Introduction

Time-dependent partial differential equations (PDEs) on moving domains, with known fluxes2

across the boundaries, occur regularly in physical and biological modelling, and must often be
solved numerically. The location of the moving boundary is often critical and may require special4

numerical resolution. In particular, the solution may exhibit singular behaviour at the boundary
that is challenging to capture numerically.6

Adaptive numerical schemes modify the mesh during the course of computation in response
to changes in the dependent variable (or its approximation)in order to achieve greater precision8

and/or greater efficiency. Generally, an adaptive mesh scheme becomes preferable to a fixed
mesh scheme when areas of interest represent only a fractionof the domain being investigated.10

Increasing the resolution in these areas may then be computationally less expensive than refine-
ment of the mesh over the entire grid. The most common form of mesh adaptivity ish-refinement12

which involves repeated subdivision of the intervals of a fixed mesh. Other strategies include
p-refinement, in which the solution is represented locally byhigher order polynomials, andr-14

refinement in which the mesh points are relocated at each timestep. The use ofr-refinement

∗Corresponding author
Email address:tamsin.lee@maths.ox.ac.uk (+44)1865 611511 (T. E. Lee)

Preprint submitted to Journal of Computational Applied Mathematics January 22, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/362654194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

has been stimulated by interest in geometric integration, in particular scale invariance (see, e.g.,16

[8]). For scale invariant differential equations, independent and dependent variables are treated
alike. Anr-refinement method is able to vary the solution and the mesh simultaneously, meaning18

that the scheme exhibits the same scale invariance as the underlying differential equation. The
article by Budd, Huang and Russell [8] and the book by Huang and Russell [15] describe many20

theoretical and practical aspects ofr-adaptivity.
In this paper a particularr-refinement adaptive scheme is described for the solution ofone-22

dimensional time-dependent PDEs on moving domains. The approach relocates a constant num-
ber of nodes by moving the mesh points, keeping a node locatedat each moving boundary. We24

show that a mesh with as few as ten or twenty nodes can offer a relative error of less than 1%
(see Tables 1–5 in§4). The work we present here preserves mass (or relative massas appro-26

priate), causing the mesh to naturally refine where the solution has high relative density. This
is particularly useful for solutions with blow-up, or (as demonstrated here) infinite slope. At-28

tractive aspects of the approach are that no interpolation of the boundary is required, only the
moving domain need be discretised, and the continuous movement of the mesh points allows30

easier inclusion of time integrators.
Underr-refinement nodes may be relocated in many ways, according tothe choice of monitor32

functions [8], and the solution is often found from a moving form of the PDE. A mesh equation is
often solved simultaneously with the modified PDE so as to generate the node positions in tandem34

with the solution, as in the Moving Mesh PDE approach [5, 14],the Moving Finite Element
method of Miller [19, 20], or the parabolic Monge-Ampere approach of Budd and Williams [6,36

7]. By contrast, in the method described in this paper a single time-dependent equation is solved,
that of the mesh, the solution being determined algebraically from a conservation principle. The38

approach is a finite difference version of the velocity-based moving mesh finite element scheme
described by Baines, Hubbard and Jimack in [1, 2], in which the mesh equation is based upon40

conserving a proportion of the total integral (mass) of the dependent variable in the domain. The
method in [1, 2] differs from methods depending on the technique of equidistribution [5, 14, 6, 7]42

since equidistribution is not an integral part of the strategy, but is related to the Deformation
method of Liao and co-workers [17, 18] and to the Geometric Conservation Law (GCL) method44

of Cao, Huang and Russell [9]. The scheme described herein has been applied to a specific
tumour growth problem in [16]. Here we generalise the approach to a wider class of problems,46

provide key implementation details, and show numerical results for three different nonlinear
diffusion problems, each example demonstrating a key feature absent from the problem in [16].48

Moreover, we validate our results via comparison with knownexact solutions and with results
from other (unrelated) approaches.50

Throughout we only consider one-dimensional problems. In principle the method can be gen-
eralised to higher dimensions, but there are special difficulties with finite differences in higher52

dimensions and the propensity for mesh tangling is greater.Finite elements are generally con-
sidered superior for two- and three-dimensional problems,see [1, 2].54

The layout of the paper is as follows. In§2 we describe the conservation approach, and its
finite difference implementation. First, in§2.1, we consider mass conserving problems. Then56

in §2.2 these ideas are extended to non mass-conserving problems using a normalisation tech-
nique. In§3 the schemes are applied to three moving boundary problems,beginning in§3.1 with58

a mass-conserving problem governed by the porous medium equation (PME) (see, e.g., [26]), for
which we consider a symmetrical test problem, treated with just one moving boundary. In§3.260

the method is applied to a test problem governed by Richards’equation (see [24]). This prob-
lem also conserves global mass but the test problem considered is unsymmetrical, so there are62

2

two moving boundaries. The third problem, detailed in§3.3, is known as the Crank-Gupta or
diffusion-absorption problem [10], for which global mass is notconserved. We solve the Crank-64

Gupta problem for two sets of boundary data, one corresponding to that of the original problem
(see [10]), and the other chosen so that we can easily verify our results against a known exact66

solution. Numerical results for all our examples are provided in§4, and some conclusions are
presented in§5.68

We remark finally that our investigation is confined to initial-boundary-value problems for
which the solutionu(x, t) is one-signed in the interior of the domain, which is necessary for the70

validity of the method.

2. Conservation-based moving mesh methods72

Let u(x, t) be a positive solution of the generic time-dependent scalar PDE

∂u(x, t)
∂t

= Lu(x, t), t > t0, x ∈ (a(t),b(t)), (1)

whereL is a purely spatial differential operator. In all of our examples we have a moving74

boundary atx = b(t) at which we impose the following Dirichlet and flux boundaryconditions

u(b(t), t) = 0, (2)

u(b(t), t)
db
dt

= 0. (3)

The initial condition is76

u(x, t0) = u0(x), x ∈ (a(t0),b(t0)).

We introduce a time-dependent space coordinate ˜x(x, t) which coincides instantaneously with the
fixed coordinatex. Consider two such coordinates, ˜x(x1, t) andx̃(x2, t), in (a(t),b(t)), abbreviated78

to x̃1(t) and x̃2(t). The rate of change of the mass in the subinterval (˜x1(t), x̃2(t)) is given by
Leibnitz’ Integral Rule in the form80

d
dt

∫ x̃2(t)

x̃1(t)
u(s, t) ds =

∫ x̃2(t)

x̃1(t)

(

∂u(s, t)
∂t

+
∂

∂s
(u(s, t)v(s, t))

)

ds, (4)

where

v(x, t) =
dx̃
dt

∣

∣

∣

∣

∣

x̃=x
(5)

is a local velocity. We denote the total (global) mass by82

θ(t) :=
∫ b(t)

a(t)
u(x, t) dx. (6)

2.1. A method based on preservation of partial masses
We begin by describing a solution method for problems that conserve the total integral (global84

mass) of the solution, i.e. for whichθ(t) remains constant for allt ≥ t0. Sincex̃1(t) and x̃2(t) are
arbitrary, equation (4) demonstrates the equivalence of the Lagrangian conservation law,86

d
dt

∫ x̃2(t)

x̃1(t)
u(s, t) ds= 0, (7)

3

and the Eulerian conservation law,

∂u(x, t)
∂t

+
∂

∂x
(u(x, t)v(x, t)) = 0. (8)

From (8) and the PDE (1) we have88

Lu(x, t) +
∂

∂x
(u(x, t)v(x, t)) = 0, (9)

which, givenu(x, t), may be regarded as an equation for the velocityv(x, t). For a unique solution
of (9), the fluxu(x, t)v(x, t) must be imposed at one point which may be thought of as an ‘anchor’90

point. In the examples considered here it will be taken as a boundary point. Integrating (9) from
a(t) to x,92

∫ x

a(t)
Lu(s, t) ds+ u(x, t)v(x, t) = u(a(t), t)v(a(t), t),

whereu(x, t)v(x, t) is imposed at the anchor pointx = a(t). The velocityv(x, t) is then given by

v(x, t) =
u(a(t), t) v(a(t), t) −

∫ x

a(t)
Lu(s, t) ds

u(x, t)
, (10)

at all interior points, sinceu(x, t) > 0 in the interior of the domain.94

Our numerical method is based on the idea that points ˜x(x, t) of the domain can be moved
with this velocity in a Lagrangian manner using96

x̃(x, t + ∆t) = x̃(x, t) + ∆t v(x, t) + O(∆t)2. (11)

To recover the solutionu(x̃(t), t), given x̃1(t) and x̃2(t), we use the conservation law (7) in the
integrated form98

∫ x̃2(t)

x̃1(t)
u(s, t) ds= c(x̃1(t), x̃2(t)), (12)

wherea(t) < x̃1(t) < x̃2(t) < b(t), and the constantc is given by the initial datau0(x) as

c(x̃1(t), x̃2(t)) = c(x̃1(t0), x̃2(t0)) =
∫ x̃2(t0)

x̃1(t0)
u0(s) ds. (13)

A one point quadrature approximation to (12) leads to100

u(x̃, t) =
c(x̃1(t0), x̃2(t0))

x̃2(t) − x̃1(t)
+ O (∆x̃) , (14)

where∆x̃ = x̃2(t) − x̃1(t), for all x̃ ∈ (x̃1, x̃2). Boundary conditions may be imposed onu(x̃, t)
at this stage, care being needed to preserve global mass conservation. Examples are described102

in §3 below.
We now define a finite difference method based on this theory, with the following notation.104

Given a time step∆t > 0 and a fixed numberN + 1 of spatial nodes, choose discrete times
tm = m∆t, m= 0,1, . . ., and discretise the interval at each discrete timetm using the nodal points106

4

Xm
j = x̃ j(tm), j = 0,1, . . . ,N, for which a(tm) = Xm

0 < Xm
1 < . . . < Xm

N = b(tm). Also define
approximationsUm

j ≈ u(x̃ j , tm) andVm
j ≈ v(x̃ j , tm).108

Our finite difference moving mesh algorithm for mass-conserving problemsis then as fol-
lows. Choose initial node positionsX0

j , j = 0,1, . . . ,N, with corresponding approximate solution110

valuesU0
j > 0, and use them to determine the approximate masses

C j =
(

X0
j+1 − X0

j−1

)

U0
j , j = 1, . . . ,N − 1. (15)

Then at timetm for m= 1,2, . . ., givenXm
j andUm

j we computeXm+1
j andUm+1

j as follows:112

1. Evaluate the interior velocities (c f. (10))

Vm
j =

Um
0 Vm

0 −
∫ Xm

j

Xm
0
Lu(s, tm) ds

Um
j

, j = 1, ...,N − 1,

where the integral is discretised, for example, by a composite trapezium rule. At the114

boundaries extrapolate the velocity from interior values.

2. Evolve the nodal positionsXm
j , j = 1, . . . ,N − 1, in time fromtm to tm+1 by the explicit116

Euler timestepping scheme (c f . (11))

Xm+1
j = Xm

j + ∆t Vm
j . (16)

3. Recover the solutionUm+1
j at interior points as (c f. (14))118

Um+1
j =

C j

Xm+1
j+1 − Xm+1

j−1

, j = 1, ...,N − 1, (17)

with Um+1
N = 0 from (2) andUm+1

0 being updated either from given boundary conditions or
by extrapolation, depending on the nature of the problem (see§3).120

2.2. A method based on preservation of relative partial masses

For more general problems that do not conserve mass,θ(t) (defined by (6)) varies with time.122

Hence (7) and (8) no longer hold. We may however make use of Leibnitz’ Integral Rule applied
to thenormalisedfunctionu(x, t)/θ(t), giving124

d
dt

{

1
θ(t)

∫ x̃2(t)

x̃1(t)
u(s, t) ds

}

=
1
θ(t)

∫ x̃2(t)

x̃1(t)

(

∂u(s, t)
∂t

+
∂

∂s
(u(s, t)v(s, t)) − θ̇(t)

θ(t)
u(s, t)

)

ds, (18)

for all a(t) < x̃1(t) < x̃2(t) < b(t), wherev(x, t) is the local velocity (5) anḋθ(t) = dθ/dt. Since
x̃1(t) and x̃2(t) are arbitrary, equation (18) shows that the Lagrangian conservation equation,126

d
dt

{

1
θ(t)

∫ x̃2(t)

x̃1(t)
u(s, t) ds

}

= 0, (19)

is equivalent to the normalised Eulerian conservation equation ,

∂u(x, t)
∂t

+
∂

∂x
(u(x, t)v(x, t)) =

θ̇(t)
θ(t)

u(x, t). (20)

5

We derive the velocity from this generalised form in the samemanner that we used in (8). That128

is, from (20) and the PDE (1) we derive

Lu(x, t) +
∂(u(x, t)v(x, t))

∂x
=
θ̇(t)
θ(t)

u(x, t), (21)

which, givenu(x, t), can be regarded as an equation forv(x, t) in terms ofθ(t) andθ̇(t). As before,130

for a unique solutionu(x, t)v(x, t) must be imposed at the anchor pointx = a(t), so that the
integral of (21) froma(t) to x gives132

u(x, t)v(x, t) = u(a(t), t) v(a(t), t) −
∫ x

a(t)
Lu(s, t) ds+

θ̇(t)
θ(t)

∫ x

a(t)
u(s, t) ds.

Hence the velocity is given by

v(x, t) =
u(a(t), t) v(a(t), t) −

∫ x

a(t)
Lu(s, t) ds+ θ̇(t)

θ(t)

∫ x

a(t)
u(s, t) ds

u(x, t)
(22)

at all interior points, sinceu(x, t) > 0 in the interior of the domain.134

To evaluatėθ we integrate (21) froma(t) to b(t), assuming thatu(x, t) andv(x, t) are continu-
ous up to the boundary, yielding136

∫ b(t)

a(t)
Lu(s, t) ds+

[

u(x, t)v(x, t)
]b(t)

a(t)
= θ̇(t), (23)

which determineṡθ explicitly (using (3)).
The points ˜x(x, t) of the domain are now moved with the velocity (22) in a Lagrangian man-138

ner, again using (11), and we can also updateθ using

θ(t + ∆t) = θ(t) + ∆t θ̇(t) + O(∆t)2.

To recover the solutionu(x̃(t), t) we choose ˜x1, x̃2, such that (19) holds, in which case140

1
θ(t)

∫ x̃2(t)

x̃1(t)
u(s, t) ds=

1
θ(t0)

c(x̃1(t0), x̃2(t0)), (24)

for a(t) < x̃1(t) < x̃2(t) < b(t), wherec is as defined in (13) andc/θ is now the constant that is
preserved in time. Thus142

u(x̃, t) =
θ(t)
θ(t0)

c(x̃1(t0), x̃2(t0))
x̃2(t) − x̃1(t)

+ O (∆x̃) (25)

for all x̃ ∈ (x̃1, x̃2), as in (14). Again, the boundary conditions may be imposed on u(x̃, t) at this
stage.144

The discretisations given in§2.1 are augmented by the additional approximationsΘm ≈ θ(tm)
andΘ̇m ≈ θ̇(tm), and then our finite difference moving mesh algorithm for non mass-conserving146

problems is as follows. Choose initial node positionsX0
j with corresponding approximate solu-

tion valuesU0
j > 0, j = 1, . . . ,N − 1, and use them to calculate the approximate relative masses148

C j/Θ
0, whereC j is given by (15) andΘ0, the initial value ofΘ, is given by (c f. (6))

Θ0 =
1
2

∑

j

(

X0
j+1 − X0

j

)(

U0
j + U0

j+1

)

,

6

using a trapezium rule. Then at timetm for m = 1,2, . . ., givenΘm, Xm
j andUm

j we compute150

Θm+1, Xm+1
j andUm+1

j as follows:

1. Evaluate the rate of changeΘ̇m of the approximate total massΘm in the form (c f. (23))152

Θ̇m =

∫ Xm
N

Xm
0

Lu(s, tm) ds+ Um
NVm

N − Um
0 Vm

0 ,

where the integral is discretised using a trapezium rule;

2. Evaluate the discrete velocity at interior points as (c f. (22)),154

Vm
j =

Um
0 Vm

0 −
∫ Xm

j

Xm
0
Lu(s, tm) ds+ Θ̇

m

Θm

∫ Xm
j

Xm
0

u(s, tm) ds

Um
j

, j = 1, . . . ,N − 1,

where the integrals are discretised using a trapezium rule.At the boundaries extrapolate
the velocity from interior values.156

3. Evolve both the nodal positionsXm
j , j = 1, . . . ,N − 1, and the total massΘm from tm to

time tm+1 by the explicit Euler time-stepping scheme (16) andΘm+1 = Θm + ∆tΘ̇m.158

4. Recover the solutionUm
j at interior points as (c f. (25))

Um+1
j =

Θm+1

Θ0

C j

Xm+1
j+1 − Xm+1

j−1

, j = 1, . . . ,N − 1,

and atj = 0, j = N as in Step 3 of the algorithm of§2.1.160

3. Examples

In this section we apply the methods outlined in§2 to some specific moving boundary prob-162

lems in one-dimension.

3.1. The Porous Medium Equation164

The PME is the simplest nonlinear diffusion problem which arises in a physically natural
way, describing processes involving fluid flow, heat transfer or diffusion. It also occurs in math-166

ematical biology and other fields [26]. We assume the initialdata is symmetrical about its centre
of mass, taken to be the origin, in which case the PME takes theform168

∂u
∂t
=
∂

∂x

(

un∂u
∂x

)

, t > t0, x ∈ (−b(t),b(t)),

with u(−b(t), t) = u(b(t), t) = 0 andu(±b(t), t)db/dt = 0. For this problem the total mass (6) is
conserved and the centre of mass is fixed in time [26], from which it follows that the solution170

retains the symmetry of the initial data for all time. We therefore model only half of the region,
i.e. x(t) ∈ [0,b(t)], with a(t) = 0 as the anchor point for allt. For the half problem we have172

∂u
∂x
= 0 at x = 0, (26)

7

by symmetry. From (10) the velocity in the interior is given by

v(x, t) = − 1
u(x, t)

∫ x

0

∂

∂s

(

u(s, t)n∂u
∂s

)

ds = −un−1∂u
∂x
= −1

n
∂(un)
∂x
, t > t0, x ∈ [0,b(t)). (27)

Given approximationsXm
j andUm

j , j = 0,1, . . . ,N, m= 0,1,2, . . ., the finite difference algorithm174

of § 2.1 is used, first, to calculate the velocityVm
j at each nodej, j = 0,1, . . . ,N, then the new

nodal positionsXm+1
j , and finally the approximate solutionUm+1

j . A standard discretisation of the176

velocity (27) at interior nodes is

Vm
j = −

1
n















(Um
j+1)n − (Um

j−1)n

Xm
j+1 − Xm

j−1















, j = 1,2, ...,N − 1,

which, although of second order on a uniform mesh, is only a first order discretisation on a non-178

uniform mesh. An approximation which is second order on a non-uniform mesh (i.e. exact for
quadratics) uses all three valuesUm

j−1, Um
j andUm

j+1, and is180

Vm
j = −

1
n

























1
∆+Xm

j

(

∆+(Um
j)n

∆+Xm
j

)

+ 1
∆−Xm

j

(

∆−(Um
j)n

∆−Xm
j

)

1
∆+Xm

j
+ 1
∆−Xm

j

























, j = 1,2, ...,N − 1, (28)

where

∆+(·) j = (·) j+1 − (·) j and ∆−(·) j = (·) j − (·) j−1

(see [22]). We note that equation (28) is an inversely weighted sum, or linear interpolation, of182

the gradients∆±(Um
j)n/∆±Xm

j . The velocity atx = 0 is zero and at the moving boundaryx = Xm
N

the velocityVm
N is extrapolated by a polynomial approximation using three adjacent points. The184

new mesh is obtained at timetm+1 = tm + ∆t by the explicit Euler time-stepping scheme (16).
The updated approximate solutionUm+1

j is given by (17), j = 1, . . . ,N − 1. At j = 0 the186

approximate solutionUm+1
0 is calculated using (28) with the reflection conditionX−1 = −X1,

approximating the boundary condition (26). At the outer boundary,Um+1
N = 0 from (2). Results188

are presented in§4.

3.2. Richards’ Equation190

Richards’ equation is a nonlinear PDE which models the movement of moisture in an un-
saturated porous medium [24]. In the present paper we model aparticular form of Richards’192

equation, where the solution describes liquid flowing downwards through an unsaturated porous
medium, making it applicable to the tracking of a contaminated liquid. The equation is of the194

form

∂u
∂t
=
∂

∂x

(

un−2∂u
∂x

)

+
∂un

∂x
, t > t0, x ∈ (a(t),b(t)), (29)

for some integern > 2, with u(a(t), t) = u(b(t), t) = 0 andu(a(t), t)da/dt = u(b(t), t)db/dt = 0196

at the boundaries. The total mass is again conserved in time [24]. The velocity is given by (10)
with Lu defined as the right-hand side of (29),198

v(x, t) = −un−3∂u
∂x
− un−1 = − 1

n− 2
∂(un−2)
∂x

− un−1. (30)

8

In a similar way to (28) we discretise (30) as

Vm
j = −

1
n− 2



























1
∆+Xm

j

(

∆+(Um
j)n−2

∆+Xm
j

)

+ 1
∆−Xm

j

(

∆−(Um
j)n−2

∆−Xm
j

)

1
∆+Xm

j
+ 1
∆−Xm

j



























− (Um
j)n−1, j = 1, . . . ,N − 1.

Again, the outer boundary velocitiesVm
0 ,V

m
N are extrapolated from interior points, using three200

adjacent nodes. The new meshXm+1
j is obtained fromVm

j by an explicit Euler time-stepping

scheme, as in (16). The updated approximate solutionUm+1
j , j = 1, . . . ,N − 1, is given by (17),202

and at the boundariesUm+1
0 = Um+1

n = 0. Results for this example are shown in§4.

3.3. The Crank-Gupta problem204

The Crank-Gupta problem was derived to model the diffusion of oxygen through an absorb-
ing tissue [10], but also applies within the Black-Scholes framework of financial modelling due206

to the valuation of an American option being a similar free boundary problem [12].
The differential equation is208

∂u
∂t
=
∂2u
∂x2
− 1, 0 < x < b(t), (31)

with boundary conditions

∂u
∂x
= 0 at x = 0, for t > 0, (32)

u = 0,
∂u
∂x
= 0 at x = b(t), for t > 0. (33)

For this problem the total massθ(t) decreases with time due to the negative source term in (31).210

The initial condition att0 = 0 is taken as

u(x,0) =
1
2

(1− x)2

for x ∈ [0,1], as in [10], giving initial total massθ(0) = 1/6. Similarly, we can determine the212

normalised partial integrals from 0 tox, defined by

γ(x) =
1
θ(0)

∫ x

0

1
2

(1− s)2 ds= x3 − 3x2 + 3x. (34)

The rate of changėθ of the total massθ is given by substituting the PDE (31) and the boundary214

conditions (32)–(33) into (23), yielding

θ̇(t) =
∫ b(t)

0

(

∂2u
∂x2
− 1

)

dx =

[

∂u
∂x
− x

]b(t)

0

= −b(t). (35)

The velocityv(x, t) is obtained by substituting the PDE (31) and the boundary conditions (32)–216

(33) into (22) and evaluating the integral, giving forx ∈ [0,b(t))

v(x, t) =
1

u(x, t)

(

θ̇(t)γ(x) −
∫ x

0

{

∂2u
∂s2
− 1

}

ds

)

=
1

u(x, t)

(

−γ(x) b(t) − ∂u
∂x
+ x

)

(36)

9

(substituting foṙθ(t) from (35) and using the boundary condition atx = 0).218

We use the algorithm of§2.2. The discrete formΓ j of γ(x) at interior points is (c f. (34))

Γ j = X3
j − 3X2

j + 3X j , j = 1, . . . ,N,

while the discrete forṁΘ(tm) of θ̇(tm) is (c f. (35))220

Θ̇ = −Xm
N .

Also the discrete formVm
j of the velocityv(x, t) at interior points is (c f. (36))

Vm
j =

1
Um

j



























−Γ jX
m
N −

























1
∆+Xm

j

(

∆+Um
j

∆+Xm
j

)

+ 1
∆−Xm

j

(

∆−Um
j

∆−Xm
j

)

1
∆+X jm +

1
∆−Xm

j

























+ X j(t)



























, j = 1, . . . ,N.

At the outer boundary our previous strategy, to extrapolatethe boundary velocityVm
N from222

velocities at internal points, gives physically incorrect(positive) values. An alternative is to
exploit the asymptotic behaviour of the solution at the outer boundary by assuming the form224

u(x, t) ∼ 1
2

(x− b(t))2 asx→ b(t),

following from (31) and (33). Therefore, in the discrete case we make the approximation

Um+1
N−1 ≈

1
2

(Xm+1
N−1 − Xm+1

N)2,

which leads to226

Xm+1
N = Xm+1

N−1 +

√

2Um+1
N−1 (37)

(taking the positive square root).
The new node positionsXm+1

j , j = 0, . . . ,N at timetm+1 as well as the new total massΘm+1
228

are obtained by the explicit Euler time-stepping scheme.

3.4. The Crank-Gupta problem with a modified boundary conditions230

There is no known analytical solution for the Crank-Gupta problem although approximate
solutions have been given in [11]. Hence, in order to compareour results to an exact solution232

we have modelled the Crank-Gupta PDE with a modified boundarycondition for which an exact
solution is known, which can then be used for comparison [1].The one-dimensional Crank-234

Gupta problem with a modified boundary condition

∂u
∂x
= et−1 − 1 at x = 0, t > t0, (38)

replacing (32), and initial conditions236

u(x,0) = ex−1 − x, t0 = 0, x ∈ [0,1], (39)

10

has solution

u(x, t) =

{

ex+t−1 − x− t x ≤ 1− t,
0 x > 1− t

(40)

(see, e.g., [1]). By applying the conservation based movingmesh method to this modified prob-238

lem we can investigate the accuracy of the scheme for a non mass-conserving problem. The
normalised partial integralsγ(x) (see (34)) are240

γ(x) =
1
θ(0)

∫ x

0

(

es−1 − s
)

ds=
e−1(ex − 1)− x2

2
1
2 − e−1

, (41)

whereθ(0) = 1/2 − e−1 from (6) and (39). The rate of changeθ̇ of the approximate total mass
θ (23), and the velocity of the interior nodes (22), are242

θ̇(t) = 1− et−1 − b(t). (42)

v(x, t) =
1

u(x, t)

(

θ̇(t)γ(x) − ∂u
∂x
+ x− 1+ et−1

)

, (43)

from (31), (33) and (38). Equations (42)–(43) are equivalent to (35)–(36), but with an additional
(1 − et−1) term from the modified boundary condition. We again apply the algorithm of§2.2244

using discrete forms of (41)–(43). At the fixed boundary,Vm
0 = 0. At the moving boundary,

equation (37) is again employed since the moving boundary conditions are the same as for the246

original problem. The new node positionsXm+1
j , as well as the new total massΘm+1, are obtained

from Vm
j by the explicit Euler time-stepping scheme. The solution isrecovered in the same248

manner as for the original Crank-Gupta problem modelled in§3.3.

4. Numerical results250

In this section we present results from applying the moving mesh method to the four prob-
lems described above: the PME, Richards’ equation, the original Crank-Gupta problem, and252

the Crank-Gupta problem with modified boundary conditions.In each case the initial mesh is
equally spaced. For each problem we examine the convergenceof the finite difference moving254

mesh method as the number of nodesN increases and as∆t decreases. We solve fort ∈ [t0,T]
and compute results forN = 10× 2N̂−1, N̂ = 1,2, In order to compare results for different256

values ofN̂, we denote the points of the mesh for a particular value ofN̂ by x j,N̂(t), j = 0, . . . ,N.
We then compute bothx2N̂−1i,N̂(t) and u2N̂−1i,N̂(t) ≈ u(x2N̂−1i,N̂(t), t) for eachi = 0, . . . ,10; this258

new notation allows comparison ofx j,N̂(t) andu j,N̂(t) at eleven different points, determined by

j = 2N̂−1i, i = 0, . . . ,10, for variousN. Where possible we compare the numerical outcomes260

with the exact solution and boundary position. When such a solution is not known, we compare
with numerical results determined using other methods. In each case we denote our reference262

solution byū(x, t), and our reference boundary position by ¯x(t).
Recalling that we have used explicit Euler time-stepping, in order to balance the spatial and264

temporal errors for these second order diffusion problems, we take (for most of our examples)
∆t = O

(

1/N2
)

, anticipating that the pointwise errors|x̄(t)−xN,N̂(t)| and|ū(x2N̂−1i,N̂(t), t)−u2N̂−1i,N̂(t)|266

will decrease aŝN increases, for eachi = 0, . . . ,10. (Note that we take smaller time steps for
one of our examples in Section 4.1 for stability reasons.)268

11

As a measure of the errors, we calculate the relativeℓ2 norm of the error in our solution, and
the relative error of our boundary position, as defined by270

Eu
N :=

√

√

∑10
i=0 |ū(x2N̂−1i,N̂(T),T) − u2N̂−1i,N̂(T)|2

∑10
i=0 |ū(x2N̂−1i,N̂(T),T)|2

, Ex
N :=

|x̄(T) − xN,N̂(T)|
|x̄(T)| ,

for N̂ = 1,2,3,4, . . . (i.e. N = 10,20,40,80, . . .). We investigate the hypothesis that

Eu
N ∼

1
Np

and Ex
N ∼

1
Nq
, (44)

for largeN, wherep andq are the estimated orders of convergence. If (44) holds then we expect272

that p2N andq2N defined by

p2N = − log2

(

Eu
2N

Eu
N

)

, q2N = − log2

(

Ex
2N

Ex
N

)

, (45)

will approach the constant valuesp andq asN increases. Since each step of our scheme is second274

order in space and first order in time, and recalling that (formost of our examples)∆t = O
(

1/N2
)

,
we might expect to seep,q ≈ 2.276

4.1. Porous Medium Equation

We solve fort ∈ [1,5] and compute results forN = 10× 2N̂−1, N̂ = 1, . . . ,6. We use the278

self-similar initial conditions att = 1 for n = 1,2,3,

n = 1 : u(x,1) = 1− x2

6
, b(1) =

√
6, (46)

n = 2 : u(x,1) =

(

1− x2

4

)
1
2

, b(1) = 2, (47)

n = 3 : u(x,1) =

(

1− 3x2

10

)
1
3

, b(1) =

√

10
3
, (48)

see [4, 23]. The exact solution at the calculated mesh pointsis280

ū(x, t) =
1

t1/(2+n)

(

1− x2

b(t)2

)1/n

, (49)

and the exact boundary position, is

x̄(t) = b(t) = t1/(n+2)

√

2(n+ 2)
n
.

As stated above, to balance the spatial and temporal errors we use∆t = O
(

1/N2
)

, precisely282

∆t = 0.4
(

4−N̂
)

, for n = 1. Convergence results forn = 1 are shown in Table 1. We see
that Eu

N andEx
N decrease asN increases. This suggests that as the number of nodes increases284

our approximations to both the solution and the boundary position are converging. Thep and
q values presented strongly indicate second-order convergence of both the numerical solution286

12

N Eu
N pN Ex

N qN

10 7.715× 10−3 - 1.451× 10−3 -
20 1.941× 10−3 2.0 3.066× 10−4 2.2
40 4.976× 10−4 2.0 7.138× 10−5 2.1
80 1.259× 10−4 2.0 1.730× 10−5 2.0
160 3.166× 10−5 2.0 4.262× 10−6 2.0
320 7.937× 10−6 2.0 1.058× 10−6 2.0

Table 1: Relative errorsEu
N andEx

N, for the porous medium equation withn = 1 and∆t = 0.4
(

4−N̂
)

.

n N Eu
N pN Ex

N qN

2 10 3.012× 10−3 - 3.072× 10−3 -
20 5.926× 10−4 2.3 6.057× 10−4 2.3
40 1.181× 10−4 2.3 1.208× 10−4 2.3
80 2.361× 10−5 2.3 2.414× 10−5 2.3
160 4.722× 10−6 2.3 4.828× 10−6 2.3
320 9.444× 10−7 2.3 9.657× 10−7 2.3

3 10 2.373× 10−3 - 2.622× 10−3 -
20 4.674× 10−4 2.3 5.169× 10−4 2.3
40 9.320× 10−5 2.3 1.031× 10−4 2.3
80 1.863× 10−5 2.3 2.060× 10−5 2.3
160 3.725× 10−6 2.3 4.120× 10−6 2.3
320 7.451× 10−7 2.3 8.240× 10−7 2.3

Table 2: Relative errorsEu
N andEx

N, for the porous medium equation withn = 2,3 and∆t = 0.5
(

5−N̂
)

.

and numerical boundary position. Forn = 2,3, because of the infinite slope at the boundary
(see (49)),∆t = O

(

1/N2
)

is not sufficient for stability (non-tangling). We found that slightly288

decreasing∆t to ∆t = 0.5
(

5−N̂
)

(corresponding to∆t = O
(

1/Nlog2(5)
)

≈ O
(

1/N2.3
)

) avoids these
difficulties, suggesting that the time error is dominant, see Table 2. The results from the self-290

similar solutions forn = 1,2,3 andN = 20 are given in Figures 1–3. In each case we see that
with only twenty nodes in our mesh, the boundary position (Figures 1(b)–3(b)) is computed very292

accurately (better than 1% relative error att = 5 in each case). Figures 1(c)–3(c) show exactly
how the mesh moves. We observe a smooth even spread of the nodes, without mesh tangling, in294

all three cases.

4.2. Richards’ Equation296

In this section we present results from applying the moving mesh method to Richards’ equa-
tion, as described in§3.2. To test that the numerical solution from the moving meshmethod298

converges we compare the solution with that from a very fine fixed mesh. All numerical results
presented here are forn = 3. In the absence of an exact reference solution we do not compare300

the position of the boundary.
We solve fort ∈ [0,0.5] and compute results forN = 10× 2N̂−1, N̂ = 1, . . . ,4. We compare302

the numerical solutions with a reference solution computedwith N̂ = 6. We take the initial
13

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1
t = 3
t = 5
t = 7
t = 9
t = 11
t = 13
t = 15
t = 17
t = 19
t = 21

u
j,

2
(t

)

x j, 2(t)

(a) The approximate solution.

1 1.5 2 2.5 3 3.5 4 4.5 5

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Exact
Numerical

x 2
0,

2
(t

)

t

(b) The boundary position (relative error att = 5 is 0.0015).

0 1 2 3 4 5 6 7
0

5

10

15

20

25

x j, 2(t)

t

(c) The mesh trajectory.

Figure 1: The PME with self-similar initial conditions forn = 1 (46),N = 20 (N̂ = 2),∆t = 0.025.

14

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1
t = 1.4
t = 1.8
t = 2.2
t = 2.6
t = 3
t = 3.4
t = 3.8
t = 4.2
t = 4.6
t = 5

u
j,

2
(t

)

x j, 2(t)

(a) The approximate solution.

1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Exact
Numerical

x 2
0,

2
(t

)

t

(b) The boundary position (relative error att = 5 is 0.0037).

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

4.5

5

x j, 2(t)

t

(c) The mesh trajectory.

Figure 2: The PME with self-similar initial conditions forn = 2 (47),N = 20 (N̂ = 2),∆t = 0.02.

15

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1
t = 1.4
t = 1.8
t = 2.2
t = 2.6
t = 3
t = 3.4
t = 3.8
t = 4.2
t = 4.6
t = 5

u
j,

2
(t

)

x j, 2(t)

(a) The approximate solution.

1 1.5 2 2.5 3 3.5 4 4.5 5
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Exact
Numerical

x 2
0,

2
(t

)

t

(b) The boundary position (relative error att = 5 is 0.0064).

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

4.5

5

x j, 2(t)

t

(c) The mesh trajectory.

Figure 3: The PME with self-similar initial conditions forn = 3 (48),N = 20 (N̂ = 2),∆t = 0.02.

16

conditions to be304

u(x,0) = 1− x2, x ∈ [−1,1].

To balance the spatial and temporal errors we use∆t = O(1/N2), precisely∆t = 0.4
(

4−N̂
)

(as
with the PME whenn = 1).306

Computed values ofEu
N andEx

N for N̂ = 1, . . . ,4 (i.e. N = 10,20,40,80) are shown in Ta-
ble 3. Again, thep andq values strongly suggest second-order convergence of both the numerical308

solution and numerical boundary position. The numerical solution as computed withN = 40 is

N Eu
N pN Ex

N qN

10 3.030× 10−2 - 1.800× 10−2 -
20 8.676× 10−3 1.8 4.575× 10−3 2.0
40 2.119× 10−3 2.0 1.161× 10−3 2.0
80 5.114× 10−4 2.0 2.857× 10−4 2.0

Table 3: Relative errorsEu
N for Richards’ equation,n = 3.

plotted in Figure 4. We see from Figure 4(b) that the mesh moves smoothly and does not tangle.310

4.3. The Original Crank-Gupta problem

In this section we present results from applying the moving mesh method to the Crank-Gupta312

problem as described in§3.3. The boundary position was calculated using (37). Figure 5(a)
shows the numerical solution at various times fort ∈ [0,0.19]. We note that the solution is314

behaving as expected; the outer boundary is moving in, whilst the inner boundary is levelling out
to satisfy the boundary condition.316

There is no known analytical solution to the Crank-Gupta problem but, as a comparison, we
may use the results of Dahmardah and Mayers [11] who derived aFourier Series solution (also318

see [21]). By comparing their results with earlier work in [13] they concluded that their method
is very accurate. To check whether our method converges asN increases and∆t decreases, we320

compareu0,N̂(0.1) andxN,N̂(0.1) to the results given in [11] fort = 0.1, which are

ū(0,0.1) = 0.143177,

x̄(0.1) = 0.935018.

We solve fort ∈ [0,0.1] and compute results forN = 10× 2N̂−1, N̂ = 1, . . . ,6. To balance the322

spatial and temporal errors we use∆t = O
(

1/N2
)

= 1/[1600(4N̂)]. As a measure of the relative
pointwise errors, we calculate324

Êu
N =
|ū(0,0.1)− u0,N̂(0.1)|

|ū(0,0.1)| , Êx
N =
|x̄(0.1)− xN,N̂(0.1)|

|x̄(0.1)| ,

for N̂ = 1, . . . ,6 (i.e. N = 10,20,40,80,160). We investigate the same hypothesis (44) as in the
two previous sections (though note that our measure of erroris slightly different here). We again326

computep2N andq2N via (45), but withEu
N andEx

N replaced byÊu
N andÊx

N, respectively.
It appears that the non mass-conserving moving mesh method with explicit Euler time-328

stepping has second-order convergence. The movement of thenodes forN = 20, t ∈ [0,0.19], is
17

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 0
t = 0.2
t = 0.4
t = 0.6
t = 0.8
t = 1
t = 1.2
t = 1.4
t = 1.6
t = 1.8
t = 2

u
j,

3
(t

)

x j, 3(t)

(a) The approximate solution.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x j, 3(t)

t

(b) The mesh trajectory.

Figure 4: Richards’ equation withn = 3, N = 40 (N̂ = 3),∆t = 0.00625.

N u0,N̂(0.1) Êu
N pN xN,N̂(0.1) Êx

N qN

10 0.142791 2.7× 10−3 - 0.935761 7.9× 10−4 -
20 0.142721 3.2× 10−3 -0.2 0.935385 3.9× 10−4 1.0
40 0.143040 9.6× 10−4 1.7 0.935120 1.1× 10−4 1.8
80 0.143141 2.5× 10−4 1.9 0.935043 2.7× 10−5 2.0
160 0.143168 6.3× 10−5 2.0 0.935024 6.4× 10−6 2.0

Table 4: Relative errorŝEu
N andÊx

N, for the original Crank-Gupta problem.

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t = 0
t = 0.019
t = 0.038
t = 0.057
t = 0.76
t = 0.095
t = 0.114
t = 0.133
t = 0.152
t = 0.171
t = 0.19u

j,
2
(t

)

x j, 2(t)

(a) The approximate solution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x j, 2(t)

t

(b) The mesh trajectory.

Figure 5: The Crank-Gupta problem solved using relative partial mass conservation,N = 20 (N̂ = 2),∆t = 3.9× 10−5.

shown in Figure 5(b). The nodes are moving smoothly and not tangling, with the ratio between330

the nodes remaining roughly constant. We observe that despite the boundary moving in, the
nodes still cluster towards the boundary, where higher resolution allows greater accuracy to track332

the boundary movement.

4.4. The Crank-Gupta problem with modified boundary conditions334

As mentioned before, we were unable to compare the original Crank-Gupta problem to an
analytical solution. However, by imposing an alternative boundary condition (38) we can exam-336

ine convergence asN increases and∆t decreases over the whole region. We solve fort ∈ [0,0.1]
and compute results forN = 10× 2N̂−1, N̂ = 1, . . . ,6. We compare the numerical outcomes with338

the exact solution (40), att = 0.1,

ū(x j,N̂(0.1),0.1) = ex j,N̂(0.1)−0.9 − x j,N̂(0.1)− 0.1.
19

To balance the spatial and temporal errors we use∆t = O
(

1/N2
)

= 0.02
(

4−N̂
)

.340

Numerical results are shown in Table 5. We see thatEu
N decreases asN increases, and the

N Eu
N pN

10 7.581× 10−3 -
20 2.502× 10−3 1.6
40 6.796× 10−4 1.9
80 1.825× 10−4 1.9
160 4.879× 10−5 1.9
320 1.235× 10−5 2.0

Table 5: Relative errorsEu
N for the Crank-Gupta problem with modified boundary conditions.

values ofpN suggest second-order convergence.342

Figures 6(a)–6(b) show the results from imposing the modified boundary condition, as com-
puted withN = 20. The solution to the original problem is very small fort = 0.19, see Fig-344

ure 5(a), whereas the modified problem decays more slowly. This is partly because the outer
boundary moves in at a slower rate for the modified problem, which can be seen by comparing346

the movement of the last node in Figures 5(b) and 6(b) (where we observe that the boundary
moves in linearly). Lastly, from Figure 6(b) we note that thenodes move in a fairly uniform348

manner, without tangling.

5. Conclusions350

Work on moving meshes has evolved considerably over recent years, becoming a versatile
tool to accurately simulate a wide range of problems. The keyadvantage of a moving mesh is its352

ability to adjust its distribution to focus on areas of interest, such as a moving boundary or blow-
up. In this paper we have discussed one such method, a finite difference moving mesh method354

which is well-adapted to solving one-dimensional nonlinear initial boundary value problems.
The velocity was determined by keeping the relative partialintegrals of the solution,356

∫ x̃ j (t)

a(t)
u(x, t) dx

∫ b(t)

a(t)
u(x, t) dx

,

constant. This strategy is related to the GCL method and is similar to that used by Baines,
Hubbard and Jimack for their moving mesh finite element algorithm [1, 2].358

We applied these methods to a number of moving boundary problems to investigate the ef-
fectiveness of this moving mesh approach. The problems we solved numerically increased in360

complexity, initially problems which conserve mass: the PME and Richards’ equation (both of
which are fluid flow problems). Then we looked at a problem witha variable total mass: the362

Crank-Gupta problem, which models oxygen-diffusion through tissue. We examined the accu-
racy in all cases and found that the numerical solution converged with roughly second-order364

accuracy. Furthermore, for the Crank-Gupta problem, we found that preservation of mass frac-
tions can lead to higher resolution at the boundary, due to the increase in relative density near the366

boundary as time advances, which is desirable. In general, to ensure a higher resolution near the

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t = 0
t = 0.05
t = 0.1
t = 0.15
t = 0.2
t = 0.25
t = 0.3
t = 0.35
t = 0.4
t = 0.45
t = 0.5u

j,
2
(t

)

x j, 2(t)

(a) The approximate solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x j, 2(t)

t

(b) The mesh trajectory.

Figure 6: The Crank-Gupta problem with modified boundary conditions,N = 20 (N̂ = 2),∆t = 1.25× 10−3.

21

boundary, it may be advantageous to use a non-uniform initial mesh with nodes clustered near368

the boundary.
Throughout this paper we have used an explicit Euler time-stepping scheme. Other time-370

stepping schemes we experimented with are the higher order methods built into Matlab (ODE23,
ODE45, ODE15s); see [16] for details. There was little difference in the results from all the372

Matlab solvers, indicating that none of the problems lead toa stiff system of ODEs for the ˜x j(t).
We found that all the time-stepping schemes produced accurate and stable results, with no mesh374

tangling, provided that sufficiently small time-steps were taken. It has been shown in [3,25]
that the PME can also be solved by this moving mesh method witha semi-implicit time-stepping376

scheme using larger time steps.
We conclude that this moving mesh approach with an explicit time-stepping scheme is ac-378

curate for a range of moving boundary problems. In particular, only twenty nodes (and in most
cases only ten nodes) were sufficient to achieve better than 1% accuracy for every example pre-380

sented here.

22

References382

[1] Baines, M.J., Hubbard, M.E. and Jimack, P.K. (2005) A moving mesh finite element algorithm for the adaptive
solution of time-dependent partial differential equations with moving boundaries.Appl. Numer. Math.54 450–384

469.
[2] Baines, M.J., Hubbard, M.E. and Jimack, P.K. (2011) Velocity-based moving mesh methods for nonlinear partial386

differential equations.Commun. Comput. Phys.10 509–576.
[3] Baines, M.J. and Lee, T.E. (2014) A large time-step implicit moving mesh scheme for moving boundary prob-388

lems.Numer. Methods Partial Differential Eq.30 321-338.
[4] Barenblatt, G.I. (1952) On some unsteady motions of fluids and gases in a porous medium.Prikladnaya Matem-390

atika i Mekhanika. (Translated in J. Appl. Math. Mech.)6 67–78.
[5] Beckett, G., Mackenzie, J.A. and Robertson, M.L. (2001)A moving mesh finite element method for the solution392

of two-dimensional Stefan problems.J. Comput. Phys.168 500-518.
[6] Budd, C.J. and Williams, J.F. (2006) Parabolic Monge-Ampere methods for blow-up problems in several spatial394

dimensions.J. Phys. A39 5425–5444.
[7] Budd, C.J. and Williams, J.F. (2008) Moving mesh generation using the Parabolic Monge-Ampere equation.396

SIAM J. Sci. Comput.
[8] Budd, C., Huang, W., and Russell, R.D. (2009) Adaptivitywith moving grids.Acta Numer.111–241.398

[9] Cao, W., Huang, W. and Russell, R.D. (2002) A moving-mesh method based on the geometric conservation law.
SIAM J. Sci. Comput.24 118-142.400

[10] Crank. J. and Gupta. R.S. (1972) A moving boundary problem arising from the diffusion of oxygen in absorbing
tissue.J. Inst. Maths. Applics.10 19–33.402

[11] Dahmardah, H.O. and Mayers, D.F. (1983) A Fourier-Series solution of the Crank-Gupta equation.IMA J. Numer.
Anal.3 81–85.404

[12] Dewynne, J.N., Howison, S.D., Rupf, I., Wilmott, P. (1993). Some mathematical results in the pricing of Amer-
ican options.Eur. J. of Appl. Math, 4, 381–398.406

[13] Hansen, E. and Hougaard, P. (1974) On a moving boundary problem with biomechanics.H. Inst. Maths. Applics.
13 385–398.408

[14] Huang, W., Ren, Y. and Russell, R.D. (1994) Moving mesh partial differential equations (MMPDEs) based on
the equidistribution principle.SIAM J. Sci. Comput.31 709-730.410

[15] Huang, W. and Russell, R.D. (2011) Adaptive Moving MeshMethods.Springer, New York.
[16] Lee, T.E., Baines, M.J., Langdon, S. and Tindall, M.J. (2013) A moving mesh approach for modelling avascular412

tumour growth.Appl. Numer. Math.72, 99–114.
[17] Liao, G. and Anderson, D. (1992) A new approach to grid generation.Appl. Anal.44 285-298.414

[18] Liao, G. and Xue, J. (2006) Moving meshes by the deformation method.J. Comput. Appl. Math.195 83-92.
[19] Miller, K. and Miller, R.N. (1981) Moving finite elements. I. SIAM J. Numer. Anal.18 1019-1032.416

[20] Miller, K. (1981) Moving finite elements. II.SIAM J. Numer. Anal.18 1033-1057.
[21] Moody, R.O., & Baines, M.J. (1992). A constrained movingfinite element solution of the one-dimensional418

oxygen diffusion with absorption problem.J. Comput. Phys., 103(2), 442–449.
[22] Parker, J. (2010) An invariant approach to moving-mesh methods for PDEs.MSc Dissertation, Brasenose Col-420

lege, University of Oxford, UK.
[23] Pattle, R.E. (1959) Diffusion from an instantaneous point source with a concentration-dependent coefficient.Q.422

J. Mech. Appl. Math.12 407–409.
[24] Richards, L.A. (1931) Capillary conduction of liquidsthrough porous mediums.Physics 15 318-333.424

[25] Scherer, G. and Baines, M. J. (2012) Moving mesh finite difference schemes for the porous medium equation
Mathematics Report Series 1/2012, Department of Mathematics and Statistics, University of Reading, UK426

[26] Vazquez, J.L. (2007) The porous medium equation: Mathematical theory.Oxford University Press.
428

23

